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Two loops calculation in chiral perturbation theory and the unitarization program
of current algebra
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In this paper we compare the two loop chiral perturbation theory calculation of pion-pion scattering with the
unitarity second-order correction to the current algebra soft-pion theorem. It is shown that both methods lead
to the same analytic structure for the scattering amplit{§6556-282198)06105-0

PACS numbgs): 12.39.Fe, 11.30.Rd, 13.75.Lb

I. INTRODUCTION tions (QU2) to the referred amplitudg9].
A ChPT calculation of pion-pion scattering to one loop
In the early 1960s, many results for low-energy mesorwas performed in Refl3] and, only recently, a two loops

physics were derived from the assumptions of a local chirafalculation appeared in the literatdd®]. Our aim is to com-
SU(2)x SU(2) algebra of vector and axial vector current den-pare UPCA and ChPT calculations. In a previous paper, we
sities together with the partial conservation of axial vectorshowed that one loop ChPT is equivalent to QWland in
current (PCAC) hypothesis relating the derivative of the the present paper, we will compare the QU2 amplitude with
axial vector current to the pion field. By itself, the PCAC the ChPT Lagrangian the two loops calculation performed in
relation cannot help one to extend the applicability of theRRef-[10]- We conclude that, as conjectured by one ofSis

current algebra method to the energy corresponding t5he two app_roaches are equivalent. In Sec. I.I we wil reca_lll

meson-meson resonances. Nevertheless, a method was EH? comparison at the one loop level, and in Sec. 1l this
. . . comparison is extended to the two loops case. In Sec. IV we

vented to obtain results for a process in which mesons aré .

. . ; ) present the conclusions.

not “soft particles.” We are referring to the hard meson

methods of current algebfa]. Even ignoring the underlying

theory, chiral current algebra implies a set of Ward identities  1l. FIRST-ORDER-CORRECTED UPCA AMPLITUDE

and the method consists in solving the system of Ward iden- AND ONE LOOP ChPT

tities under the general principles of analyticity, crossing,

and elastic unitarity. . L o ) .
. - . ing point in our derivation was an exact hard-pion expression
In 1979, Weinberg suggested that it is possible to summag, "o ¢orrelation function of four currents, with the quan-

rizg the_se previous results in a phen_omenolo.gical Lagran_giafmm numbers of the pion, in terms of three- and two-point
which incorporates all the constraints coming from chiral¢,nctions. From this expression, by using vertex and propa-

symmetry of the underlying theoif?]. In & set of very im-  gator estimates, we could reobtain the so-called soft-pion
portant and fundamental papers, Gasser and Leutwyler dWeinberg amplitude: namely,

veloped chiral perturbation theof€hPT), which allows one
to compute many different Green functions involving low-

Let us remember the main points of the UPCA. The start-

energy piong3]. One of the main obstacles for applications 1
of ChPT to high energies lies in the issue of unitarity. Sev- AA(s,t,u)= gz(s— m?). (1)
eral methods were proposed to extend the range of energies g

where ChPT could be applied. These methods include the
Padeexpansion4], the inverse amplitude methd8], and  The remainder of the amplitude reflects the difference be-
the introduction of fields describing resonan¢éb tween soft- and hard-meson results. In the UPCA one esti-

Let us remember, however, that, in order to treat the pionmates the behavior of form factors and propagators at low
pion scattering amplitude obtained by the hard mesorgnergies and assumes that, for instance, for small values of
method based on the Ward identity technique, one of us hats argument, the scalar pion form factey is of the same
introduced the constraints of elastic unitarity for partialorder of magnitude as current algebra amplitudes near
waves[7]. We will call this approach thenitarization pro-  threshold. This can be obtained by setting, fo=m?,
gram of current algebrgUPCA). It was applied to obtain F,(x):1+ff1)(x)+0(ez) for 1=0 and 2, where the super-
first-order correctiongQUY) to the soft-pionm7 Weinberg  script (1) denotes the ordes=m?/M?2, M being of order of
amplitude[8], as well as to calculate second-order correc-magnitude of vector meson masses.

