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Power counting in dimensionally regularized nonrelativistic QCD
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We present a scheme for calculating in nonrelativistic QBQCD) with consistent power counting in the
heavy quark velocitw. As an example, we perform the systematic matching of an external current onto
NRQCD at subleading order in, a calculation relevant for the procesSe™ —hadrons near threshold.
Consistent velocity power counting in dimensional regularization is achieved by including two distinct gluon
fields, one corresponding to gluon radiation and one corresponding to an instantaneous potential. In this
scheme power counting is manifest in any gauge, and also holds for nongauge interactions. The matching
conditions for an external vector current in NRQCD are calculated(@?v?) and the cancellation of infrared
divergences in the matching conditions is shown to require both gluon fields. Some subtleties arising in the
matching conditions at subleading order are addressed.
[S0556-282197)01023-0

PACS numbsgs): 13.20.He, 12.38.Bx, 13.20.Fc, 13.30.Ce

[. INTRODUCTION In this paper we consider the general problem of matching
an external fermion-antifermion production current in a non-
Nonrelativistic QCD(NRQCD) [1] is a powerful tool for ~ relativistic theory. We pay particular attention to power
analyzing the dynamics of systems with two or more heavycounting in the NRQCD expansion parametethe relative
quarks at momentum transfers much less than their mastiree-velocity of the heavy quarks. Power counting in
Such systems are more complicated than single-heavy-quaPRQCD is less transparent than in HQET, for several rea-
systems described by the heavy quark effective theorgons. First, since is not a parameter in the Lagrangian,
(HQET) [2] because the quarks scatter via the QCD potenPOWer counting is not manifest in the NRQCD Lagrangian,
tial. This introduces infrared divergences in heavy quarkilthough there are simple rules for determining ¢hecaling
scattering near threshold in HQET which must be regulate@f @n operatof8]. Second, the power counting for on-shell
by resumming an infinite number of insertions of the kinetic9!uons differs from that of virtual gluons contributing to po-
energy operator. Since this operator is subleading in1/ tential scattering9—11] and in order to have simpte count-

this violates HQET power counting. This kinematic regime:if| :g'ns (ij;tln:g%n iTuoSrtjgf ;gnféiggﬁr;?;jmi[gggnlﬁxelg);the
of QCD is of interest for a number of physical systems, grangian. ' 9

. . . level the th I ith -
including quarkoniume®e™ —hadrons near threshold and yond tree level the theory must be regulated with a mass

lativistic OCD | Simil hni independent regulator such as dimensional regularization, in-
nonrelativistic QCD sum ruleg3]. Similar techniques are gioqq of the usual momentum cutdfitherwise divergent

also of interest for other nonrelativistic systems, such as POSp0p integrals change the power counting of Feynman graphs
itronium [4] and low-energy nucleon-nucleon scatterjbg in the effective theory

A concrete example where HQET power counting fails is  The paper is organized as follows. In Sec. Il we discuss
provided by an external current in QCD coupleddd'q,  velocity power counting in NRQCD, and the relation be-
whereT" is some Dirac matrix. In processes with a singletween the results of Refg10,11. In order to maintain mani-
incoming and outgoing heavy quatkuch as semileptonic festv power counting in dimensionally regulated NRQCD
b— c decay there is no potential scattering and HQET is the
appropriate low-energy theory. Loop graphs such as Fa. 1
are well defined in HQET, and the matching conditions for
this current in HQET are currently known l@(as,llmé)

[6]. On the other hand, the one-loop correction to quark-

antiquark production by the same current near threshold can-

not be correctly described in HQET; the one-loop graph in

Fig. 1(b) is infinite when the four-velocities of the quarks are

the same, and gives rise to the well-known infinite complex (a) (b)
anomalous dimension for the curreft]. The appropriate

low-energy theory for the second process is NRQCD, which FIG. 1. Two of the one-loop contributions to the matching of an
treats potential scattering near threshold properly. external current in HQET.
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we introduce two sets of gluon fields, corresponding to 1 1

propagating gluons and an instantaneous potential. In Sec. Ill £= lﬂh( iDo+ Z—DZ) wh—ZG“VaGWanL Lyt . ...

we discuss the matching of an external current in nonrelativ- 2.1
istic Yukawa theory(NRY), and show that the dependence '

on the infrared regulator vanishes in the matching when both

gluon fields are included in the low-energy theory. We con- Nonrelativistic fields are distinguished here from fields in the
sider this theory both because it is simpler than QCD, as weliull theory by the subscriph. Ly is the gauge-fixing term,
as to stress that manifest velocity power counting does nd®,=d,+i9sA, is the gauge-covariant derivative
depend on working in any particular gauge, such as CoulombA,=A5T?) and the dots denote higher dimension operators
gauge. In Sec. IV we match an external current in NRQCDNhose matrlx elements are suppressed by powets of

to O(g?v?), and explicitly show that the low-energy theory  In Ref.[10] a rescaling of the fields and coordinates was
reproduces the nonanalytic behavior of QCD to this orderintroduced to make the counting of operators manifest at

