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Scaling study of the two-flavor chiral phase transition with the Kogut-Susskind
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We report on a study of the two-flavor finite-temperature chiral phase transition employing the Kogut-
Susskind quark action and the plaquette gluon action in lattice QCD for a lattice withNt54 temporal size.
Hybrid R simulations of 104 trajectories are made at quark masses ofmq50.075,0.0375,0.02,0.01 in lattice
units for the spatial sizes 83,123, and 163. The spatial size dependence of various susceptibilities confirm the
previous conclusion of the absence of a phase transition down tomq50.02. At mq50.01 an increase of
susceptibilities is observed up to the largest volume 163 explored in the present work. We argue, however, that
this increase is likely to be due to an artifact of too small a lattice size and it cannot be taken to be the evidence
for a first-order transition. Analysis of critical exponents estimated from the quark mass dependence of sus-
ceptibilities shows that they satisfy hyperscaling consistent with a second-order transition located atmq50.
The exponents obtained from larger lattice, however, deviate significantly from both those of O~2!, which is the
exact symmetry group of the Kogut-Susskind action at finite lattice spacing, and those of O~4! expected from
an effectives model analysis in the continuum limit.@S0556-2821~98!04107-1#

PACS number~s!: 11.15.Ha, 12.38.Gc, 12.38.Mh, 12.39.Fe
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I. INTRODUCTION

The nature of the finite-temperature chiral phase transi
has been pursued using lattice QCD over many years.
commonly adopted simplification is to approximate the r
world with Nf flavors of degenerate quarks. Theoretical
guments@1# based on an effectives model that preserve
chiral symmetry of QCD suggest the order of the transit
changing from first to probably second asNf decreases from
Nf>3 to Nf52, which is a reasonably close approximati
to reality.

Lattice QCD simulations with the Kogut-Susskind qua
action have shown that the transition is indeed of first or
for Nf54 @2–5#. There are indications, though much le
extensive, that theNf53 transition is also of first order@6# in
agreement with the theoretical expectation. A physically i
portant case ofNf52, on the other hand, has turned out to
more elusive. In Ref.@5# a finite-size scaling analysis wa
attempted at quark massesmq50.025 and 0.0125 in lattice
units for a temporal lattice size ofNt54 employing the spa-
tial sizes 63, 83, and 123. While the results clearly confirme
that theNf52 transition is much weaker than that forNf
54, a first-order transition could not be quite excluded sin
various susceptibilities exhibited some increase with spa
volume up to 123. Simulations on a 16334 lattice atmq
50.025 and 0.01 carried out by the Columbia group@6#
showed, however, that the susceptibilities flatten off betw
123 and 163 spatial sizes. The combined results led to t
conclusion that a phase transition is absent down to the q
570556-2821/98/57~7!/3910~13!/$15.00
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mass ofmq'0.0120.0125, and this was taken to be cons
tent with the prediction of thes model analysis@1# for a
second-order transition which takes place atmq50, and
changes into a crossover atmqÞ0.

If the Nf52 transition is indeed to follow the predictio
of the effectives model, critical exponents for theNf52
system should agree with those of the O~4! Heisenberg
model in three dimensions. This point was first studied
Karsch @7#. Examining world data for the critical coupling
bc(mq) as a function of quark massmq , he concluded that
the dependence is consistent with a second-order scaling
havior with the O~4! critical exponents. This analysis ha
been extended in Ref.@8# in which various susceptibilities
were measured on an 8334 lattice at mq
50.075,0.0375,0.02, and critical exponents were extrac
from the quark mass dependence of the peak height of
ceptibilities. The results showed that the magnetic expon
was in fair agreement with the O~4! value, while that for the
thermal exponent exhibited a sizable deviation.

In these earlier analyses there are a number of resp
that deserve further investigations. First, the conclusion
the absence of a first-order transition atmq'0.01 from
finite-size scaling was based on a combination of finite-s
data from two groups@5,6# which employed slightly different
quark masses (mq50.0125@5# and 0.01@6#!. There is also a
suspicion that the simulation may not be long enough. I
clearly desirable to reexamine finite-size scaling behav
with a homogeneous data set generated under the same
lation conditions. Second, the method of second-order s
3910 © 1998 The American Physical Society
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57 3911SCALING STUDY OF THE TWO-FLAVOR CHIRAL . . .
ing analysis should be applicable only for sufficiently lar
lattice sizes to avoid finite-size effects. It is not clear if t
spatial size of 83 employed by Karsch and Laermann@8# is
sufficient, especially toward light quark masses. An ad
tional question is whether the range of quark massmq
50.07520.02 they explored is small enough for the tr
critical behavior to manifest in the susceptibilities. Thus
extension of their work toward larger spatial sizes a
smaller quark masses is undoubtedly desired.

In order to address these points we have carried out
simulations for the two-flavor chiral phase transition with t
Kogut-Susskind quark action, and systematically collec
data over a range of spatial sizes and quark masses
statistics higher than in the previous work. Our simulatio
have been made formq50.075, 0.0375, 0.02, and 0.01 o
lattices of size 8334, 12334, and 16334, accumulating
10 000 trajectories of the hybridR algorithm for each param
eter set. In this article we present details of the runs
results of our analyses on both finite-size and second-o
scaling behavior. The calculations have been performed
the Fujitsu VPP500/80 supercomputer at KEK.

