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Power counting in dimensionally regularized nonrelativistic QCD
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We present a scheme for calculating in nonrelativistic QCD~NRQCD! with consistent power counting in the
heavy quark velocityv. As an example, we perform the systematic matching of an external current onto
NRQCD at subleading order inv, a calculation relevant for the processe1e2→hadrons near threshold.
Consistent velocity power counting in dimensional regularization is achieved by including two distinct gluon
fields, one corresponding to gluon radiation and one corresponding to an instantaneous potential. In this
scheme power counting is manifest in any gauge, and also holds for nongauge interactions. The matching
conditions for an external vector current in NRQCD are calculated toO(g2v2) and the cancellation of infrared
divergences in the matching conditions is shown to require both gluon fields. Some subtleties arising in the
matching conditions at subleading order are addressed.
@S0556-2821~97!01023-0#

PACS number~s!: 13.20.He, 12.38.Bx, 13.20.Fc, 13.30.Ce
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I. INTRODUCTION

Nonrelativistic QCD~NRQCD! @1# is a powerful tool for
analyzing the dynamics of systems with two or more hea
quarks at momentum transfers much less than their m
Such systems are more complicated than single-heavy-q
systems described by the heavy quark effective the
~HQET! @2# because the quarks scatter via the QCD pot
tial. This introduces infrared divergences in heavy qu
scattering near threshold in HQET which must be regula
by resumming an infinite number of insertions of the kine
energy operator. Since this operator is subleading in 1/mQ ,
this violates HQET power counting. This kinematic regim
of QCD is of interest for a number of physical system
including quarkonium,e1e2→hadrons near threshold an
nonrelativistic QCD sum rules@3#. Similar techniques are
also of interest for other nonrelativistic systems, such as p
itronium @4# and low-energy nucleon-nucleon scattering@5#.

A concrete example where HQET power counting fails

provided by an external current in QCD coupled toq̄Gq,
where G is some Dirac matrix. In processes with a sing
incoming and outgoing heavy quark~such as semileptonic
b→c decay! there is no potential scattering and HQET is t
appropriate low-energy theory. Loop graphs such as Fig.~a!
are well defined in HQET, and the matching conditions
this current in HQET are currently known toO(as,1/mQ

2 )
@6#. On the other hand, the one-loop correction to qua
antiquark production by the same current near threshold
not be correctly described in HQET; the one-loop graph
Fig. 1~b! is infinite when the four-velocities of the quarks a
the same, and gives rise to the well-known infinite comp
anomalous dimension for the current@7#. The appropriate
low-energy theory for the second process is NRQCD, wh
treats potential scattering near threshold properly.
570556-2821/97/57~1!/413~11!/$10.00
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In this paper we consider the general problem of match
an external fermion-antifermion production current in a no
relativistic theory. We pay particular attention to pow
counting in the NRQCD expansion parameterv, the relative
three-velocity of the heavy quarks. Power counting
NRQCD is less transparent than in HQET, for several r
sons. First, sincev is not a parameter in the Lagrangia
power counting is not manifest in the NRQCD Lagrangia
although there are simple rules for determining thev scaling
of an operator@8#. Second, the power counting for on-she
gluons differs from that of virtual gluons contributing to po
tential scattering@9–11# and in order to have simplev count-
ing this distinction must be implemented at the level of t
Lagrangian. Also, in order to retain simplev counting be-
yond tree level the theory must be regulated with a ma
independent regulator such as dimensional regularization
stead of the usual momentum cutoff~otherwise divergent
loop integrals change the power counting of Feynman gra
in the effective theory!.

The paper is organized as follows. In Sec. II we discu
velocity power counting in NRQCD, and the relation b
tween the results of Refs.@10,11#. In order to maintain mani-
fest v power counting in dimensionally regulated NRQC

FIG. 1. Two of the one-loop contributions to the matching of
external current in HQET.
413 © 1997 The American Physical Society
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414 57MICHAEL LUKE AND MARTIN J. SAVAGE
we introduce two sets of gluon fields, corresponding
propagating gluons and an instantaneous potential. In Se
we discuss the matching of an external current in nonrela
istic Yukawa theory~NRY!, and show that the dependen
on the infrared regulator vanishes in the matching when b
gluon fields are included in the low-energy theory. We co
sider this theory both because it is simpler than QCD, as w
as to stress that manifest velocity power counting does
depend on working in any particular gauge, such as Coulo
gauge. In Sec. IV we match an external current in NRQ
to O(g2v2), and explicitly show that the low-energy theo
reproduces the nonanalytic behavior of QCD to this ord
Finally, in Sec. V we present our conclusions.

II. VELOCITY POWER COUNTING

In NRQCD, the power counting of terms in the Lagran
ian is different from HQET, allowing potential scatterin
near threshold to be correctly described. Operators are c
sified according to how they scale with the three-velocityv
instead of 1/mQ @8#. Since the kinetic energy of a nonrelativ
istic state is proportional tov2 while the momentum is pro
portional tov, space and time derivatives scale differen
with v, and power counting is not manifest in the NRQC
Lagrangian:
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L5ch
†S iD 01

1

2mQ
D2Dch2

1

4
GmnaGmna1Lgf1 . . . .

~2.1!

