
PHYSICAL REVIEW D 1 APRIL 1998VOLUME 57, NUMBER 7
Leading QCD corrections to scalar quark contributions to electroweak precision observables
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In the supersymmetric extension of the standard model we derive the two-loop QCD corrections to the scalar
quark contributions to the electroweak precision observables entering via ther parameter. A very compact
expression is derived for the gluon-exchange contribution. The complete analytic result for the gluino-
exchange contribution is very lengthy; we give expressions for several limiting cases that were derived from
the general result. The two-loop corrections, generally of the order of 10%–30% of the one-loop contributions,
can be very significant. Contrary to the standard model case, where the QCD corrections are negative and
screen the one-loop value, the corresponding corrections in the supersymmetric case are in general positive,
therefore increasing the sensitivity in the search for scalar quarks through their virtual effects in high-precision
electroweak observables.@S0556-2821~98!03405-5#

PACS number~s!: 12.60.Jv, 12.15.Lk, 12.38.Bx, 14.70.2e
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I. INTRODUCTION

Supersymmetric~SUSY! theories@1# are widely consid-
ered as the theoretically most appealing extension of
standard model~SM!. They are consistent with the approx
mate unification of the three gauge coupling constants at
grand unified theory~GUT! scale and provide a way to can
cel the quadratic divergences in the Higgs sector, hence
bilizing the huge hierarchy between the GUT and the Fe
scales. Furthermore, in SUSY theories the breaking of
electroweak symmetry is naturally induced at the Fe
scale, and the lightest supersymmetric particle can be n
tral, weakly interacting, and absolutely stable, providi
therefore a natural solution for the dark matter problem;
recent reviews see, for instance, Ref.@2#.

Supersymmetry predicts the existence of scalar part

f̃ L , f̃ R to each SM chiral fermion, and spin-1/2 partners
the gauge bosons and to the scalar Higgs bosons. So fa
direct search of SUSY particles at present colliders has
been successful. One can only set lower bounds ofO(100)
GeV on their masses@3#. The search for SUSY particles ca
be extended to slightly larger values in the next runs at
CERN e1e2 collider LEP2 and at the upgraded Fermila
Tevatron. To sweep the entire mass range for the SU
particles, which from naturalness arguments is expected
to be larger than the TeV scale, the higher-energy hadro
e1e2 colliders of the next decade will be required.

An alternative way to probe SUSY is to search for t
virtual effects of the additional particles. Indeed, now th
the top-quark mass is known@4#, and its measured value is i
remarkable agreement with the one indirectly obtained fr
high-precision electroweak data, one can use the avail
data to search for the quantum effects of the SUSY partic
sleptons, squarks, gluinos, and charginos or neutralinos

*Present address: Physik Department, Technische Univer¨t
München, D-85748 Garching, Germany.
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the minimal supersymmetric standard model~MSSM! there
are three main possibilities for the virtual effects of SUS
particles to be large enough to be detected in present ex
ments.

~i! In the rare decayb→sg, besides the SM top-quark–
W-boson loop contribution, one has additional contributio
from chargino–top-squark and charged Higgs-boson–t
squark loops@5#. These contributions can be sizable but t
two new contributions can interfere destructively in lar
areas of the MSSM parameter space, leading in this case
small correction to the decay rate predicted by the SM.

~ii ! If charginos and scalar top quarks are light enou
they can affect the partial decay width of the Z boson intob
quarks in a sizable way@6#. This feature has been widel
discussed in the recent years, in view of the deviation of
Z→bb̄ partial width from the SM prediction@7#. However,
for chargino and top-squark masses beyond the LEP2
Tevatron reach, these effects become too small to be obs
able @7#.

~iii ! A third possibility is the contribution of the scala
quark loops, in particular top-squark and bottom-squ
loops, to the electroweak gauge-boson self-energies@8,9#: If
there is a large splitting between the masses of these
ticles, the contribution will grow with the square of the ma
of the heaviest scalar quark and can be very large. Thi
similar to the SM case where the top-bottom weak isodou
generates a quantum correction that grows as the top-q
mass squared.

In this paper, we will focus on the third possibility an
discuss in detail the leading contribution of scalar qua
loops to electroweak precision observables, which is par
etrized by their contribution to ther parameter. The radiative
corrections affecting the vector-boson self-energies st
ming from charginos, neutralinos, and Higgs bosons h
been discussed in several papers@8,9#. In the MSSM, be-
cause of the strong constraints on the Higgs sector,
propagator corrections due to Higgs particles are very cl
to those of the SM for a light Higgs boson@10#. In the de-
coupling regime where all scalar Higgs bosons but the lig

ta
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4180 57A. DJOUADI et al.
est are very heavy, the SUSY Higgs sector is effectiv
equivalent to the SM Higgs sector with a Higgs-boson m
of the order of 100 GeV. The contribution of charginos a
neutralinos, except from threshold effects, is also very sm
@9#. The main reason is that the custodial symmetry wh
guarantees thatr51 at the tree level is only weakly broke
in this sector since the terms which can break this symm
in the chargino-neutralino mass matrices are all proportio
to MW and hence bounded in magnitude@9#.

The propagator corrections from squark loops to the e
troweak observables can be attributed, to a large exten
the correction to ther parameter@11#, which measures the
relative strength of the neutral to charged current proce
at zero momentum transfer. This is similar to the SM, wh
the top-bottom contribution to the precision observables
to a very good approximation, proportional to their contrib
tion to the deviation of ther parameter from unity. Furthe
contributions, compared to the previous one, are suppre
by powers of the heavy masses. It is mainly from this co
tribution that the top-quark mass has been successfully
dicted from the measurement of the Z-boson observables
of the W-boson mass at hadron colliders. However, in or
for the predicted value to agree with the experimental o
higher-order radiative corrections@12–14# had to be in-
cluded. For instance, the two-loop QCD corrections lead
decrease of the one-loop result by approximately 10%
shift the top-quark mass upwards by an amount of;10 GeV.

In order to treat the SUSY loop contributions to the ele
troweak observables at the same level of accuracy as
standard contribution, higher-order corrections should be
corporated. In particular the QCD corrections, which beca
of the large value of the strong coupling constant can
rather important, must be known. In a short Letter@15# we
have recently presented the results for theO(as) correction
to the contribution of the scalar top- and bottom-quark loo
to ther parameter. In this article we give the main details
the calculation and present the explicit result for the glu
exchange contribution as well as the result for the glui
exchange contribution in several limiting cases.