Finally, in Sec. V we present our conclusions. the level of the Lagrangian. The NRQCD Lagrangian was
written in terms of new coordinatés andT and new fields
Il. VELOCITY POWER COUNTING V¥, and A, where
In NRQCD, the power counting of terms in the Lagrang-
ian is different from HQET, allowing potential scattering X=X, =NMT gn=NqWh, 2.2
near threshold to be correctly described. Operators are clas-
sified according to how they scale with the three-veloeity A0=p0d°, A=\ AL

instead of 1|7hQ [8]. Since the kinetic energy of a nonrelativ-

istic state is proportional to? while the momentum is pro-

portional tov, space and time derivatives scale differentlyand where A —1/va- N=1mgu?, A= , and
with v, and power counting is not manifest in the NRQCD Ay=\po= (Mg )\X) Y2 In this form thev scaling of opera-
Lagrangian: tors is manlfest in the Lagrangian. In the Lorentz gauge,

)\—3/2

1 . 1
| 1d0— == ) = SYRIV = gVo AP W= Z(GA7 = 0 AT — gVU fapAPAD)?

(5. A5= v a0 AT — g o Fapc AP AG)* - a(vaf’ASwiA?)Z
V2

0 —+

i dg+

g 1 1 1
- ﬁAo) W= 2R AN S (5482~ 5 (9 AN+ O(v,gv0). 23

Of course, there is no physics in a simple rescaling. Howspace coordinates of only the transverse components of the
ever, in order to have an effective theory in which the gauge fields. In the language of RELO],! this corresponds
power counting is manifest, the additional prescription thato the rescaling
terms which are subleading inbe treated as operator inser-
tions must be addedotherwise, loop graphs evaluated in x=\Y, t=\T, A=\ A (2.9
dimensional regularization will mix powers af). As was
noted in[10], once this prescription is added, the rescaling in
Eqg. (2.3 misses important physics. While it provides the
correct description of virtual gluon exchange corresponding
to an instantaneous potential, it fails to correctly describe
on-shell gluons. The problem is that the pole in the full gluon
propagator occurs eko k2, or, in terms of rescaled vari-
ables,v?K2=K2. Unless the time derivative in the gluon +E((9O:Zﬁ‘)2} (2.5
kinetic term is treated exactly instead of as an insertion 2 i
(which would violate manifest counting, amplitudes in the
effective theory do not have the correct branch cut corre-
sponding to physical gluon propagation, so the effective 1The Lagrangian ifi11] was written as an expansion in powers of
theory cannot describe on-shell gluons. 1/c instead ofv; however, the two descriptions are equivalent. Note

In Ref. [11] it was demonstrated that this problem is that asc—», ag=g%4mc—0, whereas as—0, ag remains con-
avoided by a further rescalinn Coulomb gaugeof the  stant, so factors of scale differently with ¢ than witho.

The kinetic term for the4;’s is canonically normalized,

1 ~ ~ —~p o~
L= [ @Y a1 [zwiv“?—ﬁjAf‘—gfaboAr’Af)z
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while the transverse gluon-quark interaction may be ex- \v

1
panded in terms of multipol@s L=\ ide+ ﬁ—gA%—gA%(O,t) h— Z(V'A'p

: o 1 1 1
i - - _VviainN2L T~ 0\2_ ~ ~uy, _ . 2
L=~ 300V (X T A (0X,T) VAR (VAR 3 CR Cuir™ 5, (V- A)

i 1 #\2 \/—
=—§gv‘I’E(X,T)€i‘I’h(X,T) ~ 5, (9,AR) T O(v,gVv), (2.7)

X[1+vX-V+...]4,0,T). (2.6)

where the subscriptB andR denote potential and radiation
luons,GL” is the field strength tensor for radiation gluons,
nd« is the gauge parameter. For practical calculations, this
version of the Lagrangian is much more convenient than the
fescaled version. The rescaled theory simply guarantees that
loop graphs computed in the unrescaled theory, with the ap-
propriate terms treated as operator insertions, will have
scaling determined by the vertices.

Note that three-momentum is not conserved at the multipolcg1
interaction vertex, since the theory breaks translational in
variance, although energy is conserved. Once the multipol
expansion is performed, loop integrals in dimensional regu
larization do not change the scaling of a graph determined
by the vertices.