Nonrelativistic fields are distinguished here from fields in t
full theory by the subscripth. Lgf is the gauge-fixing term,
Dm5]m1 igsAm is the gauge-covariant derivativ
(Am[Am

a Ta) and the dots denote higher dimension operat
whose matrix elements are suppressed by powers ofv.

In Ref. @10# a rescaling of the fields and coordinates w
introduced to make thev counting of operators manifest a
the level of the Lagrangian. The NRQCD Lagrangian w
written in terms of new coordinatesX andT and new fields
Ch andA, where

x5lxX, t5l tT, ch5lQCh ,
~2.2!

A05lA0A0, Ai5lAAi ,

and where lx51/mQv, l t51/mQv2, lQ5lx
23/2, and

lA5lA05(mQlx
3)21/2. In this form thev scaling of opera-

tors is manifest in the Lagrangian. In the Lorentz gauge,
LR5Ch
†S i ]02

g

Av
A0D Ch2

1

2
Ch

†~ i“2gAvA!2Ch2
1

4
~] iAj

a2] jAi
a2gAv f abcAi

bAj
c!2

1
1

2
~] iA0

a2v]0Ai
a2gAv f abcAi

bA0
c!22

1

2a
~v]0A0

a1] iAi
a!2

5Ch
†S i ]01

“

2

2
2

g

Av
A0D Ch2

1

4
~] iAj

a2] jAi
a!21

1

2
~] iA0

a!22
1

2a
~] iAi

a!21O~v,gAv !. ~2.3!
f the

of
te
Of course, there is no physics in a simple rescaling. Ho
ever, in order to have an effective theory in which thev
power counting is manifest, the additional prescription t
terms which are subleading inv be treated as operator inse
tions must be added~otherwise, loop graphs evaluated
dimensional regularization will mix powers ofv). As was
noted in@10#, once this prescription is added, the rescaling
Eq. ~2.3! misses important physics. While it provides th
correct description of virtual gluon exchange correspond
to an instantaneous potential, it fails to correctly descr
on-shell gluons. The problem is that the pole in the full glu
propagator occurs atk0

25k2, or, in terms of rescaled vari
ables,v2K0

25K2. Unless the time derivative in the gluo
kinetic term is treated exactly instead of as an insert
~which would violate manifestv counting!, amplitudes in the
effective theory do not have the correct branch cut co
sponding to physical gluon propagation, so the effect
theory cannot describe on-shell gluons.

In Ref. @11# it was demonstrated that this problem
avoided by a further rescaling~in Coulomb gauge! of the
-

t

g
e

n

-
e

space coordinates of only the transverse components o
gauge fields. In the language of Ref.@10#,1 this corresponds
to the rescaling

x5l tY, t5l tT, Ai5l t
21Ãi . ~2.4!

The kinetic term for theÃi ’s is canonically normalized,

Lkin52E d3Y dT F1

4
~] iÃj

a2] jÃi
a2g fabcÃi

bÃj
c!2

1
1

2
~]0Ãj

a!2G , ~2.5!

1The Lagrangian in@11# was written as an expansion in powers
1/c instead ofv; however, the two descriptions are equivalent. No
that asc→`, as5g2/4pc→0, whereas asv→0, as remains con-
stant, so factors ofas scale differently with 1/c than withv.
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57 415POWER COUNTING IN DIMENSIONALLY REGULARIZED . . .
while the transverse gluon-quark interaction may be
panded in terms of multipoles2

Lint52
i

2
gvCh

†~X,T!“J iCh~X,T!Ãi~vX,T!

52
i

2
gvCh

†~X,T!“J iCh~X,T!

3@11vX•“1 . . . #Ãi~0,T!. ~2.6!

Note that three-momentum is not conserved at the multip
interaction vertex, since the theory breaks translational
variance, although energy is conserved. Once the multip
expansion is performed, loop integrals in dimensional re
larization do not change thev scaling of a graph determine
by the vertices.

There is, however, a subtlety arising from the multipo
expansion. Since the three-momentum is not conserved a
vertices, transverse gluons cannot alter the three-momen
the heavy quarks. Potential scattering via transverse g
exchange therefore does not occur in the low energy the
Since the amplitude for potential scattering is not analytic
the external momenta, it cannot be reproduced in NRQ
by the addition of local operators. Both potential scatter
and real gluon emission are long-distance effects, so in o
to correctly describe the infrared physics of QCD in the no
relativistic limit the instantaneous potential due to transve
gluon exchange must be added to the effective theory. T
may either be done by explicitly including spatially nonloc
operators in the nonrelativistic theory~the need for which
was discussed in@11#!, or by reintroducing a second gluo
field which couples according to Eq.~2.3!.

