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A. Djouadil P. Gambind* S. Heinemeyet,W. Hollik,® C. Jinger® and G. Weiglei
IPhysique Mathmatique et Therique, UPRES-A 5032, Universitee Montpellier 11, F-34095 Montpellier Cedex 5, France
2Max-Planck Institut fu Physik, Werner Heisenberg Institut, D-80805 Munich, Germany
SInstitut fr Theoretische Physik, Universtt&arlsruhe, D-76128 Karlsruhe, Germany
(Received 22 October 1997; published 19 February 1998

In the supersymmetric extension of the standard model we derive the two-loop QCD corrections to the scalar
quark contributions to the electroweak precision observables entering via pagameter. A very compact
expression is derived for the gluon-exchange contribution. The complete analytic result for the gluino-
exchange contribution is very lengthy; we give expressions for several limiting cases that were derived from
the general result. The two-loop corrections, generally of the order of 10%—30% of the one-loop contributions,
can be very significant. Contrary to the standard model case, where the QCD corrections are negative and
screen the one-loop value, the corresponding corrections in the supersymmetric case are in general positive,
therefore increasing the sensitivity in the search for scalar quarks through their virtual effects in high-precision
electroweak observablesS0556-282(198)03405-5

PACS numbgs): 12.60.Jv, 12.15.Lk, 12.38.Bx, 14.70e

I. INTRODUCTION the minimal supersymmetric standard mo@dISSM) there
are three main possibilities for the virtual effects of SUSY

SupersymmetridSUSY) theories[1] are widely consid- particles to be large enough to be detected in present experi-
ered as the theoretically most appealing extension of th&ents.
standard modelSM). They are consistent with the approxi- (i) In the rare decap— sy, besides the SM top-quark—
mate unification of the three gauge coupling constants at th#&/-boson loop contribution, one has additional contributions
grand unified theoryGUT) scale and provide a way to can- from chargino—top-squark and charged Higgs-boson—top-
cel the quadratic divergences in the Higgs sector, hence stgduark loopg5]. These contributions can be sizable but the

bilizing the huge hierarchy between the GUT and the Fermiwo new contributions can interfere destructi.vely. in large
scales. Furthermore, in SUSY theories the breaking of thg€as Of the MSSM parameter space, leading in this case to a
electroweak symmetry is naturally induced at the Fermismi_i.II correction to the decay rate predicted by_the SM.
scale, and the lightest supersymmetric particle can be ney (if) If charginos and_scalar top _quarks are light enough,
tral, weakly interacting, and absolutely stable, providing hey can affeqt the partial decqy width of the Z boson_imto

’ ' ' qguarks in a sizable waj6]. This feature has been widely

therefore a natural SOIUt_'OH for the dark matter problem; fordiscussed in the recent years, in view of the deviation of the
recent reviews see, for instance, Re].

S ¢ dicts th ist f | tner—bDb partial width from the SM predictiofi7]. However,
- Epersymme "y pre. Icts (.e exs ence.o scalar parine or chargino and top-squark masses beyond the LEP2 or
fL,fr to each SM chiral fermion, and spin-1/2 partners oreyatron reach, these effects become too small to be observ-
the gauge bosons and to the scalar Higgs bosons. So far, thgje[7].

direct search of SUSY particles at present colliders has not (jji) A third possibility is the contribution of the scalar

been successful. One can only set lower bound®@00)  quark loops, in particular top-squark and bottom-squark
GeV on their massgs3]. The search for SUSY particles can |oops, to the electroweak gauge-boson self-enel@ies: If
be extended to slightly larger values in the next runs at theéhere is a large splitting between the masses of these par-
CERN e“e” collider LEP2 and at the upgraded Fermilab ticles, the contribution will grow with the square of the mass
Tevatron. To sweep the entire mass range for the SUSYf the heaviest scalar quark and can be very large. This is
particles, which from naturalness arguments is expected naimilar to the SM case where the top-bottom weak isodoublet
to be larger than the TeV scale, the higher-energy hadron qjenerates a quantum correction that grows as the top-quark
e*e” colliders of the next decade will be required. mass squared.
An alternative way to probe SUSY is to search for the In this paper, we will focus on the third possibility and
virtual effects of the additional particles. Indeed, now thatdiscuss in detail the leading contribution of scalar quark
the top-quark mass is knowd], and its measured value is in loops to electroweak precision observables, which is param-
remarkable agreement with the one indirectly obtained frometrized by their contribution to the parameter. The radiative
high-precision electroweak data, one can use the availableorrections affecting the vector-boson self-energies stem-
data to search for the quantum effects of the SUSY particlesning from charginos, neutralinos, and Higgs bosons have
sleptons, squarks, gluinos, and charginos or neutralinos. Ibeen discussed in several papf8s9]. In the MSSM, be-
cause of the strong constraints on the Higgs sector, the
propagator corrections due to Higgs particles are very close

*Present address: Physik Department, Technische Unitersitdo those of the SM for a light Higgs bos¢f0]. In the de-
Munchen, D-85748 Garching, Germany. coupling regime where all scalar Higgs bosons but the light-
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est are very heavy, the SUSY Higgs sector is effectively

equivalent to the SM Higgs sector with a Higgs-boson mas: ‘l e

of the order of 100 GeV. The contribution of charginos and v \ & ".,
neutralinos, except from threshold effects, is also very smal YV} hhdbbdtd v v
[9]. The main reason is that the custodial symmetry whick S PSS
guarantees that=1 at the tree level is only weakly broken 4

in this sector since the terms which can break this symmetry

in the chargino-neutralino mass matrices are all proportional F|G. 1. Feynman diagrams for the contribution of scalar quark
to My, and hence bounded in magnitud. loops to the gauge boson self-energies at one-loop order.

The propagator corrections from squark loops to the elec- ) ) )
troweak observables can be attributed, to a large extent, t®ain features of the two-loop calculation are discussed in
the correction to they parameteif11], which measures the Sec. Ill. In Sec. IV a 'conjpact expression is given for _the
relative strength of the neutral to charged current processéiUon-exchange contributions. The results for the gluino-
at zero momentum transfer. This is similar to the SM, whereé€xchange contributions are presented for the limiting cases
the top-bottom contribution to the precision observables isOf Zero gluino mass and a very heavy gluino as well as for
to a very good approximation, proportional to their contribu-h€ case of arbitrary gluino mass but vanishing squark mix-
tion to the deviation of the parameter from unity. Further N9 Effects of O(a) corrections to relations between the
contributions, compared to the previous one, are suppressé’"&luark masses existing in d|ff_erent scenarios are discussed.
by powers of the heavy masses. It is mainly from this con/n S€c. V we give our conclusions.
tribution that the top-quark mass has been successfully pre-
dicted from the measurement of the Z-boson observables and
of the W-boson mass at hadron colliders. However, in order For the sake of Comp|etenessl we summarize in this sec-

for the predicted value to agree with the experimental onegon the one-loop contribution of a squark doublet to the

higher-order radiative correctionsl2—14 had to be in-  electroweak precision observables. Before that, to set the no-

cluded. For instance, the two-loop QCD corrections lead to @ation, we first discuss the masses and couplings of scalar

decrease of the one-loop result by approximately 10% anguarks in the MSSM.