To construct a unitarized amplitude, we observed that cur-
rent algebra gives real partial waves. The unitarization

*Email address: Borges@vax.fis.uerj.br method must provide an imaginary part to the corrected par-
"Email address: Soares@vax.fis.uerj.br tial wave. Thus, at the first order of the calculation, by the
*Email address: Tonasse@vax.fis.uerj.br optical theorem, one must have
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Considering the known imaginary part of each function
Im t(1)(3)_ U(S)t (s)?, entering into the amplitude, the method consists in obtaining
their real parts by the dispersion relation technique. To con-
wheret% is the soft-pion/ partial wave, isospin, Wein- ~ Verge, dispersion integrals need su_btraction_ _Which are
berg amphtude obtained from E€t) and model-free parameters. They can be fixed by fitting experi-

mental data.
In this way, the first-order-corrected amplitude QU1, de-
s—4m rived in the context of the UPCA7], can be written in the
a(s)= "\ s following form:

In the program, we work with exact total amplitude ex- g 2y i (1) 1 2 (1)
s,t,u 2s—m9) Dy (s) —3(2m —s)D5 (s
pression which follows from the Ward identities, and we use Fo QUl( )= ) (8)=3( )P37(9)
the implications of elastic unitarity for form factors and 1 M2 Tl o2+ (1)
propagators in a peculiar way. For instance, from the rela- +3861(s—2M9) " +[3(2m =)D (1) + (s
2(;rr115e};al|d for the scalar form factor and scalar propagator: —u)CID (1) — 2 &,(t—2M2)2+ (tsu)],
with

Im Fy(s)= 35— U(S)T*(S)F,(s) and DG (x)=(2x=mA)[g(x) + ],

1 ®E(x) = (2mP=x)[g(X) + e, ],
Im A,(s) = 25— (s) )Fi(9)]?2, 1=0 and 2, (2
P (x) = 3(x—4m?)g(x) — §[ 2xa —4mPg(0)],

we obtain, within the first order of the approximation,
where

1
Im f<1>(s)— o(s)t 2(s) and |m§<1>(s)— —a(s), o (X)
32m2g(s)=(s— 4m2) X——————
CA - o 4m ¢ (X—4m?)(x—s)
wheretgyy is the current algebra isospin zefwave mr

amplitude, 3 o(s)—

_U(S)an'(S)-i- 1 3

too(s)——lz—(Zs m?). On the other hand, the one loop elastic pion scattering
m obtained from the ChPT Lagrangi@®8] is
AL (s,t,u)=2(s?—m*)J(s)+ H{[t(t—u) — 2mPt+4mPu—2m*]J(t) + (t—u)} +[2(/1— 43 (s— 2mP)?
+(/2—5/6)(s2+(t—u)2)+ 12m?s(/ 43— 1) — 3(/ 3+ 4/ 4~ 5)m*]/19672. (4)
|

We can identify the functiod(x) with 2[g(x)—g(0)], In Sec. Ill, we will compare the second-order-corrected

and we have verified that the polynomial coefficients of thesd)PCA amplitude, QU2, with the two loops calculatift0].
functions are the same. We then conclude that the abovE0 do this, we will need a one loop partial wave correspond-
amplitude has the same analytical structure as QU1. EadRd to the ChPT amplitude given above. For this, one ex-
approach has its free parameters: the model-free parametg¥dnds the combinations with definite isospin in shehannel

of QUL are¢’'s and &’ s linear combinations, and the free into partial waves:

parameters of ChPT arg’s linear combinations. In the

UPCA the free parameters are subtraction constants, inherent (1)

to the dispersion relation technique, and in ChPT they come Ti(s,t)= 32772 (27+1)P (codt,i'(s),
from tadpole graphs and tree graphs of ordep®( From

this comparison we showed, in a recent letter, that one-loop

ChPT amplitude can fit experiment&land P waves up to =01, and 2.
the resonance region by adjusting only two parameters,

namely71 and72 [11]. Using Eq.(4), the resulting one loo-wave amplitude is
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— m*/s> 13 L?(s) s 1 1 mé\  L(s)
(D/ay— 2\2 il I SEev'S D SN B =
t77(s) ] ) J(s)+‘ 3 ( 3 165n12 )(s—4m2)2+<288 185 m +45m4 )0(3_4m2)
s—4m?
_ 3 22 _ 6 R, Y 2
864(5—4m2)(s +375’m?— 14%nf' + 120m°) + 288 [(2/5,—2/1—1)s+8m~] e
the isospinl =0 one loopS wave is
1 m* 25 L?(s) 7 L(s) [11— 7_—
() =— 227 a2 2y 28 | 0 2 2 BninlyZ Ny PV
0(s) 2FW(ZS m?)2J(s)+ = 2| 8(5 g m )(s—4m2) (144 sm2 ) - +(144/1+72/2 96)5

