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Vortices and confinement at weak coupling
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Department of Physics, University of Colorado, Boulder, Colorado 80309-390
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We discuss the physical picture of thick vortices as the mechanism responsible for confinement at arbitrarily
weak coupling inSU(2) gauge theory. By introducing appropriate variables on the lattice we distinguish
between thin, thick and ‘‘hybrid’’ vortices, the latter involvingZ(2) monopole loop boundaries. We present
numerical lattice simulation results that demonstrate that the fullSU(2) string tension at weak coupling arises
from the presence of vortices linked to the Wilson loop. Conversely, excluding linked vortices eliminates the
confining potential. The numerical results are stable under an alternate choice of lattice action as well as a
smoothing procedure which removes short distance fluctuations while preserving long distance physics.
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I. INTRODUCTION

Arguments for the presence of spread-out tubes of co
magnetic flux, thick ‘‘vortices,’’ being the essential featu
responsible for maintaining confinement at arbitrarily we
coupling inSU(N) gauge theory were expounded some tim
ago @1–6#. A key idea is that such extended structures c
very little action locally, and thus are not directly suppress
at largeb. By gradual variation of the gauge fields, they c
disorder the vacuum over long scales. The infrared phys
picture is, of course, independent of any ultraviolet cut
details, but, as always with such nonperturbative questio
mathematically precise formulations have been possible o
on the lattice. Thick vortices form closed extended structu
which are topologically characterized, in the continuum e
trapolation, by p1@SU(N)/Z(N)#5Z(N). ‘‘Punctured’’
thick vortices, whose~small! ‘‘hole’’ boundary is a Dirac
monopole current loop, are also possible and survive at la
b @6#. „These Dirac monopoles are also classified by
non-trivial elements ofp1@SU(N)/Z(N)#.… In the SU(N)
lattice gauge theory there also occur ‘‘thin’’ vortex excit
tions of theZ(N) part of the group. These are localized
one lattice spacing thickness, and hence are sensitive to
short distance details such as the precise choice of
plaquette action. Long thin vortices are very efficient at d
ordering the system at strong coupling, but are energetic
heavily suppressed and become irrelevant at largeb.

In this paper we first discuss in detail the various vor
excitations possible in theSU(N) lattice gauge theory~Sec.
II !. We treat explicitly the simplestN52 case since no ad
ditional physical features appear in the generalN extension
which is straightforward. The proper distinction between th
and thick vortices and their interactions seems to have o
sioned some confusion in the literature. A clean separa
can be achieved by an exact rewriting of theSU(2) theory in
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terms ofSU(2)/Z(2);SO(3) andZ(2) variables@3,1#. We
eschew any mathematical derivations that can be extra
from the literature, and give a detailed physical discussion
the various excitations and their interactions.1 In Sec. III we
examine the Wilson loop and its interaction with the diffe
ent types of vortices. In theSU(2) case the fluctuation of the
Wilson loops between positive and negative values issolely
determined by the number~mod 2! of vortices linking with
the loop. Namely, if a particular loop in a given configur
tion is positive/negative, there is an even/odd number of v
tices linking with the loop~including all types of vortices!.
This then allows us to examine the vortex contribution to
string tension numerically~Sec. IV!. The string tension ex-
tracted from the full Wilson loops was compared to the sa
quantity extracted from the expectation of only the sign flu
tuation counting the linking of the vortices. The computati
was first performed with the Wilson action, and then a
with a fixed point action in conjunction with a ‘‘smoothing’
procedure based on the renormalization group. The poin
performing the comparison also under smoothing is t
smoothing removes short distance fluctuations while pres
ing long distance physics. In particular, the string tension
the full Wilson loop remains unchanged under the smooth
procedure. A necessary test then of any claim concerning
long distance physics is that it remain invariant under
smoothing procedure. The numerical results demonstrate
the confining potential arises from the presence of the vo
ces linked to the loop: the full string tension is, remarkab
reproduced from the expectation of the vortex counting si
Conversely, allowing no~mod 2! vortices to link with the
loop eliminates the confining potential. Closely related
sults have been reported in@7#. Our conclusions are pre
sented in Sec. V.

II. VORTICES—THIN, THICK AND HYBRID

For SU(N)/Z(N) gauge fields in the continuum, vortice
are topologically classified byp1@SU(N)/Z(N)#5Z(N).

1This is an extended version of the argument given in@6#.
4054 © 1998 The American Physical Society
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57 4055VORTICES AND CONFINEMENT AT WEAK COUPLING
This means that a vortex nontrivially linked to a Wilson loo
~trace of the parallel transport matrix of the gauge field c
nection!, taken in the fundamental representation of the c
ering groupSU(N), contributes a factorzPZ(N), zÞ1. A
vortex forms a closed 2-dim surface ind54 ~a loop in d
53) so that it links with a Wilson loopC if it pierces once
any surface bounded byC. Topologically, it is also possible
to have gauge field configurations representing ‘‘open’’ v
tices ~Dirac sheets!. The boundary of an open 2-dim vorte
sheet represents a monopole loop~monopole-antimonopole
pair in 3-dim!. These are Dirac monopoles, also classified
the non-trivial elements ofp1@SU(N)/Z(N)# @8#.