shift the top-quark mass upwards by an amountdb GeV. As mentioned previously, SUSY associates a left- and a
In order to treat the SUSY loop contributions to the elec-right-handed scalar partner to each SM quark. The current

troweak obser_vab_les at the same level o_f accuracy as _t'@genstateﬁL and G Mix to give the mass eigenstates
standard contribution, higher-order corrections should be in- ~ ~ . . .
nd q,; the mixing angle is proportional to the quark mass

corporated. In particular the QCD corrections, which becaus@‘nd is therefore important only in the case of the third gen-

of the large value of the strong coupling constant can b&Nd. :
rather important, must be known. In a short Lefi&5] we eration squarks. In the MSSM, the squark masses are given

have recently presented the results for €Mgxg) correction mf ttehrms of the H|ggs-i—||tg_)gsmo|mass pa}r?rr]nqttertha_ratm
to the contribution of the scalar top- and bottom-quark Ioopsg b? tvle\l/lcsugm ft_exlzec a |c()jn dv? ugs 'fim:h el V\tlo' lggks-
to thep parameter. In this article we give the main details of ouble I€lds needed (o break Ihe electroweak sym-

the calculation and present the explicit result for the gluonMeWY: the left- and right-handed scalar masség and

exchange contribution as well as the result for the gluinoM7g,, and the soft-SUSY-breaking trilinear coupliAg. The
exchange contribution in several limiting cases. top- and bottom-squark mass eigenstates and their mixing

The paper is organized as follows. In the next section, wangles are determined by diagonalizing the following mass
summarize the one-loop results and fix the notation. Thenatrices:

II. ONE-LOOP RESULTS

M%L+ mt2+0032,8<%— gs\z,\,) M2 mM R
Mz= ) : (6
mM R M%R+ mZ+ 3€0s28 saM2
2 2 1 1 2 2 LR
MBL+mb+COSZ,8<—§+ §SW>|V|Z m,My,
ME= L , @)
mpM " M%R+ m2— 3€0s28 SVE

with M{R=A;— ucotB and MyR=A,— utang; sj=1—cj=sirhy. Furthermore, S(2) gauge invariance requirelly,
=Mg, at the tree level. Expressed in terms of the squark masgesy, and the mixing anglé; the squark mass matrices
read
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2 : 2 o o2 2
, coszeamalJrsmz&amaz sinfgcosgg(m; —ms )
Mq= sinfzcodz(m> —m2 ) sirfozm> +cofezmz | @
q q a; a, q qq q g5

Because of the large value of the top-quark nrassthe mixing between the left- and right-handed top squagkandt
can be very large, and after diagonalization of the mass matrix the lightest scalar top-quark mass eigecsataiee much
lighter than the top quark and all the scalar partners of the light qyaf{s The mixing in the bottom-squark sector is in
general rather small, exceptAf,,w, or tar3 are extremely large. In most of our discussion we will assume that, because of
the small bottom-quark mass, the mixing in the bottom-squark sector is negligible and thérefobs .

Using the notation of the first generation, the contribution of a squark doubtétto the self-energy of a vector boson
V=1v,Z,W and to theZ-y mixing is given by the diagrams of Fig. 1. Summing over all possible flavors and helicities, the
squark contribution to the transverse parts of the gauge-boson self-energies at arbitrary momentungtraasfee written,
in terms of the Fermi constag, as follows:

I W(z):_M'E 2 T1o(q2,m2 ,m%)
ww g 8\/§W2i’j:1’29Wuidj o(as, upd

3GFM§ 2 2 2
,,(g%) =— ~~TIo(g?%,ms ,m3 ),
22(9°) y 21725:211,3 97,5, To(a%, Mg, mg.)
i,j=1,2
3GEM2sycw .
2y _ ~~ a~ 2 ms< ms
Nzy()=~—,—=— a=Eaagm,q,eq, o(q2,me ),
=12
3GEMZsicy 2 2 2
II D= —————— e~11 2,m~,m~ , 4
@) 1o qu = Ho(g% mg ms) 4
=12

with the reduced couplings of the squarks to the W and Z bosons, including ntixibgtween left- and right-handed squarks,
given by (g and| are the electric charge and the weak isospin of the partner quark

( cost;cosdy —cos&;sin&a)
H = 1

IWUd, =\ _cogpesingg  singosingg
(19— eySiy) COS 05— e484,SinP 05 — | $singzcos;
= . . . 5
97ajq, — 1 $singzcos; — €4SHCOS O+ (19— e,sq)si b5 ®

In both the dimensional regularizati¢fa7] and dimensional reductigri8] schemes, the functionIly(g?,m2,m2) reads

4 q? g (mi—mp)?
Ho(qz,mg,m§)=§ m§+m§—§+ m§+mt2,—7— Y 7 Bo(a?, My, my)

2 2

a— My
+ 24 [Ao(Ma) = Ag(Mp) ] = Ag(Mg) —Ag(Mp) |- (6)

The Passarino-Veltman one- and two-point functifit@| are defined as

A = 21+1 |m2+ 1+7T2 Imz+1|zmz 7
O(m)—m ; n; € E n; E n ; s ( )

1 .
Bo(” Ma,Mp) = — +Bg(a% My, M) + €B5(0% My, mp),

YIn general the dimensional reduction scheme, which preserves SUSY, should be used. For all quantities considered in this paper
dimensional reduction yields precisely the same result as dimensional regulariza#grnowever, the discussion in Sec. 1Y D
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2 2 Y22 2 2y 2 2 2 1f2 2 2 2
mym, mz—mg nma BYAQq5,mi,mg) mi+my,—q°+ B79(q,mg,my)

Bi"(g?,m,,m,)=2—1n

w? q? m, q? 2m,my, '
|
where p is the renormalization scalg? the phase space M c2 c2.g2
function, My~ —2 =2 _Ap,  ssieeSi~— 2 Ap.
2 2_g2 o2 _g2
W W w W
(10)
2 2 2 22 2 (mz—mp)®
B(Q%,mg,mp) =g —me—mg+ —————, (8) In terms of the transverse parts of the W- and Z-boson
q self-energies at zero momentum transfer, the squark loop
contribution to thep parameter is given by
and 2¢=4-—n with n thf sp_ace—tlme dimension. Wg have 1 ,/(0) Tyw(0)
absorbed a factore(/4) €, with y the Euler constant, in the P=1"As = -~ > (11
't Hooft scale u to prevent uninteresting combinations of p Mz M
Indr,y, ... in ourresults. The explicit form of the function Using the previous expressions for the W- and Z-boson self-

By is not needed for our purposes but can be found in Refenergies and neglecting the mixing in the bottom-squark sec-
[20]. tor, one obtains, for the contribution of theg'b doublet at

At zero momentum-transfeq?=0, the functionIl, is ~ .
finite and reduces to 4 0 one-loop ordefonly the left-handed sbottorn, contributes

for 65=0),
3G
2m2mZ  m? susy_ _°7F o 24 ~ 2 2
Fo(mi,mﬁ)EHO(O,mg,m§)=m§+mg— 2a bzln_g. Apg 8\/5772[ S|n20t00§0t Fo(mtl’mtz)
Ma™ Mo Mo 2 2 2 2
C) +cos6; Fo(myl,mEL)Jrsinza; Fo(mg m )].