S AT n? 4( S/ 1+ 1/,
“l gt gl 432S * A T AT

and the isospin=2 one loopS wave is
1 m* m?\ L2%(s) 11 1 L(s) [1— 1_—
_ | | g2
Fiwz[ 16(S+ 3)(3_4mz) (2885 S+ )0' (72/l gt 192)
1 27 1 17 A
1—8,/14'5/2—1—6//34'2/4—5 m. (5)

L

1 _
tglz)zﬁ(Zmz—s)zJ(s)ﬂL

m

1 7 1o s
R -

In these expressions we have included the contributions frorand the hard meson technique implies that the amplitude is

J(4m?), which is lacking in the expressions of partial waves Written in terms of form factors and propagators. We stress

given in Sec. 2 of Ref.11], and we have corrected an overall that the UPCA is based on thmplications of elastic unitar-
sign. ity relations for form factors and propagators, and not for

partial waves themselves

The consequences of using Ef), for instance, for scalar
form factors and propagators, to the second order of the ap-
proximation, are

We have shown that the first-order correction to the soft-
pion amplitude(QU1) is equivalent to one-loop ChPT scat-
tering amplitude and, in addition, have given the tools for
constructing the next order unitarity correctiof@@U2) [9].
Formula(3.10 of Ref.[9] can be written as

IIl. SECOND-ORDER-CORRECTED UPCA AMPLITUDE
AND TWO LOOPS ChPT

fE”(s)=%a<s)[Retfl>(s>+t°A<s> Refi(s)],

1
Im 5<2>(s)— 352 Ref{(s),
FWA<QZU2(st u)=3(2s—m?)dP(s)
) ) . ) with I =0 and 2. The vector form factor and vector propaga-
—3(2m? =)D (s)[ 3(2m?— 1) DL(1) tor are obtained in a similar way. The functiods?)(s),
constructed from form factors and propagators, are then dis-

_ (2)
Hs—weT M)+ (touw)] continued on the right-hand cut as follows:

We can relate the above expression with form(8a ob- 1
tained as a consequence of the Goldstone nature of the pion Im®(?(x)= 357 7()2 Ret{Y(x),
[12]: namely, 4

1 for 1=0, 1,and 2,

F w,(s)——tCA(s)cI>|<2>(s) for1=0,2

and Ret® stands for the real parts of the functions in Eq.
(5). Using dispersion relation technique, we obtain

VIR P
and FzWy(s)= zg—@17(s). ®(2(s)=p,(S)Z(S) + () G(S) +1,(S)g(S) + Py (S)

The functionsW,(s) are analytic except for a cut singularity for 1=0,1,and 2. (6)
at s=4m? . Their discontinuities are directly related to the
discontinuities of the function®,(s). The polynomialsp,(s), q,(s), ri(s), and P(s), for each

We would like to emphasize that the general structure o¥alue of total isospint, are given in the Appendix. The func-
the UPCA solution comes from the Ward identity method,tion g(s) is given in Eq.(3), and
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% a(x) Reg(x) _ o(s)—1
327726(s)=(s—4m2)f4m2dxm LS =N
2

a The amplitudeA?), is then written in terms of powers of
F(S)LA(S)+ = 0%(s), P e P

L(s) andL(t), and contains the free parametefsand /,
and the values of the subtraction constarts énd its de-

© a(X) rivatives ats=4m?).
(327%)%Z(s)=(s—4m?) A On the other hand, the ChPT amplitude calculated at the
am*  (x—4m7)(x—s) two-loop level[10] with m_=1 is
1
X[LO) +im]2= S L(S)[L(s) + 7°]. SAR) (s,t,u)=F?(s)+G?(s,t)+G?(s,u),
where with