Now in the continuum, where the gauge field is an e
ment of the Lie group algebra, there is no local distincti
between the pureSU(N)/Z(N) and SU(N) gauge theories
In the lattice formulation, in terms of group element bo
variables, of course there is a local distinction. The two dif
by the dynamics of the additionalZ(N) degrees of freedom
present in theSU(N) case. Exciting these Z~N! degrees of
freedom on a stack of plaquettes forming a 2-dim closed w
~ a closed loop ind53) gives a ‘‘thin’’ Z(N) vortex. These
are of course the vortices already present in a pureZ(N)
lattice gauge theory~LGT!. They are ‘‘thin’’ because they
necessarily have thickness of one lattice spacing. At smab,
they are very efficient at disordering the vacuum. At largeb,
however, they are heavily suppressed by theSU(N)
plaquette action, and get progressively frozen out asb in-
creases. Correspondingly, the pureZ(N) LGT gets into a
Higgs phase; whereas the distinction between theSU(N)
andSU(N)/Z(N) LGT disappears, as it should, as the co
tinuum limit is approached. Thus it is only thenon-Abelian
dynamics of the lattice analogs of the topologicalZ(N)
5p1@SU(N)/Z(N)# vortices, which can, if at all, affect the
largeb long distance dynamics.

The lattice literature contains many confused or incorr
statements due to failure to properly distinguish between
excitations of theZ(N) part versus the~lattice analogs of
the! topologicalp1@SU(N)/Z(N)#5Z(N) excitations of the
SU(N)/Z(N) part of theSU(N) gauge group, and their re
spective energetics. A formalism that allows one to acco
plish such a separation cleanly introduces sepa
SU(N)/Z(N) and Z(N) variables@3,1#. It is important, of
course, that this is done in a gauge-invariant manner,
gives an exact rewriting of the partition function and all o
servables in terms of the new variables.

From now on we restrict toSU(2), which is the actual
case of our numerical simulations below. The extension
any N is straightforward. Consider then the standardSU(2)
theory partition function on a latticeL,

ZL5E )
b

dUbexpS (
p

btrUpD , ~1!

where, as usual, we wroteUp5)bPpUb for the product of
bond variablesUb around the plaquettep.

We now introduce newZ(2) variablesspP$61% resid-
ing on plaquettes. We writesc[)pPcsp for the product of
the sp’s around the faces of the cubec. We also introduce
the coset bond variablesÛbPSU(2)/Z(2);SO(3). The
configuration space of the theSU(2) bond variables on the
-
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lattice L is split into equivalence classes, each class co
sponding to one coset bond variable configuration$Ûb% on
L. Thus twoSU(2) configurations$Ub% and$Ub8% on L are

representatives of the same coset configuration$Ûb% if and
only if one hasUb85Ubgb , for somegbPZ(2), for every

bondb on L. Now given a coset configuration$Ûb%, pick a
representative$Ub% and lethp[sgnUp . Then the quantity

hc~Û ![)
pPc

hp , ~2!

the product ofhp around the faces of a cubec, depends, as
indicated, only on the coset variables since it is invaria
underUb→Ubgb for gbPZ(2). In other words, it is inde-
pendent of the representative used to compute it.

Now one can show@1,3# that Eq.~1! can be written in the
form

ZL5E )
b

dUb)
p

dsp)
c

d@hcsc#exp~butrUpusp!.

~3!

In Eq. ~3!, and what follows, the ‘‘delta function’’ onZ(2)
simply stands for

d~t![
1

2
@11t#, tPZ~2!, ~4!

so that d(t)51 for t51, d(t)50 for t521. Also,
*dsp(•••)[(sp561(•••) stands for ‘‘integration’’ over

the discreteZ(2) group.
The crucial point is that the integrand in Eq.~3! depends

only on theÛ ’s since it is invariant under the local transfo
mationUb→Ubgb for arbitrarygbPZ(2). In particular, the
action becomes the product of aZ(2) part and anSO(3)
part. TheZ(2) part, which is given simply by the plaquett
variablesp , determines the sign of the action. TheSO(3)
part is non-negative. In this connection note the relat
utrUu25ux1/2(U)u2511x1(U)511x1(Û), where x1/2(U)
and x1(U) denote the fundamental and adjoint represen
tion characters ofSU(2). Thus theU-integration is in fact a
U-integration; i.e., in Eq.~3! one has

)
b

dUb5const3)
b

dÛb , ~5!

wheredÛb is the Haar measure overSO(3).
Similarly, for the expectation of a Wilson loop one find

W@C#5
1

ZL
E )

b
dUbtrU@C#expS (

p
btrUpD ~6!

5
1

ZL
E )

b
dUb)

p
dsp)

c

3d@hcsc#trU@C#hSsSexp~butrUpusp!. ~7!