The paper is organized as follows. In the next section,
summarize the one-loop results and fix the notation. T
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main features of the two-loop calculation are discussed
Sec. III. In Sec. IV a compact expression is given for th
gluon-exchange contributions. The results for the gluino
exchange contributions are presented for the limiting cas
of zero gluino mass and a very heavy gluino as well as fo
the case of arbitrary gluino mass but vanishing squark mi
ing. Effects ofO(as) corrections to relations between the
squark masses existing in different scenarios are discuss
In Sec. V we give our conclusions.

II. ONE-LOOP RESULTS

For the sake of completeness, we summarize in this se
tion the one-loop contribution of a squark doublet to th
electroweak precision observables. Before that, to set the n
tation, we first discuss the masses and couplings of sca
quarks in the MSSM.

As mentioned previously, SUSY associates a left- and
right-handed scalar partner to each SM quark. The curre
eigenstatesq̃L and q̃R mix to give the mass eigenstatesq̃1

and q̃2; the mixing angle is proportional to the quark mas
and is therefore important only in the case of the third gen
eration squarks. In the MSSM, the squark masses are giv
in terms of the Higgs-Higgsino mass parameterm, the ratio
of the vacuum expectation values tanb of the two-Higgs-
doublet MSSM fields needed to break the electroweak sym
metry, the left- and right-handed scalar massesM q̃L

and

M q̃R
, and the soft-SUSY-breaking trilinear couplingAq . The

top- and bottom-squark mass eigenstates and their mixi
angles are determined by diagonalizing the following mas
matrices:

FIG. 1. Feynman diagrams for the contribution of scalar quar
loops to the gauge boson self-energies at one-loop order.
s

M t̃
2
5S M t̃ L

2
1mt

21cos2bS 1

2
2

2

3
sW

2 D MZ
2 mtMt

LR

mtMt
LR M t̃ R

2
1mt

21
2

3
cos2b sW

2 MZ
2
D , ~1!

Mb̃
2
5S M b̃L

2
1mb

21cos2bS 2
1

2
1

1

3
sW

2 D MZ
2 mbMb

LR

mbMb
LR M b̃R

2
1mb

22
1

3
cos2b sW

2 MZ
2
D , ~2!

with Mt
LR5At2mcotb and Mb

LR5Ab2mtanb; sW
2 512cW

2 [sin2uW. Furthermore, SU~2! gauge invariance requiresM t̃ L

5M b̃L
at the tree level. Expressed in terms of the squark massesmq̃1

,mq̃2
and the mixing angleu q̃ the squark mass matrice

read
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Mq̃
2
5S cos2u q̃mq̃1

2
1sin2u q̃mq̃2

2 sinu q̃cosu q̃~mq̃1

2
2mq̃2

2
!

sinu q̃cosu q̃~mq̃1

2
2mq̃2

2
! sin2u q̃mq̃1

2
1cos2u q̃mq̃2

2 D . ~3!

Because of the large value of the top-quark massmt , the mixing between the left- and right-handed top squarkst̃ L and t̃ R

can be very large, and after diagonalization of the mass matrix the lightest scalar top-quark mass eigenstatet̃ 1 can be much
lighter than the top quark and all the scalar partners of the light quarks@16#. The mixing in the bottom-squark sector is
general rather small, except ifAb ,m, or tanb are extremely large. In most of our discussion we will assume that, becau
the small bottom-quark mass, the mixing in the bottom-squark sector is negligible and thereforeb̃L[ b̃1.

Using the notation of the first generation, the contribution of a squark doubletũ , d̃ to the self-energy of a vector boso
V[g,Z,W and to theZ-g mixing is given by the diagrams of Fig. 1. Summing over all possible flavors and helicities
squark contribution to the transverse parts of the gauge-boson self-energies at arbitrary momentum transferq2 can be written,
in terms of the Fermi constantGF , as follows:

PWW~q2!52
3GFMW

2

8A2p2 (
i , j 51,2

gW ũi d̃ j

2
P0~q2,mũi

2 ,md̃ j

2
!,

PZZ~q2!52
3GFMZ

2

4A2p2 (
q̃5 ũ , d̃
i , j 51,2

gZ q̃i q̃ j

2
P0~q2,mq̃i

2 ,mq̃ j

2
!,

PZg~q2!52
3GFMZ

2sWcW

4A2p2 (
q̃5 ũ , d̃
i 51,2

gZ q̃i q̃ j
eq̃i

P0~q2,mq̃i

2 ,mq̃i

2
!,

Pgg~q2!52
3GFMZ

2sW
2 cW

2

4A2p2 (
q̃5 ũ , d̃
i 51,2

eq̃i

2
P0~q2,mq̃i

2 ,mq̃i

2
!, ~4!

with the reduced couplings of the squarks to the W and Z bosons, including mixingu q̃ between left- and right-handed squark
given by (eq and I 3

q are the electric charge and the weak isospin of the partner quark!

gW ũi d̃ j
5S cosu ũcosu d̃ 2cosu ũsinu d̃

2cosu ũsinu d̃ sinu ũsinu d̃
D ,

gZ q̃i q̃ j
5S ~ I 3

q2eqsW
2 !cos2u q̃2eqsW

2 sin2u q̃ 2I 3
qsinu q̃cosu q̃

2I 3
qsinu q̃cosu q̃ 2eqsW

2 cos2u q̃1~ I 3
q2eqsW

2 !sin2u q̃
D . ~5!

In both the dimensional regularization@17# and dimensional reduction@18# schemes,1 the functionP0(q2,ma
2 ,mb

2) reads

P0~q2,ma
2 ,mb

2!5
4

3Fma
21mb

22
q2

3
1S ma

21mb
22

q2

2
2

~ma
22mb

2!2

2 q2 D B0~q2,ma ,mb!

1
ma

22mb
2

2 q2
@A0~ma!2A0~mb!#2A0~ma!2A0~mb!G . ~6!

The Passarino-Veltman one- and two-point functions@19# are defined as

A0~m!5m2F1

e
112 ln

m2

m2
1eS 11

p2

12
2 ln

m2

m2
1

1

2
ln2

m2

m2D G , ~7!

B0~q2,ma ,mb!5
1

e
1B0

fin~q2,ma ,mb!1eB0
e~q2,ma ,mb!,

1In general the dimensional reduction scheme, which preserves SUSY, should be used. For all quantities considered in t
dimensional reduction yields precisely the same result as dimensional regularization~see, however, the discussion in Sec. IV D!.



4182 57A. DJOUADI et al.
B0
fin~q2,ma ,mb!522 ln

mamb

m2
1

ma
22mb

2

q2
ln

ma

mb
1

b1/2~q2,ma
2 ,mb

2!

q2
ln

ma
21mb

22q21b1/2~q2,ma
2 ,mb

2!