I e
1085 545 T 275 o

1 ( 503 929 887 140

_ 1
F@(s)= J(s)l +by(4s—3)+b,(s?+4s—4)+ §bg,(ss3— 21s?+48s—32)

3 2 9 2 1 2_
208°— 195+ 2105~ 135 o m’(s—4) | + 35K,(s) (577~ 24)

1 1
+ §b4(16cs3—71s,2+ 113—48)] + 7gKi(s)

+ %K3(s)(352— 17s+9), (78

412 267, 727 1571
o t2+5t+159)—t Saat?— ot oo

+by(2—1)+ = b2(t 4)(t2+5s—5)

— [ 1
(2) =
G®(s,t) J(t)[lem 27 54 216 108 108

1 1
—gbg(t—4)2(3t+23— 8)+ gb4[25(3t—4)(t—4)—32+4Ot2—1113]}

1 3 2 1 2 1 1 2
+3—6K1(t) 174+8s—10t°+ 72 18&——77 (t—4)(3s—8)|+ = Kz(t) 1+4s+ 52" t(3s—8)
1 5
+ §K3(t)(1+3st— s+3t°2—9t)+ §K4(t)(4—23—t). (7b)
|
In this expressiond(s) =2[g(s)—g(0)], and cause they have different origins. These polynomials include

the model-free parameters to be used in order to fit the avail-
able experimental dafd.3].

L2(s
Klz%)z, (1672)2K ,= o2L(s)— 4,
(167%) IV. CONCLUSIONS
1 2 2 Our aim is to compare chiral perturbation thedGhPT)
(16772)2K3=§L3(s)+ gL(s) R calculations with the unitarization program of current algebra

(UPCA). In previous works we have compared one loop
ChPT with the first order corrected by UPCA results for
11 1 1 _ 7%—6 pion-pion[9] and for kaon-pion scatterind.4], and we have
| pKiT gKet == J+s > concluded that they lead the same analytical structure for
ST 16m 192m the amplitudes
The two loops calculation of pion-pion scattering only
Our strategy to compara$), with A&)r was to expand recently appeared in the literatufe0]. However, the tools
them in terms ofL(s) andL(t), and then to confront their for constructing second-order corrections for the soft-pion
coefficients.We have checked that they are the sakivih current algebra result were presented more than ten years ago
respect to the polynomials, we also realize that the structurd®]. In the present paper we compared these results and we
are the same, but clearly the coefficients are different beshowed that, as conjecturg8l], they havethe same analyti-

K4=
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cal structure We will shortly present the tools for construct- 8
ing a next-order UPCA correction to kaon-pion scattering. qi(s)=— ———(6s*— 555+ 64),
ChPT to two loops forK are not yet available, but we 9(s—4)?
expect that they will also be equivalent to the UPCA result.

In fact, the equivalence between the two approaches was
expected. In the hard-meson method one starts from the chi- 92(s) =~ 9(s—4)
ral symmetric Ward identityexactresult for the correlation
function of four currents carrying pion quantum numbers. On 4
the other hand, ChPT describes the low-energy dynamics of  ro(s)= m(Gs— 25),
fields realizing nonlinearly chiral symmetry. Our unitariza-
tion program is based in the principles of analyticity, cross-
ing, and elastic unitarity, which in turn are inherent to a field

(10s*— 525+ 935—72),

4
ri(s)= ———(3s>—13s—6),

theory such as ChPT. 3(s—4)2
In the framework of the generalized chiral perturbation
theory, it was shown how to implement elastic unitarity start-
ing from the one loop partial waves. That procedure leads to ry(s)=— m(3s+ 1).