In Eq. ~7!, U@C#5)bPCUb stands for the product of the
Ub’s around the loopC, and we introduced the notations
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FIG. 1. Thin vortex:~a! d53 or d54 in @123#-section view;~b! d54 in @130#-section 3-dimensional view. Plaquettes protruding
x2-direction carrysp521.
of

th
tte

d

at

he
is
-
in
E

ib
u

t

-

o

.

-

he

d

n

t

of
ture

n
rac

on-
on

- -
hS[ )
pPS

hp , sS[ )
pPS

sp , ~8!

whereS is a surface bounded by the loopC, i.e.,C5]S. It is
easily seen that Eq.~7! does not depend on the choice
surfaceS. Furthermore, the quantity trU@C#hS depends only
on theSO(3) bond variablesÛb , since it is invariant under
Ub→Ubgb , gbPZ(2). TheWilson loop operator is thus
expressed as a product of anSO(3) and aZ(2) factor. Simi-
larly, any other observable, such as a ’t Hooft loop, or
electric and magnetic flux free-energies can be easily wri
in terms of the new variables.

Equations~3! and~7! then reexpress theSU(2) LGT as a
coupled SO(3)-Z(2) theory. This rewriting is exact an
gauge invariant. It is very convenient to evaluate allSO(3)
quantities in terms ofSU(2) representatives,2 as in Eq.~3!,
~7!. At the risk of being repetitive, let us point out again th
once the passage to theSO(3)-Z(2) formalism is made, the
quantityhp5sgnUp for a representative of a$Ûb% configu-
ration has nothing to do with the sign of the action in t
SU(2) formalism ~1!, ~6!. This sign, as already noted,
supplanted by theZ(2) variable sp . The representative
dependenthp’s can appear in physical quantities only
SO(3) representative-independent combinations, as e.g.,
~2!. The resulting expressions~3!, ~7! of the SO(3)-Z(2)
formulation have a physically rather transparent form exh
iting the presence and manner of coupling of the vario
possible topological excitations in the LGT~1!.

Consider a configuration wheresp51 everywhere excep
on a stack of plaquettes forming a loop@Fig. 1~a!# where
sp521. This is aZ(2) vortex in 3 dimensions or a 3
dimensional section of a vortex in 4 dimensions. Ind54
there is an extra dimension to move in, so by translation
the loop a vortex forms a 2-dimensional closed surface@Fig.
1~b!#. The short lines in Fig. 1~b! represent a set of bonds
The plaquette protruding in thex2-direction out of each of

2They can always, of course, also be expressed directly in~a char-
acter expansion in! SO(3) ~integer spin! representations, as indi
cated above for the action plaquette function.
e
n

,

q.

-
s

f

these bonds carriessp521. A 3-dimensional @mnl#
5@123# section gives then Fig. 1~a!. These vortices, gener
ated by the excitations of theZ(2) sp variables, areZ(2)
‘‘thin’’ vortices, alluded to above. Note that, from Eq.~3!,
the action cost for exciting such aZ(2) vortex is directly
proportional to the area of the vortex sheet.

Consider next opening the thin vortex by breaking t
loop of s521 plaquettes in Fig. 1~a! as depicted in Fig.
2~a!. The two cubes at the two ends necessarily satisfysc
521. A cube withsc521 is the site of aZ(2) monopole,
and Fig. 2~a! depicts a monopole-antimonopole pair joine
by an open thin vortex, i.e., a string ofsp521 plaquettes
carrying theZ(2) flux. As just noted, there is a direct actio
cost associated with thiss-string.

Now, because of theZ(2) d-function constraint in the
measure in Eq.~3!, a cube withsc521 must also have
hc521. A cube for whichhc521 is the site of the lattice
analog of ap1@SO(3)#5Z(2) monopole. As pointed ou
above this statement depends only on theSO(3) coset con-
figuration$Ûb% on the lattice, i.e., the presence or absence
such a monopole on a given cube is a gauge-invariant fea
of eachSO(3) configuration. Any one representative$Ub%
of anSO(3) $Ûb% configuration with a monopole on a give
cube will necessarily have a string of plaquettes, the Di
string, beginning at the cube in question, on whichhp
521. The string has to end at another monopole cube. C
figurations with monopoles that contribute to the partiti

FIG. 2. (d53): ~a! Z(2) monopole pair~cubes! joined by
s-string ~open thin vortex!; ~b! the complete configuration includ
ing theh-string to form a ‘‘hybrid’’ vortex ~see text!.
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57 4057VORTICES AND CONFINEMENT AT WEAK COUPLING
function then are of the form depicted in Fig. 2~b! in 3 di-
mensions; heavy plaquettes carrysp521, light plaquettes
carryhp521. Note that the location and shape of the stri
~light plaquettes! depends on the choice of representative
can differ for different representatives of the same$Ûb% con-
figuration since it may be moved around at will, as a Dir
string should, by letting Ub→gbUb , gbPZ(2), i.e.,
change of representative. Theh-string is then ‘‘invisible’’ to
the $Ûb% configuration onL, and hence to the measure, a
in particular to the action in Eqs.~3!, ~7!. There is no cost in
action associated with the location of the Dirach-string.