A preliminary account of our results was reported in R
@9#. A similar study has been carried out by the Bielefe
group @10# with lattice sizes up to 16334 but keeping the
quark mass only tomq>0.02. The MILC Collaboration has
recently started simulations for small quark masses dow
mq50.008 employing lattices as large as 243 @11#.

In Sec. II we describe details of our simulation. In pa
ticular we explain our method for computing the disco
nected part of fermionic susceptibilities which is nontrivia
In Sec. III we discuss finite-size scaling analysis for a giv
quark mass. In Sec. IV analyses of exponents and sca
functions extracted from the quark mass dependence of
ceptibilities are presented. Conclusions of the present w
are given in Sec. V.

II. SIMULATION AND MEASUREMENTS

A. Simulation algorithm

The present study is carried out with the plaquette ac
for gluons and the Kogut-Susskind action for quarks. T
effective action is given by

Seff52
b

6 (
plaquette

Tr~Uplaquette!2
Nf

4
Tr ln@D~U !†D~U !#e ,

~1!

whereNf52, the subscripte means the even part, andD(U)
denotes the Kogut-Susskind quark operator

D~U !5mq1
1

2(m Dm~U !, ~2!

with

Dm~U !x,y5hxm~dx1m̂,yUxm2dx2m̂,yUym
† !. ~3!

We employ the standard hybridR algorithm to simulate the
system, adopting the same normalization of the step sizeDt
as in the original literature@12#. In the leap-frog update to
solve the molecular dynamics equations, link variables
i-
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assigned to half-integer time steps and conjugate momen
integer times. Inversion of the quark operator is made w
the conjugate gradient algorithm.

B. Observables and method of measurement

We consider local observables defined by

c̄c5
1

V(
x

c̄xcx , ~4!

c̄D0c5
1

V(
x,y

c̄xD0x,ycy , ~5!

Pt5
1

9V(
x

(
1< i<3

Tr~Ux4i !, ~6!

Ps5
1

9V(
x

(
1< i , j <3

Tr~Uxi j !,

~7!

V5
1

L3(
xW

VxW ,

VxW5
1

3
TrS )

xt51

Nt

Ux4D , ~8!

where V5L3
•Nt denotes the lattice volume of anL33Nt

lattice,D0 the temporal hopping term of the Kogut-Susski
operator as defined in Eq.~3!, andUxmn the plaquette in the
mn plane. In the course of our simulation, we measure th
quantities and the corresponding susceptibilities given by

xm5V@^~ c̄c!2&2^c̄c&2#, ~9!

x t, f5V@^~ c̄c!~c̄D0c!&2^c̄c&^c̄D0c&#, ~10!

x t,i5V@^~ c̄c!Pi&2^c̄c&^Pi&#, i 5s,t, ~11!

xe, f5V@^~ c̄D0c!2&2^c̄D0c&2#, ~12!

xe,i5V@^~ c̄D0c!Pi&2^c̄D0c&^Pi&#, i 5s,t,
~13!

xe,i j 5V@^Pi Pj&2^Pi&^Pj&#, i , j 5s,t, ~14!

xV5V@^V2&2^V&2#. ~15!

Calculation of the fermionic susceptibilitiesxm , x t, f , and
xe, f is nontrivial because of the presence of disconnec
quark loop contributions. Let us illustrate our procedure
xm . After quark contractions and correcting by powers
Nf /4 for normalization toNf flavors,xm is written

xm5xdisc1xconn, ~16!

xdisc5S Nf

4 D 2 1

V
@^~ TrD21!2&

2^ TrD21&2#, ~17!
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3912 57S. AOKI et al.
xconn52
Nf

4

1

V(
x,y

^Dx,y
21Dy,x

21&.

~18!

We employ the volume source method without gauge fix
@13# to evaluate the two parts. Let

Gx
a,b[(

y
~D21!x,y

a,b ~19!

be the quark propagator for unit source placed at ev
space-time site with a given colorb. Define

O15(
x,y

(
a,b

Gx
a,aGy

b,b , ~20!

O25(
x,y

(
a,b

Gx
a,bGy

b,a , ~21!

O35(
x

(
a,b

Gx
a,aGx

b,b , ~22!

O45(
x

(
a,b

Gx
a,bGx

b,a . ~23!

Up to terms which are gauge noninvariant, and hence va
on the average, we find

~ TrD21!251
9

8
O12

3

8
O22

1

8
O31

3

8
O4 , ~24!

(
x,y

Dx,y
21Dy,x

2152
3

8
O11

9

8
O21

3

8
O32

1

8
O4 .

~25!

Note thatO1 contains the connected contribution in additi
to the dominant disconnected part, and vice versa forO2.
The termsO3 and O4 represent contact contributions
which the source and sink points of the quark coincide.