There is, however, a subtlety arising from the multipole
expansion. Since the three-momentum is not conserved at the
vertices, transverse gluons cannot alter the three-momenta of
the heavy quarks. Potential scattering via transverse gluon IIl. YUKAWA THEORY

ion, potential gluon exchange is instantaneous in all gauges

and real gluon emission are long-distance effects, so in ord% A
: . . : r both transverse and longitudinal gluons. More generally,
to correctly describe the infrared physics of QCD in the non- d g ¢ y

AN ) g otential scattering proceeds via an instantaneous interaction
relativistic limit the instantaneous potential due to transversgven in theories with no gauge freedom. To illustrate this in
gluon _exchange must be a(.j(Ijed.to the_ effecti\(e theory. Thi§ theory which is simpler than QCD, in this section we con-
may e|ther. be done by expl!cmy including spatially non_IocaI sider a nonrelativistic Yukawa theoifNRY) of a massive
operators in the nonrelativistic theofthe need for which

: . . . Fermi field ¢ coupled to a massless scalar
was discussed ifil1]), or by reintroducing a second gluon As a warmup for our calculation of the matching condi-
field which couples according to E¢R.3).

o ; . tions for e"e” —hadrons in QCD, we consider here the
co;r;zr&ze?h?re%?g?sgrr:gt n%g’;gg{ﬁﬁsgf :‘ar:j?:tr;;o%?ugzgw_atching conditions for an external current coupling to
compared to those involved in potential scattering. In the”””# in NRY. In processes with a single incoming and
nonrelativistic regime of QCD there are nonanalytic contri-CUtg0ing fermion there is no potential scattering and the ana-
butions to scattering amplitudes arising from gluons in twol®9 of HQET for a Yukawa interaction is the appropriate
separate kinematic regions, both with energy of oner. effectlye theory. I-_|owever, as has been discussed, the 1/
The gluons with spatial momentamo are far off shell and behavior of potential scattering near threshold cannot be cor-
contribute to potential scattering. In contrast, the gluons wit{€Cty described in HQET. In NRY, the d/behavior is re-
spatial momenta-muv?2 may be on shell, describing real ra- produced by potential scalar exchange. There are also infra-

diation, but do not contribute to the scattering of quarks Wither divergences in the full theory d_ue to soft s_ca!ar
three-momenta of ordeny (in the limit v—0). Each of the bremsstrahlung, which are reproduced in NRY by radiation

rescalings discussed above treats one of these kinematic calars. In this section this is demonstrated explicitly. The
theory is regulated in the ultraviolet by working éh=4— €

gimes correctly, while missing the physics of the other. As’,. ) . . : .
argued in Ref[10], it is not possible to describe both re- dimensions, and in the infrared by introducing a small scalar
. (The theory could be regulated in the infrared with

gimes via any single rescaling. In order to correctly describdl@SM, y e . .
the infrared physics of QCD in the nonrelativistic limit two dimensional regularization, as at the end of this section, but
separate gluon fields must be included, which will be re_thls obs_cures the distinction between the infrared and ultra-
ferred to in this work as “potential” and “radiation” gluons, violet dlvergenc_e$. . :
corresponding to the two different kinematic regimes de- The Lagrangian in the full theory is
scribed above.

In this approach the heavy quark Lagrangian in NRQCD

. ; . ; — 1 _
in Lorentz gauge is therefore, in standdmhrescalefunits, = lﬂ(lﬂ—m)lﬂJrEﬁ”qoﬂw—gwlﬂ@, 3.1)

2At the level of Feynman diagrams, the observation that on-shell
gauge fields couple via the multipole expansion was made in Refwhile the nonrelativistic Yukawa theorfNRY), to leading
[9]. order in the three-velocity, is
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i G

FIG. 2. One-loop diagrams in Yukawa theory. FIG. 3. Infrared divergent one-loop diagrams in NRY. The
dashed line corresponds to the potential scalar while the solid line is
the radiation scalar.