In d54 the monopoles, i.e., the set of cubes on wh
hc521, form closed monopole current loops reflecti
magnetic current conservation. This follows directly fro
the definition of the quantity3 hc , Eq. ~2!. A string then
sweeps out a Dirac sheet bounded by the correspon
monopole loop. So ind54 the configuration in Fig. 2~b!
gives rise to a ‘hybrid’ vortex forming a closed 2
dimensional surface as shown in Fig. 3. Here again,sp
521 on the plaquette protruding in thex2-direction out of
every heavy bond, whereashp521 on the plaquette pro
truding in thex2-direction out of every light bond shown
The plaquettes containing both a light and a heavy bond
their boundary are also shown in the figure. The cube p
truding in thex2-direction out of each of these plaquett
then hassc5hc521. This set of cubes forms the monopo
current loop~cf. footnote 3!. A @123#-section view of Fig. 3
gives then Fig. 2~b!. Such a hybrid vortex may be viewed a
put together by joining an ‘‘open’’p1@SO(3)# vortex
plaquette sheet and an openZ(2) vortex plaquette shee
along their respective monopole loop boundaries. Th
boundaries must coincide, as noted above, because open
tices as in Fig. 2~a! cannot exist due to the constraint in th
measure in Eq.~3!.

3Indeed it follows from Eq.~2! that hc obeys the identity

)
cPh

hc51,

where the product is over all cubesc forming the boundary of the
elementary hypercubeh. Geometrically, this means that the cub
on whichhc521 form closed sets on the dual lattice. Ind54, a
cube is dual to a bond, so the cubes form closed loops of d
bonds.

FIG. 3. Hybrid vortex (d54) in 3-dim @130#-section view.
Plaquettes protruding in the remainingx2-direction out of light
~heavy! bonds carryhp521(sp521); the boundary between th
light and heavy sets is aZ(2) monopole current loop~see text!.
t

c

h

ng

in
-

e
or-

Closed Dirac plaquette sheets form the lattice analogs
p1@SO(3)# vortices ~Fig. 4!, the set of plaquettes withhp
521 being stacked over a closed 2-dimensional surface~a
loop in d53). In the illustration of Fig. 4 each plaquett
carryinghp521 protrudes in thex2-direction out of the set
of bonds shown distributed over a 2-dimensional surfa
placed in a 3-dimensional@013#-section. Again, the precise
location and shape of thishp521 set of plaquettes forming
the Dirac sheet is irrelevant, it being ‘‘invisible’’ in the mea
sure ~3!. What is relevant is only the coset configuratio

$Ûb% describing the vortex; anSU(2) representative$Ub% of
such a coset configuration will then contain somewhere oL
a Dirac sheet, which may be moved around at will by
change of representatives.~Equivalently, the presence of th
vortex can be characterized in terms of theÛb’s only—see
below.! Note that, sinceZ(2) @or generallyZ(N)# flux is
conserved only mod2(modN), this implies that a vortex such
as in Fig. 4 is ‘‘unstable’’ unless it is topologically nontrivia
with respect to the latticeL or an externally introduced
source inL, such as a Wilson loop. Indeed, by a change
representatives, the sheet may always be collapsed to a
annihilating theZ(2) flux, unless there is a topological ob
struction. Thus on a lattice with periodic boundary con
tions, i.e., the topology of the torus, a vortex as in Fig. 4 m
become topologically stable by wrapping completely arou
the lattice in thex3,x0-directions as shown schematically
Fig. 5~a!. Here, short light lines represent a Dirac sheet
hp521 plaquettes, each in a@12#-plane, stacked along th
x3,x0-directions around the periodic lattice. Such a topolo
cally nontrivial closed sheet can be moved or distorted b
change representative, but not removed. Every represent

al

FIG. 4. Thick vortex closed Dirac sheet (d54) in 3-dim @013#-
section view; plaquettes protruding in the remainingx2-direction
carry hp521.

FIG. 5. ~a! Topologically nontrivial vortex sheet~short lines!
winding around periodic lattice~b! Vortex linked with Wilson loop
C; 3-dimensional@130#-section view, withC lying in the @12#-
plane.
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4058 57TAMÁ S G. KOVÁCS AND E. T. TOMBOULIS
of the relevant$Ûb% vortex configuration has then an irre
movable sheet ofhp521 plaquettes signaling the trappe
Z(2) flux of a ~an odd number of! topologically nontrivial
vortex ~vortices!. A characterization directly in terms of th

Ûb’s is given by the quantityhS defined as in Eq.~8! but
with S now any closed topologically nontrivial surface win
ing around the lattice in thex1,x2-directions@dashed line in
Fig. 5~a!#. Then, clearly,hS is only a function of the coset

$Ûb%, andhS(Û)521(11) signifies the presence of an od
~even! number of vortices winding around the lattice in th
x3,x0-directions normal toS. An analogous description ap
plies top1@SO(3)# vortices nontrivially linked with the Wil-
son loop@Fig. 5~b!# discussed below.