To calculate the susceptibilityx t, f we need to replace on
of the volume source propagatorGx

a,b in Eqs. ~20!–~23! by
(D0G)x

a,b . Both propagators should be replaced in this w
for xe, f .

C. Choice of run parameters

The distribution of observables generated by the hybridR
algorithm suffers from systematic errors arising from a fin
molecular dynamics step sizeDt and a finite-stopping con
dition taken for the conjugate gradient inversion of the qu
operator. For analyses of critical properties of phase tra
tions, potential problems caused by these systematic e
are a shift of the critical couplingbc and a modification of
susceptibilities, in particular a change in the magnitude
the peak height of susceptibilities atb5bc . In order to ex-
amine these effects we carry out test runs on an 8334 lattice
at mq50.02.

Let us define a residualr of the conjugate gradient inver
sion algorithm applied for a source vectorb by
g

ry

sh

y

k
i-
rs

f

r[Auube2~D†Dx!euu2

3V
, ~26!

where, as in Eq.~1!, the subscripte means the even part. Th
choice of the factor 3V is motivated by the fact that the norm
of the residue vectoruube2(D†Dx)euu2 is proportional toV
5L3

•Nt for a Gaussian noise source employed for the
brid R algorithm.

To test effects of the stopping condition, we choose
approximate value of the critical couplingb55.282 formq
50.02, and generate 1000 trajectories of unit length wit
fixed step size ofDt50.03, varying the stopping conditio
from r 51022 to 1026. The time histories of the chiral orde
parameterc̄c for the runs are shown in Fig. 1. We obser
that a looser stopping condition leads to a smaller value
a larger magnitude of fluctuations ofc̄c. The results, how-
ever, are stable forr &102421025. In all of our production
runs we therefore take the condition given by

r ,1026. ~27!

Another possible measure of the stopping condition is
employ the ratio

r̃ 5
uube2~D†Dx!euu

uuxeuu
. ~28!

With a Gaussian noise source we expectuuxeuu2}c(mq)V
with the coefficient c(mq) increasing asmq becomes

FIG. 1. Time history of chiral order parameter for a series
values of the stopping condition on an 8334 lattice atmq50.02
andDt50.03.
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smaller. Thus our stopping condition is relatively tighter t
ward smaller quark masses compared to that given in te
of Eq. ~28!.

We examine systematic effects of the step size
carrying out runs of 10 000 trajectories of unit length f
the combinations (b,Dt)5(5.282,0.01), (5.284,0.014)
(5.284,0.02) with the stopping condition fixed atr 51026.

The critical couplingbc(Dt) estimated from the peak po
sition of the chiral susceptibilityxm , and its peak heigh
xm

max(Dt) are plotted in Figs. 2~a! and 2~b! as a function of
Dt2, where the standard reweighting technique@14# is em-
ployed to estimatebc(Dt) and xm

max(Dt). We observe that
the results are consistent with anO(Dt2) dependence theo
retically expected@12,15,16#. Since quark mass is expecte
to affect the systematic error in the combination (Dt/mq)2,
we parametrizebc(Dt) andxm

max(Dt) in the forma@11c~Dt/
mq)2] and find a55.2812(26),c50.0011(6) forbc(Dt)
and a514.1(1.2),c50.34(16) forxm

max(Dt). These values
suggest that choosingDt'mq/2 leads to an accuracy o
0.03%~or 0.0015 in magnitude! for bc and 9% forxm

max. We
think these accuracies to be sufficient compared to our
tistical errors, and adoptDt'mq/2 for our production runs.

D. Summary of runs

We carry out runs for the temporal lattice sizeNt54 at
the quark massesmq50.075,0.0375,0.02, and 0.01. For ea

FIG. 2. ~a! Critical coupling as a function of step size.~b! Peak
height of xm as a function of step size. Data are taken on an3

34 lattice atmq50.02 with r ,1026.
-
s

y

a-

quark mass we employ three spatial lattice sizes given
L58, 12 and 16. For each set (mq ,L) we choose a single
value ofb close to the critical coupling, which is selected b
preliminary short runs, and carry out a long simulation
10 000 trajectories of unit length starting from an order
configuration using the stopping condition as described
Sec. II C. Variation of observables as a function ofb is
calculated by the reweighting technique@14# from a single
run.

In applying the reweighting technique one may consid
an alternative procedure of making a number of shorter r
for a set of values ofb around bc . In practice we find
long-range fluctuations ofO(1000) trajectories toward
smaller quark masses and larger volumes, so that a sim
tion at a single parameter point is already quite compu
time intensive to get rid of these fluctuations. We therefo
adopt the approach of making a single long run at a w
chosen value ofb in the present work.

In Table I we list the values ofb where our runs are
carried out and the molecular dynamics step sizeDt used.
Two runs are made formq50.01 on a 12334 lattice since
the first run atb55.266 turns out to be predominantly in th
low-temperature phase. We collect time histories of the c
ral order parameterc̄c and their histograms in Fig. 3.

In all of the runs observables are calculated at every
jectory, discarding the initial 2000 trajectories of each ru
Jackknife analysis is carried out for the reminaing 8000 t
jectories to estimate errors. Examining the bin size of 4
and 800 we find that the magnitude of errors is stable,
we adopt 800 for the bin size of our error estimations.