2
Lar= % o Y+ EWQDR%GDR— ;(V¢P)2 is the magnzitUQe of thg thrge-velocity of each fermioq, and
s=(p1+p2)° is the invariant mass of the fermion-
t + antifermion pair. The infrared divergent piece of the wave
- - 2
91n¥nee = G2¥n¥ner(O0) (32 {unction renormalization is

i 9o+

where ¢p and ¢i are the potential and radiation scalars, _ o A—

respectively. There is a similar kinetic term for the anti- IAW=4—772 Jiuy'v Inmg+- .. (3.8

fermion field x;,. (Note that,, annihilates incoming par-

ticles, while x, creates outgoing antiparticlesAt tree level  and therefore the infrared divergence in the full theory am-

01=092=0. plitude is
The external vector current in the full theory,

g2 . _ p2 1
— iAIR:mJiU'}’IU arctan%E)Jrl Inm,+ - - -
ig* ¢
matches onto a number of terms in the low energy théory, Y ﬂ 2.2 TOB)|Ji uy'v Inm,+-
. . i 2 2
Ji(Xho' Y+ 0" xn) + Jo( i+ xhxn) + (% v?). D
i (34) 8 IB+_Z+O('B) Juhﬂ'll)hlnm + -

3.9
The one-loop matrix element of the current in the full 39
theory is given by the diagrams in Fig. 2. Performing thewhereu;, andv, are two-component spinors. Note that Eq.
loop integration, the infrared divergent part of the vertex(3.9) may be written

graph is )
iA|R=%Jiu_yiv[r(w)—l]lnm¢+ -, (310
i.4Y=4ig?m?J;u(py) y'v(p2)
where
d% 1
d 7,72\ 12 3 1+ B2
(277) (k _m(’p)(k +2plk)(k _2p2k) sz, (31])
+.. (3.5

and the functiorr (w) is given by

where terms finite am,— 0 have been neglected. Combin-

ing denominators in the usual way and performing the loop r(w)= Infw+ yw?—1]. (3.12
and Feynman parameter integrals, the infrared divergent vwe—1

term is found to be

This is the analytic continuation to the production region
) 1 (negativew=v-v’'<0) of the infrared divergence encoun-
arctanlé—)lnm T tered in HQET(for scalar exchangg12]. The first term in
¢ Eq. (3.9 is singular asB—0, corresponding to the infinite
(3.6) complex anomalous dimension found in HQET at threshold.
Since it is imaginary, it does not contribute to the decay rate
where at O(g?). The second term in Eq3.9) cancels in physical
matrix elements with scalar bremsstrahlung.
5 In order to be able to match onto NRY at one loop, both
B=\/1— — 3.7 of these divergences must be reproduced in the low energy
S theory(the singularities higher order i will only be repro-
duced when operators higher order in the velocity are in-
cluded in the effective theoyyDiagrams with both potential
Spinors in the full theory are normalized such that ¢p and radiationpg scalars contribute to the amplitude in
U, (p)us(p)=— v (P)vs(p) = &s. The two-component spinors are NRY (Fig. 3. The wave function graphs with, exchange
Un,=vn,=(0), Un,=vn, = (3). vanish, while the vertex graph gives

2 2
. g° . —, (1-
V= 3. |

iA 7 5Jiuvy'v 3
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d% 1
2m® (T+ ko— (k+p)2/2m+ie)(T—ko— (k+p)2/2m+ie)(k*+m;—ie) ’

iAgzigZJiu;aiuhf (3.13

whereT=E—m is the fermion kinetic energy. Closing thg integral in the upper half plane, using the leading order equation
of motion T=p?/2m and picking out the corresponding pole leavesia ()-dimensional Euclidean integral, which gives

ig?
878

T[2—(d—1)/2]

iAY=g?mulav
p=— g MU0 vy (41

1 .
f dx[m%(1—-x)—x?p?—ig]@ " D/2"2= — Jule'vyinm,+---  (3.19
0

and reproduces the first term in E8.9). The radiation sca- ultraviolet divergences, since one-loop integrals containing

lar vertex correction is radiation scalars are of the form
iAY=—ig2Jul o J d'k ! J d' f(ko,k? (3.19
I R__Ig iuh Uh (27T)d (kz_mi"‘l{-})ké, W ( 01 )1 .
(3.15

which has no mass scale and so vanishes in dimensional
where the +ig’s in the fermion propagators have been regularization. Thus, radiation scalars do not contribute to
dropped because these poles do not contribute to physictiie one-loop matching conditions. This does not mean, how-
matrix elements. One can see by working with off-shellever, that radiation scalars are irrelevant. Integrals of the
states that the poles from the fermion propagators only givéorm (3.19 are both ultraviolet and infrared divergent, with
contributions proportional to powers d&—p?%/2m which  the divergent terms having the same magnitude but opposite
vanish by the lowest order equations of motion of NRY.signs. In the difference between the full and effective theo-
Using the standard HQET trick of combining denominatorsries the infrared divergences in the two theories cancel, leav-
with a dimensionful parameter, the vertex graph becomes ing an ultraviolet divergence in the effective theory. Unlike

the infrared divergence, the ultraviolet divergence is can-

i AV=8ig2lut o w}\ ~ d’k 1 celled in the low-energy theory by a local counterterm.
I AR=8Ig™JiUpoun 0 (2m)? (—k2—2\ko+ mi)‘? The matrix element of the current in the effective theory
) with the tree-level matching is, in dimensional regulariza-
. tion,
= g—zJiu;oJuhlnm S (3.16
A ¢ 92 2 202
The wave function graphs give an identical contribution, so | Anry = Jilno’vp| 1+ 1677/3{d—4 b+ yetin WMZD
the sum of radiation scalar graphs becomes L O(v) (3.20
v). .
2
iARz%Jiuﬁkohlnm(PﬂL cee (3.17  The difference between the two matrix elemef&sl8 and