The need for two distinct gluon fields is understood
comparing the energy and momentum of radiated glu
compared to those involved in potential scattering. In
nonrelativistic regime of QCD there are nonanalytic con
butions to scattering amplitudes arising from gluons in t
separate kinematic regions, both with energy of ordermv2.
The gluons with spatial momenta;mv are far off shell and
contribute to potential scattering. In contrast, the gluons w
spatial momenta;mv2 may be on shell, describing real ra
diation, but do not contribute to the scattering of quarks w
three-momenta of ordermv ~in the limit v→0). Each of the
rescalings discussed above treats one of these kinemat
gimes correctly, while missing the physics of the other.
argued in Ref.@10#, it is not possible to describe both re
gimes via any single rescaling. In order to correctly descr
the infrared physics of QCD in the nonrelativistic limit tw
separate gluon fields must be included, which will be
ferred to in this work as ‘‘potential’’ and ‘‘radiation’’ gluons
corresponding to the two different kinematic regimes d
scribed above.

In this approach the heavy quark Lagrangian in NRQC
in Lorentz gauge is therefore, in standard~unrescaled! units,

2At the level of Feynman diagrams, the observation that on-s
gauge fields couple via the multipole expansion was made in
@9#.
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L5ch
†S i ]01

“

2

2m
2gAP

0 2gAR
0~0,t ! Dch2

1

4
~“

iAP
j

2“

jAP
i !21

1

2
~“AP

0 !22
1

4
GR

mnGmnR2
1

2a
~“•AP!2

2
1

2a
~]mAR

m!21O~v,gAv !, ~2.7!

where the subscriptsP andR denote potential and radiatio
gluons,GR

mn is the field strength tensor for radiation gluon
anda is the gauge parameter. For practical calculations,
version of the Lagrangian is much more convenient than
rescaled version. The rescaled theory simply guarantees
loop graphs computed in the unrescaled theory, with the
propriate terms treated as operator insertions, will havev
scaling determined by the vertices.

III. YUKAWA THEORY

Coulomb gauge is usually used in NRQCD because
this gaugeA0 exchange corresponds to an instantaneous
tential. Oncev counting is performed as in the previous se
tion, potential gluon exchange is instantaneous in all gau
for both transverse and longitudinal gluons. More genera
potential scattering proceeds via an instantaneous interac
even in theories with no gauge freedom. To illustrate this
a theory which is simpler than QCD, in this section we co
sider a nonrelativistic Yukawa theory~NRY! of a massive
Fermi fieldc coupled to a massless scalarw.

As a warmup for our calculation of the matching cond
tions for e1e2→hadrons in QCD, we consider here th
matching conditions for an external current coupling
c̄gmc in NRY. In processes with a single incoming an
outgoing fermion there is no potential scattering and the a
log of HQET for a Yukawa interaction is the appropria
effective theory. However, as has been discussed, thev
behavior of potential scattering near threshold cannot be
rectly described in HQET. In NRY, the 1/v behavior is re-
produced by potential scalar exchange. There are also in
red divergences in the full theory due to soft sca
bremsstrahlung, which are reproduced in NRY by radiat
scalars. In this section this is demonstrated explicitly. T
theory is regulated in the ultraviolet by working ind542e
dimensions, and in the infrared by introducing a small sca
massmw . ~The theory could be regulated in the infrared wi
dimensional regularization, as at the end of this section,
this obscures the distinction between the infrared and ul
violet divergences.!

The Lagrangian in the full theory is

L5 c̄ ~ i ]”2m!c1
1

2
]mw]mw2gc̄cw, ~3.1!

while the nonrelativistic Yukawa theory~NRY!, to leading
order in the three-velocityv, is

ll
f.
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LNR5ch
†S i ]01

“

2

2mDch1
1

2
]mwR]mwR2

1

2
~“wP!2

2g1ch
†chwP2g2ch

†chwR~0,t !, ~3.2!

where wP and wR are the potential and radiation scala
respectively. There is a similar kinetic term for the an
fermion field xh . ~Note thatch annihilates incoming par
ticles, whilexh creates outgoing antiparticles!. At tree level
g15g25g.

The external vector current in the full theory,

Jmc̄gmc, ~3.3!

matches onto a number of terms in the low energy theor3

Ji~xh
†sich1ch

†sixh!1J0~ch
†ch1xh

†xh!1O~g2,v2!.

~3.4!

The one-loop matrix element of the current in the f
theory is given by the diagrams in Fig. 2. Performing t
loop integration, the infrared divergent part of the vert
graph is

iAV54ig2m2Ji ū~p1!g iv~p2!

3E ddk

~2p!d

1

~k22mw
2 !~k212p1•k!~k222p2•k!

1•••, ~3.5!

where terms finite asmw→0 have been neglected. Combi
ing denominators in the usual way and performing the lo
and Feynman parameter integrals, the infrared diverg
term is found to be

iAV5
g2

4p2 Ji ūg iv
~12b2!

b
arctanhS 1

b D lnmw1•••,

~3.6!

where

b5A12
4m2

s
~3.7!