III. ANALYSIS OF SPATIAL VOLUME DEPENDENCE

A. Finite-size scaling analysis

We start our analysis with an examination of the spa
volume dependence of susceptibilities for each quark m
The b dependence of susceptibilities, evaluated with the
weighting technique for eachmq and spatial sizeL, is illus-
trated for the chiral and Polyakov susceptibilitiesxm andxV

in Fig. 4. Let us denote bybc and xmax the position and
height of the peak of a susceptibility. Our numerical resu
for these quantities are summarized in Table II for each
the susceptibilities defined by Eqs.~9!–~15!. As typical ex-
amples, we plotxm

max, x t, f
max, andxV

max as a function of spatia
volume L3 in Fig. 5. Two points formq50.01 on a 123

lattice represent two runs at these parameters. The agree
between the two points justifies the robustness of the
weighting method: the method works well even if the sim

TABLE I. Parameters of our runs. For each parameter po
10 000 trajectories are generated with the stopping conditior
51026 for the conjugate gradient solver.

Ns mq50.075 0.0375 0.02 0.01
Dt50.05 0.02 0.01 0.005

8 b55.35 5.306 5.282 5.266
12 b55.348 5.306 5.282 5.266

5.2665
16 b55.345 5.306 5.282 5.266
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FIG. 3. Time history ofc̄c and histograms of the runs.
t
es

th
fo
n

on

f a

le
a
ica-
lation is carried out in one side of the two phases, i.e., ab
off the critical value. The behavior of other susceptibiliti
are similar as one may find from Table II.

For the heavier quark masses ofmq50.075 and 0.0375
the peak height of the susceptibilities increases little over
sizesL58216, showing that a phase transition is absent
these masses. Formq50.02, a significant increase is see
betweenL58 and 12. The increase, however, does not c
e
r

-

tinue beyondL512, with the peak height forL516 consis-
tent with that forL512. We then conclude an absence o
phase transition also formq50.02. The histogram shown in
Fig. 3~c! provides further support for this conclusion; whi
the histogram for the sizeL58 is broad and even hint at
possible presence of a double peak structure, such an ind
tion for metastability is less visible forL512, and a single
peak structure becomes quite manifest forL516.
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For mq50.01 the peak height also increases betweeL
58 and 12. Furthermore, the increase continues up tL
516. In fact the rate of increase is consistent with a lin
behavior in volume, which is expected for a first-order pha
transition.

We think, however, that caution must be exercised
draw a conclusion solely from Fig. 5. Comparing the tim
histories ofc̄c for the three lattice sizesL58, 12, and 16 in
Fig. 3~d!, we observe that a flip-flop behavior between tw
different values ofc̄c is most distinct for the smallest lattic
size L58, and the time histories for the larger lattice siz
L512 and 16 are dominated more by irregular patterns,
width of fluctuations becoming smaller as the size increa
These features are also reflected in the histograms. A dou
peak distribution, clearly seen forL58, is less evident for
L512 and barely visible forL516. Moreover, the width of
the distribution is narrower for larger lattice sizes. The
trends show a marked contrast with the case of the first-o
deconfining phase transitions of the pure SU~3! gauge theory
and of four-flavor QCD, where a flip-flop behavior in th
time history and a double-peak distribution in histogra
become progressively pronounced toward larger spatial
umes, for instance, as is seen in Fig. 1 of Ref.@17#.

The observations above indicate that the increase of
ceptibilities seen formq50.01 is due to insufficient spatia

FIG. 4. ~a! Chiral susceptibilityxm as a function ofb. ~b! Same
for the Polyakov susceptibilityxV . For L512 atmq50.01 the run
with b55.266 is employed.
r
e

o

s
e
s.
le-

e
er

s
l-

s-

volume, which is similar to an increase betweenL58 and 12
for mq50.02 for which the susceptibilities level off forL
516. In order to make a comparison of volume depende
for different quark masses, we need to normalize the lat
size in terms of a relevant length scale, which may be ta
to be the pion correlation lengthjp51/mp at zero tempera-
ture. Results ofmp precisely at the values ofb and mq
where our simulations are made are not available. The MI
Collaboration, however, has given a parametrization of av
able data forp andr meson masses as a function ofb and
mq @16#, from which we findjp'3.0 for mq50.02 andjp

'4.4 for mq50.01 at the respective critical coupling
Hence the sizeL58 for mq50.02 roughly corresponds to

FIG. 5. Peak height of the susceptibilityxm , x t, f , andxV as a
function of spatial volumeL3.
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TABLE II. Peak positionbc and peak heightxmax of various susceptibilities for each quark massmq and
spatial lattice sizeL.

