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Vortices and confinement at weak coupling
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We discuss the physical picture of thick vortices as the mechanism responsible for confinement at arbitrarily
weak coupling inSU(2) gauge theory. By introducing appropriate variables on the lattice we distinguish
between thin, thick and “hybrid” vortices, the latter involvirg(2) monopole loop boundaries. We present
numerical lattice simulation results that demonstrate that theSf{i2) string tension at weak coupling arises
from the presence of vortices linked to the Wilson loop. Conversely, excluding linked vortices eliminates the
confining potential. The numerical results are stable under an alternate choice of lattice action as well as a
smoothing procedure which removes short distance fluctuations while preserving long distance physics.
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[. INTRODUCTION terms ofSU(2)/Z(2)~SO(3) andZ(2) variableq3,1]. We
eschew any mathematical derivations that can be extracted
Arguments for the presence of spread-out tubes of colorfrom the literature, and give a detailed physical discussion of
magnetic flux, thick “vortices,” being the essential feature the various excitations and their interactidris. Sec. Il we
responsible for maintaining confinement at arbitrarily weakexamine the Wilson loop and its interaction with the differ-
coupling inSU(N) gauge theory were expounded some time€Nt types of vortices. In th8U(2) case the fluctuation of the
ago[1-6]. A key idea is that such extended structures costVilson loops between positive and negative valuesoiely
very little action locally, and thus are not directly suppressedi®termined by the numbemod 2 of vortices linking with
at largeB. By gradual variation of the gauge fields, they cant!1e |.°0p' Namely, if a partmular loop in a given configura-
disorder the vacuum over long scales. The infrared physicsﬂggs'sliﬁgisr:gvve;l/i?he?ﬁgvlgbaﬁﬁdziﬁg ?a\(letr;//sgg Q}}J\%?ﬁ(r:gsf vor-
SI(;:tt(’:l.uiE It?[;tOfagoa?l\r;:;/smvsﬁﬁ esr:;jc?]n:]c?;paer;%'urublgg\\lléoﬁjegtjitggThjs then allows us to examine the vortex contribution to the
N . . . %trlng tension numericallySec. I\). The string tension ex-
mathemat'lcally precise formulatlons have been possible OnlVracted from the full Wilson loops was compared to the same
on _the lattice. Thlc_k vortices form _cIosepI extended_ Str“Ct“reﬁuantity extracted from the expectation of only the sign fluc-
which are topologically characterized, in the continuum ex-,ation counting the linking of the vortices. The computation
trapolation, by m,[SU(N)/Z(N)]=2Z(N). “Punctured”  was first performed with the Wilson action, and then also
thick vortices, whosgsmal) “hole” boundary is a Dirac  jth a fixed point action in conjunction with a “smoothing”
monopole current loop, are also possible and survive at larggrocedure based on the renormalization group. The point of
B [6]. (These Dirac monopoles are also classified by theyerforming the comparison also under smoothing is that
non-trivial elements ofr, [ SU(N)/Z(N)].) In the SU(N) smoothing removes short distance fluctuations while preserv-
lattice gauge theory there also occur “thin” vortex excita- ing long distance physics. In particular, the string tension of
tions of theZ(N) part of the group. These are localized to the full Wilson loop remains unchanged under the smoothing
one lattice spacing thickness, and hence are sensitive to tisocedure. A necessary test then of any claim concerning the
short distance details such as the precise choice of th@ng distance physics is that it remain invariant under the
plaquette action. Long thin vortices are very efficient at dis-smoothing procedure. The numerical results demonstrate that
ordering the system at strong coupling, but are energeticall{e confining potential arises from the presence of the vorti-
heavily suppressed and become irrelevant at l#rge ces linked to the loop: the full string tension is, remarkably,
In this paper we first discuss in detail the various vortex'€Produced from the expectation of the vortex counting sign.

excitations possible in th8 U(N) lattice gauge theorySec. Conver.se_ly, allowing “‘1?“.00' 2 vortices to link with the
Il). We treat explicitly the simplegi=2 case since no ad- loop eliminates the confining potential. CIo;er related re-
ditional physical features appear in the gendfaéxtension sults ha}ve been reported [7]. Our conclusions are pre-
which is straightforward. The proper distinction between thinsented in Sec. V.
and thick vortices and their interactions seems to have occa-
sioned some confusion in the literature. A clean separation
can be achieved by an exact rewriting of 86(2) theory in For SU(N)/Z(N) gauge fields in the continuum, vortices
are topologically classified byr; SUN)/Z(N)]=Z(N).