3Spinors in the full theory are normalized such th

ū r(p)us(p)52 v̄ r(p)vs(p)5d rs . The two-component spinors ar
uh1

5vh2
5(0

1), uh2
5vh1

5(1
0).

FIG. 2. One-loop diagrams in Yukawa theory.
,

p
nt

is the magnitude of the three-velocity of each fermion, a
s5(p11p2)2 is the invariant mass of the fermion
antifermion pair. The infrared divergent piece of the wa
function renormalization is

iAW5
g2

4p2 Ji ūg iv lnmw1••• ~3.8!

and therefore the infrared divergence in the full theory a
plitude is

iAIR5
g2

4p2 Ji ūg ivF12b2

b
arctanhS 1

b D11G lnmw1•••

5F2
ig2

8pb
1

g2

2p2 1O~b!GJi ūg iv lnmw1•••

5F2
ig2

8pb
1

g2

2p2 1O~b!GJiuh
†sivh lnmw1•••,

~3.9!

whereuh and vh are two-component spinors. Note that E
~3.9! may be written

iAIR5
g2

4p2 Ji ūg iv@r ~w!21# lnmw1•••, ~3.10!

where

w5
11b2

211b2 , ~3.11!

and the functionr (w) is given by

r ~w!5
1

Aw221
ln@w1Aw221#. ~3.12!

This is the analytic continuation to the production regi
~negativew5v•v8,0) of the infrared divergence encoun
tered in HQET~for scalar exchange! @12#. The first term in
Eq. ~3.9! is singular asb→0, corresponding to the infinite
complex anomalous dimension found in HQET at thresho
Since it is imaginary, it does not contribute to the decay r
at O(g2). The second term in Eq.~3.9! cancels in physical
matrix elements with scalar bremsstrahlung.

In order to be able to match onto NRY at one loop, bo
of these divergences must be reproduced in the low ene
theory~the singularities higher order inb will only be repro-
duced when operators higher order in the velocity are
cluded in the effective theory!. Diagrams with both potentia
wP and radiationwR scalars contribute to the amplitude
NRY ~Fig. 3!. The wave function graphs withwP exchange
vanish, while the vertex graph gives

FIG. 3. Infrared divergent one-loop diagrams in NRY. Th
dashed line corresponds to the potential scalar while the solid lin
the radiation scalar.



tion

57 417POWER COUNTING IN DIMENSIONALLY REGULARIZED . . .
iAP
V5 ig2Jiuh

†sivhE ddk

~2p!d

1

~T1k02~k1p!2/2m1 i«!~T2k02~k1p!2/2m1 i«!~k21mw
22 i«!

, ~3.13!

whereT5E2m is the fermion kinetic energy. Closing thek0 integral in the upper half plane, using the leading order equa
of motion T5p2/2m and picking out the corresponding pole leaves a (d21)-dimensional Euclidean integral, which gives

iAP
V5g2mJiuh

†sivh

G@22~d21!/2#

~4p!d21 E
0

1

dx@mw
2~12x!2x2p22 i«#~d21!/22252

ig2

8pb
Jiuh

†sivhlnmw1••• ~3.14!
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and reproduces the first term in Eq.~3.9!. The radiation sca-
lar vertex correction is

iAR
V52 ig2Jiuh

†sivhE ddk

~2p!d

1

~k22mw
21 i«!k0

2 ,

~3.15!

where the 1 i« ’s in the fermion propagators have bee
dropped because these poles do not contribute to phy
matrix elements. One can see by working with off-sh
states that the poles from the fermion propagators only g
contributions proportional to powers ofE2p2/2m which
vanish by the lowest order equations of motion of NR
Using the standard HQET trick of combining denominato
with a dimensionful parameter, the vertex graph become

iAR
V58ig2Jiuh

†sivhE
0

`

l dlE ddk

~2p!d

1

~2k222lk01mw
2 !3

5
g2

4p2 Jiuh
†sivhlnmw1•••. ~3.16!

The wave function graphs give an identical contribution,
the sum of radiation scalar graphs becomes

iAR5
g2

2p2 Jiuh
†sivhlnmw1•••, ~3.17!

reproducing the second term in Eq.~3.9!.
This illustrates that bothwP and wR are required for the

difference between the matrix elements of the external c
rent in the full and effective theories to be infrared finit
Having demonstrated this, it is easier to calculate the ma
ing conditions by regulating both the infrared and ultravio
divergences in the full and effective theories with dime
sional regularization. The matrix element in the full theory
found to be

iAfull5Jiuh
†sivhS 12

g2

4p2F 2

d24
1gE1 ln

m2

4pm2G
1 i

g2

16pbF 2

d24
2 ip1gE1 ln

m2b2

pm2 G D1O~v !.

~3.18!