We now focus on the contribution of a squark doublet to (12
the p parameter. It is well known that the deviation of the The functionF, vanishes when the two squarks running in
parameter from unity parametrizes the leading universal corthe loop are degenerate in maEg(mé ,m§)=0. In the limit
rections induced by heavy fields in electroweak amplitudesof large squark mass splitting it becomes proportional to the
It is due to a mass splitting between the fields in an isospitheavy squark mass squardey(m2,0)=m2. Therefore, the
doublet. Compared to this correction all additional contribu-contribution of a squark doublet becomes in principle very
tions are suppressed. In the relevant cases of the W-bosdarge when the mass splitting between squarks is large. This
mass and of the effective weak mixing anglezﬁﬁ, for is exactly the same situation as in the case of the SM where

example, a doublet of heavy squarks would induce shiftshe top-bottom contribution to the parameter at one-loop

proportional to its contribution te, order, keeping both theandb quark masses, reafi$1]
i} 3G
<1072 Ang:WFO(mf,mg). (13
Q0-35,""|""|""|""|""|""|""|""_ 8v2m
< 03 I — M"=0 GeV (no mixing) g For m;>m, this leads to the well-known quadratic correc-
S ] tion ApgV=3G m?/(8\272).
o2s £\ TC M{F=200 GeV (max. mixing) 3 In Fig. 2 we display the one-loop correction to thepa-

rameter that is induced by the/b isodoublet. The scalar
mass parameters are assumed to be GMQJFMYR and
M5L=M5R, as is approximately the case in supergravity
models with scalar mass unification at the GUT sdal#].

As mentioned above, SB) gauge invariance requires at the
tree levef M7 =Mg, yielding in this caseMy =My,
=M =Mg =nyg. In this scenario, the scalar top-quark mix-
1 ing angle is either very smal@;~0, or almost maximal,
A T T T B R T 67~ — m/4, in most of the MSSM parameter space. The con-
100 150 200 250 300 350 400 450 500  tribution Ap5YSY is shown as a function of the common
Mg squark massng for tan3= 1.6 for the two casebl;"=0 (no

FIG. 2. One-loop contribution of thet(b) doublet toAp as a
function of the common squark massy for ¢7=0 and 67 2The corrections to the relations between the squark masses will
~ —7/4 (with tanB3=1.6, M;R=0, andM{R=0 or 200 GeV). be discussed in Sec. IV D.
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mixing) andM =200 GeV(maximal mixing; the bottom- x 102

guark mass and therefore the mixing in the bottom-squaer 04
sector are neglected, Ieadingrthz mg,=myg . Here andin <« ¥

all the numerical calculations in this paper we use=175 035 —— m=150 GeV E
GeV, M,=91.187 GeV,M;,=80.33 GeV, anda,=0.12. s BT my=250 GeV E
The electroweak mixing angle is defined from the ratio of the S m;=500 Cev ]
vector boson masses3,=1—Ma/M3. 025 :

As can be seen, the correction is rather large for small ~  t E
mg, exceeding the levelp=1.3x10"2 of experimental I f ]
sensitivity in the case of no mixing fomg~150 GeV, 0.15 | 3

which corresponds to the experimental lower bound on the
common squark mag8], and getting very close to it in the
case of maximal mixing. For largey values, the two top- 0.05 [
squark and the bottom-squark masses are approximately de R
generate sinceng>m;, and the contribution ta p becomes .
very small.

For illustration, we have chosen the value ganl.6
which is favored byb-7 Yukawa coupling unification sce-
narios[21]. In fact, the analysis depends only marginally on
tang if M{" (and notA, and ) is used as input parameter.
The only effect of varying tafi is then to slightly alter the D large values oMtLR the contribution to the parameter can
terms in the mass matrices Eq$) and (2), which does not become huge, exceeding by far the level of experimental
change the situation in a significant way. However, for largeobservability. The increase dfp5">" with larger values of
tang values, tapp~m,/my, the mixing in the bottom-squark MtLR is due to the increased mass splitting between the two
sector has to be taken into account, rendering the analysisp-squark masses anah  that is induced formM{R
somewhat more involved. We will focus on the scenario Wlth> m2 . For values ofmg comparable to the top-quark mass,

a low value of ta8 in the following. mg =200 GeV, the mass splitting is already large even for

; ; susy ; i
In Fig. 3 we displayApy ™" as a function of the mixing  gma) LR que to the additionam? term in the top-squark
mass matrix; this is similar to the no-mixing case.

angle for three values of the common squark masg,
=150, 250,_an|(|j 5f?0 GeV, ar]:d forl';aﬁrl.?. Jhe pqntnbu—l If the GUT relationMt =M7_ is relaxed and large val-
tion is practically flat except for values of the mixing angle ues of the mixing parameteL\r‘ItLR are assumed, the splitting

very Close to the 'OWer limitg ~ — /4. This justifies the .petween the top-squark and bottom-squark masses is so large
choice of concentrating on the two extreme cases. In fact, B at the contribution to the parameter can become even
the caseMy =M7,, the maximal mixing scenarifs  pigger than in the previously discussed scendsiee Sec.
=—m/4 is only obtained exactly when the D terms are set tgV D for a more detailed discussion

zero, which is the case when @ 1. One can also have

0.1 :_ T

0 1 | |
-n/4 -3n/16 -n/8 -n/16 o8
FIG. 3. Dependence of the one-loop contributipp;"S" on the
top-squark mixing angl#d;. The parameters are the same as in
Fig. 2.

maximal mixing if the sums OM%L and M%R with their IIl. TWO-LOOP CALCULATION
corresponding D terms are equal, making the diagonal en- The QCD corrections to the squark contributions to the
tries in the mass matrices, Ed4) and(2), identical. vector-boson self-energies, Fig. 4, can be divided into three

The parameteM R not only influences the mixing but

L TABLE I. Ap5US¥in units of 1073 f | values aig and
also the mass splitting between the scalar top quarks. Th Po - 1N UNIS O or severe) values dig an

LR (in GeV) and taB=1. The values oM\R are chosen such
: LR SUSY iq i : t . t
effect of varyingM, On,APO . '_S dls.played in Table | for that the corresponding squark masses lie in the experimentally al-
the case of exact maximal mixing, i.e., & l. The sce- |gyed range.

nario with tarB=1.6 yields similar numerical results. For

mg (GeV) MR (GeV) Ap3USYx 1073

3As will be discussed below, the case of exact maximal mixing, 200 100 1.68
¢7=—ml4, is not possible in the scenario witd; =M7_ and 200 1.35
tan8=1.6. Sinced; is already very close to the maximal value for 300 0.89
M:R=200 GeV, we will in the following refer to this scenario as 400 1.28
“maximal mixing.” 500 200 0.34

“The correction toAp discussed here directly corresponds to a 500 0.23
correction to the effective paramet@r defined in Ref.[22] or, 1400 2.04
equivalently, toe; as given in Ref.[23] or the combination of 1550 497
parameters defined in Rd24]. Using the 1997 precision data, the 800 500 0.12
resolution one; is estimated to be 1381073 [25]. A similar esti- 1500 0.07
mate can be readily obtained using the present experimental errors 2000 0.30
on the world averag¢26] of My,, 80 MeV, and sif&l, 2.2 3700 15.8

X104, in Eq.(10).
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g
B8 7 &% g oy X
i - >q3-§‘--->---?--)-q3- S RN
_ q
9
(a) (b) © (a) (b)
3 3. & S g
Sod ] ke Sovandsmmisnnte Sooand T VL T
\§) o L SR af .3 4
@ () (®) e
. % (c) (d)
. e . 0
b & N
y 2N v v HULL v v /@Mg\ v FIG. 6. One-loop diagrams contributing to the squark mass and
e ARSI s e mixing angle counterterms.