an equivalentO(p®) ChPT amplitude[12]. However, the

main difference from our unitarization procedure is that it )

uses the consequences of elastic unitarity for the form factors"€ Polynomial part of QU2P,,

and propagatorgather than for the amplitudes themselves
Despite the fact that ChPT is a well-established low- Pi(s)=Ais*+B;s+C, for I=0 and 2,

energy effective theory for meson processes, we have shown 3 )

here that the UPCA is a suitable alternative. One obstacle (S—4)P1=A;8°+B;s°+C;s+Dy,

related to these two approaches is how to fix the free param-

eters which, in principle, are related to the parameters of thaith

fundamental theory. In the ChPT context, we have shown

in Eqg. (6) is written as

— — ) 19 13 15— 11— 21
that the one loop parameter§ and />, can be fixed by A= 2 /o + b
fitting S- andP-wave 7 phase shift§11]. The final expres- 0= 2304 +* 1157 2 1024 " 768 4~ 2096
sion of the pion-pion ChPT amplitude up to two loops dia- 2572 308374
grams has six parameters. However, Bvavave amplitude + 576 er ?q>g(4),

from A picks up an imaginary part fes=4m?, and we
claim that the global fit ofS-, P- and D-wave phase shifts ) 4
will allow one to fix the new free parametelrss). apo_ Lt o BB 7 L

™A= 17551 1155 2 55206 452 30240

APPENDIX i
+ 5 ®1(4),

The polynomials multiplying the functiong(s), G(s),
andZ(s) in Eq. (6) of second-order-corrected UPCA ampli-

tudes are an 1 Z . 7 Z . 11— 1 i 7
7 2_576/1 115{2 3072/3 381(4 576
, (B T 17, 57+5/_ 17 .
TPo(S)=| 751t 3¢ 2t gg) S (gt g7 7 LS T a4
8640 2 2
95, 11 77 457 97 373
~ St Ig 1T 9 2 g7 2 4t 1z v Sl 37 105 59 17x°
mBo=~ 11541 5762 517 % 384 4 48
R _ .
2 _ S 67— N3 (487 — 487 43317
71-pl(s) 4323_4{(6/1 6/2 2)5 (48/1 48/2 + 8640 +7T4(D6(4)_47T4q)6(4)'
—61)s?+ (967, — 96/,— 197)s+ 120},
4I3_17 1 29+35772+331774
1. 1. 17 1 7 1. ™ B1=5¢"1 " 96’2 2608 288 T 30240
2py(s)=| 21+ /2t o= sz—(—/+—/ +—
m p2( ) 36/1 9 2 96 18/1 1{2 4 4 +7T4CI)I(4)_67T4(I),1”(4),
s 5_ 11_ 7 5
—|St=/1+ =/ 53+ =/t 5, — — — — m
144 9 9 8 2 18 o —_ _— 7 _ - — — —
B2~ 57¢1 2882 153 * T334 ¢ 48

4

4320

2
qo(s)=— 9(8—_4(5053—26052+3035—36), + — 7' Dy(4) - 47 Dy(4),

)
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. 11 45 37 137 1— 1 ({ m, 5
7 0_288/1 124 2" 128 T8+t 18 b4:§/2_4ng( 7+1_2>’
A2 i (4)— Aty 4) + BDL4)
- v — 41 T ,
720 0 0 0 N P 145/_ 7
ooty Lo 67 67 53 ““lex| 6! 362 864
T Ci=—5/1+t 52— _
_n__— _— R —
+ 7D (4) — 812D (4) + 247 DY (4), 1672\144" w2073 161 96 2
e —  77° 163r" +15,
2_144(1 18/2 381(3 96/4 720
+ 7D H(4) — 4D Y(4) + 87Dy (4), poot |7 35> 1 1 [257 M.
® 16m2 18138 2 a3t 16721432 1
ap. Lo 1o 157 52m® 253"
1_18/1 82 178" 27 840 _H3I S, 2
, 2073 48"t 962" 6
In order to compare the two approaches we have not in-
cluded the dependence orFi/in the parameterb; . In this
way the quantitied; that we used in Eqg7) stand for where
— S 1 m, 13
= n—|/;+In—],
w2l m 6 Yoot w0t e
by— 87142/ — (I m”+1)
2T T Ol 1T Ll 4 S| N—=+=, m_[ — m,.
1272w © kpy=——In— /2+In—),
967 M 7

b 27‘+17 L (Im”+7)
=2/1+ =/~ n—+5|, . o
$ 272 qer2l 12 and u is the renormalization mass scale.
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