L58 L512 L516
mq bc xm

max bc xm
max bc xm

max

0.0750 5.3494~17! 5.9~0.3! 5.3477~14! 6.3~0.6! 5.3443~18! 6.3~0.7!
0.0375 5.3073~18! 10.5~0.5! 5.3099~16! 11.6~1.6! 5.3072~7! 14.1~2.2!
0.0200 5.2831~23! 14.7~1.0! 5.2823~8! 24.6~3.1! 5.2819~5! 22.9~2.2!
0.0100 5.2665~20! 24.4~1.6! 5.2681~7! 44.4~6.2! 5.2657~4! 63.9~12.3!
0.0100 5.2665~6! 38.0~3.9!
mq bc x t, f

max bc x t, f
max bc x t, f

max

0.0750 5.3484~17! -1.97~0.13! 5.3472~12! -2.08~0.24! 5.3441~14! -2.17~0.24!
0.0375 5.3064~19! -2.76~0.16! 5.3086~14! -3.20~0.43! 5.3069~7! -4.11~0.72!
0.0200 5.2821~18! -3.23~0.27! 5.2819~9! -5.82~0.77! 5.2817~5! -5.71~0.56!
0.0100 5.2658~20! -4.77~0.39! 5.2678~7! -9.02~1.31! 5.2655~4! -14.05~3.25!
0.0100 5.2661~7! -8.20~0.89!
mq bc x t,s

max bc x t,s
max bc x t,s

max

0.0750 5.3483~16! -0.71~0.05! 5.3474~14! -0.76~0.10! 5.3441~16! -0.80~0.11!
0.0375 5.3060~19! -1.04~0.07! 5.3085~19! -1.15~0.17! 5.3069~8! -1.48~0.27!
0.0200 5.2816~22! -1.24~0.11! 5.2819~9! -2.22~0.29! 5.2816~6! -2.12~0.22!
0.0100 5.2656~22! -1.91~0.15! 5.2679~7! -3.70~0.57! 5.2656~4! -5.62~1.17!
0.0100 5.2661~7! -3.18~0.39!
mq bc x t,t

max bc x t,t
max bc x t,t

max

0.0750 5.3482~16! -0.79~0.06! 5.3473~14! -0.84~0.11! 5.3439~17! -0.89~0.12!
0.0375 5.3061~19! -1.16~0.08! 5.3088~22! -1.29~0.22! 5.3069~8! -1.68~0.32!
0.0200 5.2817~22! -1.40~0.12! 5.2819~9! -2.53~0.33! 5.2816~6! -2.41~0.25!
0.0100 5.2656~21! -2.12~0.17! 5.2679~7! -4.09~0.63! 5.2656~4! -6.32~1.35!
0.0100 5.2661~7! -3.56~0.42!
mq bc xe, f

max bc xe, f
max bc xe, f

max

0.0750 5.3480~17! 1.31~0.06! 5.3462~16! 1.41~0.10! 5.3441~13! 1.38~0.09!
0.0375 5.3062~25! 1.53~0.06! 5.3078~15! 1.55~0.11! 5.3065~7! 1.96~0.25!
0.0200 5.2825~19! 1.60~0.11! 5.2813~13! 2.09~0.18! 5.2815~10! 2.18~0.18!
0.0100 5.2626~31! 2.14~0.19! 5.2676~9! 2.39~0.34! 5.2656~4! 3.82~0.84!
0.0100 5.2657~6! 2.58~0.31!
mq bc xe,s

max bc xe,s
max bc xe,s

max

0.0750 5.3478~17! 0.236~0.021! 5.3470~14! 0.259~0.040! 5.3441~15! 0.271~0.041!
0.0375 5.3058~21! 0.276~0.021! 5.3080~18! 0.321~0.050! 5.3067~8! 0.438~0.088!
0.0200 5.2813~20! 0.279~0.031! 5.2816~9! 0.538~0.076! 5.2815~7! 0.530~0.059!
0.0100 5.2652~21! 0.399~0.032! 5.2677~7! 0.754~0.120! 5.2655~4! 1.245~0.314!
0.0100 5.2658~7! 0.715~0.089!
mq bc xe,t

max bc xe,t
max bc xe,t

max

0.0750 5.3477~17! 0.302~0.025! 5.3470~14! 0.321~0.043! 5.3439~16! 0.335~0.045!
0.0375 5.3059~20! 0.351~0.023! 5.3082~19! 0.399~0.060! 5.3067~8! 0.539~0.100!
0.0200 5.2812~19! 0.358~0.032! 5.2816~9! 0.659~0.085! 5.2815~7! 0.642~0.066!
0.0100 5.2652~21! 0.487~0.039! 5.2677~7! 0.871~0.133! 5.2655~4! 1.440~0.362!
0.0100 5.2658~7! 0.834~0.098!
mq bc xe,ss

max bc xe,ss
max bc xe,ss

max

0.0750 5.3478~15! 0.141~0.008! 5.3474~14! 0.149~0.015! 5.3443~14! 0.159~0.019!
0.0375 5.3053~21! 0.161~0.010! 5.3075~22! 0.170~0.020! 5.3067~9! 0.212~0.033!
0.0200 5.2808~23! 0.162~0.013! 5.2816~9! 0.261~0.028! 5.2814~7! 0.252~0.023!
0.0100 5.2650~22! 0.214~0.016! 5.2678~8! 0.369~0.053! 5.2655~5! 0.557~0.111!
0.0100 5.2658~7! 0.331~0.040!
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TABLE II. ~Continued!.