II. VORTICES—THIN, THICK AND HYBRID
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57 VORTICES AND CONFINEMENT AT WEAK COUPLING 4055

This means that a vortex nontrivially linked to a Wilson loop lattice A is split into equivalence classes, each class corre-
(trac_e of the pqrallel transport matrix of the gauge field consponding to one coset bond variable configurafith} on
nection), taken in the fundamental representation of the cov-y  Thys twoSU(2) configurationg U} and{U;} on A are

ering groupSU(N), contributes a factaze Z(N), z#1.A . ' ~
vortex forms a closed 2-dim surface @4 (a loop ind representatives O,f _the same coset configurafiop} if and
only if one hasU,=Uyy,, for somey,e Z(2), for every

=3) so that it links with a Wilson looff if it pierces once . ' =) i
any surface bounded by. Topologically, it is also possible bondb on A. Now given a coset configuratigit)p}, pick a

to have gauge field configurations representing “open” vor-fepresentativgU,} and letn,=sgrlJ;. Then the quantity
tices (Dirac sheets The boundary of an open 2-dim vortex

sheet represents a monopole lo@ponopole-antimonopole %(U)EH N )
pair in 3-dim. These are Dirac monopoles, also classified by pec P

the non-trivial elements ofr,| SU(N)/Z(N)] [8].

Now in the continuum, where the gauge field is an ele-the product ofp, around the faces of a culwe depends, as
ment of the Lie group algebra, there is no local distinctionindicated, only on the coset variables since it is invariant
between the pur&U(N)/Z(N) and SU(N) gauge theories. underU,—Uyy, for yp,eZ(2). In other words, it is inde-
In the lattice formulation, in terms of group element bondpendent of the representative used to compute it.
variables, of course there is a local distinction. The two differ Now one can sho4,3] that Eq.(1) can be written in the
by the dynamics of the additional(N) degrees of freedom form
present in theSU(N) case. Exciting these(Rl) degrees of
freedom on a stack of plaquettes forming a 2-dim closed wall _

(a closed loop ird=3) gives a “thin” Z(N) vortex. These ZA f l_b[ dubl_p[ daPl:[ A meoclext Bl op).

are of course the vortices already present in a () €©)

lattice gauge theoryLGT). They are “thin” because they

necessarily have thickness of one lattice spacing. At sgall In Eg. (3), and what follows, the “delta function” oZ(2)

they are very efficient at disordering the vacuum. At lagge  Simply stands for

however, they are heavily suppressed by tB&J(N)

plaquette action, and_ get progressively frozen ou]_Baisn— S(7)= E[l+7], rez(2), ()

creases. Correspondingly, the pugéN) LGT gets into a 2

Higgs phase; whereas the distinction between $td(N)

and SU(N)/Z(N) LGT disappears, as it should, as the con-SO that 8(r)=1 for 7=1, &(7)=0 for 7=—1. Also,

tinuum limit is approached. Thus it is only tmen-Abelian  Jdop(---)=Z, -.1(---) stands for “integration” over
dynamics of the lattice analogs of the topologi@&IN) the discreteZ(2) group.

=4[ SU(N)/Z(N)] vortices, which can, if at all, affect the The crucial point is that the integrand in E8) depends

large 8 long distance dynamics. only on theU’s since it is invariant under the local transfor-

The lattice literature contains many confused or incorrecination U, — Uy, for arbitrary y, € Z(2). In particular, the
statements due to failure to properly distinguish between thgction becomes the product ofZ(2) part and arSO(3)
excitations of theZ(N) part versus thelattice analogs of part. Thez(2) part, which is given simply by the plaquette
the) topological [ SU(N)/Z(N)]=Z(N) excitations of the  variable o, determines the sign of the action. TB&(3)
SU(N)/Z(N) part of thefSU(Nl) gaur?e QLOUD, and their re- part is non-negative. In this connection note the relation
spective energetics. A formalism that allows one to accom tru|2=| 2_ - %

- - - =|xuAU)|?=1+x1(U) =1+ x1(U), where x;5(V)
plish such ~a separation cleanly introduces separat nd y,(U) denote the fundamental and adjoint representa-

SU(N)/Z(N) and .Z(N) var.iables[S,l]. .It is jmportant, of tion characters o6U(2). Thus theU-integration is in fact a
course, that this is done in a gauge-invariant manner, ang-integration' i.e., in Eq(3) one has

gives an exact rewriting of the partition function and all ob-

servables in terms of the new variables. A
From now on we restrict t&U(2), which is the actual H dUb:consixl_[ dU,, (5)

case of our numerical simulations below. The extension to b b

any N is straightforward. Consider then the stand&id(2)

theory partition function on a lattica, wheredUy, is the Haar measure ov&((3). _
Similarly, for the expectation of a Wilson loop one finds
= 1
Zy Jl_b[ dUbex;{% BtrUp), () W[C]:Z—f 11 dUbtrU[C]ex;{E BtrUp) (6)
A b p
where, as usual, we wrotd,=1II,,_,U} for the product of 1
bond variabledJ,, around the plaquettp. :Z—f IT dupIl do Il
We now introduce nevZ(2) variableso,e{*1} resid- AL b P ¢
ing on plaquettes. We write =1l .o, for the product of X 8 ncUc]UU[C]ﬂsffsexp(ﬁ|trUp|<Tp)- 7)

the oy’s around the faces of the culze We also introduce

the coset bond variabled,e SU(2)/Z(2)~SO(3). The In Eq. (7), U[C]=II,.cU, stands for the product of the
configuration space of the tHf2U(2) bond variables on the U,’s around the loogC, and we introduced the notations
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FIG. 1. Thin vortex:(a@) d=3 or d=4 in [123]-section view;(b) d=4 in [130]-section 3-dimensional view. Plaquettes protruding in
x?-direction carryo,= —1.