As already noted, theZ(2) thin vortices are necessaril
localized in thickness to one lattice spacing, and have a
rect action cost proportional to their area~length in d53)
along whichsp521. Long thin vortices are then heavil
suppressed at largeb as thes Z(2) variables are progres
sively frozen out. Indeed, it can be shown that the probab
of exciting sp521 on a plaquette is exponentially su
pressed with large4 b. Only short thin vortices remain the
with ~exponentially inb) small probability. This probability
can actually depend on the choice of the lattice action.5 This
dependence on the short distance structure is, of course,
cisely a statement of the fact that thin vortices are thin.

In contrast, the~lattice analog of the! p1@SO(3)# vortices
are not necessarily localized, and do not have a direct ac
cost proportional to their sheet area. Indeed, smooth$Ûb%
vortex configurations are easily constructed such that the
cal plaquette action cost can be made arbitrarily small
making the vortex sufficiently spread out@2,3#. Any SU(2)
representative$Ub% of the $Ûb% configuration for such a
spread-out vortex will of course have a Dirac sheet plaqu
set on whichhp521, as discussed above, whilehp51 ev-
erywhere else; but in such a manner that one still
utrUpu.1 everywhere. The exact location of the Dirac sh
is in fact irrelevant since it can be moved by changing
representative, which does not affectutrUpu. The point is, of
course, that the action depends only onutrUpu, i.e., $Ûb%.
These ‘‘thick’’ vortices are thus not directly suppressed
largeb. In fact, long thick vortices winding around the la
tice or a large Wilson loop can exist at arbitrarily weak co
pling by being sufficiently thick in the directions transver
to their ~topologically nontrivially linked! Dirac sheet. The
same holds true for long hybrid vortices with a long thi
vortex section, and a short~say, one plaquette long! thin
vortex section appearing as a localized ‘‘defect’’ incurri
only a local cost in action@3,6#. These long hybrid vortices
may be simply viewed as ‘‘punctured’’ thick vortices, th

4This is proven nonperturbatively by ‘‘chessboard estimates’’@9#.
5Thus the density of the thinZ(2) vortices, and/orZ(2) mono-

poles, may be enhanced or further suppressed by various s
distance modifications of the original lattice~Wilson! action in Eq.
~1!. Common modifications in the literature involve the addition
chemical potentials, the MP and the ‘‘positive plaquette’’ mode
and models introducing newZ(2) degrees of freedom in addition t
the sp’s.
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size of the ‘‘hole,’’ where thesp Z(2) variables are excited
being suppressed, hence small at largeb.

Such very long thick vortices~whole or punctured! can
then have a very disordering long-distance effect at w
coupling as the bond variablesÛb , over sufficiently large
scales, vary smoothly over large parts of theSU(2)/Z(2)
group with very little local action cost. Their presence a
pears in fact to be the necessary condition for confinemen
weak coupling, as we discuss in the next section.

It is also interesting to view thick vortices in th
d-dimensional theory from a (d21)11-dimensional per-
spective by singling out the ‘‘time’’ direction@3#. Thed-dim
gauge theory may be viewed@in Kaluza-Klein~KK ! fashion#
as a (d21)-dim gauge theory coupled to a Higgs field.
thick vortex may then be viewed within a (d21)-dim slice
as a ‘‘monopole’’-‘‘antimonopole’’ pair. Here the ‘‘mono-
pole’’ hastwo units~mod 2! of flux ~and hence twoh-strings
emanating from it!, since it may be considered as put t
gether out of two of ourZ(2)-monopoles and is trivial unde
p1@SO(3)#. Within a given (d21)-dim slice, however, it
may be characterized by using the ‘‘Higgs’’ field of the K
dimensional reduction to define a homotop
p2@SO(3)/U(1)# group. These ‘‘monopoles’’ appear the
as lattice analogs of the ‘t Hooft–Polyakov monopole ind
21) dimensions. In an appropriate gauge these corresp
to the ‘‘monopoles’’ of the Abelian projection. This is, o
course, not a fundamental, gauge invariant description of
physical picture which is that of thep1@SO(3)# vortices.
Still, it may be used as a basis for an approximate comp
tional scheme for obtaining some estimate on the Wils
loop at weak coupling@3#. Some numerical investigation o
this picture has recently been reported in@7#.