2mamb
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where m is the renormalization scale,b the phase spac
function,

b~q2,ma
2 ,mb

2!5q22ma
22mb

21
~ma

22mb
2!2

q2
, ~8!

and 2e542n with n the space-time dimension. We hav
absorbed a factor (eg/4p)e, with g the Euler constant, in the
’t Hooft scale m to prevent uninteresting combinations
ln4p,g, . . . in ourresults. The explicit form of the function
B0

e is not needed for our purposes but can be found in R
@20#.

At zero momentum-transfer,q250, the functionP0 is
finite and reduces to

F0~ma
2 ,mb

2![P0~0,ma
2 ,mb

2!5ma
21mb

22
2ma

2mb
2

ma
22mb

2
ln

ma
2

mb
2

.

~9!

We now focus on the contribution of a squark doublet
the r parameter. It is well known that the deviation of ther
parameter from unity parametrizes the leading universal
rections induced by heavy fields in electroweak amplitud
It is due to a mass splitting between the fields in an isos
doublet. Compared to this correction all additional contrib
tions are suppressed. In the relevant cases of the W-b
mass and of the effective weak mixing angle sin2uW

eff , for
example, a doublet of heavy squarks would induce sh
proportional to its contribution tor,

FIG. 2. One-loop contribution of the (t̃ , b̃) doublet toDr as a
function of the common squark massmq̃ for u t̃ 50 and u t̃

;2p/4 ~with tanb51.6, Mb
LR50, andMt

LR50 or 200 GeV).
f.

r-
s.
in
-
on

ts

dMW'
MW

2

cW
2

cW
2 2sW

2
Dr, dsin2uW

eff'2
cW

2 sW
2

cW
2 2sW

2
Dr.

~10!

In terms of the transverse parts of the W- and Z-bos
self-energies at zero momentum transfer, the squark l
contribution to ther parameter is given by

r5
1

12Dr
, Dr5

PZZ~0!

MZ
2

2
PWW~0!

MW
2

. ~11!

Using the previous expressions for the W- and Z-boson s
energies and neglecting the mixing in the bottom-squark s
tor, one obtains, for the contribution of thet̃ / b̃ doublet at
one-loop order~only the left-handed sbottomb̃L contributes
for u b̃50),

Dr0
SUSY5

3GF

8A2p2
@2sin2u t̃ cos2u t̃ F0~mt̃ 1

2 ,mt̃ 2

2
!

1cos2u t̃ F0~mt̃ 1

2 ,mb̃L

2
!1sin2u t̃ F0~mt̃ 2

2 ,mb̃L

2
!#.

~12!

The functionF0 vanishes when the two squarks running
the loop are degenerate in mass,F0(mq

2 ,mq
2)50. In the limit

of large squark mass splitting it becomes proportional to
heavy squark mass squared:F0(ma

2,0)5ma
2 . Therefore, the

contribution of a squark doublet becomes in principle ve
large when the mass splitting between squarks is large. T
is exactly the same situation as in the case of the SM wh
the top-bottom contribution to ther parameter at one-loop
order, keeping both thet andb quark masses, reads@11#

Dr0
SM5

3GF

8A2p2
F0~mt

2 ,mb
2!. ~13!

For mt@mb this leads to the well-known quadratic corre
tion Dr0

SM53GFmt
2/(8A2p2).

In Fig. 2 we display the one-loop correction to ther pa-
rameter that is induced by thet̃ / b̃ isodoublet. The scala
mass parameters are assumed to be equal,M t̃ L

5M t̃ R
and

M b̃L
5M b̃R

, as is approximately the case in supergrav
models with scalar mass unification at the GUT scale@21#.
As mentioned above, SU~2! gauge invariance requires at th
tree level2 M t̃ L

5M b̃L
, yielding in this caseM t̃ L

5M t̃ R

5Mb̃L
5Mb̃R

5mq̃ . In this scenario, the scalar top-quark mi
ing angle is either very small,u t̃ ;0, or almost maximal,
u t̃ ;2p/4, in most of the MSSM parameter space. The co
tribution Dr0

SUSY is shown as a function of the commo
squark massmq̃ for tanb51.6 for the two casesMt

LR50 ~no

2The corrections to the relations between the squark masses
be discussed in Sec. IV D.
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mixing! andMt
LR5200 GeV~maximal mixing!;3 the bottom-

quark mass and therefore the mixing in the bottom-squ
sector are neglected, leading tomb̃L

5mb̃1
.mq̃ . Here and in

all the numerical calculations in this paper we usemt5175
GeV, MZ591.187 GeV,MW580.33 GeV, andas50.12.
The electroweak mixing angle is defined from the ratio of
vector boson masses:sW

2 512MW
2 /MZ

2 .
As can be seen, the correction is rather large for sm

mq̃ , exceeding the levelDr51.331023 of experimental
sensitivity4 in the case of no mixing formq̃;150 GeV,
which corresponds to the experimental lower bound on
common squark mass@3#, and getting very close to it in the
case of maximal mixing. For largemq̃ values, the two top-
squark and the bottom-squark masses are approximately
generate sincemq̃@mt , and the contribution toDr becomes
very small.

For illustration, we have chosen the value tanb51.6
which is favored byb-t Yukawa coupling unification sce
narios@21#. In fact, the analysis depends only marginally
tanb if Mt

LR ~and notAt andm) is used as input paramete
The only effect of varying tanb is then to slightly alter the D
terms in the mass matrices Eqs.~1! and ~2!, which does not
change the situation in a significant way. However, for la
tanb values, tanb;mt /mb , the mixing in the bottom-squark
sector has to be taken into account, rendering the ana
somewhat more involved. We will focus on the scenario w
a low value of tanb in the following.

In Fig. 3 we displayDr0
SUSY as a function of the mixing

angle for three values of the common squark mass,mq̃
5150, 250, and 500 GeV, and for tanb51.6. The contribu-
tion is practically flat except for values of the mixing ang
very close to the lower limit,u q̃;2p/4. This justifies the
choice of concentrating on the two extreme cases. In fac
the case M t̃ L

5M t̃ R
, the maximal mixing scenariou q̃

52p/4 is only obtained exactly when the D terms are se
zero, which is the case when tanb51. One can also have
maximal mixing if the sums ofM t̃ L

2 and M t̃ R

2 with their

corresponding D terms are equal, making the diagonal
tries in the mass matrices, Eqs.~1! and ~2!, identical.