L58 L512 L516
mq bc xe,st

max bc xe,st
max bc xe,st

max

0.0750 5.3479~15! 0.135~0.010! 5.3474~14! 0.143~0.018! 5.3441~16! 0.152~0.021!
0.0375 5.3055~21! 0.155~0.010! 5.3079~24! 0.166~0.024! 5.3067~9! 0.218~0.039!
0.0200 5.2809~23! 0.157~0.014! 5.2816~10! 0.272~0.032! 5.2814~6! 0.262~0.026!
0.0100 5.2651~22! 0.214~0.018! 5.2678~7! 0.385~0.058! 5.2655~5! 0.600~0.127!
0.0100 5.2658~7! 0.345~0.043!
mq bc xe,tt

max bc xe,tt
max bc xe,tt

max

0.0750 5.3477~16! 0.168~0.012! 5.3473~13! 0.175~0.020! 5.3438~18! 0.186~0.024!
0.0375 5.3055~20! 0.189~0.011! 5.3083~27! 0.202~0.030! 5.3067~9! 0.265~0.046!
0.0200 5.2809~22! 0.194~0.015! 5.2816~10! 0.326~0.036! 5.2814~6! 0.314~0.030!
0.0100 5.2650~22! 0.254~0.019! 5.2678~7! 0.442~0.065! 5.2655~5! 0.689~0.146!
0.0100 5.2659~7! 0.403~0.047!
mq bc xV

max bc xV
max bc xV

max

0.0750 5.3479~19! 4.21~0.28! 5.3462~13! 4.52~0.51! 5.3439~14! 4.63~0.54!
0.0375 5.3064~20! 4.10~0.25! 5.3087~15! 4.53~0.57! 5.3068~7! 6.05~1.03!
0.0200 5.2823~20! 3.73~0.32! 5.2819~9! 6.30~0.75! 5.2817~5! 6.17~0.62!
0.0100 5.2655~22! 4.45~0.34! 5.2677~8! 8.06~1.17! 5.2655~4! 12.57~3.00!
0.0100 5.2660~7! 7.21~0.78!
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L512 for mq50.01, andL512 to L516. Comparing the
histograms formq50.02 and 0.01 which are in correspo
dence in this sense, we find that they are similar not only
shape but also in the trend that a double peak type distr
tion changes toward that of a single peak for larger sizes

A more quantitative comparison is made in Fig. 6 whe
we plot the dimensionless combinationxm

maxmp
2 against

Lmp . Data points for various quark masses and spatial s
roughly fall on a single curve, and the increase observed
to L516 for mq50.01 does not stand out as particular
large. It is quite plausible that the peak height formq
50.01 levels off if measured on a larger lattice, e.g.,L
524.

While a definitive conclusion has to await simulations
larger spatial sizes, our examinations lead us to conclude
a first-order phase transition is absent also atmq50.01.

B. Comparison with previous studies

Finite-size analyses similar to those reported here w
previously carried out by two groups@5,6#. In Ref. @5# runs

FIG. 6. Peak height of chiral susceptibilityxm as a function of
spatial sizeL, both normalized by zero-temperature pion massmp .
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of 4000210 000 trajectories of unit length were made for t
spatial sizes 63, 83, and 123 at mq50.0125 and 0.025 using
the step size ofDt50.02 for both cases. In Ref.@6# a larger
spatial lattice of 163 was employed, and 2500 trajectorie
were generated at mq50.01(Dt50.0078) and mq
50.025(Dt50.01). The quantities examined in these stu
ies were the Polyakov susceptibilityxV and the pseudochira
susceptibility defined by

xc[VF K S 1

3
j†D21j D 2L 2 K 1

3
j†D21j L 2G , ~29!

wherej is a Gaussian noise vector.
We also calculate the pseudochiral susceptibility in

present work. In Fig. 7~a! previous data for this quantity
from Refs.@5,6# are compared with the new results. A sim
lar comparison for the Polyakov loop susceptibility is ma
in Fig. 7~b!. We observe that the data are consistent for
sizesL58 andL512. A reasonable agreement is also se
between the present simulation and the earlier results foL
516 at mq50.02520.02. At the smallest quark mass o
mq50.01, however, the result from Ref.@6# is by a factor
223 smaller compared to our values.