these bonds carriesrp,=—1. A 3-dimensional [ uvA]
=[123] section gives then Fig.(4). These vortices, gener-
ated by the excitations of th&(2) o, variables, areZ(2)
“thin” vortices, alluded to above. Note that, from E¢B),
the action cost for exciting such &(2) vortex is directly

Ns= H 77p= Os= H O-pv (8)
peS peS

whereS s a surface bounded by the lo@pi.e.,C=4S. Itis
easily seen that Eq7) does not depend on the choice of proportional to the area of the vortex sheet.
surfaceS. Furthermore, the quantitylf C]»s depends only Consider next opening the thin vortex by breaking the
on theSQ(3) bond variabled),,, since it is invariant under |oop of o= —1 plaquettes in Fig. (B) as depicted in Fig.
Up—Up¥p, 7YpeZ(2). TheWilson loop operator is thus 2(a). The two cubes at the two ends necessarily satisfy
expressed as a product of 8@(3) and aZ(2) factor. Simi- —1. A cube witho.= —1 is the site of &(2) monopole,
larly, any other observable, such as a 't Hooft loop, or theand Fig. Za) depicts a monopole-antimonopole pair joined
electric and magnetic flux free-energies can be easily writtely an open thin vortex, i.e., a string of,= — 1 plaguettes
in terms of the new variables. carrying theZ(2) flux. As just noted, there is a direct action
Equations(3) and(7) then reexpress th8U(2) LGT asa  cost associated with this-string.
coupled SQO(3)-Z(2) theory. This rewriting is exact and  Now, because of th&(2) §-function constraint in the
gauge invariant. It is very convenient to evaluateS3) measure in Eq(3), a cube witho,=—1 must also have
quantities in terms 08U(2) representativesas in Eq.(3),  ;.=—1. A cube for whichy,= —1 is the site of the lattice
(7). At the risk of being repetitive, let us point out again that, analog of am[SO(3)]=2(2) monopole. As pointed out
once the passage to t8€(3)-Z(2) formalism is made, the ahove this statement depends only on $@®3) coset con-

quantity 7,=sgrlJ,, for a representative of g0,} configu-  figuration{U,} on the lattice, i.e., the presence or absence of
ration has nothing to do with the sign of the action in thesuch a monopole on a given cube is a gauge-invariant feature
SU(2) formalism (1), (6). This sign, as already noted, is of eachSO(3) configuration. Any one representatife,,}

supplanted by theZ(2) variable o,. The representative- of anSO(3) {Ub} configuration with a monopole on a given

dependentr,’s can appear in physical quantities only in ¢, \he will necessarily have a string of plaquettes, the Dirac
SQ(3) representative-independent combinations, as e.g., Egtring, beginning at the cube in question, on whi

(2). The resulting expression®), (7) of the SQA(3)-Z(2)  __1 The string has to end at another monopole cube. Con-
formulation have a physically rather transparent form exhibyia,rations with monopoles that contribute to the partition

iting the presence and manner of coupling of the various

possible topological excitations in the LGT).

Consider a configuration wherg,=1 everywhere except
on a stack of plaquettes forming a lo¢pBig. 1(a)] where
op,=—1. This is aZ(2) vortex in 3 dimensions or a 3-
dimensional section of a vortex in 4 dimensions.dr 4

there is an extra dimension to move in, so by translation of&ﬁ ﬁ ﬁ ﬁ &a
the loop a vortex forms a 2-dimensional closed surfdig.

A
\

1(b)]. The short lines in Fig. (b) represent a set of bonds.
The plaquette protruding in the’-direction out of each of

2They can always, of course, also be expressed directly ahar-
acter expansion JnSQ(3) (integer spin representations, as indi-
cated above for the action plaquette function.

igppge Lo

(@) (b)

FIG. 2. d=3): (& Z(2) monopole pair(cube$ joined by
o-string (open thin vortex (b) the complete configuration includ-
ing the #-string to form a “hybrid” vortex(see text

4
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FIG. 4. Thick vortex closed Dirac sheed€4) in 3-dim[013]-
section view; plaquettes protruding in the remainifgdirection
carry n,=—1.