The parameterMt
LR not only influences the mixing bu

also the mass splitting between the scalar top quarks.
effect of varyingMt

LR on Dr0
SUSY is displayed in Table I for

the case of exact maximal mixing, i.e., tanb51. The sce-
nario with tanb51.6 yields similar numerical results. Fo

3As will be discussed below, the case of exact maximal mixi
u t̃ 52p/4, is not possible in the scenario withM t̃ L

5M t̃ R
and

tanb51.6. Sinceu t̃ is already very close to the maximal value f
Mt

LR5200 GeV, we will in the following refer to this scenario a
‘‘maximal mixing.’’

4The correction toDr discussed here directly corresponds to
correction to the effective parameterT defined in Ref.@22# or,
equivalently, toe1 as given in Ref.@23# or the combination of
parameters defined in Ref.@24#. Using the 1997 precision data, th
resolution one1 is estimated to be 1.331023 @25#. A similar esti-
mate can be readily obtained using the present experimental e
on the world average@26# of MW , 80 MeV, and sin2uW

eff , 2.2
31024, in Eq. ~10!.
rk

e

ll

e

e-

e

sis

in

o

n-

he

large values ofMt
LR the contribution to ther parameter can

become huge, exceeding by far the level of experimen
observability. The increase ofDr0

SUSY with larger values of
Mt

LR is due to the increased mass splitting between the
top-squark masses andmb̃1

that is induced formtMt
LR

@mq̃
2 . For values ofmq̃ comparable to the top-quark mas

mq̃ &200 GeV, the mass splitting is already large even
small Mt

LR due to the additionalmt
2 term in the top-squark

mass matrix; this is similar to the no-mixing case.
If the GUT relationM t̃ L

.M t̃ R
is relaxed and large val

ues of the mixing parameterMt
LR are assumed, the splittin

between the top-squark and bottom-squark masses is so
that the contribution to ther parameter can become eve
bigger than in the previously discussed scenario~see Sec.
IV D for a more detailed discussion!.

III. TWO-LOOP CALCULATION

The QCD corrections to the squark contributions to t
vector-boson self-energies, Fig. 4, can be divided into th

,

ors

FIG. 3. Dependence of the one-loop contributionDr0
SUSY on the

top-squark mixing angleu t̃ . The parameters are the same as
Fig. 2.

TABLE I. Dr0
SUSY in units of 1023 for several values ofmq̃ and

Mt
LR ~in GeV! and tanb51. The values ofMt

LR are chosen such
that the corresponding squark masses lie in the experimentally
lowed range.

mq̃ ~GeV! Mt
LR ~GeV! Dr0

SUSY31023

200 100 1.68
200 1.35
300 0.89
400 1.28

500 200 0.34
500 0.23
1400 2.04
1550 4.97

800 500 0.12
1500 0.07
2000 0.30
3700 15.8
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different classes: the pure scalar diagrams~Figs. 4a–4c!, the
gluon-exchange diagrams~Figs. 4d–4j!, and the gluino-
exchange diagrams~Figs. 4k–4n!. These diagrams have t
be supplemented by counterterms for the squark and q
mass renormalization~Figs. 5a–5c! as well as for the renor
malization of the squark mixing angle~Fig. 5d!. The three
different sets of contributions together with the respect
counterterms are separately gauge invariant and ultrav
finite. For the gluon-exchange contribution we have o
considered the squark loops, since the gluon exchang
quark loops is just the SM contribution, yielding the res

Dr1
SM52Dr0

SM2
3 (as /p)(11p2/3) @12#.

FIG. 4. Feynman diagrams for the contribution of scalar qu
loops to the gauge-boson self-energies at two-loop order.

FIG. 5. Counterterm contributions to the gauge-boson s
energies at two-loop order.
rk

e
let
y
in

t

As mentioned above, the results presented in the follo
ing are precisely the same in dimensional regularization a
dimensional reduction. The renormalization procedure is p
formed as follows. We work in the on-shell scheme whe
the quark and squark masses are defined as the real pa
the pole of the corresponding propagators. One further ne
a prescription for the renormalization of the squark mixi
angle. The renormalized mixing angle can be defined by
quiring that the renormalized squark mixing self-ener
P q̃1q̃2

ren (q2) vanish at a given momentum transferq0
2, for ex-

ample when one of the two squarks is on shell. This me
that the two squark mass eigenstatesq1̃ and q2̃ do not mix
but propagate independently for this value ofq2. Expressing
the parameters in Eq.~3! by renormalized quantities an
choosing the field renormalization of the squarks appro
ately, this renormalization condition yields, for the mixin
angle counterterm,

du q̃~q0
2!5

1

mq̃1

2
2mq̃2

2 P q̃1q̃2
~q0

2!. ~14!

Finally, we have also included, as a check, the field ren
malization constants of the quarks and the squarks in
calculation; they of course have to drop out in the final
sult, which we have verified by explicit calculation.

The one-loop diagrams of Figs. 6a–6c provide the ren
malization of the squark masses and the squark wave fu
tions. As the one-loop squark contributions to the vector
son self-energies are finite at vanishing external momen
@see Eq.~9!#, we notice that theO(e) part of the squark mas
counterterm is not needed. We have contributions from
three diagrams of Figs. 6a, 6b, and 6c involving gluon e
change, gluino exchange, and a pure scalar contribution
spectively. The explicit form of the pure scalar contributio
is not needed as we will see later. The contribution of
gluon exchange to the squark mass counterterm is given

mq̃i
dgmq̃i

52
as

2p
mq̃i

2 F 1

e
1

7

3
2 ln

mq̃i

2

m2 G , ~15!

while the one of the gluino exchange reads

k

f-

FIG. 6. One-loop diagrams contributing to the squark mass
mixing angle counterterms.
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mq̃i
d g̃mq̃i

52
as

3p
@~mq

21mg̃
2
2mq̃i

2
! B0~mq̃i

2 ,mq ,mg̃!

1A0~mg̃!1A0~mq!

12~21! isin2u q̃ mg̃mq B0~mq̃i

2 ,mq ,mg̃!#,

~16!

where A0 and B0 have been defined previously, and a
needed only up toO(1) in thee expansion. Although in our
renormalization scheme the contribution of the quar
squark interaction to the squark masses drops out in the
result, we will also give its expression for later convenien
( i 8532 i ):

mq̃i
d q̃mq̃i

5
as

6p
@cos22u q̃A0~mq̃i

!1sin22u q̃A0~mq̃i 8
!#.

~17!