(3.20 is analytic in the external momenta, as it must be to be
absorbed into the coefficients of local operators in NRY. The
matching condition for the current at one loop at a renormal-
ization scalew is therefore

reproducing the second term in E.9).

This illustrates that botlrp and ¢ are required for the
difference between the matrix elements of the external cur
rent in the full and effective theories to be infrared finite.

: g . — 9’| 2 m?
Having demonstrated this, it is easier to calculate the match- J iy y—| 1- —2[—+ ve+ In—z})
ing conditions by regulating both the infrared and ultraviolet 4mld—4 4mp
divergences in the full and effective theories with dimen- X[t o xnlo+ - - -
sional regularization. The matrix element in the full theory is T AR
found to be 9> m? L
=|1- mln? Ji¢h0JXh s (321)

- . g2 m2

i Ay =Jiuj o (1——2{—4— +In—4 i
ul = i=n @ Uh 4r2d—4 " 7E dmu where we have denoted the bare operator by the subscript 0,

and the effective theory is renormalized using the modified

+0(v). minimal subtraction scheme (MS

2 202

.9 2
+i 1677,8[_d—4_|77+7'5+m Py

(3.18 IV. NRQCD

Regulating the theory in both the ultraviolet and infrared The matching of an external vector current in NRQCD,
with dimensional regularization has the advantage that onerelevant for e" e~ —hadrons near threshold, proceeds in
loop graphs in the nonrelativistic theory containing radiationmuch the same way as in the Yukawa theory of the previous
scalars vanish. This is due to a cancellation of infrared andection. Infrared divergences odddnare reproduced in the
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nonrelativistic theory by potential gluon exchange, while in-where the field operatagy, (/") annihilategcreatesa non-
frared divergences even in are reproduced by radiation relativistic particle. However, the residue of the pole in
gluon exchange. In this section the matching conditions for & —p?/2m in this theory is noti, but i(1—p?/2m+---)
vector current in NRQCD to order? are calculated.The  =im/E. While this is perfectly consistent, it is preferable to
theory is regulated in both the infrared and ultraviolet inremove this extra factor aft/E. This may be easily done,
dimensional regularization. Cancellation in the matchingsince the operator
conditions of terms which are not analytic in the external
momenta is rather nontrivial at subleading order and pro-
vides a nice demonstration of the consistency of this ap-
proach.

When working at subleading ordersin there are a few
subtleties which must be taken into account. First of all,is proportional to the equations of motion, and may therefore

2 V2

— b 5| 190+ oo | U (4.4

since the three-momentum in the effective theory is be removed by the field redefinition
pl=myg=m—-—, @1 , viy e,
V1-p° Uh—¥n=|1= 72| ¥h= Vi ¥ntO@". (49

derivatives acting on operators in the nonrelativistic theory ) ) ”
give factors ofy, rather thang. It is therefore more con- However, because of this rescaling, an additional Feynman

venient to treaty8 as the nonrelativistic expansion param- 'ule of VE/m for each external leg must be included in
eter. In the rest of this paper terms of ordipf"/m"= 8" NRQCD, when evaluating matrix elements between relativ-
will be referred to as being of order". istically normalized states. If this term is omitted, Feynman

Second, Feynman diagrams in the full theory yiSlcha- diagrams in NRQCD correspond to matrix elements between

trix elements evaluated between relativistically normalized"?”re!ati"tiﬁticLallr)]/ norme;lized St?ll(teZ@* more ;Z;Se%" agab"
states, satisfyingk’|k)=2E, (27)36@(K—K'). However, o~ USNd te -enmann-symanzicsmmerm reduc-

in the nonrelativistic theory defined such that the residue Ogon formula in the nonrelativistic theory instead of rescaling

the pole in the propagator is Feynman diagrams instead rguments reproduces this resulh the rest of the discus-

ive S matrix elements between nonrelativistically normal sion they, fields will be used, and matching conditions are
give atnix elements between nonrefativistically normai- .5\ jated using nonrelativistically normalized states in the

ized states, defined such thad [k)=2m(2m)°6®(K—k’).  full and effective theoriegthis is the origin of the factors of
To demonstrate this, consider the two-point functions in the\/ﬁ in the matching conditions presented[i4]).