III. THE WILSON LOOP AND VORTICES

Having identified the various types of vortices that occ
in theSU(2) LGT, the expression~7! for the Wilson loop is
seen to have a rather transparent physical meaning. It m
explicit the interaction of the loop with vortices. Let us wri
Eq. ~7! succinctly as

W@C#5^trU@C#hSsS&SO~3!øZ~2! , ~9!

where the expectation on the right-hand side is taken in
measure~3!. As noted above, Eq.~9! decomposes the Wilson
loop operator into aZ(2) part sS and an SO(3) part
trU@C#hS5utrU@C#usgn(trU@C#hS). It is crucial that the
expectation~9! does not depend on the choice of the surfa
S spanning the loop. Then, for a given$$Ûb%,$sp%% configu-
ration on the lattice:

If sS521 for everychoice of the spanning surfaceS, a
thin vortex, or an odd number of thin vortices, is nontrivial
linked with the loopC @Fig. 6~a!#. Conversely,sS51 for
every S signifies an even number~including zero! of thin
vortices linked withC.

If sgn(trU@C#hS)521 for everychoice of the spanning
surfaceS, a thick vortex, or an odd number of thick vortice
is nontrivially linked with the loopC @Fig. 6~b!#. Conversely,
sgn(trU@C#hS)51 for everyS signifies an even number~in-
cluding zero! of thick vortices linked withC.
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If neither sS521, nor sgn(trU@C#hS)521 for every
choice ofS, but sSsgn(trU@C#hS)521 for everychoice of
S, a hybrid vortex, or an odd number of hybrid vortices,
nontrivially linked with C @Fig. 6~c!#. Conversely,
sSsgn(trU@C#hS)51 for every S signifies that an even
number~including zero! of hybrid vortices is linked withC.

Thus the passage to the variablesÛb ,sp exhibits the Wil-
son operator explicitly as a vortex counter. The fluctuation
the operator between positive and negative values is ent
due to the presence of vortices linking with the loop. T
expectation of this fluctuation is what essentially determi
then the behavior of the Wilson loop.

The physically inessentialutrU@C#u, which contributes
only a perimeter effect, can in fact be eliminated from e
pression ~7! by switching from the Wilson loop to the
electric-flux free energy order parameterFel @10# defined on
a lattice with periodic boundary conditions in all directio
(L5Td). Expressed in our variables~3!, the electric-flux
free energy is given simply by:

exp~2Fel!5^hSsS&SO~3!øZ~2! , ~10!

whereS is any 2-dimensional closed topologically nontrivi
surface winding around the lattice in two given directions
in Fig. 5. ~The expectation does not depend on the spec
choice ofS.! By the above enumeration, Eq.~10! shows that
the electric-flux free-energy operator isnothing buta vortex
counter for the various types of vortices winding around
lattice ~in the directions perpendicular toS).

Let us return to the consideration of the Wilson loop e
pectation~9!. At large b, long thin vortices, having large
vortex sheet areaA, disappear as they incur an action co
proportional tobA. Only a dilute gas of short thin vortice
remains. For a large Wilson loop, short vortices can link w
it only along the loop perimeter@as depicted for the thin
vortex in Fig. 6~a!#. At large b, therefore, thin vortices can
only contribute at most to a length-law piece in the expec
tion ~7!. This in fact can be proven rigorously; it is equiv
lent to the statement that a pureZ(2) theory is in a Higgs
phase at largeb.

Long thick vortices, on the other hand, are not direc
suppressed by the action at largeb. They may therefore link
with a large loop anywhere over the area enclosed by
loop @as in Fig. 6~b!#. This may then lead to area-law beha
ior for the expectation, provided that the class of thick vor
configurations contributes at largeb with a finite measure in
the path integral sum. The same holds for long hybrid vo
ces, i.e., long thick vortices ‘‘punctured’’ by a small mon

FIG. 6. Wilson loop linked with~a! thin vortex,~b! thick vortex,
~c! hybrid vortex; 3-dimensional@123#-section view@cf. Fig. 5~b!#.
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pole loop forming the boundary of a short thin vortex se
ment @Fig. 6~c!#. Indeed, longZ(2) monopole loops are
spanned by correspondingly large thin vortex sheets and
pressed at largeb; but a dilute gas of short monopole loop
survives at any finiteb. @The shortest possible loop is due
the excitation ofsp521 on a single plaquettep, forming a
one-plaquette-long thin segment, and giving aZ(2) mono-
pole loop consisting of the 2(d22) cubes sharing thisp on
their boundary and hence havingsc521.# In the absence of
an artificial suppression of negative plaquettes~imposed, for
example, by some modification of the action!, this dilute gas
of short Z~2! monopole loops can be used to tag hybrid vo
tices and estimate their contribution to the Wilson loop@6#.

One may modify the theory to exclude allZ(2) mono-
poles and hence all hybrid vortices by inserting in the m
sure~3! the constraint

)
c

d@sc#. ~11!

This is the Mack-Petkova~MP! model6 @1#. Confinement at
large b in the MP model must then come from the thic
vortices. Alternatively, one may instead eliminate all thi
closed vortices linking with a given Wilson loop by insertin
in the measure in the expectation~9! the constraint

u@ trU@C#hS#, ~12!

for any one particular surfaceS spanning the loop. Similarly
thick vortices winding around a periodic lattice may be e
cluded from the theory by inserting the constraint

d@hS#, ~13!

for any particular closed topologically nontrivial surfaceS
running through the lattice in two given directions@cf. Fig.
5~a!#: Eq. ~13! eliminates all vortices winding in the (d
22) directions normal toS. In the presence of the con
straints~12! or ~13!, confining behavior for Eqs.~9! or ~10!,
respectively, at largeb can then come only from the hybri
vortices. This is the approach taken in@6#.