Concerning the quark mass counterterm, Fig. 6d, in princ
the O(e) term is needed because the quark loop contri
tions to the vector-boson self-energies are ultraviolet div
gent even atq250. However, inDr this contribution drops
out as the one-loop quark contribution to this physical qu
tity is finite. As mentioned above, the gluon contribution
the quark mass counterterm is only relevant for the pure
correction and is not needed in the present context.
gluino contribution can be expressed as

d g̃mq5
as

3p (
i 51,2

H ~21! i sin2u q̃ mg̃ B0~mq
2 ,mg̃ ,mq̃i

!

1
1

2mq
@~mq

21mg̃
2
2mq̃i

2
!B0~mq

2 ,mg̃ ,mq̃i
!

1A0~mq̃i
!2A0~mg̃!#J . ~18!

Finally, the counterterm for the squark mixing angle, defin
at a givenq0

2, is given by

du t̃ ~q0
2!5

as

3p

cos2u t̃

m t̃ 1

2
2mt̃ 2

2 $4mtmg̃B0~q0
2 ,mt ,mg̃!

1sin2u t̃ @A0~mt̃ 2
!2A0~mt̃ 1

!#%. ~19!

As discussed above, for the value ofq0
2 one can either choos

mt̃ 1

2 or mt̃ 2

2 , the difference being very small. In our analys

we have chosenq0
25mt̃ 1

2 . This renormalization condition is

equivalent to the one used in Ref.@27# for scalar quark de-
cays.

Let us now discuss the separate contributions of the v
ous diagrams. The contribution of the pure scalar diagra
vanishes, while for the gluon-exchange diagrams one ne
to calculate only the first four genuine two-loop diagram
Figs. 4d–4g, and the corresponding counterterm with
mass renormalization insertion, Fig. 5a. The other diagra
do not contribute for the following reasons.

~a! The diagram in Fig. 4h is exactly canceled by t
corresponding diagram with the mass counterterm insert
-
al

e

le
-

r-

-

M
e

d

ri-
s
ds
,
e
s

n,

Fig. 5b. It should be noted that the expression forB0
e is

needed in order to obtain this result.
~b! The reducible diagram of Fig. 4a involving the quart

squark interaction contributes only to the longitudinal co
ponents of the vector-boson self-energies and can there
be discarded.

~c! The diagrams in Figs. 4b and 4c are canceled by
corresponding diagrams with the counterterms, Figs. 5a
5b, for mass renormalization~for the diagonal terms! and
mixing angle renormalization~for the nondiagonal terms!.
The diagrams in Figs. 5d–5f for the vertex corrections co
tain only field renormalization constants which drop out
the final result.

~d! The gluon tadpolelike diagrams of Figs. 4i and 4j gi
a vanishing contribution in both dimensional regularizati
and reduction.

For the gluino-exchange diagrams, one has to calculat
diagrams of the types shown in Figs. 4k–4n and their co
sponding counterterm diagrams depicted in Fig. 5.

We now briefly describe the evaluation of the two-loo
diagrams. As explained above, we have both irreducible t
loop diagrams at zero momentum transfer and countert
diagrams. After reducing their tensor structure, they can
decomposed into two-loop scalar integrals at zero mom
tum transfer~vacuum integrals! and products of one-loop
integrals. The vacuum integrals are known for arbitrary
ternal masses and admit a compact representation fore→0
in terms of logarithms and dilogarithms~see, for instance
Ref. @28#!, while the one-loop integralsA0 ,B0 are well
known @see Eq.~7!#. We have used two independent impl
mentations of the various steps of this procedure and
tained identical results.

In the first implementation, the diagrams were genera
with the MATHEMATICA packageFEYNARTS @29#. The model
file contains, in addition to the SM propagators and vertic
the relevant part of the MSSM Lagrangian, i.e., all SUS
propagators (t̃ 1 , t̃ 2 , b̃1 , b̃2 , g̃) needed for the QCD correc
tions and the appropriate vertices~gauge-boson–squark ve
tices, squark-gluon and squark-gluino vertices!. The program
inserts propagators and vertices into the graphs in all p
sible ways and creates the amplitudes including all symm
factors. The evaluation of the two-loop diagrams and co
terterms was performed with theMATHEMATICA package
TWOCALC @30#. By means of two-loop tensor integral decom
positions it reduces the amplitudes to a minimal set of st
dard scalar integrals, consisting in this case of the basic o
loop functionsA0 ,B0 ~the B0 functions originate from the
counterterm contributions only! and the genuine two-loop
function T134 @28#, i.e., the two-loop vacuum integral. As
check of our calculation, the transversality of the two-lo
photon andgZ mixing self-energies at arbitrary momentu
transfer and the vanishing of their transverse parts atq250
was explicitly verified withTWOCALC. Inserting the explicit
expressions forA0 ,B0 ,T134 in the result forDr, the cancel-
lation of the 1/e2 and 1/e poles was checked algebraicall
and a result in terms of logarithms and dilogarithms w
derived. From this output aFORTRAN code was created
which allows a fast calculation for a given set of paramete

In the second implementation, completely independe
the diagrams were not generated automatically, but the a
lytic simplifications and the expansions in the limiting cas
~small and large gluino mass, maximal and minimal mixin!
were carried out by using theMATHEMATICA package
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PROCESSDIAGRAM@31#. In this way the results can be ca
into a relatively compact form, shown in the following.

IV. TWO-LOOP RESULTS

A. Gluon exchange

In order to discuss our results, let us first concentrate
the contribution of the gluonic corrections and the cor
sponding counterterms. At the two-loop level, the results
the electroweak gauge-boson self-energies at zero mom
tum transfer have very simple analytical expressions. In
case of an isodoublet (ũ , d̃) where general mixing is al
lowed, the structure is similar to Eqs.~4! and ~9! with the
gV q̃i q̃ j

as given previously:

PWW~0!52
GFMW

2 as

4A2p3 (
i , j 51,2

gW ũi d̃ j

2
F1~mũi

2 ,md̃ j

2
!,

FIG. 7. Dr1, gluon
SUSY as a function ofmq̃ for the scenarios of Fig. 2

FIG. 8. Dr1, gluino
SUSY as a function ofmq̃ in the no-mixing scenario;

tanb51.6 andmg̃50, 10~the plots are indistinguishable!, 200, and
500 GeV.
n
-
r
n-
e

PZZ~0!52
GFMZ

2as

2A2p3 (
q̃5 ũ , d̃
i , j 51,2

gZ q̃i q̃ j

2
F1~mq̃i

2 ,mq̃ j

2
!. ~20!

The two-loop functionF1(x,y) is given in terms of diloga-
rithms by

F1~x,y!5x1y22
xy

x2y
ln

x

yF21
x

y
ln

x

yG1
~x1y!x2

~x2y!2
ln2

x

y

22~x2y!Li2S 12
x

yD . ~21!