full and effective theories. Expanding the relativistic propa-  The kinetic term for the nonrelativistic fields therefore
gator for quarks in terms of the low energy variables gives i5xes the usual form

i(p+m) 3 2im 5 5
p2—m?  (m+T)2—p2—m? Lo=l| idg+ == | ¥+ xi ia—v—
h h{ 190 5/ ¥h Xn| 190 om Xh
2im
omT+T2—p? +gmE IV = xaVixn) +O@5). (4.6
i(1—p2/2m?) i [ip’ . . v
= + The low energy theory contains both potentidb& AL T?)

T-p%2m  T—p?2m8m° and radiation A&=AL*T?) gluons. The kinetic term for the
gauge fields is, including the gauge-fixing terms,
X————+0(pY), 4.2
oz H O (4.2 ) ) )
Ly=—(VAL=VIAL) 2+ (VAD)2— ——(V-Ap)?
where an irrelevant constant term has been dropped. This ~ ° 2 VA PV 3 (VAR = 55 (V- Ae)
two-point function is reproduced in the nonrelativistic theory

by a Lagrangian - %G’R‘VGWR— %(mAL{>2+O<g Vo), 4.7
2 VZ VZ
L=y g+ ﬁ) l//ﬁ—l//ﬁTW(iﬁoJr ﬁ) i where Coulomb gauge corresponds to the limit-0. The
0O(g+/v) terms correspond to the triple-potential gluon vertex
it v4 , and will not be required for the one-loop matching we con-
+ 3_m3¢h’ 4.3 sider in this section. Also note that in Coulomb gauge there

is no O(v?) correction to theAE, propagator. In Lorentz
gauge, the gauge-fixing term for the radiation fields is in-
“See also Ref[13], where the matching of an external electro- stead—(1/2a)(d,A%)?, and there are additional terms bilin-
magnetic current to nonrelativistic quantum mechafiegulated in ~ ear in theAp’s suppressed by powers ofcoming from the
position spacewas discussed. expansion of the gauge-fixing term.
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(a)
FIG. 4. One-loop contributions to quark-antiquark production in
QCD. : : :

I | |
I | |
' | :
I

Working in the center of mass franp = —p,=p, and (d) (e) )

using the relatior(easily verified with on-shell bispinors

FIG. 5. One-loop contributions to quark-antiquark production in
NRQCD. The dashed line corresponds to a potertiagluon, the
dashed gluon line to a potential gluon. The shaded circles rep-
resent(b) the p-A vertex, (c) the Fermi vertex,(d) the Darwin
vertex, (e) the relativistic kinematic correction to the fermion leg,

- p? | 1 .
u(py)y'o(py)=uf| 1+ ﬁ) o'h— Wth' op'vy,

+0(v%) and (f) O,. Implicit in both (d) and (e) are graphs with the same
operator insertion on the antiquark line. The wave function graphs
_ Eut o— o0 | v +O(v4) vanish.
mh Sm2P P |Un ;
4.9
the tree-level matching conditions for an external vector cur- g
rentJ(x) are found to be chsozp(w;Ta¢h+X;TaXh)v2Aga
m
o 4 . o o
Iuth7" Y= i01F €20, +C505F .+ O, Fi L T Vg TV ) VEAR:
m
c1=C,=1+0(g?), +0(g%). (4.12
c3=0(g?), (4.9  Transverse potential gluons couple through fhed and

Fermi (chromomagnetic dipole momerterms atO(v*?),
where

O,=Ji {0 xn, g
1= din o xn £p<A,F:%[¢;(AP'V"’_V'AP)‘/’h

1 o o e e — . .
OZZW‘]i[‘ﬂE(V'(TVI+V‘0'VI)Xh]: Xn(Ap-V+V-Ap)xn]

— L LWl (VXA U= Xl (VX Ap)xi]

1 oL«

Oz=5—=Ji[ 41 (V24 V) x], (4.10
3 2m2 i h h +O(g3) (413

and only the terms contributing to quark-antiquark produc-

tion have been included. The operators in E4.10 are and so transverse gluon exchange and the leading relativistic

renormalized in the MS corrections to Coulomb exchange both contribute to potential
The A2 coupling to heavy fermions, giving the Coulomb scattering atD(g?v), as expected. This is also the same or-
potential, isO(v ) der as the correction to Coulomb scattering due to We

correction to the fermion legs. This agrees with the power
counting of Ref[8] in which the matrix element of each of
Lc= —g(z//ﬁAgwh+XEAgxh)+O(g3). (4.11 these terms is given a@(v?), since in quarkoniuny ~g2.
Note also that the Fermi, Darwin, spin-orbit and relativistic
The leading corrections to this are the Darwin and spin-orbikinematic corrections in the previous equations are only the
couplings, arising a©(v®?), leading pieces of the usual form of these tefitis
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OLpjlinear= am [%(DZ) Un— Xh(DZ)ZXh]+_[¢h(D 9E—QE-D)¢n+ x\(D-gE—gE- D)Xh]+ ['/’h('DXgE