Regulating the theory in both the ultraviolet and infrar
with dimensional regularization has the advantage that o
loop graphs in the nonrelativistic theory containing radiat
scalars vanish. This is due to a cancellation of infrared
cal
l
e

.
s

o

r-
.
h-
t
-

e-

d

ultraviolet divergences, since one-loop integrals contain
radiation scalars are of the form

E ddk

~2p!d f ~k0 ,k2!, ~3.19!

which has no mass scale and so vanishes in dimensi
regularization. Thus, radiation scalars do not contribute
the one-loop matching conditions. This does not mean, h
ever, that radiation scalars are irrelevant. Integrals of
form ~3.19! are both ultraviolet and infrared divergent, wit
the divergent terms having the same magnitude but oppo
signs. In the difference between the full and effective the
ries the infrared divergences in the two theories cancel, le
ing an ultraviolet divergence in the effective theory. Unlik
the infrared divergence, the ultraviolet divergence is c
celled in the low-energy theory by a local counterterm.

The matrix element of the current in the effective theo
with the tree-level matching is, in dimensional regulariz
tion,

iANRY5Jiuh
†sivhS 11 i

g2

16pbF 2

d24
2 ip1gE1 ln

m2b2

pm2 G D
1O~v !. ~3.20!

The difference between the two matrix elements~3.18! and
~3.20! is analytic in the external momenta, as it must be to
absorbed into the coefficients of local operators in NRY. T
matching condition for the current at one loop at a renorm
ization scalem is therefore

Jmc̄gmc→S 12
g2

4p2F 2

d24
1gE1 ln

m2

4pm2G D
3@Jich

†sixh#01•••

5S 12
g2

4p2 ln
m2

m2D Jich
†sixh , ~3.21!

where we have denoted the bare operator by the subscri
and the effective theory is renormalized using the modifi
minimal subtraction scheme (MS̄).

IV. NRQCD

The matching of an external vector current in NRQC
relevant for e1e2→hadrons near threshold, proceeds
much the same way as in the Yukawa theory of the previ
section. Infrared divergences odd inv are reproduced in the
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nonrelativistic theory by potential gluon exchange, while
frared divergences even inv are reproduced by radiatio
gluon exchange. In this section the matching conditions fo
vector current in NRQCD to orderv2 are calculated.4 The
theory is regulated in both the infrared and ultraviolet
dimensional regularization. Cancellation in the match
conditions of terms which are not analytic in the extern
momenta is rather nontrivial at subleading order and p
vides a nice demonstration of the consistency of this
proach.

When working at subleading orders inv, there are a few
subtleties which must be taken into account. First of
since the three-momentum in the effective theory is

upu5mgb5m
b

A12b2
, ~4.1!

derivatives acting on operators in the nonrelativistic the
give factors ofgb, rather thanb. It is therefore more con-
venient to treatgb as the nonrelativistic expansion param
eter. In the rest of this paper terms of orderupun/mn5gnbn

will be referred to as being of ordervn.
Second, Feynman diagrams in the full theory yieldS ma-

trix elements evaluated between relativistically normaliz
states, satisfyinĝk8uk&52Ek (2p)3d (3)(kW2kW8). However,
in the nonrelativistic theory defined such that the residue
the pole in the propagator isi , Feynman diagrams instea
give S matrix elements between nonrelativistically norm
ized states, defined such that^kW8uk&52m(2p)3d (3)(kW2kW8).
To demonstrate this, consider the two-point functions in
full and effective theories. Expanding the relativistic prop
gator for quarks in terms of the low energy variables giv

i ~p” 1m!

p22m2
5

2i m

~m1T!22p22m2

5
2i m

2mT1T22p2

5
i ~12p2/2m2!

T2p2/2m
1

i

T2p2/2m
F ip4

8m3G
3

i

T2p2/2m
1O~p6!, ~4.2!

where an irrelevant constant term has been dropped.
two-point function is reproduced in the nonrelativistic theo
by a Lagrangian

L85ch8
†S i ]01

“

2

2mDch82ch8
† “

2

2m2S i ]01
“

2

2mDch8

1ch8
† “

4

8m3 ch8 , ~4.3!

4See also Ref.@13#, where the matching of an external electr
magnetic current to nonrelativistic quantum mechanics~regulated in
position space! was discussed.
-

a

g
l
-
-

l,

y

d

f

e
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where the field operatorch8 (ch8
†) annihilates~creates! a non-

relativistic particle. However, the residue of the pole
T2p2/2m in this theory is noti , but i (12p2/2m1•••)
5 im/E. While this is perfectly consistent, it is preferable
remove this extra factor ofm/E. This may be easily done
since the operator

2ch8
† “

2

2m2S i ]01
“

2

2mDch8 ~4.4!

is proportional to the equations of motion, and may theref
be removed by the field redefinition

ch8→ch5S 12
“

2

4m2Dch85AE

m
ch81O~v4!. ~4.5!