This function is symmetric in the interchange ofx andy. As
in the case of the one-loop functionF0, it vanishes for de-

FIG. 9. Dr1, gluino
SUSY as a function ofmq̃ in the maximal mixing

scenario; tanb51.6 andmg̃50, 10, 200, and 500 GeV.

FIG. 10. Comparison between the exact result forDr1, gluino
SUSY and

the result of the expansion, Eq.~24!, up toO(1/mg̃
3) for the two

scenarios of Fig. 2;mq̃5100 GeV.
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generate masses,F1(x,x)50, while in the case of large mas
splitting it increases with the heavy scalar quark m
squared:F1(x,0)5x(11p2/3).

From the previous expressions, the contribution of
( t̃ , b̃) doublet to ther parameter, including the two-loo
gluon exchange and pure scalar quark diagrams are obta
straightforwardly. In the case where theb̃ mixing is ne-
glected, the SUSY two-loop contribution is given by an e
pression similar to Eq.~12!:

Dr1,gluon
SUSY 5

GFas

4A2p3
@2sin2u t̃ cos2u t̃ F1~mt̃ 1

2 ,mt̃ 2

2
!

1cos2u t̃ F1~mt̃ 1

2 ,mb̃L

2
!1sin2u t̃ F1~mt̃ 2

2 ,mb̃L

2
!#.

~22!

The two-loop gluonic SUSY contribution toDr is shown in
Fig. 7 as a function of the common scalar massmq̃ for the
two scenarios discussed previously:u t̃ 50 andu t̃ .2p/4.
As can be seen, the two-loop contribution is of the order
10%–15% of the one-loop result. Contrary to the SM ca
~and to many QCD corrections to electroweak processe
the SM; see Ref.@32# for a review! where the two-loop cor-
rection screens the one-loop contribution,Dr1,gluon

SUSY has the
same sign asDr0

SUSY. For instance, in the case of degener
scalar top quarks with massesmt̃ @mb̃ , the result is the
same as the QCD correction to the (t,b) contribution in the
SM, but with opposite sign; see Sec. IV C below. The g
s

e

ed

-

f
e
in

e

-

onic correction to the contribution of scalar quarks to ther
parameter will therefore enhance the sensitivity in the sea
of the virtual effects of scalar quarks in high-precision ele
troweak measurements. The dependence of the two-loop
onic contribution on the top-squark mixing angleu t̃ exhibits
the same behavior as the one-loop correction:Dr1, gluon

SUSY is
nearly constant for all possible values ofu t̃ ; only in the
region of maximal mixing does it decrease rapidly.

B. Gluino exchange

Like for the gluon-exchange contribution we have al
derived a complete analytic result for the gluino-exchan
contribution. The complete result is, however, very lengt
and we therefore present here explicit expressions only
the limiting cases of light and heavy gluino mass, and for
case of no squark mixing. The complete expression is av
able in FORTRAN and MATHEMATICA format from the au-
thors.

In order to make our expressions as compact as poss
we uses t̃ [sinu t̃ andc t̃ [cosu t̃ as abbreviations and intro
duce the following notation:

dxy5~mx
22my

2!,

where

m15mt̃ 1
, m25mt̃ 2

, mL5mb̃L
, mg5mg̃ .

The gluino contribution for vanishing gluino mass is give
by
Dr1,gluino
SUSY umg̃5052

as

p

CFNCGF

16A2p2 F Li2S 12
mt

2

mb̃L

2 D dLt
2

dL1
2 dL2

2 mt
2 $dL2

2 ~mb̃L

4
2mt̃ 1

4
12mb̃L

2
mt

2!

22st̃
2
mb̃L

2
d12@~mb̃L

2
1mt

2!~mb̃L

2
1mt

22mt̃ 1

2
2mt̃ 2

2
!2mt

41mt̃ 1

2
mt̃ 2

2
#%

1Li2S 12
mt

2

mt̃ 1

2 D 1

dL1
2 d12mt

2
„2d12@2mt̃ 1

6
~mb̃L

2
1mt

22mt̃ 1

2
!12mb̃L

2
mt

2~mb̃L

2
mt̃ 1

2
2mt̃ 1

4
1mt

4!

2mt
4~mt̃ 1

4
13mb̃L

4
!#1st̃

2
$mt̃ 1

4
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4
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4
!d1212mt

2mt̃ 1

2
@mt̃ 1

2
mb̃L

2
~mb̃L

2
2mt̃ 1

2
13mt̃ 2

2
!

22mt̃ 2

2
~mt̃ 1

4
1mb̃L

4
!1mt̃ 1

6 ] 1mt
4~3mb̃L

4
1mt̃ 1

4
!d2112mt

6~dL1
2 1mb̃L

2
d12!%12st̃

4
mt

2@dL1
2 ~mt̃ 1

2
mt̃ 2

2
2mt

4!#…

1Li2S 12
mt
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mt̃ 2
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2 d12mt
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„mt̃ 2

4
dL2

2 d121st̃
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6
#

1mt
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!d1212mt

6~2dL2
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d21!%22st̃

4
mt
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2mt
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1
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The result formg̃50 is compared to the complete result of the gluino contribution formg̃510, 200, 500 GeV in Figs. 8
9. In Fig. 8 the results for the no-mixing scenario are displayed, while Fig. 9 shows the maximal mixing case. As expec
curves formg̃50 andmg̃510 GeV are very close, while the curves for large gluino masses significantly deviate fro
mg̃50 case. For the no-mixing scenario the light gluino expression of Eq.~23! reproduces the exact result within 531025 for
mg̃,90, 130, 350 GeV in the cases ofmq̃5100, 250, 500 GeV, respectively. In the maximal mixing scenario the correc
is much smaller for a light gluino than in the no-mixing case; the light gluino expression reproduces the exact result w
31025 for mg̃,20, 300, 400 GeV in the cases ofmq̃5100, 250, 500 GeV and maximal mixing.

As second limiting case we give a series expansion in powers of the inverse gluino mass up toO(1/mg̃
3); note that, due to
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Figure 10 shows the quality of the heavy gluino expansion up toO(1/mg̃
3) in the two cases of minimal and maximal mixin

for mq̃5100 GeV. The expansion of Eq.~24! reproduces the exact results within at most 30%~which corresponds to a
maximum deviation of about 531025 in Dr) for mg̃.200 GeV in the no-mixing case and formg̃.340 GeV in the maximal
mixing scenario. We have also verified that higher orders in the expansion improve significantly the convergence of th
but we have not included unnecessary long expressions. As can be expected, when the value ofmq̃ is increased, the quality o
the heavy gluino approximation deteriorates. At the same time, however, the gluino correction becomes smaller and ca
be neglected; it never exceeds 1.531024 and 131024 for mq̃.200 GeV in the cases of minimal and maximal mixin
respectively~see Figs. 8 and 9!. We conclude that in the region of the parameter space where the gluino contribut
relevant, and the gluino is not too light~say,mg̃.300), Eq.~24! approximates the full expression sufficiently well.