As mentioned above, the results presented in the follow-
ing are precisely the same in dimensional regularization as in
dimensional reduction. The renormalization procedure is per-
formed as follows. We work in the on-shell scheme where
the quark and squark masses are defined as the real part of
the pole of the corresponding propagators. One further needs
a prescription for the renormalization of the squark mixing
angle. The renormalized mixing angle can be defined by re-

quiring that the renormalized squark mixing self-energy
H%elnaz(qz) vanish at a given momentum transtg, for ex-

ample when one of the two squarks is on shell. This means

that the two squark mass eigenstatgsand g, do not mix
(m) (n) ! i .
but propagate independently for this valuegdf Expressing
FIG. 4. Feynman diagrams for the contribution of scalar quarkthe parameters in Eq3) by renormalized quantities and
loops to the gauge-boson self-energies at two-loop order. choosing the field renormalization of the squarks appropri-
ately, this renormalization condition yields, for the mixing
angle counterterm,

different classes: the pure scalar diagraffigs. 4a—4y; the
gluon-exchange diagram@-igs. 4d-4j, and the gluino-
exchange diagram@-igs. 4k—4n. These diagrams have to ) )
be supplemented by counterterms for the squark and quark 665(do) = mﬂa@(qo)- (14)
mass renormalizatiofFigs. 5a—5¢as well as for the renor- a9z

malization of the squark mixing angl&ig. 5d. The three

different sets of contributions together with the respectiverinally, we have also included, as a check, the field renor-
counterterms are separately gauge invariant and ultraviolghalization constants of the quarks and the squarks in our
finite. For the gluon-exchange contribution we have onlycalculation; they of course have to drop out in the final re-
considered the squark loops, since the gluon exchange iult, which we have verified by explicit calculation.

quark loops is just the SM contribution, yielding the result  The one-loop diagrams of Figs. 6a—6c¢ provide the renor-
ApM=—ApgM2(ag/ ) (1+ w2I3) [12]. malization of the squark masses and the squark wave func-
tions. As the one-loop squark contributions to the vector bo-
son self-energies are finite at vanishing external momentum

ke

g . [see Eq(9)], we notice that th®©(¢€) part of the squark mass
v o 7N W v v counterterm is not needed. We have contributions from the
N At three diagrams of Figs. 6a, 6b, and 6¢ involving gluon ex-
k < change, gluino exchange, and a pure scalar contribution, re-
(a) (b) (c) spectively. The explicit form of the pure scalar contribution

is not needed as we will see later. The contribution of the
gluon exchange to the squark mass counterterm is given by

e
Y
.

2
1+7 Ima
e 3 "2

.......

Qs 2

@ (@) 0 mg, 6%mg, = — 5. mg, . (19

FIG. 5. Counterterm contributions to the gauge-boson self-
energies at two-loop order. while the one of the gluino exchange reads
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Fig. 5b. It should be noted that the expression Bj is

~ o
mg, o%mg = — ﬁ[(mfﬁ' mﬁ—m—fii) BO(m%ivmq ,Mg) needed in order to obtain this result.
(b) The reducible diagram of Fig. 4a involving the quartic
+Ao(mg) +Ag(my) squark interaction contributes only to the longitudinal com-
ponents of the vector-boson self-energies and can therefore

2

+2(—1)'sin267 mgm, Bo(mq

Mg, my) ], be discarded.
' (c) The diagrams in Figs. 4b and 4c are canceled by the
(16)  corresponding diagrams with the counterterms, Figs. 5a and
i . 5b, for mass renormalizatioffor the diagonal termsand
where Ay and By have been defined previously, and arepixing angle renormalizatiorifor the nondiagonal terms
needed only up t®(1) in thee expansion. Although in our - The diagrams in Figs. 5d—5f for the vertex corrections con-
renormalization scheme the contribution of the quartictain only field renormalization constants which drop out in
squark interaction to the squark masses drops out in the finghe final result.
result, we will also give its expression for later convenience (d) The gluon tadpolelike diagrams of Figs. 4i and 4j give
(i'=3-i): a vanishing contribution in both dimensional regularization
and reduction.
. as - - . 5 ~ For the gluino-exchange diagrams, one has to calculate all
mqi5qmqi_ G—W[coszzano(mqi)+sm220qu(mqi,)]. diagrams of the types shown in Figs. 4k—4n and their corre-
17 sponding counterterm diagrams depicted in Fig. 5.
We now briefly describe the evaluation of the two-loop
Concerning the quark mass counterterm, Fig. 6d, in principleliagrams. As explained above, we have both irreducible two-
the O(e) term is needed because the quark loop contributoop diagrams at zero momentum transfer and counterterm
tions to the vector-boson self-energies are ultraviolet diverdiagrams. After reducing their tensor structure, they can be
gent even a?=0. However, inAp this contribution drops decomposed into two-loop scalar integrals at zero momen-
out as the one-loop quark contribution to this physical quantum transfer(vacuum integralsand products of one-loop
tity is finite. As mentioned above, the gluon contribution tointegrals. The vacuum integrals are known for arbitrary in-
the quark mass counterterm is only relevant for the pure SMernal masses and admit a compact representatioa-fod
correction and is not needed in the present context. Th# terms of logarithms and dilogarithmsee, for instance,

gluino contribution can be expressed as Ref. [28]), while the one-loop integral#\,,B, are well
known[see Eq(7)]. We have used two independent imple-

~ ag . ) mentations of the various steps of this procedure and ob-
59mq=§;2 (—1)' sin265 mg Bo(mg,mg,mg.) tained identical results.
e In the first implementation, the diagrams were generated
1 , 2 2 , vyith the MATHEMATICA packagerEYNARTS [29]. The mode_I
+H[(mq+ mg— ma_)BO(mq ;Mg ,mai) file contains, in addition to the SM propagators and vertices,
q ' the relevant part of the MSSM Lagrangian, i.e., all SUSY
propagators {4, t,,b;,b,,9) needed for the QCD correc-
+Ao(mai)—Ao(m’g')]] : (18 tions and the appropriate vertic&gauge-boson—squark ver-
tices, squark-gluon and squark-gluino vertjc8$he program
Finally, the counterterm for the squark mixing angle, definednserts propagators and vertices into the graphs in all pos-
at a giveng?, is given by sible ways and creates the amplitudes |ncllud|ng all symmetry
o factors. The evaluation of the two-loop diagrams and coun-
terterms was performed with thRATHEMATICA package
5. s COSMY ) .
867(08) = 5= ———=-{4mm;By(qg.m;,mg) TWOCALC [30]. By means of tvx_/o—loop tensor mtegral decom-
3m - positions it reduces the amplitudes to a minimal set of stan-
dard scalar integrals, consisting in this case of the basic one-
+sin20’{[A0(myz)—Ao(m'{l)]}. (199  loop functionsAy,B, (the By functions originate from the
counterterm contributions onlyand the genuine two-loop
As discussed above, for the valueggfone can either choose function T3, [28], i.e., the two-loop vacuum integral. As a
m% or m% , the difference being very small. In our ana|ysis check of our calculation, the transversa“ty of the tWO-lOOp