FIG. 3. Hybrid vortex =4) in 3-dim [130]-section view.
Plaquettes protruding in the remaining-direction out of light
(heavy bonds carryn,= —1(o,=—1); the boundary between the

light and heavy sets is Z(2) monopole current loofsee te . .
g W (2) P e X Closed Dirac plaquette sheets form the lattice analogs of

. ) o . . m[SO(3)] vortices (Fig. 4), the set of plaquettes withy,,
functpn then are of the form depicted in _qu.bzm 3 di- =—1 being stacked over a closed 2-dimensional surface
mensions; heavy plaquettes cary=—1, light plaquettes |50 jn d=3). In the illustration of Fig. 4 each plaguette
carry 7,=—1. Note that the location and shape of the StfiNgcarrying 77,= — 1 protrudes in the-direction out of the set
(light plaquettes depends on the choice of representative; itof ponds "shown distributed over a 2-dimensional surface
can differ for different representatives of the safldg} con-  placed in a 3-dimension&D13]-section. Again, the precise
figuration since it may be moved around at will, as a Diraclocation and shape of thig,= — 1 set of plaquettes forming
string should, by lettingU,—y,Up, v,€Z(2), i.e.,, the Dirac sheet is irrelevant, it being “invisible” in the mea-
change of representative. Thestring is then “invisible” to  sure (3). What is relevant is only the coset configuration

the{U,} configuration onA, and hence to the measure, and{U,} describing the vortex; aBU(2) representativéU,} of
in particular to the action in Eq$3), (7). There is no costin  such a coset configuration will then contain somewherd on
action associated with the location of the Dirgestring. a Dirac sheet, which may be moved around at will by a
In d=4 the monopoles, i.e., the set of cubes on whichchange of representative&quivalently, the presence of the
nc=—1, form closed monopole current loops reflectingyortex can be characterized in terms of thg's only—see
magnetic current conservation. This follows directly from below) Note that, sincez(2) [or generallyZ(N)] flux is
the definition of the quantify 7., Eq. (2). A string then _ conserved only mod2(mod), this implies that a vortex such
sweeps out a Dirac sheet bounded by the correspondings in Fig. 4 is “unstable” unless it is topologically nontrivial
monopole loop. So ird=4 the configuration in Fig. @)  ith respect to the lattice\ or an externally introduced
gives rise to a ‘hybrid’ vortex forming a closed 2- goyrce inA, such as a Wilson loop. Indeed, by a change of
dimensional surface as shown in Fig. 3. Here agaip, representatives, the sheet may always be collapsed to a point
=—1 on the plaquette protruding in thé-direction out of annihilating thez(2) flux, unless there is a topological ob-
every heavy bond, whereag,=—1 on the plaquette pro- stryction. Thus on a lattice with periodic boundary condi-
truding in thex-direction out of every light bond shown. fions, i.e., the topology of the torus, a vortex as in Fig. 4 may
The plaquettes containing both a light and a heavy bond ihecome topologically stable by wrapping completely around
their boundary are also shown in the figure. The cube proge |attice in thex?,x%-directions as shown schematically in
truding in thex?-direction out of each of these plaquettes Fig. 5(3). Here, short light lines represent a Dirac sheet of
then hasrc= 7.=— 1. This set of cubes forms the monopole ;, — —1 plaquettes, each in[a2]-plane, stacked along the
current loop(ct. footnote 3. A [123]-section view of Fig. 3 x3 x0_djrections around the periodic lattice. Such a topologi-
gives then Fig. t). Such a hybrid vortex may be viewed as ¢ajly nontrivial closed sheet can be moved or distorted by a

put together by joining an “open”mi[SQ(3)] vortex  change representative, but not removed. Every representative
plaguette sheet and an op&t2) vortex plaguette sheet

along their respective monopole loop boundaries. Thes [T

boundaries must coincide, as noted above, because open vg — A N I T
tices as in Fig. @) cannot exist due to the constraint in the — S I N
measure in Eq(3). — IR ’

— SR —
3Indeed it follows from Eq(2) that 7, obeys the identity P T Sl — g ¢
° A L,
IT #=1. A f /4

ceh
where the product is over all cubesforming the boundary of the @) ®)
elementary hypercubk. Geometrically, this means that the cubes  FIG. 5. (a) Topologically nontrivial vortex sheefshort line$
on which .= —1 form closed sets on the dual lattice.ds=4, a  winding around periodic latticéo) Vortex linked with Wilson loop
cube is dual to a bond, so the cubes form closed loops of dual; 3-dimensional[130]-section view, withC lying in the [12]-
bonds. plane.
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of the relevan{U,} vortex configuration has then an irre- Size of the “hole,” where ther, Z(2) variables are excited,
movable sheet ofy,= —1 plaquettes signaling the trapped P€ing suppressed, hence small at Igfge

Z(2) flux of a(an odd number oftopologically nontrivial Such very long thick vorticeswhole or puncturedcan
vortex (vortices. A characterization directly in terms of the then have a very disordering long-distance effect at weak

0,'s is given by the quantityys defined as in Eq(8) but coupling as the bond variablds, , over sufficiently large
with S now any closed topologically nontrivial surface wind- scales, vary smo.othly over Ia_rge parts of $U(2)/Z(2)
ing around the lattice in the*,x2-directions[dashed line in  9r°4P with very little local action cost. Their presence ap-

Fig. 5(a)]. Then, clearl is onlv a function of the cosets pears in fact to be the necessary condition for confinement at
9- ’ ' Y:s y weak coupling, as we discuss in the next section.