However, because of this rescaling, an additional Feynm
rule of AE/m for each external leg must be included
NRQCD, when evaluating matrix elements between rela
istically normalized states. If this term is omitted, Feynm
diagrams in NRQCD correspond to matrix elements betw
nonrelativistically normalized states.@A more careful analy-
sis using the Lehmann-Symanzik-Zimmermann~LSZ! reduc-
tion formula in the nonrelativistic theory instead of rescali
arguments reproduces this result.# In the rest of the discus
sion thech fields will be used, and matching conditions a
calculated using nonrelativistically normalized states in
full and effective theories~this is the origin of the factors o
Am/E in the matching conditions presented in@14#!.

The kinetic term for the nonrelativistic fields therefo
takes the usual form

Lh5ch
†S i ]01

“

2

2mDch1xh
†S i ]02

“

2

2mDxh

1
1

8m3 ~ch
†
“

4ch2xh
†
“

4xh!1O~v4!. ~4.6!

The low energy theory contains both potential (AP
m[AP

maTa)
and radiation (AR

m[AR
maTa) gluons. The kinetic term for the

gauge fields is, including the gauge-fixing terms,

Lg52
1

4
~“

iAP
j 2“

jAP
i !21

1

2
~“AP

0 !22
1

2a
~“•AP!2

2
1

4
GR

mnGmnR2
1

2a
~] iAR

i !21O~gAv !, ~4.7!

where Coulomb gauge corresponds to the limita→0. The
O(gAv) terms correspond to the triple-potential gluon vert
and will not be required for the one-loop matching we co
sider in this section. Also note that in Coulomb gauge th
is no O(v2) correction to theAP

0 propagator. In Lorentz
gauge, the gauge-fixing term for the radiation fields is
stead2(1/2a)(]mAR

m)2, and there are additional terms bilin
ear in theAP’s suppressed by powers ofv coming from the
expansion of the gauge-fixing term.
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Working in the center of mass framep152p2[p, and
using the relation~easily verified with on-shell bispinors!

ū~p1!g iv~p2!5uh
†S 11

p2

2m2D sih2
1

2m2 h†p•spivh

1O~v4!

5
E

m
uh

†S si2
1

2m2 p•spi D vh1O~v4!,

~4.8!

the tree-level matching conditions for an external vector c
rent J(x) are found to be

Jmc̄gmc→c1O11c2O21c3O31 . . . 1O~v4!,

c15c2511O~g2!,

c35O~g2!, ~4.9!

where

O15Jich
†sixh ,

O25
1

4m2 Ji@ch
†~“

W
•s“

W i1“

Q
•s“

Q i !xh#,

O35
1

2m2 Ji@ch
†si~“

W 21“

Q 2!xh#, ~4.10!

and only the terms contributing to quark-antiquark prod
tion have been included. The operators in Eq.~4.10! are
renormalized in the MS̄.

The AP
0 coupling to heavy fermions, giving the Coulom

potential, isO(v21/2),

LC52g~ch
†AP

0ch1xh
†AP

0xh!1O~g3!. ~4.11!

The leading corrections to this are the Darwin and spin-o
couplings, arising atO(v3/2),

FIG. 4. One-loop contributions to quark-antiquark production
QCD.
r-

-

it

LD,SO5
g

8m2
~ch

†Tach1xh
†Taxh!“2AP

0a

1 i
g

4m2
e i jk~ch

†Tasi
“

jch1xh
†Tasi

“

jxh!“kAP
0a

1O~g3!. ~4.12!

Transverse potential gluons couple through thep•A and
Fermi ~chromomagnetic dipole moment! terms atO(v1/2),

Lp•A,F5
g

2m
@ch

†~AP•“1“•AP!ch

2xh
†~AP•“1“•AP!xh#

2
g

2m
@ch

†s•~“3AP!ch2xh
†s•~“3AP!xh#

1O~g3! ~4.13!

and so transverse gluon exchange and the leading relativ
corrections to Coulomb exchange both contribute to poten
scattering atO(g2v), as expected. This is also the same
der as the correction to Coulomb scattering due to the“

4

correction to the fermion legs. This agrees with the pow
counting of Ref.@8# in which the matrix element of each o
these terms is given asO(v2), since in quarkoniumv;g2.
Note also that the Fermi, Darwin, spin-orbit and relativis
kinematic corrections in the previous equations are only
leading pieces of the usual form of these terms@1#,

FIG. 5. One-loop contributions to quark-antiquark production
NRQCD. The dashed line corresponds to a potentialA0 gluon, the
dashed gluon line to a potentialAi gluon. The shaded circles rep
resent~b! the p•A vertex, ~c! the Fermi vertex,~d! the Darwin
vertex, ~e! the relativistic kinematic correction to the fermion le
and ~f! O2. Implicit in both ~d! and ~e! are graphs with the sam
operator insertion on the antiquark line. The wave function gra
vanish.
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dLbilinear5
1

8m3
@ch

†~D2!2ch2xh
†~D2!2xh#1

1

8m2
@ch

†~D•gE2gE•D!ch1xh
†~D•gE2gE•D!xh#1

1

8m2
@ch

†~ iD3gE

2gE3 iD!•sch1xh
†~ iD3gE2gE3 iD!•sxh#1

1

2m
@ch

†~gB•s!ch2xh
†~gB•s!xh#1O~g3!, ~4.14!

since covariant derivatives andE both consist of two terms of differing orders inv.
Since radiation gluons do not contribute to one-loop graphs, as was discussed in the previous section, their coupling

presented here.
Using the relations~4.8! and

ū~p1!v~p2!52
1

m
uh

† p•svh1O~p3! ~4.15!