1 2 2 . o .. photon andyZ mixing self-energies at arbitrary momentum
we have choseqozmTl. This renormalization condition is ¢ ancfer and the vanishing of their transverse parig?at0
equivalent to the one used in R¢R7] for scalar quark de- was explicitly verified withTwocAaLC. Inserting the explicit
cays. expressions foAq,Bg, T134 in the result forAp, the cancel-

Let us now discuss the separate contributions of the varitation of the 1£% and 1€ poles was checked algebraically,
ous diagrams. The contribution of the pure scalar diagramand a result in terms of logarithms and dilogarithms was
vanishes, while for the gluon-exchange diagrams one needferived. From this output &ORTRAN code was created
to calculate only the first four genuine two-loop diagrams,which allows a fast calculation for a given set of parameters.
Figs. 4d—4g, and the corresponding counterterm with the In the second implementation, completely independent,
mass renormalization insertion, Fig. 5a. The other diagramthe diagrams were not generated automatically, but the ana-
do not contribute for the following reasons. Iytic simplifications and the expansions in the limiting cases

(&) The diagram in Fig. 4h is exactly canceled by the(small and large gluino mass, maximal and minimal mixing
corresponding diagram with the mass counterterm insertionyere carried out by using thelATHEMATICA package

ty ty
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FIG. 7. Ap3 guonas a function ofng for the scenarios of Fig. 2.

PROCESSDIAGRAM[31]. In this way the results can be cast

into a relatively compact form, shown in the following.

IV. TWO-LOOP RESULTS

A. Gluon exchange

FIG. 9. ApP'5ii, as a function ofmg in the maximal mixing
scenario; ta=1.6 andmg=0, 10, 200, and 500 GeV.

G M%as s 2
Fi(m= ,m=).
N a;~gzqq (Mg, mg )

77(0)=— 3
i,j=1,2

(20

The two-loop functionF(x,y) is given in terms of diloga-
rithms by

In order to discuss our results, let us first concentrate on
the contribution of the gluonic corrections and the corre-

sponding counterterms. At the two-loop level, the results for
the electroweak gauge-boson self-energies at zero momen-F,(x,y)=
tum transfer have very simple analytical expressions. In the

case of an isodoubletu(d) where general mixing is al-
lowed, the structure is similar to Eq&}) and (9) with the
9vag, as given previously:

G Mwas

4\/—77 i

yw(0) =~ 29

2 2
Fl(m;i,maj).

x107°

A
L

M:"=0 GeV (no mixing)

—0.25 —_— m§=0 GeV
......... m§—10 GeV
-03 -/  _____ mz=200 GeV
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o4 Bt b b e 1 1
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FIG. 8. ApT guino @S @ function ofng in the no-mixing scenario;
tan8=1.6 andmz=0, 10(the plots are indistinguishable200, and
500 GeV.

X[ x x] (x+y)x?
X+y— 2—y In—| 2+=In— x+yIx n?—
Y YL Y Y (x-y)?2 Y
X
—2(x—y)Li2(1—§). (21)

This function is symmetric in the interchange>oéindy. As
in the case of the one-loop functidfy, it vanishes for de-

x10°
Q 05 T T -
< os | ]
C B ]
03 = Y 7
[ S0 ]
02 Ty =
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—01 B2 me=100 GeV 3
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FIG. 10. Comparison between the exact resultﬁpl gluino 2Nd

the result of the expansion, ER4), up to O(l/m~) for the two
scenarios of Fig. 2mg =100 GeV.
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generate masseis; (x,x) =0, while in the case of large mass onic correction to the contribution of scalar quarks to the

splitting it increases with the heavy scalar quark masgparameter will therefore enhance the sensitivity in the search

squaredf(x,0)=x(1+ 7%/3). of the virtual effects of scalar quarks in high-precision elec-
From the previous expressions, the contribution of theroweak measurements. The dependence of the two-loop glu-

(t,b) doublet to thep parameter, including the two-loop ©nic contribution on the top-squark mixing angieS%éQibi_ts
gluon exchange and pure scalar quark diagrams are obtainéte same behavior as the one-loop correctidpz gion IS

straightforwardly. In the case where tfie mixing is ne- nearly constant for all possible values 6f; only in the
glected, the SUSY two-loop contribution is given by an ex-"€gion of maximal mixing does it decrease rapidly.
pression similar to Eq(12):

B. Gluino exchange

susy _ _JF%s o . 2 2 derived a complete analytic result for the gluino-exchange
APTgiton \/57.,3[ S|n20700§07F1(mt 'mtz) contribution. The complete result is, however, very lengthy
, _ y and .wg_therefore prgsent here explicit. expressions only for
+co§07F1(m?l,mEL)+S|n26?F1(m;2,m~5L)]. the limiting cases of light and heavy gluino mass, and for the
case of no squark mixing. The complete expression is avail-
(22)  able in FORTRAN and MATHEMATICA format from the au-
thors.
In order to make our expressions as compact as possible,
we usesy=sind; andcy=cod; as abbreviations and intro-
duce the following notation:

G Like for the gluon-exchange contribution we have also
4

The two-loop gluonic SUSY contribution thp is shown in
Fig. 7 as a function of the common scalar magg for the
two scenarios discussed previoustz=0 and 67=— /4.
As can be seen, the two-loop contribution is of the order of

10%-15% of the one-loop result. Contrary to the SM case d,,=(m2—m2)

(and to many QCD corrections to electroweak processes in W YR

the SM; see Ref.32] for a review where the two-loop cor- \here

rection screens the one-loop contributia&pfgﬁgn has the

same sign aAp§USY. For instance, in the case of degenerate my=my, Mpy=my,, M =My, My=Mg.

scalar top quarks with masses;>my, the result is the

same as the QCD correction to thigk) contribution in the The gluino contribution for vanishing gluino mass is given
SM, but with opposite sign; see Sec. IV C below. The glu-by

2

—__sZFC-F 2 (mr —m* 2 m2
APl,quinJmBzO_ - 16\/577‘2 2 z{sz(mbL mt1+2mbLmt)
by

2 2
SUSY qs CFNCGF i m; st
2 2 2

di,di,m;

—2&m? 2+ md(m2 2_m2 —mE ) —mi+mE m?
Zstmdelz[(mwaLmt)(mbLert mt, mtz) mt+mt1mt2]}

2
m;

_ 6 m2 2_m2 2 m2(m2 m2 —me 4
5 ( dlithl(mbLant mtl)JerbLmt(mbLmtl mtl+mt)

+Llip| 1 — | 5——
( mTl) dfldlzmt

—m*mt A Zrod ot A 202 Tm2 m2 (m2 —m2 2
mt(mt1+3mbL)]+st{mtl(mbL mtl)d12+2mtmtl[mtlmbL(mbL mt1+3mt2)

2 4 4 6 4 4 4 6,42 2 4. 2r 12 2 2 4
—2m;2(myl+mBL)+mT1]+mt(3mBL+m;l)d21+2mt(dL1+mBLd12)}+ZS;mt[dLl(mTlmTZ—mt)])
m2
. t 4 2 2, 4, 4 4
+Liy| 11— — | 55— (ms d,d ot sz{mz (mz —m= )dy,;
m’% df,diom? e N

2

2 20 2 2, 2 2 2 6
+2mtm72[m?2mBL(m5L mtl mt2)+mt]

2

4 4 2 2 2
+mi(3m +mg )dip+ 2mp(—dfp+mg do))} - 257 dfo(m? mz —m)])