{Up}, andns(U) = —1(+1) signifies the presence of anodd |t is also interesting to view thick vortices in the
(ever) number of vortices Wlndlng around the lattice in the d-dimensional theory from a(X—l)+ 1-dimensional per-
x3,x°-directions normal te5. An analogous description ap- spective by singling out the “time” directiof8]. Thed-dim
plies tor,[ SO(3)] vortices nontrivially linked with the Wil-  gauge theory may be viewgith Kaluza-Klein(KK) fashion
son loop[Fig. 5(b)] discussed below. as a —1)-dim gauge theory coupled to a Higgs field. A

As already noted, th&(2) thin vortices are necessarily thick vortex may then be viewed within @ 1)-dim slice
localized in thickness to one lattice spacing, and have a dias a “monopole”-“antimonopole” pair. Here the “mono-
rect action cost proportional to their ardangth ind=3)  pole” hastwo units(mod 2 of flux (and hence twa-strings
along whicho,=—1. Long thin vortices are then heavily €manating from it since it may be considered as put to-
Suppressed at |arg@ as theo Z(Z) variables are progres- gether out of two of 0uZ(2)-mon0poIes and is trivial under
sively frozen out. Indeed, it can be shown that the probability71[ SQ(3)]. Within a given d—1)-dim slice, however, it
of exciting o,=—1 on a plaquette is exponentially sup- may be_ characterlzed_by using the “H|ggs” field of the KK
pressed with lardeg. Only short thin vortices remain then dimensional  reduction  to . define a homotopy
with (exponentially ing) small probability. This probability 72lSO(3)/U(1)] group. These “monopoles” appear then
can actually depend on the choice of the lattice actiphis @S lattice analogs of the ‘t Hooft—Polyakov monopole ¢h (
dependence on the short distance structure is, of course, pre-L) dimensions. In an appropriate gauge these correspond
cisely a statement of the fact that thin vortices are thin,  © the “monopoles” of the Abelian projection. This is, of

In contrast, thdlattice analog of them;[ SO(3)] vortices ~ COUrse, nqt a fundar'nen'tal, gauge invariant descrlpt[on of the
are not necessarily localized, and do not have a direct actiohysical picture which is that of ther,[ SQ(3)] vortices.

: : 2 Still, it may be used as a basis for an approximate computa-
cost proportional to their sheet area. Indeed, smqbtg} tional scheme for obtaining some estimate on the Wilson

vortex configurations are easily constructed such that the l%o at weak coupling3]. Some numerical investigation of
cal plaquette action cost can be made arbitrarily small thisppicture has r:cently.been reported T 9

making the vortex sufficiently spread d#,3]. Any SU(2)
representativeU,} of the {U,} configuration for such a
spread-out vortex will of course have a Dirac sheet plaquette 1. THE WILSON LOOP AND VORTICES

set on whichp,=—1, as discussed above, whilg=1 ev- Having identified the various types of vortices that occur
erywhere else; but in such a manner that one still hag, e sy(2) LGT, the expressiofi7) for the Wilson loop is
|trUp| =1 everywhere. The exact location of the Dirac sheetgen tg have a rather transparent physical meaning. It makes
is in fact irelevant since it can be moved by changing theg jicit the interaction of the loop with vortices. Let us write
representative, which does not affégt) ,|. The point is, of Eq. (7) succinctly as

course, that the action depends only forJ |, i.e., {Up}.

These “thick” vortices are thus not directly suppressed at Cl=(trU[Clneo 9
large B. In fact, long thick vortices winding around the lat- WICI=(tUIClmso9sas vz ©

tice or a large Wilson loop can exist at arbitrarily weak cou- . . o .
pling by being sufficiently thick in the directions transverse Where the expectation on the right-hand side is taken in the

to their (topologically nontrivially linked Dirac sheet. The Measuré3). As noted above, Eq9) decomposes the Wilson
same holds true for long hybrid vortices with a long thick 00P _operator into aZ(2) part os and anSO(3) part
vortex section, and a shofsay, one plaquette longhin trU[C]7s=|trU[C]|sgn(tU[C]#s). It is crucial that the
vortex section appearing as a localized “defect” incurring expectation9) does not depend on theAch0|ce of the surface
only a local cost in actiofi3,6]. These long hybrid vortices S spanning the loop. Then, for a giv¢fU},{op}} configu-
may be simply viewed as “punctured” thick vortices, the ration on the lattice:
If og=—1 for everychoice of the spanning surfa& a
thin vortex, or an odd number of thin vortices, is nontrivially
“This is proven nonperturbatively by “chessboard estimag@j’  linked with the loopC [Fig. 6(@]. Conversely,ocs=1 for
SThus the density of the thi@(2) vortices, and/oZ(2) mono- ~ every S signifies an even numbeincluding zerg of thin
poles, may be enhanced or further suppressed by various shottortices linked withC.
distance modifications of the original latti¢®/ilson) action in Eq. If sgn(ttU[C]7ng)=—1 for everychoice of the spanning
(1). Common modifications in the literature involve the addition of surfaceS, a thick vortex, or an odd number of thick vortices,
chemical potentials, the MP and the “positive plaquette” models,is nontrivially linked with the loopC [Fig. 6(b)]. Conversely,
and models introducing nei&(2) degrees of freedom in addition to  sgn(ttJ[ C]»g)=1 for everyS signifies an even numbéin-
the op’s. cluding zerg of thick vortices linked withC.