A technical point to note in the calculation of Ref.@6# for
xc is that it used a multiple set of noise vectors for ea
configuration in contrast to a single vector employed in R
@5# and the present work. This, however, would not be
main source of the discrepancy since the result of Ref.@6# for
mq50.025 is in agreement with the other calculations. T
difference also cannot explain the discrepancy in the Po
kov susceptibility. We think it likely that the underestima
of Ref. @6# originates from a shorter length of their run. In
deed dividing our full set of trajectories atmq50.01 andL
516 into subsets of 2500 each, we find susceptibilities
duced by a similar factor for some of the subsets owing t
long-range fluctuations overt;O(1000).
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IV. ANALYSIS OF QUARK MASS DEPENDENCE

A. Scaling laws and exponents

We have seen in the previous section that our finite-s
data do not show clear evidence for a first-order phase t
sition down tomq50.01. In the present section we assum
that the two-flavor chiral transition is of second-order whi
takes place atmq50, and turns into a smooth crossover f
mqÞ0. Various scaling laws follow from this assumption f
the quark mass dependence of the susceptibilities. We
lyze to what extent our data support the expected sca
laws. In particular, we examine whether the scaling ex
nents agree with the O~4! values as predicted by the effectiv
sigma model analysis@1#, or at least the O~2! values corre-
sponding to exact U~1! chiral symmetry of the Kogut-
Susskind quark action used in our simulations.

The scaling laws follow from a well-known
renormalization-group argument which predicts that
leading singular part of the free energy per unit volume
the scaling form

f s~ t,h!5hd/yhf~ th2yt /yh!, ~30!

where t and h are reduced temperature and quark massyt
andyh are the thermal and magnetic critical exponents, a
d53 is the space dimension. We take the reduced varia
to be

FIG. 7. ~a! Peak height of pseudochiral susceptibilityxc as a
function ofmq for various spatial volumes.~b! Same for the Polya-
kov susceptibilityxV . Previous results are plotted with open sym
bols.
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t5bc~mq!2bc~0!, ~31!

h5mq , ~32!

where bc(mq)56/gc
2(mq) denotes the pseudocritical cou

pling defined as the peak position of a susceptibility for
given quark massmq . The choice forh corresponds toh
}mq /T up to a numerical factor of 4. The scaling law for th
pseudo critical coupling is then given by

bc~mq!5bc~0!1cgmq
zg ~33!

with

zg5
yt

yh
. ~34!

One can define three types of susceptibilities depending
the combination of variables taken for the second deriva
of the free energy. The (h,h) combination corresponds to th
chiral susceptibilityxm , and we find the scaling form of its
peak height to be

TABLE III. Critical exponents extracted by fits of critical cou
pling and peak height of susceptibilities for fixed spatial sizeL as
compared to O~2!, O~4! @18–20#, and mean-field~MF! values.

O~2! O~4! MF L58 L512 L516

zg 0.60 0.54 2/3 0.70~11! 0.74~6! 0.64~5!

zm 0.79 0.79 2/3 0.70~4! 0.99~8! 1.03~9!

zt 0.39 0.33 1/3
zt, f 0.42~5! 0.75~9! 0.78~10!

zt,s 0.47~5! 0.81~10! 0.82~12!

zt,t 0.47~5! 0.81~9! 0.83~12!

ze -0.01 -0.13 0
ze, f 0.21~4! 0.28~7! 0.38~7!

ze,s 0.25~6! 0.56~11! 0.58~13!

ze,t 0.22~6! 0.52~10! 0.55~12!

ze,ss 0.18~5! 0.46~8! 0.43~10!

ze,st 0.20~5! 0.51~9! 0.50~12!

ze,tt 0.19~5! 0.48~9! 0.47~11!

FIG. 8. Pseudocritical couplingbc(mq) as a function ofmq

determined from the peak position of susceptibilityxm . Lines are
fits to Eq.~33!.
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xm
max~mq!5cmmq

2zm , ~35!

where

zm522
d

yh
. ~36!

The t derivative generates susceptibilities involving the e
ergy operatore. Decomposinge into the gluon terms tha
depend on the spatial and temporal plaquette averages
the quark term proportional toc̄D0c, we expect

x t,i
max~mq!5ct,i mq

2zt,i , i 5 f ,s,t, ~37!

FIG. 9. Peak height of susceptibilityxm , x t, f , and xe,t as a
function of mq for fixed spatial sizeL. Lines are fits to a single
power x i}m2zi. Dashed lines indicate slope expected for O~2! or
O~4! exponents.
-

nd

xe,i
max~mq!5ce,i mq

2ze,i , i 5 f ,s,t, ~38!

xe,i j
max~mq!5ce,i j mq

2ze,i j , i , j 5s,t.
~39!

For these susceptibilities only the leading exponent need
be constrained by the thermal and magnetic exponents,

zt511
yt

yh
2

d

yh
, zt5 maxi 5 f ,s,t$zt,i%, ~40!

ze5
2yt

yh
2

d

yh
,

ze5 maxi 5 f ,s,t, j ,k5s,t$ze,i ,ze, jk%. ~41!

Since all the exponents are expressed in terms ofyt andyh ,
two relations exist among the four exponentszg ,zm ,zt , and
ze , which may be taken to be

zg1zm5zt11, ~42!

2zt2zm5ze . ~43!

B. Results for exponents

Our study of exponents is based on the results for
peak position and height of various susceptibilities summ
rized in Table II. Formq50.01 andL512 two runs are
made. We present results employing the first run carried
at b55.266, since the exponents obtained with the sec
run are consistent with those with the first run.