2 4 2 2 4 2 4 4 2 4
(dLZ[ZmELm;lJr szLm71_ m; (3m~6L+ mTl) + ZmBLmt ]
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—262m2 2 mE +mE +m2)—3mE m2 m2 2rm2 (m2 +m2 —3m2 2 m2
ZStmdelz{[mbL(mbLJrmt1+mt2) SmbLmtlmtz]ﬂLmt[mbL(m~t-1+mt2 SmbL)+mtlmt2]

—2In(m% )In(m—z- ) —2In(m% )In(m-z- )
+miemE —m? —m )+ = L = 2 m; M St
t b ty ty El bty Tt g2 7t
—mtln(m~ )In(mt)
+ {m»2~d (M2 m% +m> —2mZ m?)
22dd t, L2V Ty ty
my My, 0uadez
2 2
—25 m d z[mt(m [ TM, M )+m~ m~ ]}
1
2 2
2In(mg )in(|dul) ) 2In(mg )In(|dz)) )
_ m= d?.c> m= ds5.s>
2 2 b T1tvt 2 2 b, —2t7t
m’f’ldLl L mTzsz -
2 2
I’T-]E;Lln(rnEL) 2 2 2 2
+ ———[(mz —3m= )d| ,+2m= dy,S%
diidio 3 by tl) L2 by 125
2.2
czIn“(m=
——t( )d2 2 —2mé mt —3me +2mz m{)+2d —4—2-
[dyof m M me M mg mZ— m mt m mt) Ll(m m my)sz]
2d 1d12 1 L 1 L
2 2
ctmZIn(ms )In(m?)
L 24 2 M +me —2m2 m2
+ [mI2 12(mbLmt1 m mbLmt)

2 2
m;lmTzd,_ld 12

2dIn(m? )In(|dy))c?

+2¢% dLl(m +m )(2m~ m~ m% mZ— m,l\ m?)] + (m%Ld 10— dlezs )

! m%ldfldiz
2 2 2
2d2tln(m71)ln(|d2t|) - In(m;l)
+ s;etm; ——— (@ (m d +4mm d —4mé m?)
midiz th 2dlelzmt o - t * Pt

_ 2 _m2—mi 2 m2 m2 2 2 2 —om*
25 mt{m mbL mr mt2)+mbLmtlmtermt[2(mt1+mt2)dLl 2mtl

2 2 4 2 2 2 2 2 2 2
+ 2m~b-Lm—t~2]} +2sympd4[ m?l(m~t~1+ m»t-z) +2m; (2m~t~l+ mTz)])

Inz(m~ )s~
+—2—[2m dlLd2L+mtd12(3m +m~)
2dL2d12

4,42 2 2 2 2 2 4
—2m{(di,+ mBLdlz) - ZSTsz(mTlm?z_ my)]

mts~ln(m~)ln(mt) , . ,
— Tz{m'fl[3mBL( m;1+ m~t‘2)
m;lmTzszdlz

+m~ (2m~ —3m~ —5m~ ]+2mt[(m~ +m~ )2 m~ (3m~ +m~ )]}

2ms dzts~c~ln m? Jin(lda)

_ o2 2 2 2 m2 —ma(m2 2
ZStsz(mtlemtz)[thlmt2 mt(mtl+mt2)])+ m? d12
1
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2d5sTIn(me ) In(|d))

- > [m~ dLl(m d12+m sz) m d 23]
m?zdfzdiz

In(m~ )

T 24 d mg{ szdlz(m —4m?)
L2012

2 2 m?2 2 L mE ) +mA6mE —2mé —4am2 )1- 253 2rm2 (m2 +m2
+Zstmtzmt[sz(mtlertz)ert(GmbL 2mtl 4mt2)] Zstszmt[mtz(mtl+mt2)

+2m4(m? +2m? )]
1 2
In(m? 2 2 2 2 2
- 7 ({ m’{zsz[m’{ldLl( m5L+ 2m71+ m;z)

2 2 2 2 4 2 2 22 2
+m; mTl(mTl—3m~5L)+mt(SmBL—mTl)]} —s;m;{m;ldlLdlLd,_Zle
+2mt m~ ( 5m~ +4m~ m +6m~ m~ —5m~ m~ )

4 2 2 2 2 2 2 2
+mt[6m5L(mBL—mTl—m;2)+2m71(m;l+ ZmTZ)]}

4 2 2 2 2
= swi{di1diom[10mE m? —3mE(mg +m3 )T}

ditln(|dlt|) 2
— 2 203m2 —m2 )1—4s2m2l — d2 2 _m2 (mé —omd 2
> mdlelz{dlz[mtidL1+2mt(SmbL mtl)] 4symi[ —dj +df, mtz(mbL 2mtl+mt2)]

dZ.In(|dy))
+2s mtdLl(m —3m? )}+§t—2|2t|
med 2dso

2 2 2 2 4 2 2 2
m=> d, ,d,—4s=mm= d; ;+2s-mid; ,(3m> —m>
0, 22 [m7 di2ds, (RSP B Tmedy o t tz)]

1
2,2 2 24 2 2 2 \2 4 4 502 2
+6_mf({21m‘(m71+mTz)+12m‘d'-2 T [(mEL+mbL) ertlert2 2mtlmt]

—em* + S2I6m2( —3m2 2 _6ml 2 (m2 22 (m2 2 2
6m; } +sy{6mg( 3mtl+mt2 6mt)+w[(mtl+mbL) (mt2+mbL)

—2mtd12]}+63 (m~ +m~ +6mt)) (23

The result formz=0 is compared to the complete result of the gluino contributiomgr=10, 200, 500 GeV in Figs. 8,

9. In Fig. 8 the results for the no-mixing scenario are displayed, while Fig. 9 shows the maximal mixing case. As expected, the
curves formg=0 andmg=10 GeV are very close, while the curves for large gluino masses significantly deviate from the
mg=0 case. For the no-mixing scenario the light gluino expression ofZ3)reproduces the exact result withiex80™° for

mg<90, 130, 350 GeV in the cases ;= 100, 250, 500 GeV, respectively. In the maximal mixing scenario the correction

is much smaller for a light gluino than in the no-mixing case; the light gluino expression reproduces the exact result within 5
X 107° for mg <20, 300, 400 GeV in the cases ;= 100, 250, 500 GeV and maximal mixing.

As second limiting case we give a series expansion in powers of the inverse gluino mas(@(llmm%) note that, due to

the term linear inmg in Eq. (18), the expansion actually starts @(1/mg):

2

CeNeGe m, StCT(1—2s%)
susy _ %s “FNcVF t t 2 2 22, 4 2 2
Lgluino~ 1622 —2— d_ 10,01 [dledelz(mtICt mtzst) mdelzlnmbL

Mg
2 2. 2 2 2.2 2 2, 2 2
+ mTlszlnm?l[mBLmTl— ZCTmszBL +(1-2s7) m;lmTz]

2 2 2 2 2.2 2 2 2
+ mTzdLllanz[mBL( my,— ZSTmTl) —(1-2s7) m;lmyz]]
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1
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Figure 10 shows the quality of the heavy gluino expansion u@(tb/m%) in the two cases of minimal and maximal mixing
for m=100 GeV. The expansion of E¢24) reproduces the exact results within at most 30#hich corresponds to a
maximum deviation of about810 ° in Ap) for mg>200 GeV in the no-mixing case and fory>340 GeV in the maximal
mixing scenario. We have also verified that higher orders in the expansion improve significantly the convergence of the series,
but we have not included unnecessary long expressions. As can be expected, when thenagliseiéreased, the quality of
the heavy gluino approximation deteriorates. At the same time, however, the gluino correction becomes smaller and can mostly
be neglected:; it never exceeds B0 * and 1x 10 * for m5>200 GeV in the cases of minimal and maximal mixing,
respectively(see Figs. 8 and)9We conclude that in the region of the parameter space where the gluino contribution is
relevant, and the gluino is not too ligkgay, mz>300), Eq.(24) approximates the full expression sufficiently well.