1
—QEXiD)- oY+ x3(iDXgE—QEXiD)  oxn]+ 5[ ¥}(9B- 0) Yn—x1(9B- &) xn]+O(g°), (4.14

since covariant derivatives arfl both consist of two terms of differing orders in

Since radiation gluons do not contribute to one-loop graphs, as was discussed in the previous section, their couplings are not
presented here.

Using the relation$4.8) and

( 1 T 3
U(Pv(p2)=— Uy P-ovs+0O(p°) (4.15

(still working in the center of mass frarehe amplitude for quark-antiquark production in QCD from the diagrams in Fig. 4
may be expanded in powers pfm:

2g° 1 i g2 g2 m 2 p?
I-AQCD_U (T'Uh 1- 3—2 Wuhp-apvh 1—§2 +Puha‘vh | | ml i ’yE+d 4+In7T—,u2
3pl| , .. 2 p p° (2 16 m?
+% Tetim| yg— 2+ d_4+|n77M2 + 3m2\§—8yE—d_4 8|nm
2 T i 2
g2 ufp-op'up[ m 2 p
+ — —im| yg—2+ —+In—=| | { +O(v® 4.1

(where an overall factor dE/m has been divided out, to convert to nonrelativistically normalized gtafeée amplitude has
the expected 1/ singularity from Coulomb scattering, signalling the failure of perturbation theory close to threshold.

The matching conditions for the current are given by the difference betwee@d B6). and the graphs in Fig. 5 computed
on shell in NRQCD[15]. The graph in Fig. &) corresponds to Coulomh® exchange. The only subtlety in evaluating this
graph is that, to the order in which we are working, the on-shell condition in the effective theory is

2 4
p p
“om gmp’ (4.17)

instead of the leading order relatidi= p?/2m, and this extra term must be treated correctly as a perturbation so as not to
violate power counting. Evaluating the graph in Figa)Sor arbitrary off-shell spinors,

2mT
o =1+6, (4.18
gives
2..d— 6,2 2 (d-7)/2
B g m“~°p t p° . (d—5)2 3—-d d-3 5-d d—-1 1
(a)—chUhU‘vh(—g‘HE o T 2 ok 2 ' o ' 2 1_5 (4-19)
The hypergeometric functiopF,(a,b,c;£) may be expanded in powers 6f giving
B (d 3)92 d—2 ‘o p2 . (d—3)/2 3—d d
(a)—cls(d_4)2d 2p 77_(d_l)lzuh(fvh _E—HE r > 1- 2—5 o
(d=Hr'a-arrd-3)/12]|
T[5-d)/2 374+ 0(8%. (4.20

Evaluating this graph with the leading order on-shell conditi®s,0, the O(8%~ %) term vanishes as long as RRE4. In
order to have this result remain as the leading term in the expansion away#drso that power counting is retained, the
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5974 term must be evaluated in dimensional regularization as a formal power $¢ags; f(0)+ 8f'(0)+ - - -. In this case,
each term in the expansion vanishes for sufficiently largedRego the entire series vanishes in dimensional regularization.
The final result for this graph ned—=4 is, therefore,

2 2
(a)=c I O L D yet+ — +|np—+|5 +0(8% |, (4.21)
11272707 T p] Fld-4 T2 '
which, for 5= —p?/4m?, gives
g m 2 p ' [pl|
(a)—ClEzUhOJUh[m T+ ’YE+d__4+|n77_/_L2 4 m (422

This reproduces th®(1/v) term in the full amplitude.