As mentioned above, for most of the parameter space the mixing in the top-squark sector is either zero or nearly m
As a third limiting case we giveDr1,gluino

SUSY for arbitrarymg̃ , but with zero top-squark mixing. The result in this limiting ca
has already been displayed in Fig. 8 and Fig. 10~solid curve!:
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Here we have usedl(x,y,z)[A(z2x2y)224xy and the
function F(x,y,z) is defined according to the sign o
l(x,y,z)2. For l(x,y,z)2>0,

F~x,y,z!5
z

lH 2lnS z1x2y2l

2z D lnS z1y2x2l

2z D
2 ln
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22Li2S z1x2y2l
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2z D1
p2

3 J , ~26!
while for l(x,y,z)2<0,

F~x,y,z!5
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where Cl2(x)5Im Li2(e
ix) is the Clausen function; limiting

expressions and additional details on this function can
found in Ref.@28#.

C. Supersymmetric limit

The sign of the gluonic two-loop contributions is, as d
cussed above, always the same as the sign of the one
contribution, contrary to the case of the two-loop contrib
tions in the SM. In the limit of vanishing gluino mass,mt̃ 1

5mt̃ 2
5mt , mb̃L

5mb50 ~supersymmetric limit!, the gluon-
exchange contribution of the scalar quarks reads

Dr1, gluon
SUSY 5

asGFmt
2

A2p3

31p2

12
5Dr0

SM2

3

as

p S 11
p2

3 D ,

~28!

which exactly cancels the quark loop contribution@12#. The
gluino-exchange contribution in this limit is given by

Dr1, gluino
SUSY 52Dr0

SM8

3

as

p
, ~29!

which numerically cancels almost completely the contrib
tion of Eq. ~28!.

D. Corrections to the squark masses

The analytical formulas forDr given in the previous sec
tions are exclusively expressed in terms of the phys
squark masses. The formulas therefore allow a general an
sis since they do not rely on any specific model assump
for the mass values. For our numerical analysis, howe
since the physical values of the squark masses are unkn
we had to calculate the masses from the~unphysical! soft-
SUSY-breaking mass parameters. We have concentrate
the MSSM scenario with soft breaking terms obeying
SU~2! relationM t̃ L

5M b̃L
. The t̃ and b̃ masses are obtaine

by diagonalizing the tree-level mass matrices. Using E
~1!–~3!, the massesmt̃ 1

, mt̃ 2
, andmb̃L

5mb̃1
,5 as well as the

mixing angleu t̃ , can be expressed in terms of the thr
parametersM t̃ L

, M t̃ R
, and Mt

LR . This yields the tree-leve
mass relation
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2
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2
2mt

22cos2bMW
2 . ~30!

When higher-order corrections are included, the quanti
M t̃ L

and M b̃L
are renormalized by different counterterm

once the on-shell renormalization for thet̃ and b̃ squarks is
performed. Requiring the SU~2! relation
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2
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2
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2
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2
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5Since we setmb50, thus neglecting mixing in theb̃ sector, we
havemb̃1

5mb̃L
, andmb̃2

decouples from ther parameter.
e

-
op
-

-

l
ly-
n
r,
n,

on
e

s.

s

for the bare parameters at the one-loop level, one obt
M t̃ L

ÞM b̃L
for the renormalized parameters~see also the dis-

cussion in Ref.@33#!. The differencedM t̃ L

2
2dM b̃L

2
5Dmb̃1

2 ,

with

dM t̃ L

2
5cos2u t̃ dmt̃ 1

2
1sin2u t̃ dmt̃ 2

2

1~mt̃ 2

2
2mt̃ 1

2
!sin2u t̃ du t̃ 22mtdmt , ~32!

dM b̃L

2
5dmb̃1

2 , ~33!

constitutes a finiteO(as) contribution to theb̃1 mass com-
pared to its tree-level value. The mass shiftDmb̃1

2 can also be

obtained by replacing the tree-level quantities in Eq.~30! by
their renormalized values and the corresponding coun
terms. We have explicitly checked that the quantityDmb̃1

2 is

indeed finite. Note that the squark mass and mixing an
counterterms in Eqs.~32! and~33! also receive contributions
from the pure scalar diagrams of the type of Fig. 6c which
the two-loop results given above canceled between the co
terterm graphs and the two-loop diagrams. For the top-qu
mass counterterm in Eq.~33! also the graph with gluon ex
change enters, which was absent in the results given ab
Because of the latter contribution, theO(as) correction to
Eq. ~30! is different in the dimensional regularization and t
dimensional reduction scheme, while for all results giv
above the two schemes yield identical results. In our num
cal analysis in this section we use the result for the top-qu
mass counterterm in dimensional reduction.

For the two-loop contribution to ther parameter, the dif-
ference generated by using the tree-level mass relations
stead of the one-loop corrected ones is of three-loop o
and therefore not relevant at the order of perturbation un
consideration. However, if the one-loop contribution toDr is
evaluated by calculating the squark masses from the
breaking parameters as described above, theO(as) correc-
tion to the b̃1 mass should be taken into account. This giv
rise to an extra contribution compared to the results d
cussed in Sec. II.

The tree-level relationM t̃ L
5M t̃ R

, which has been widely
used in our numerical examples, can in principle be ma
tained also for the renormalized parameters at the one-
level with on-shell t̃ 1 , t̃ 2 mass renormalization. Alterna
tively, in the spirit of the discussion given above, one m
assume that the symmetry is extended to the bare parame

M t̃ L

2
1dM t̃ L

2
5M t̃ R

2
1dM t̃ R

2 . ~34!