57 VORTICES AND CONFINEMENT AT WEAK COUPLING 4059

A5 pole loop forming the boundary of a short thin vortex seg-
=/ 5 S ment [Fig. 6(c)]. Indeed, longZ(2) monopole loops are
poF L2 spanned by correspondingly large thin vortex sheets and sup-
B pressed at larg@; but a dilute gas of short monopole loops
0000000000 survives at any finitg8. [The shortest possible loop is due to
= = the excitation ofo,= —1 on a single plaquettg, forming a
= one-plaquette-long thin segment, and giving@) mono-
= = pole loop consisting of the 2(—2) cubes sharing thip on
DogooodododE their boundary and hence haviag= —1.] In the absence of
® © an artificial suppression of negative plagquettesposed, for
FIG. 6. Wilson loop linked with(@) thin vortex, (b) thick vortex, ~ €X@mple, by some modification of the actipthis dilute gas
(c) hybrid vortex; 3-dimensiondl123]-section view{cf. Fig. 5b)]. Qf short 22) monOpde, loops Fan,be used to tgg hybrid vor-
tices and estimate their contribution to the Wilson 1g6p
If neither os=—1, nor sgn(tt[C]ns)=—1 for every One may modify the t_heory_to echL_Jde 22_1(2)_ mono-
choice ofS, but ossgn(ttU[C] 7<) = — 1 for everychoice of poles and hence aI.I hybrid vortices by inserting in the mea-
S, a hybrid vortex, or an odd number of hybrid vortices, is Suré(3) the constraint
nontrivially linked with C [Fig. 6(c)]. Conversely,
ossgn(t[Clyg)=1 for every S signifies that an even H Mol (12)
number(including zerg of hybrid vortices is linked withC. c
Thus the passage to the variabﬂ}b§, o, exhibits the Wil-
son operator explicitly as a vortex counter. The fluctuation o
the operator between positive and negative values is entirel

due to the presence of vortices linking with the loop. The ortices. Alternatively, one may instead eliminate all thick

expectation of this fluctuation is what essentially determine%otizd%/gzlscjz I;th'ﬁg glthegtg;\i/(;? X]vélsc%nnls(;?e?inliy Inserting
then the behavior of the Wilson loop. P

The physically inessentigltrU[C]|, which contributes
only a perimeter effect, can in fact be eliminated from ex- oLrULClms], 12

pression (7) by switching from the Wilson loop to the o any one particular surfacg spanning the loop. Similarly,
electric-flux free energy order paramefey; [10] defined on  hick vortices winding around a periodic lattice may be ex-
a lattice with periodic boundary conditions in all directions ¢|,ded from the theory by inserting the constraint

(A=TY). Expressed in our variable®), the electric-flux

free energy is given simply by: REAE (13

f'I'his is the Mack-PetkovéMP) modef [1]. Confinement at
rge B in the MP model must then come from the thick

exp(—Fe) =(7s0s)s03)u2(2) » 10 for any particular closed topologically nontrivial surfae

. 4 . . ... running through the lattice in two given directiofsf. Fig.
whereS is any 2-dimensional closed topologically nontrivial 5@]: Eq. (13 eliminates all vortices winding in thed(

surface winding around the lattice in two given directions as

in Fig. 5. (The expectation does not depend on the specific_z) directions normal toS. In the presence of the con-

choice ofS.) By the above enumeration, E.0) shows that straints(12) or (13), confining behavior for Eq4®) or (10),

the electric-flux free-energy operatorristhing buta vortex respectively_, a_t larg@ can then come only from the hybrid
vortices. This is the approach taken[®).

counter for the various types of vortices winding around the . ) : .
Iat'tjice (in the dirvectliolrjws ggrpendi\::ulz:\r @WI g ! Consider now insertingoththe constraint$ll) and(12),
Let us return to the consideration of the Wilson loop ex_respectively Eq(13) in the measure, thus eliminating both
all hybrid vorticesand all thick vortices winding through the

pectation(9). At large 8, long thin vortices, having large . . ,
vortex sheet ared, disappear as they incur an action costW'.lson loop, resp_ectwely the Iattlce._The fo_rm of the expec-
tation (9), respectively Eq(10), now immediately suggests

proportional toBA. Only a dilute gas of short thin vortices that confining behavior at largé is lost, i.e., thathe pres-

remains. For a large Wilson loop, short vortices can link with . . ; : o
it only along the loop perimetefias depicted for the thin ence of thick or hybrid vortices is the necessary condition for
confinement to occur at weak coupling. the case of the

vortex in Fig. §a)]. At large 8, therefore, thin vortices can : i .
only contribute at most to a length-law piece in the expectaSa lectric-flux free energy, Eq10), a mathematically rigorous

tion (7). This in fact can be proven rigorously; it is equiva-
lent to the statement that a pur€2) theory is in a Higgs
phase at large.