~still working in the center of mass frame!, the amplitude for quark-antiquark production in QCD from the diagrams in Fi
may be expanded in powers ofp/m:

iAQCD5uh
†sivhS 12

2g2

3p2D2
1

2m2 uh
†p•spivhS 12

g2

3p2D1
g2

12p2 uh
†sivhH m

upuFp21 ipS gE1
2

d24
1 ln

p2

pm2D G
1

3upu
2m Fp21 ipS gE221

2

d24
1 ln

p2

pm2D G1
p2

3m2S 2

3
28gE2

16

d24
28ln

m2

4pm2D J
1

g2

12p2

uh
†p•spivh

2m2 H m

upuF2p22 ipS gE221
2

d24
1 ln

p2

pm2D G J 1O~v3! ~4.16!

~where an overall factor ofE/m has been divided out, to convert to nonrelativistically normalized states!. The amplitude has
the expected 1/v singularity from Coulomb scattering, signalling the failure of perturbation theory close to threshold.

The matching conditions for the current are given by the difference between Eq.~4.16! and the graphs in Fig. 5 compute
on shell in NRQCD@15#. The graph in Fig. 5~a! corresponds to CoulombAP

0 exchange. The only subtlety in evaluating th
graph is that, to the order in which we are working, the on-shell condition in the effective theory is

T5
p2

2m
2

p4

8m3
, ~4.17!

instead of the leading order relationT5p2/2m, and this extra term must be treated correctly as a perturbation so as n
violate power counting. Evaluating the graph in Fig. 5~a! for arbitrary off-shell spinors,

2mT

p2
511d, ~4.18!

gives

~a!5c1

g2md26p2

3•2d23p~d21!/2
uh

†sivhS 2
p2

m2
1 i e D ~d27!/2

d~d25!/2GS 32d

2 D 2F1S d23

2
,
52d

2
,
d21

2
,2

1

d D . ~4.19!

The hypergeometric function2F1(a,b,c;j) may be expanded in powers ofd, giving

~a!5c1

~d23!g2md22

3~d24!2d22p2p~d21!/2
uh

†sivhS 2
p2

m
1 i e D ~d23!/2

GS 32d

2 D F12S 22
d

2D d

1
~d24!G~42d!G@~d23!/2#

G@52d!/2 G dd241O~d2!. ~4.20!

Evaluating this graph with the leading order on-shell condition,d50, theO(dd24) term vanishes as long as Re(d).4. In
order to have this result remain as the leading term in the expansion away fromd50 so that power counting is retained, th
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dd24 term must be evaluated in dimensional regularization as a formal power series,f (d)5 f (0)1d f 8(0)1•••. In this case,
each term in the expansion vanishes for sufficiently large Re(d), so the entire series vanishes in dimensional regularizat
The final result for this graph neard54 is, therefore,

~a!5c1

g2

12p2 uh
†sivh

m

upuFp21 ipS gE1
2

d24
1 ln

p2

pm2
1 id D 1O~d2!G , ~4.21!

which, for d52p2/4m2, gives

~a!5c1

g2

12p2 uh
†sivhH m

upuFp21 ipS gE1
2

d24
1 ln

p2

pm2D G2
ip

4

upu
m J . ~4.22!

This reproduces theO(1/v) term in the full amplitude.
As discussed above, there are no graphs atO(g2v2n) in NRQCD from radiation gluon loops. AtO(g2v) there are

contributions from the leading relativistic corrections to Coulomb scattering. In addition, since Coulomb exchange s
v21, the dressing ofO2 with a singleAP

0 exchange also contributes atO(g2v). AP
i exchange contributes both via thep•A

coupling @Fig. 5~b!#

~b!5c1

g2

12p2 uh
†sivh

upu
m Fp21 ipS gE211

2

d24
1 ln

p2

pm2D G ~4.23!

and the Fermi coupling

~c!5c1

g2

12p2S uh
†sivh

upu
m

1
m

upu
uh

†p•spivh

m2 D S 2
ip

2 D . ~4.24!

Coulomb exchange is corrected by the Darwin vertex,

~d!5c1

g2

12p2 uh
†sivh

upu
m

~2 ip!, ~4.25!

while the spin-orbit coupling does not contribute. The relativistic corrections to the quark and antiquark propagators

~e!5c1

g2

12p2 uh
†sivh

upu
2mFp21 ipS gE1

1

2
1

2

d24
1 ln

p2

pm2D G , ~4.26!