Accordingly, the squark masses and the mixing angle ar
this scenario given in terms of the two parametersmq̃ and
Mt

LR , and there exist two relations between the squ
masses and the top-squark mixing angle at the tree leve

mt̃ 2

2
5mt̃ 1

2
1

1

sin2u t̃ 2cos2u t̃

cos2bMZ
2S 1

2
2

4

3
sW

2 D ,

~35!
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mb̃1

2
5mt̃ 1

2
2mt

21
1

sin2u t̃ 2cos2u t̃

3cos2bMZ
2FcW

2 2sin2u t̃ S 3

2
2

2

3
sW

2 D G . ~36!

At O(as), the right-hand sides of Eqs.~35! and~36! receive
the extra contributionsDmt̃ 2

2 andDmb̃1

2 , respectively, where

Dmt̃ 2

2
5dmt̃ 1

2
2dmt̃ 2

2
1

sin2u t̃ du t̃

~sin2u t̃ 2cos2u t̃ !2

3cos2bMZ
2S 211

8

3
sW

2 D , ~37!

FIG. 11. Dr0
SUSY calculated with one-loop corrected squa

masses as a function ofmq̃ for u t̃ 50 andu t̃ ;2p/4 (tanb51.6,
Mt

LR50 or 200 GeV) and two values ofmg̃ .
Dmb̃1

2
5dmt̃ 1

2
2dmb̃1

2
22mtdmt

1
sin2u t̃ du t̃

2~sin2u t̃ 2cos2u t̃ !2
cos2bMZ

2S 211
8

3
sW

2 D .

~38!

These relations have been used in the numerical evalua
displayed in Fig. 11. The difference to the case withM t̃ L

5M t̃ R
at the renormalized level is only marginal.

The effect of theO(as) corrections to the mass relation
on Dr0 is shown in Fig. 11, where the one-loop correction
the r parameter is expressed in terms ofmq̃ , but with the
corrections, Eqs.~37! and ~38!, to the mass relations take
into account. The results are shown for the no-mixing a
the maximal mixing case and for two values of the glui
mass,mg̃5200 and 500 GeV. Compared to Fig. 2, where t
tree-level mass relations have been used as input, the co

bution of the (t̃ , b̃) doublet to ther parameter is reduced fo
the parameter space chosen in the figure.

The inclusion of the one-loop corrections to the squa
mass relations does not always lead to a decrease ofDr0, but
can also give rise to a significant enhancement. This is qu
titatively shown in Table II for the same scenario as in Ta
I, i.e., for the maximal mixing case with tanb51. The shift
for the bottom-squark mass in this case follows from E
~32! and ~33! in the limit u t̃ 52p/4 with du t̃ 50. The nu-
merical results are very similar to the case with tanb51.6.
The value chosen for the gluino mass ismg̃5500 GeV, and
for completeness also the full two-loop contributionDr1

SUSY

is given. One can see that for large values of the nondiago
element in thet̃ mass matrix,Dr0 can become larger com
pared to the entries in Table I, thus significantly increas
Dr at the two-loop level in a range where the one-loop co
tribution is already quite large.

In the situation where the relationM t̃ L
5M t̃ R

is relaxed
and the squark masses and the mixing angle are derived
t for

TABLE II. Dr0

SUSY in units of 1023 for the same scenario as in Table I, i.e., with tanb51, for several
values ofmq̃ andMt

LR . TheO(as) correction to the tree-level mass relation has been taken into accoun
mg̃5500 GeV. The two-loop contributionsDr1,gluon

SUSY and Dr1,gluino
SUSY are also given~in units of 1024, mg̃

5500 GeV!.

mq̃ ~GeV! Mt
LR ~GeV! Dr0

SUSY31023 Dr1,gluon
SUSY 31024 Dr1,gluino

SUSY 31024

200 100 1.17 1.92 0.09
200 0.90 1.53 0.61
300 0.57 1.05 1.37
400 1.22 1.71 2.80

500 200 0.23 0.39 -0.08
500 0.13 0.27 0.52
1400 2.50 2.68 3.94
1550 5.71 6.18 5.34

800 500 0.07 0.14 0.13
1500 0.07 0.11 0.99
2000 0.31 0.42 2.31
3700 14.23 16.89 16.05
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M t̃ L
, M t̃ R

, and Mt
LR , Fig. 12 showsDr0

SUSY for the two

choicesM t̃ L
/M t̃ R

5300/1000 and 1000/300 as a function

Mt
LR . For theM t̃ L

/M t̃ R
5300/1000 case the solid line co

responds to the use of the tree-level masses, while the o
reflect the use of the one-loop correctionDmb̃1

2 to the tree-

level masses following from Eqs.~32! and ~33! for two
gluino massesmg̃5200, 500 GeV. For theM t̃ L

/M t̃ R

51000/300 case the result is given by the dotted line. I
insensitive to the one-loop correction to the squark mas
we therefore show only a single curve. For theM t̃ L

/M t̃ R

5300/1000 case,Dr0 is decreased for small values ofMt
LR

but is increased for largeMt
LR . The effect is more pro-

nounced for heavier gluinos. For large values ofMt
LR , Dr0

can become huge in this scenario, exceeding the leve
experimental observability. The bounds on the breaking
rameters obtained from experiment will therefore crucia
depend on the proper inclusion of the two-loop contributio

FIG. 12. Dr0
SUSY as a function ofMt

LR for tanb51.6 and for
M t̃ L

/M t̃ R
51000/300~dotted line; the lines for tree-level and on

loop parameters are not distinguishable! and 300/1000~solid line
for tree-level parameters; for the one-loop parameters, dash-d
line for mg̃5200 GeV and dashed line formg̃5500 GeV.
ion
ers

s
s;

of
a-

.

V. CONCLUSIONS

We have calculated theO(as) correction to the squark
loop contributions to ther parameter in the MSSM. The
result can be divided into a gluonic contribution, which
typically ofO(10%) and dominates in most of the parame
space, and a gluino contribution, which goes to zero for la
gluino masses as a consequence of decoupling. Only
gluino, top-squark and bottom-squark masses close to t
lower experimental bounds does the gluino contribution
come comparable to the gluon correction. In this case,
gluon and gluino contributions add up to;30% of the one-
loop value for maximal mixing. In general the sum of gl
onic and gluino corrections enters with the same sign as
one-loop contribution. It thus leads to an enhancement of
one-loop contribution~expressed in terms of the physic
squark masses! and an increased sensitivity in the search
scalar quarks through their virtual effects in high-precisi
electroweak observables. This is in contrast to what happ
in the SM, where the two-loop QCD corrections enter w
opposite sign and screen the one-loop result.

While the gluonic contribution can be presented in a ve
compact form, the complete analytical result for the glui
correction is very lengthy. We have therefore not written
out explicitly but have given expressions for three limitin
cases, namely, the result for zero squark mixing, for vani
ing gluino mass, and an expansion for a heavy gluino m
These limiting cases approximate the exact result sufficie
well for practical purposes. The results have been given
terms of the on-shell squark masses and are therefore i
pendent of any specific scenario assumed for the mass
ues. For different scenarios we have analyzed the extra
tributions caused by theO(as) correction to the tree-leve
mass relations.
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