Long thick vortices, on the other hand, are not directly
suppressed by the action at larf§eThey may therefore link o=I1 %
with a large loop anywhere over the area enclosed by the P o
loop [as in Fig. §b)]. This may then lead to area-law behav- wherey, areZ(2) bond variables, i.e., th&(2) system in Eq(3)
ior for the expectation, provided that the class of thick vortexoecomes exactly &ilson) Z(2) LGT. This is as one would ex-
configurations contributes at largewith a finite measure in  pect: in the absence @(2) monopoles, only closed thin vortices
the path integral sum. The same holds for long hybrid vorti-are allowed as excitations of the,’s, which is the case in a pure
ces, i.e., long thick vortices “punctured” by a small mono- z(2) LGT.

5Note that the solution to the constraiftl), which is equivalent
to requiringz.=1 on all cubes, is given by
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proof of this fact was given ifi2] some time ago. The physi-
cal implications of this result for discussions of “mecha-
nisms of confinement” appears not to have been widely ap-
preciated. It would clearly be important to have the
corresponding proof for the case of the Wilson Iddpnfor-
tunately, the proof in2] does not immediately extend to the
Wilson loop case. We will address this question elsewhere.
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IV. VORTEX CONTRIBUTION TO HEAVY-QUARK ~ 3
POTENTIAL—NUMERICAL RESULTS = = = 4

As we saw in the previous section, the sign fluctuation of

the Wilson loop operator is determined by its interaction 05
with vortices; a negative Wilson loop signals an odd number - .
of vortices (including all type$ linking with the loop. (In L
fact, in the case of the electric-flux free-energy, this interac-
tion sign constitutes the entire operatofhis then allows
one to directly examine the vortex contribution to the Wilson
loop. We simply replace the value of the Wilson loop opera-
tor by its sign and consider the expectation

E[C]=(sgntrU[C]))=(sgn(trU[C] 773)05>50(3>u2(2>-14

2 4 6 8 10
R/a

0.0

0 12

FIG. 7. The heavy quark potential measured on an ensemble of
440 12 configurations generated at Wilsgh= 2.4. Squares repre-
The expectatioril4) is the vortex count expectation value as sent the potential obtained from Wilson loop averages, the octagons
discussed abovéE[ C] counts all types of vortices together come from the sign averages.
and can be simply evaluated by the usual Monte Carlo tech-
nique in terms of the origina®U(2) bond variables. In the full Wilson loops and just their signs — the vortex expecta-
following we wish to compare the string tension extractedtions — give exactly the same heavy quark potential includ-
from the full Wilson loop expectationfEgs. (6) and (7)]  ing the short-distance behavior and even the constant. We
with the string tension obtained from the expectation of theemphasize that we have not even shifted the two potentials
sign of the Wilson loops defined by E(L4). by a constant; Figs. 7 and 8 show the “raw” data without

In all our measurements we extracted the heavy quarkny further manipulation.
potential from timelike Wilson loops using the method and The remarkable coincidence of the potentials computed in
the code of Ref[12]. We computed both on-axis and off- this way shows that the sign of the Wilson loop, i.e., the
axis loops and the effective potential for different time ex-number of vorticegmod 2 linking with it, contains all the
tensionsT was obtained as

1.5
. ‘ T ‘ T T T T
W(R,T+1) (15 - g =250, 129, 16* 7

VRT)=—In—rm— I ]

O SU(R

)

In principle the heavy quark potential is tfie—o limit of
V(R,T). In the following we always display the effective
potential for a time extent where it has already reached &

1.0

O

7(2)

good plateau. Typically with our values of the coupling this -
already happens wheh equals a few lattice spacings. o -
At first we used two ensembles of configurations gener-=
ated with the Wilson action gB8=2.4 and 2.5 where the
lattice spacing i®=0.12 fm and 0.085 fm respectively. Our

results are presented in Figs. 7 and 8. It is striking that the 0.5

"Asymptotically large Wilson loops are physically essentially = -
equivalent to the electric-flux free energy order parameter. In gen-
eral, however, the string tension derived from the electric-flux free
energy has only been rigorously shown to form a lower bound on
the Wilson loop string tensiofi1]. Thus confining behavior fdt,
implies confining behavior for the Wilson loop, but not, necessarily,
the converse. In any case, g is an order parameter that refersto  FIG. 8. The heavy quark potential measured on an ensemble of
the entire lattice, it is important to obtain the proof corresponding to129 16 configurations generated at Wilsgh=2.5. Squares repre-
the result in(2] also for a large but finite Wilson loop as the lattice sent the potential obtained from Wilson loop averages, the octagons
is taken to the thermodynamic limit. come from the sign averages.