As discussed above, there are no graph®©@g?v2") in NRQCD from radiation gluon loops. AD(g?v) there are
contributions from the leading relativistic corrections to Coulomb scattering. In addition, since Coulomb exchange scales as
v 1, the dressing oD, with a singIeAg exchange also contributes @(g%v). A, exchange contributes both via theA
coupling[Fig. 5b)]

(b)y=c 9—2qu Ipl 24 —1+—+|n'°—2 (4.23
L1072 070 m| T T Ve g T 2 '
and the Fermi coupling
S [pl  m upp- op'vp| [ im
(C)—C]_Ez( O'IUh |p| T ey (4.24
Coulomb exchange is corrected by the Darwin vertex,
2
(d)= Cllg zuhoivhm(—lﬂ') (4.25

while the spin-orbit coupling does not contribute. The relativistic corrections to the quark and antiquark propagators give

2 2
(e)=c —zg ulo’ Ipl 24 L2 (4.26
L1272 0T Ohom| T I\ YET 2 T d=a T 2] | :
and finally, the one-loop correction {0, in Fig. Xf) gives
2 T i 2 2 H
g2 ulp-opoy m| , 2 p g L lplfiw
=— + -3+ —+In—| |- — —=. .
(f) Coq52 2 2|p“1-r im| ye—3 =2 InW’uz Copor2 ZUhOJUhm > (4.27
Combining these results gives
iA =c,ulo’v —iqu«rpiv + o’ W oo cyml 24 im yet —— 2 Inlo—2
NRQCD 1%h h 2m2 h h 1277 19.-2%h h l| | E d—4 7T/.L2
3/p| 5 PP | im g° uip-op'vy
+— 2+ ——t+—+In—| |- = + _
om| G ™ Him veT 3t '”Mz 3%( | 122 oy
| 24 3+ 2 +1 i i (4.28
T —Co| mtim| yg—3+—+In—= | |—imcy; |. .
p| 2 YE d—4 7T,u2 1

As required, all the nonanalytic dependence on the external momentum cancels in the matching. This result is also gauge
independent.
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Comparing Eqgs(4.16 and (4.28 gives the coefficients manifestv power counting in the Lagrangian, noriispower
C1—Cz (regu|ating the |OW_energy theory as usual in )\/[8 Counting preserved by |00p graphs either in dimensional
0(g?): regularization or with a momentum cutoff. While there is
nothing in principle wrong with this, it makes calculating
matching conditions somewhat awkward, since the matching

8aq

- 2
c1=1- 3T +0(as), conditions for any given operator will change ©1) when
higher order operators are included in the Lagrangian.
Ao Velocity power counting is only preserved by loop graphs

Co=1- 37:+O(a§), in dimensionally regulated NRQCD when gluons contribut-
ing to potential scattering are treated separately from on-
shell gluons. This was accomplished in this paper by intro-

+O(a§). (4.29 ducing two distinct gluon fields in the effective theory.

Potential gluons propagate instantaneously and give rise to

the QCD potential, whereas radiation gluons do not contrib-

ute to potential scattering, but correspond to on-shell gluons.

The power counting is manifest in the Lagrangian when

space, time and the fields are rescaled for the potential fields

as discussed in R€f10] and for radiation fields as discussed

2 8l m?
3 n?

The result forc, reproduces the familiar short-distance cor-

rection toe*e~—qq near threshol@16], whereas, andcs
generalize this t@®(v?). Note that the bare; is finite while
the barecy is divergent. This reflects the fact that there are

no infrared or ultraviolet divergences in the amplitude ati, Ref. [11]. As shown in Ref[11], under this rescaling

0 . - .
O(v") since the.quarks areina colgr singlet state, and t.hererhdiation fields couple to fermions via the multipole expan-
fore cannot radiate a gluon at leading order in the multipolg;j, *Separating these gluon modes realizes at the level of
exp%arl]nsmn._ it of thi ion is that th Vi the Lagrangian the separation advocated for NRQED in Ref.
e major result of this section is that the nonanalytic 9]. Under this rescaling power counting is manifest in any

erendence on the external momenta in th? QCD ampll|t.u auge, not just Coulomb gauge, and also holds for nongauge
is exactly reproduced in NRQCD. This provides a nomr'v'alinteractions.

ChSCk f'f the conS||stefncy (I)f th|sf ?r}]:)proacf}. beyogd It:adlnlg The infrared divergences arising in fermion-antifermion
order. owevEr,hony<0r vlages Oh € CO'“:p'nlg an E.X emfaproduction in Yukawa theory at order ! and v were
momenta such thaty<v <1 does the tree-level matching of g4y 1o pe reproduced in the nonrelativistic effective

O, andO dominate the two-loop matching @;. For scat-  yhaory only when both potential and radiation scalars were
tering states closer to threshdias weI.I as for bound states included, and the matching conditions at that order were
where v=as, ladder graphs containing potential gluons gpqn 1o pe analytic in the external momentum. Finally, the

must be summed to all orders via the Salinger equation. . ching conditions for quark-antiquark production by an
In this case, graphs containing a single |.nsert|on of the tre€s,ternal vector current were computed in NRQCD to
level matching ofO,, the two-loop matching 0©, and the 0(g?v?).

tree-level matching of0; combined with a single higher
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