Consider now insertingboth the constraints~11! and~12!,
respectively Eq.~13! in the measure, thus eliminating bot
all hybrid vorticesandall thick vortices winding through the
Wilson loop, respectively the lattice. The form of the expe
tation ~9!, respectively Eq.~10!, now immediately suggest
that confining behavior at largeb is lost, i.e., thatthe pres-
ence of thick or hybrid vortices is the necessary condition
confinement to occur at weak coupling.In the case of the
electric-flux free energy, Eq.~10!, a mathematically rigorous

6Note that the solution to the constraint~11!, which is equivalent
to requiringhc51 on all cubes, is given by

sp5)
bPp

gb ,

wheregb areZ(2) bond variables, i.e., theZ(2) system in Eq.~3!
becomes exactly a~Wilson! Z(2) LGT. This is as one would ex-
pect: in the absence ofZ(2) monopoles, only closed thin vortice
are allowed as excitations of thesp’s, which is the case in a pure
Z(2) LGT.
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proof of this fact was given in@2# some time ago. The physi
cal implications of this result for discussions of ‘‘mech
nisms of confinement’’ appears not to have been widely
preciated. It would clearly be important to have t
corresponding proof for the case of the Wilson loop.7 Unfor-
tunately, the proof in@2# does not immediately extend to th
Wilson loop case. We will address this question elsewhe

IV. VORTEX CONTRIBUTION TO HEAVY-QUARK
POTENTIAL—NUMERICAL RESULTS

As we saw in the previous section, the sign fluctuation
the Wilson loop operator is determined by its interacti
with vortices; a negative Wilson loop signals an odd num
of vortices ~including all types! linking with the loop. ~In
fact, in the case of the electric-flux free-energy, this inter
tion sign constitutes the entire operator.! This then allows
one to directly examine the vortex contribution to the Wils
loop. We simply replace the value of the Wilson loop ope
tor by its sign and consider the expectation

E@C#[^sgn~ trU@C# !&5^sgn~ trU@C#hS!sS&SO~3!øZ~2! .
~14!

The expectation~14! is the vortex count expectation value
discussed above.E@C# counts all types of vortices togethe
and can be simply evaluated by the usual Monte Carlo te
nique in terms of the originalSU(2) bond variables. In the
following we wish to compare the string tension extract
from the full Wilson loop expectations@Eqs. ~6! and ~7!#
with the string tension obtained from the expectation of
sign of the Wilson loops defined by Eq.~14!.

In all our measurements we extracted the heavy qu
potential from timelike Wilson loops using the method a
the code of Ref.@12#. We computed both on-axis and of
axis loops and the effective potential for different time e
tensionsT was obtained as

V~R,T!52 ln
W~R,T11!

W~R,T!
. ~15!

In principle the heavy quark potential is theT→` limit of
V(R,T). In the following we always display the effectiv
potential for a time extent where it has already reache
good plateau. Typically with our values of the coupling th
already happens whenT equals a few lattice spacings.

At first we used two ensembles of configurations gen
ated with the Wilson action atb52.4 and 2.5 where the
lattice spacing isa50.12 fm and 0.085 fm respectively. Ou
results are presented in Figs. 7 and 8. It is striking that

7Asymptotically large Wilson loops are physically essentia
equivalent to the electric-flux free energy order parameter. In g
eral, however, the string tension derived from the electric-flux f
energy has only been rigorously shown to form a lower bound
the Wilson loop string tension@11#. Thus confining behavior forFel

implies confining behavior for the Wilson loop, but not, necessar
the converse. In any case, asFel is an order parameter that refers
the entire lattice, it is important to obtain the proof corresponding
the result in@2# also for a large but finite Wilson loop as the lattic
is taken to the thermodynamic limit.
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full Wilson loops and just their signs — the vortex expec
tions — give exactly the same heavy quark potential inclu
ing the short-distance behavior and even the constant.
emphasize that we have not even shifted the two poten
by a constant; Figs. 7 and 8 show the ‘‘raw’’ data witho
any further manipulation.

The remarkable coincidence of the potentials compute
this way shows that the sign of the Wilson loop, i.e., t
number of vortices~mod 2! linking with it, contains all the

n-
e
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,

o

FIG. 7. The heavy quark potential measured on an ensemb
440 124 configurations generated at Wilsonb52.4. Squares repre
sent the potential obtained from Wilson loop averages, the octag
come from the sign averages.