Oo 1 ‘ 1 ‘ 1 1 1

15
R/a
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FIG. 9. The heavy quark potential measured on an ensemble of FIG. 10. The heavy quark potential on the same ensemble as
100 8x 12 configurations generated with a fixed point actilat- Fig. 9 but measured after one smoothing step. Squares represent the
tice spacingg=0.14 fm). Squares represent the potential obtainedpotential obtained from Wilson loop averages, the octagons come
from Wilson loop averages, the octagons come from the sign averfrom the sign averages.
ages.

. . : smooth only on the shortest distance scale, leaving all the
important physics. The short-distance agreement of the PQong-distance physical features — most notably the string

tentials can be explained by noting that the sign expectatiogynsion — unchanged. On the smoothed configurations the
containsall the vortices including thick onespj and thin 4 potentials were measured again. Comparing the poten-
ones ). The latter are important at short distances. Furtheriigis obtained on the smoothed configuratidBig. 10 one
more, as we saw in the previous section, thin vortices affecty see that for distancé&=2 (in lattice unit$ they agree

the perimeter-law term in the Wilson loop of any size. Thispt for R<2 the potential obtained from the signs is system-

in turn contributes to the constant term in the potential. Theyica|ly helow the full potential. This means that the smooth-
fact that even this constant is the same for the two potentials

also shows that they contain the same contribution from thin
Vortlces. 10 T | T T ‘ T T T | T T
At this point one could ask how robust this picture is, in g =150, 99, 812, b3
particular how sensitive it is to the physically unimportant SU(2)
short distance details of the configurations. This can be g §
checked either by modifying the action or by taking the Z(z)
Monte Carlo generated configurations and performing some
local smoothing on them which does not change the long-
distance physical features. If the potential extracted from the 0.6
sign of the Wilson loops is really equivalent to the full po- =
tential then their agreement at long distances should persisasz
on the modified configurations. This is a very stringent test ,
which has already been performed in the case of Abelian
dominance. There it turned out that while on the original
configurations the Abelian string tension agreed with the full
SU(2) string tension to within 8%, after smoothing the dif- 0.2
ference increased to about 30%3]. Similar results have
been obtained with cooling in Refl14]. In the present case
at first we repeated the measurement of the full and “sign”
potentials using the fixed point action of Rgt5] at lattice
spacinga=0.14 fm. The results presented in Fig. 9 are very
similar to the Wilson data; there is no measurable difference
between the potentials. We then performed one step of local F|G. 11. The same as Fig. 9 but measured after 3 smoothing
smoothing on the same ensemble of configurations. This wageps. Squares represent the potential obtained from Wilson loop
done by the renormalization group based smoothing introaverages, the octagons are obtained from Wilson loop sign aver-
duced in Ref[15]. This local smoothing was designed to ages.

o D

o
(AN
i
o
o]
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ing destroyed a significant number of thin vortices and oreven at weak coupling. The relevant excitations are thick
this short distance scale thin vortices no longer dominate thepread-out center vortices that make the sign of large Wilson
potential. On the other hand thicker vortices could not bdoops fluctuate considerably. The vortices are extended ob-
destroyed by a local smoothing and the long-distance fegects that cost very little in local action but have a long-range
tures are thus preserved. In this context we note that exactlgisordering effect. As opposed to thin vortices which gradu-
the same type of behavior would be expected from the posially freeze out when the coupling is lowered, the thick vor-
tive plaquette model, in which the plaquettes are constrainetices are expected to survive at arbitrarily weak couplings.
to be non-negative. This constraint does not allow the forma- We tested numerically how the vortices affect the Wilson
tion of thin vortices but vortices thicker than one plaquetteloop expectations and the deduced heavy quark potential. In
are not affected significantly. the SU(2) case vortices linking with the Wilson loop are
Finally we repeated the comparison of the full and theresponsible for the fluctuation of its sign. Therefore we com-
sign potential after an additional two smoothing steps wergyared the heavy-quark potential extracted from full Wilson
performed(Fig. 11). As a result of further smoothing the loops with the potential extracted from the expectation of the
short distance disagreement of the potentials extend to a béign of Wilson loops. The sign expectation counts the con-
longer distances but the asymptotic string tension is not aftribution of all types of vortices. The measurements were
fected. This is consistent with our expectations that as morperformed with the Wilson action at two different couplings
and more smoothing is performed, vortices of larger size aras well as with a perfect action. In all three cases the two
also destroyed. For a fixed number of smoothing steps, howpotentials completely agreed even for small distances.
ever, there is always a scale beyond which thick vortices To check the universality of this picture we repeated the
remain intact. Beyond this scale one effectively has the samgame test on an ensemble of locally smoothed configurations.
physical situation as before the smoothing. This may bélhe agreement of the long-distance part of the potentials
viewed as being on a fictitious coarser lattice with the latticepersisted after the smoothing. This shows that all the relevant
spacing set by this scale and with thin and thick vorticedong-distance physical properties are encoded in the fluctua-
relative to this scale. Thus the vortex contribution to thetion of the sign of the Wilson loops which in turn is gov-
asymptotic string tension is not affected by smoothing. erned by the vortices linking with it.
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