and finally, the one-loop correction toO2 in Fig. 5~f! gives

~ f !52c2

g2

12p2

uh
†p•spivh

m2

m

2upuFp21 ipS gE231
2

d24
1 ln

p2

pm2D G2c2

g2

12p2 uh
†sivh

upu
m S ip

2 D . ~4.27!

Combining these results gives

iANRQCD5c1uh
†sivh2

c2

2m2 uh
†p•spivh1

g2

12p2 uh
†sivhS c1

m

upuFp21 ipS gE1
2

d24
1 ln

p2

pm2D G
1

3upu
2m H c1Fp21 ipS gE2

5

3
1

2

d24
1 ln

p2

pm2D G2
ip

3
c2J D 1

g2

12p2

uh
†p•spivh

2m2

3S m

upu H 2c2Fp21 ipS gE231
2

d24
1 ln

p2

pm2D G2 ipc1J D . ~4.28!

As required, all the nonanalytic dependence on the external momentum cancels in the matching. This result is al
independent.



r-

re
a

er
ol

tic
tu
ia
in

na
f

ns

e

r
re

em
m

c
a

av

nal
is
g
ing

hs
ut-
on-
ro-
y.
e to
rib-
ns.
en
elds
d

n-
l of
ef.

y
uge

on

ve
ere
ere
the
an
to

ny
am
ul
ral
and
o.
p-

he
or

422 57MICHAEL LUKE AND MARTIN J. SAVAGE
Comparing Eqs.~4.16! and ~4.28! gives the coefficients
c12c3 ~regulating the low-energy theory as usual in MS)̄ to
O(g2):

c1512
8as

3p
1O~as

2!,

c2512
4as

3p
1O~as

2!,

c352
as

9pS 2

3
28ln

m2

m2D1O~as
2!. ~4.29!

The result forc1 reproduces the familiar short-distance co
rection toe1e2→q q̄ near threshold@16#, whereasc2 andc3
generalize this toO(v2). Note that the barec1 is finite while
the barec3 is divergent. This reflects the fact that there a
no infrared or ultraviolet divergences in the amplitude
O(v0) since the quarks are in a color singlet state, and th
fore cannot radiate a gluon at leading order in the multip
expansion.

The major result of this section is that the nonanaly
dependence on the external momenta in the QCD ampli
is exactly reproduced in NRQCD. This provides a nontriv
check of the consistency of this approach beyond lead
order. However, only for values of the coupling and exter
momenta such thatas!v!1 does the tree-level matching o
O2 andO3 dominate the two-loop matching ofO1. For scat-
tering states closer to threshold~as well as for bound states!
where v&as , ladder graphs containing potential gluo
must be summed to all orders via the Schro¨dinger equation.
In this case, graphs containing a single insertion of the tr
level matching ofO2, the two-loop matching ofO2 and the
tree-level matching ofO1 combined with a single highe
order potential contribution are equally important. In this
gion, the one-loop matching toO2 andO3 that are presented
here are the same order as the three loop matching toO1.

V. CONCLUSIONS

In this paper we have presented a power counting sch
for nonrelativistic effective theories that allows for a syste
atic calculation of subleading effects. A systematicv count-
ing scheme simplifies the calculation of relativistic corre
tions to QCD processes such as quarkonium production
decay. As it is usually presented, NRQCD does not h
ys
t
e-
e

de
l
g
l

e-

-

e
-

-
nd
e

manifestv power counting in the Lagrangian, nor isv power
counting preserved by loop graphs either in dimensio
regularization or with a momentum cutoff. While there
nothing in principle wrong with this, it makes calculatin
matching conditions somewhat awkward, since the match
conditions for any given operator will change byO(1) when
higher order operators are included in the Lagrangian.

Velocity power counting is only preserved by loop grap
in dimensionally regulated NRQCD when gluons contrib
ing to potential scattering are treated separately from
shell gluons. This was accomplished in this paper by int
ducing two distinct gluon fields in the effective theor
Potential gluons propagate instantaneously and give ris
the QCD potential, whereas radiation gluons do not cont
ute to potential scattering, but correspond to on-shell gluo
The power counting is manifest in the Lagrangian wh
space, time and the fields are rescaled for the potential fi
as discussed in Ref.@10# and for radiation fields as discusse
in Ref. @11#. As shown in Ref.@11#, under this rescaling
radiation fields couple to fermions via the multipole expa
sion. Separating these gluon modes realizes at the leve
the Lagrangian the separation advocated for NRQED in R
@9#. Under this rescalingv power counting is manifest in an
gauge, not just Coulomb gauge, and also holds for nonga
interactions.

The infrared divergences arising in fermion-antifermi
production in Yukawa theory at orderv21 and v0 were
shown to be reproduced in the nonrelativistic effecti
theory only when both potential and radiation scalars w
included, and the matching conditions at that order w
shown to be analytic in the external momentum. Finally,
matching conditions for quark-antiquark production by
external vector current were computed in NRQCD
O(g2v2).
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