FIG. 8. The heavy quark potential measured on an ensemb
129 164 configurations generated at Wilsonb52.5. Squares repre
sent the potential obtained from Wilson loop averages, the octag
come from the sign averages.
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important physics. The short-distance agreement of the
tentials can be explained by noting that the sign expecta
containsall the vortices including thick ones (h) and thin
ones (s). The latter are important at short distances. Furth
more, as we saw in the previous section, thin vortices af
the perimeter-law term in the Wilson loop of any size. Th
in turn contributes to the constant term in the potential. T
fact that even this constant is the same for the two poten
also shows that they contain the same contribution from
vortices.

At this point one could ask how robust this picture is,
particular how sensitive it is to the physically unimporta
short distance details of the configurations. This can
checked either by modifying the action or by taking t
Monte Carlo generated configurations and performing so
local smoothing on them which does not change the lo
distance physical features. If the potential extracted from
sign of the Wilson loops is really equivalent to the full p
tential then their agreement at long distances should pe
on the modified configurations. This is a very stringent t
which has already been performed in the case of Abe
dominance. There it turned out that while on the origin
configurations the Abelian string tension agreed with the
SU(2) string tension to within 8%, after smoothing the d
ference increased to about 30%@13#. Similar results have
been obtained with cooling in Ref.@14#. In the present case
at first we repeated the measurement of the full and ‘‘sig
potentials using the fixed point action of Ref.@15# at lattice
spacinga50.14 fm. The results presented in Fig. 9 are ve
similar to the Wilson data; there is no measurable differe
between the potentials. We then performed one step of l
smoothing on the same ensemble of configurations. This
done by the renormalization group based smoothing in
duced in Ref.@15#. This local smoothing was designed

FIG. 9. The heavy quark potential measured on an ensemb
100 83312 configurations generated with a fixed point action~lat-
tice spacinga50.14 fm). Squares represent the potential obtain
from Wilson loop averages, the octagons come from the sign a
ages.
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smooth only on the shortest distance scale, leaving all
long-distance physical features — most notably the str
tension — unchanged. On the smoothed configurations
two potentials were measured again. Comparing the po
tials obtained on the smoothed configurations~Fig. 10! one
can see that for distancesR>2 ~in lattice units! they agree
but for R<2 the potential obtained from the signs is syste
atically below the full potential. This means that the smoo

FIG. 11. The same as Fig. 9 but measured after 3 smooth
steps. Squares represent the potential obtained from Wilson
averages, the octagons are obtained from Wilson loop sign a
ages.

of

d
r-

FIG. 10. The heavy quark potential on the same ensemble
Fig. 9 but measured after one smoothing step. Squares represe
potential obtained from Wilson loop averages, the octagons co
from the sign averages.
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ing destroyed a significant number of thin vortices and
this short distance scale thin vortices no longer dominate
potential. On the other hand thicker vortices could not
destroyed by a local smoothing and the long-distance
tures are thus preserved. In this context we note that exa
the same type of behavior would be expected from the p
tive plaquette model, in which the plaquettes are constrai
to be non-negative. This constraint does not allow the form
tion of thin vortices but vortices thicker than one plaque
are not affected significantly.

Finally we repeated the comparison of the full and t
sign potential after an additional two smoothing steps w
performed~Fig. 11!. As a result of further smoothing th
short distance disagreement of the potentials extend to
longer distances but the asymptotic string tension is not
fected. This is consistent with our expectations that as m
and more smoothing is performed, vortices of larger size
also destroyed. For a fixed number of smoothing steps, h
ever, there is always a scale beyond which thick vorti
remain intact. Beyond this scale one effectively has the sa
physical situation as before the smoothing. This may
viewed as being on a fictitious coarser lattice with the latt
spacing set by this scale and with thin and thick vortic
relative to this scale. Thus the vortex contribution to t
asymptotic string tension is not affected by smoothing.

V. CONCLUSIONS

We presented a picture of the QCD vacuum by identi
ing the gauge field excitations that can disorder the sys
on large distance scales and can thus lead to confinem
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even at weak coupling. The relevant excitations are th
spread-out center vortices that make the sign of large Wil
loops fluctuate considerably. The vortices are extended
jects that cost very little in local action but have a long-ran
disordering effect. As opposed to thin vortices which grad
ally freeze out when the coupling is lowered, the thick vo
tices are expected to survive at arbitrarily weak coupling

We tested numerically how the vortices affect the Wils
loop expectations and the deduced heavy quark potentia
the SU(2) case vortices linking with the Wilson loop ar
responsible for the fluctuation of its sign. Therefore we co
pared the heavy-quark potential extracted from full Wils
loops with the potential extracted from the expectation of
sign of Wilson loops. The sign expectation counts the c
tribution of all types of vortices. The measurements we
performed with the Wilson action at two different coupling
as well as with a perfect action. In all three cases the t
potentials completely agreed even for small distances.

To check the universality of this picture we repeated
same test on an ensemble of locally smoothed configurati
The agreement of the long-distance part of the potent
persisted after the smoothing. This shows that all the relev
long-distance physical properties are encoded in the fluc
tion of the sign of the Wilson loops which in turn is gov
erned by the vortices linking with it.
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