As mentioned above, for most of the parameter space the mixing in the top-squark sector is either zero or nearly maximal.
As a third limiting case we givapf}éﬁ};o for arbitrarymy, but with zero top-squark mixing. The result in this limiting case
has already been displayed in Fig. 8 and Fig.(ddlid curve:
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d31 2 2 2 2 2 dgL 2 2 2
+ [m‘g‘du—m?l(dLﬁ mg) JIn“mf; — [dleLg(mELJr m;l—2m5)

2 2 2 2
di;m; to2di;m
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2

2 9., 2 2 204122 t 2 4 2 2 2 2
+2m;1mt(2mTl—mBL—m—g~)]In mg, ~ 7+du tz{mt[mﬁ(smEL_A'mTl)_m?ldLl
+m~(2m~—m~ )]+d ldLlert[m (m~ +m ) m= dLl] mtm~} Inm~ Inm~

d2, (dgy+dg, )d
2dLl tz{ gL(dg1+dg)dy

2 4 2 2 4, 2 2 4r 2 2.2
+2mt[ma(—3m5L+4mTl)+m;l(mEL—Zm—é)]Jrmt[(m5L+m§)

—(m~ +ms )2 4m? ]+2mtm~ }Inm%lnm% +(5d§l+d§2—4dgldu+dfl—Zm% m?)

><(Inm~|nmt)/(2mt2)+{d (dg1+dg)di 11— th[m~m~ (3m~—2m~) 2m~m~ +m~ m ]
InmZ Inm?

+mtdL1(2m +m~ +m~ )+2mtm } ZL >

2medi,

2

t 2 2 2 2 2 2 2 2
o my - W{dgldLﬁmtzdgl[ZdiLﬁLmELm?lJrm—g-(ZmTl—SmBL)]nLmf(m—é+mBL)dLl

t
NY(mE mZ,mz )
+m m~ Inm? Inm~ —g—bL mmz (m2 +2mé)+m2 (m2 —2m2—4m?)
t } t ty Zm% dEl { t[ tl( ty g bL( bL t g]
L
dS,+ dg,m? 2m4 2 m2(d2,+ dgmZ— 4m2m?)
2 o 2 g2t grrg2 " Yg2itht gt
+dngLl(dgL+dgl)}q)(m§vmt ,mEL)“‘( e )\Z(mg m2 mg)
0, gt
d2,m% + dgymEmZ — 4mem?

2 2 2 gl''g " "9l gt gt 2
X ®(mg,mg,mg )+ )\Z(mg,mtz,m%) + d [2dg,(d 4 +mP)

1
+2d31mt2(3mt2—m%)+2dL1mf'(4dglm~Z~+4m%—4dglmt2+4m§mt2—mf)
+2dslmt2(dfl—4dum%—4dumt2—7m~§mt2+3mf)
+d21mt(4dglm 2m%+5dglmt2—4m 2+3m¢) +2m¢

4 2 4 2 2 2
X f(4dgmg — 7dgmeme +4momy + dglmf—m~mf)]}d>(ma ,mf,m;l)]. (25)
|
Here we have used(x,y,z)=+/(z—x—y)?—4xy and the while for A(x,y,2)?°<0,
function ®(x,y,z) is defined according to the sign of
N(X,Y,2)2. Forn(x,y,2)?>=0,
o/ ) 2z [CI ) §x+ —z)]
z Z+Xx—y—\\| [z+ty—Xx—\ X,y,2)= —==) Llg| £ arcco
d(X,y,2)=— 2In L P et VA 2\xy
I 2z 2z
Xy Z+X—y—NA\ +Cl,| 2 €_+Z
Xy —y- »| 2 arcco
InZInZ 2Li, %y 2\/—2

z+y—x—\| @ Z—X+y
_opi 22 D +Cl,| 2 arcco , (27
2L|2 27 + 3 2 é 2\/y—z
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where Ch(x)=Im Li,(e™) is the Clausen function; limiting for the bare parameters at the one-loop level, one obtains
expressions and additional details on this function can bét L F Mg, for the renormalized parametesee also the dis-

found in Ref.[28]. cussion in Ref[33]). The drfferenceEMTL—a‘MELzAmbl,

with
C. Supersymmetric limit
The sign of the gluonic two-loop contributions is, as dis- 5M%L:co§0?5m%l+sinz€;5m%2
cussed above, always the same as the sign of the one-loop
contribution, contrary to the case of the two-loop contribu- +(m% —m% )Sin207 867 —2mém;, (32
tions in the SM. In the limit of vanishing gluino mass;, 2 !
=mg,=m;, M =m,=0 (supersymmetric limjt the gluon— 5M —5m~ (33)
exchange contrrbutron of the scalar quarks reads b by’
SUSY aSGFth 3+ 72 SMZ w? constitutes a finité)(a) contribution to theb; mass com-
AT giuon= P2n? 12 Po 37 | 1+ EYE pared to its tree-level value. The mass shirftr%l can also be

(28 obtained by replacing the tree-level quantities in 88) by
their renormalized values and the corresponding counter-

which exactly cancels the quark loop contributid2]. The  terms. We have explicitly checked that the quanﬁmél is

gluino-exchange contribution in this limit is given by indeed finite. Note that the squark mass and mixing angle
counterterms in Eq$32) and(33) also receive contributions
u8 @ from the pure scalar diagrams of the type of Fig. 6¢ which in
Apf,%?l]{ino_ —Apy § f (299  the two-loop results given above canceled between the coun-

terterm graphs and the two-loop diagrams. For the top-quark
mass counterterm in E¢33) also the graph with gluon ex-
which numerically cancels almost completely the contribu-change enters, which was absent in the results given above.
tion of Eq. (29). Because of the latter contribution, tif( ) correction to
Eq. (30) is different in the dimensional regularization and the
dimensional reduction scheme, while for all results given
above the two schemes yield identical results. In our numeri-
The analytical formulas foA p given in the previous sec- cal analysis in this section we use the result for the top-quark
tions are exclusively expressed in terms of the physicamass counterterm in dimensional reduction.
squark masses. The formulas therefore allow a general analy- For the two-loop contribution to the parameter, the dif-
sis since they do not rely on any specific model assumptiofierence generated by using the tree-level mass relations in-
for the mass values. For our numerical analysis, howevelktead of the one-loop corrected ones is of three-loop order
since the physical values of the squark masses are unknowsind therefore not relevant at the order of perturbation under
we had to calculate the masses from thephysical soft-  consideration. However, if the one-loop contributionMp is
SUSY-breaking mass parameters. We have concentrated @Jaluated by calculating the squark masses from the soft
the MSSM scenario with soft breaking terms obeying thepreaking parameters as described above (the;) correc-
SU(2) relationM =Mg . The t andb masses are obtained tion to theb; mass should be taken into account. This gives
by diagonalizing the tree level mass matrices Using Egstise to an extra contribution compared to the results dis-
(1)—(3), the massesy y andmb =mg, 5aswell asthe cussed in Sec. Il.
mixing angle 65, can be expressed in terms of the three The tree-level relatioMy =My, which has been widely
parametersviy , My, and M{R. This yields the tree-level used in our numerical examples can in principle be main-
mass relation tained also for the renormalized parameters at the one-loop
) X ' ) ) ) Ievel Wlth on-shelltl,tz mass renor_mahzatlon. Alterna-
mBl=cosz0"{m—t~l+ srr12¢97m—t~2—mt —c0s2BMy,. (30 tively, in the spirit of the discussion given above, one may
assume that the symmetry is extended to the bare parameters:

D. Corrections to the squark masses

When higher-order corrections are included, the quantities M% + 5|\/|% =M2 + M2 . (39

M7, and Mg, are renormalized by different counterterms L L tr tr

once the on-shell renormalization for theandb squarks is

performed. Requiring the SB) relation Accordingly, the squark masses and the mixing angle are in

this scenario given in terms of the two parameters and
MR, and there exist two relations between the squark

M% + 5M% = M% + 5M% (31 masses and the top-squark mixing angle at the tree level,
L L L L
1 1 4
2 2 2 2
— m; =m: +————C0s25M (——— )
5Since we semn,=0, thus neglecting mixing in the sector, we t2 t1 SIHZGT—COSZHT 42 3SW

havemglzmgL, and Mg, decouples from the parameter. (35
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FIG. 11. Ap5YSY calculated with one-loop corrected squark

masses as a function afj for 67=0 and 67~ — /4 (tan3=1.6,
MR=0 or 200 GeV) and two values o .

2 1

=m: —m+

1 sir2ey— coder

X c0s28M2

ca— sir12¢97(§ — gs\z,\,) } (36)

At O(«ay), the right-hand sides of Eq&35) and (36) receive

the extra contributiona m%z andAm%l, respectively, where

Sin267 667

+ cos28M?2
2(sirf g7 —cos67)? P

—1+

w|

(39

These relations have been used in the numerical evaluation
displayed in Fig. 11. The difference to the case V\MI‘{L

=My, at the renormalized level is only marginal.

The effect of theO(«a) corrections to the mass relations
onApg is shown in Fig. 11, where the one-loop correction to
the p parameter is expressed in termsrof, but with the
corrections, Eqs(37) and (38), to the mass relations taken
into account. The results are shown for the no-mixing and
the maximal mixing case and for two values of the gluino
massmg =200 and 500 GeV. Compared to Fig. 2, where the
tree-level mass relations have been used as input, the contri-

bution of the (t,b) doublet to thep parameter is reduced for
the parameter space chosen in the figure.

The inclusion of the one-loop corrections to the squark
mass relations does not always lead to a decreaAggfbut
can also give rise to a significant enhancement. This is quan-
titatively shown in Table Il for the same scenario as in Table
l, i.e., for the maximal mixing case with t@+ 1. The shift
for the bottom-squark mass in this case follows from Egs.
(32 and(33) in the limit 7= — w/4 with §67=0. The nu-
merical results are very similar to the case withgal.6.
The value chosen for the gluino massmg=500 GeV, and
for completeness also the full two-loop contributiap3¥SY

is given. One can see that for large values of the nondiagonal
element in thet mass matrixA p, can become larger com-

pared to the entries in Table I, thus significantly increasing
Ap at the two-loop level in a range where the one-loop con-

2 2 2 sin2607 665
Am: =om: —omy + —
2 1 2 (sirfg;—cos67)?
2 8.
X cos2BM3| —1+ 3Sw/:
TABLE Il

m3=500 GeV. The two-loop contribution4 p

(37

tribution is already quite large.

In the situation where the relatideTLz M7, is relaxed
and the squark masses and the mixing angle are derived from

Ap5U>Yin units of 102 for the same scenario as in Table |, i.e., with@anl, for several
values ofmg anthLR. The O(«y) correction to the tree-level mass relation has been taken into account for

SUSY

SUSY

and Ap3ygnn, are also given(in units of 104, mg

1,gluon

=500 GeV.

mg (GeV) MR (GeV) ApgUSYx107° ApPioer< 107 Apgiine< 107

200 100 1.17 1.92 0.09
200 0.90 1.53 0.61
300 0.57 1.05 1.37
400 1.22 1.71 2.80

500 200 0.23 0.39 -0.08
500 0.13 0.27 0.52
1400 2.50 2.68 3.94
1550 571 6.18 5.34

800 500 0.07 0.14 0.13
1500 0.07 0.11 0.99
2000 0.31 0.42 2.31
3700 14.23 16.89 16.05
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FIG. 12. Ap3YS" as a function ofM:R for tan3=1.6 and for

M7, /M7_=1000/300(dotted line; the lines for tree-level and one-

loop parameters are not distinguishabded 300/100Q(solid line

for tree-level parameters; for the one-loop parameters, dash-dott

line for m3=200 GeV and dashed line fong=500 GeV.

M7t , M1, and MR, Fig. 12 showsApg Y for the two
choicesM TL/M i

M{R. For theMt _/M7_,=300/1000 case the solid line cor-
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V. CONCLUSIONS

We have calculated th&(ag) correction to the squark
loop contributions to the parameter in the MSSM. The
result can be divided into a gluonic contribution, which is
typically of O(10%) and dominates in most of the parameter
space, and a gluino contribution, which goes to zero for large
gluino masses as a consequence of decoupling. Only for
gluino, top-squark and bottom-squark masses close to their
lower experimental bounds does the gluino contribution be-
come comparable to the gluon correction. In this case, the
gluon and gluino contributions add up t630% of the one-
loop value for maximal mixing. In general the sum of glu-
onic and gluino corrections enters with the same sign as the
one-loop contribution. It thus leads to an enhancement of the
one-loop contribution(expressed in terms of the physical
squark massg®nd an increased sensitivity in the search for
scalar quarks through their virtual effects in high-precision
electroweak observables. This is in contrast to what happens
in the SM, where the two-loop QCD corrections enter with
&pposite sign and screen the one-loop result.

While the gluonic contribution can be presented in a very
compact form, the complete analytical result for the gluino
correction is very lengthy. We have therefore not written it
out explicitly but have given expressions for three limiting

—=300/1000 and 1000/300 as a function of cases, namely, the result for zero squark mixing, for vanish-

ing gluino mass, and an expansion for a heavy gluino mass.
These limiting cases approximate the exact result sufficiently

responds to the use of the tree-level masses while the othegs| for practical purposes. The results have been given in

reflect the use of the one-loop correctmmnB to the tree-

level masses following from Eq932) and (33) for two
gluino massesmy=200, 500 GeV. For theMy /M7,

=1000/300 case the result is given by the dotted I|ne Itis
insensitive to the one-loop correction to the squark masse

we therefore show only a single curve. For ﬂvth/M Tq
=300/1000 casel p, is decreased for small values BF®
but is increased for largiR. The effect is more pro-
nounced for heavier gluinos. For large valuesMif®, Apq

terms of the on-shell squark masses and are therefore inde-
pendent of any specific scenario assumed for the mass val-
ues. For different scenarios we have analyzed the extra con
tributions caused by th&(«s) correction to the tree-level
gnass relations.
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