Let us start with an examination of the exponentzg that
governs the scaling behavior of the critical couplingbc(mq).
In Fig. 8 we plotbc(mq) defined as the peak position of th
chiral susceptibilityxm . Solid lines represent fit of the dat
to the form ~33!, which reasonably go through the da
points. Results forzg are listed in the first row of Table III.
Other susceptibilities yield results consistent with those fr
xm well within the errors.

We observe that the values ofzg do not exhibit clear size
dependence, and are in agreement with the theoretical
dictions based on O~2! or O~4! symmetry within one to two
standard deviations. As expected from this observation
reasonable fit is also obtained fixingzg to either the O~2! or
O~4! exponent.

Let us turn to the exponents determined from peak he
of the susceptibilities. In Fig. 9 we plot the quark mass d
pendence of peak height for the representative suscept
ties. Exponents are extracted by fits employing a scaling
havior with a single power as given in Eqs.~35!, ~37!–~39!.
Results are summarized in Table III. Forzt and ze various
operator combinations yield results which are in mutu
agreement within estimated errors.

We observe that all the exponentszm ,zt , andze exhibit a
sizable increase betweenL58 and 12, and the larger value
stay forL516. Comparing the exponents with those of O~2!,
O~4!, or mean-field~MF! predictions, we find that an appa
ent agreement ofzm and zt for the smallest sizeL58 be-
comes lost forL>12. The magnitude of discrepancy
smallest forzm , for which we find a 10–20 % larger valu
amounting to a one to two standard deviation difference.
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zt the discrepancy is by a factor two forL512 and 16. The
disagreement is even more pronounced for the exponenze
for which a value in the rangeze'0.520.6 is obtained in
contrast to negative values for O~2! and O~4!.

One can ask how inclusion of subleading singularit
and/or analytic terms in the fitting function modifies the r
sults above. A thorough examination of this question is d
ficult with our limited data sets, and we restrict ourselves
the simplest case where a constant term is included in the
x i

max(mq)5ci01ci1mq
2zi . The points to be examined are~i!

how the values of exponents change, and~ii ! whether rea-
sonable fits are obtained with the exponents fixed to theo
cally expected values.

Concerning~i!, the fitted values ofzm andzt for L58 and
12 are consistent with the results of single-power fits, wh
those for L516 become larger and take a valuez'1.5
60.5. Forze large values of such a magnitude are obtain
for all three sizesL58, 12, and 16 with similar errors. Thu
adding a constant term does not alleviate the discrepanc

Turning to ~ii !, the quality of fit significantly worsens
when one fixes the value of exponents to the theoret
value. Values ofx2 per degree of freedom increase to
23 as compared to 0.521 for the single-power fit withzi as
a free parameter, and the fit generally misses the point for
smallest quark massmq50.01 forL516. In particular the fit
for xe accommodates a negative value ofze only by forcing
the coefficientce,1 in front of the power term to a negativ
value of a magnitude similar to that of the constant termce,0 .
Altogether fits with theoretical values of exponents do n
appear any more reasonable than fits with a single powe

These examinations lead us to conclude that the ex
nents do show a trend of deviation from the O~2! or O~4!
values, at least in the range of quark massmq50.075
20.01 explored in our simulation.

Let us recall from Sec. IV A that the four exponentszg ,
zm , zt andze should satisfy two consistency equations~42!
and~43!. In Fig. 10 we plot the two sides of the hyperscali
equations using the exponents obtained with a single po
fit in Table III. For zt and ze we take averages over th
channels as the exponents are mutually consistent. We
serve that the hyperscaling relations are well satisfied
each spatial volume even though the values of individ

FIG. 10. Consistency check of exponents for a given spatial
L. Horizontal lines indicate values expected for O~2! exponents.
Values for O~4! are similar.
s
-
-
o
t:

ti-

e

d

.

al

he

t

o-

er

b-
r
l

exponents change from volume to volume and deviate fr
theoretical expectations. This implies that our susceptibi
data are consistent with a second-order transition atmq50
governed by the magnetic and thermal operators.

Given this result, we may estimate the magnetic and th
mal exponents through ax2 fit of the four exponentszg,m,t,e
to the form ~34!, ~36!, ~40!, ~41!. Using average values o
results in Table III for zt and ze , we find (yh ,yt)
5@2.31(7),1.74(5)#(L58), @3.02(19),2.24(12)#(L512),
and @3.31(25),2.22(15)#(L516), as compared to
(2.48,1.49) for O~2! symmetry and (2.49,1.34) for O~4!
symmetry@18–20#.

C. Results for scaling function

Defining a scaling variable

x5@bc~mq!2bc~0!#mq
2zg , ~44!

one expects the singular part of the susceptibility to take
functional form

xm~b,mq!5mq
2zmFm~x!. ~45!

We plot in Fig. 11 two estimates of the scaling functio

e

FIG. 11. Scaling function Fm(x) calculated by
xm~b,mq)~mq/0.01)zm as a function of x5@bc(mq)2bc(0)#
3(mq/0.01)2zg for L516 using ~a! measured valueszg

50.6447,zm51.033,bc(0)55.2353, and ~b! O~4! values zg

50.538 andzm50.794 and measured valuebc(0)55.2253.
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Fm(x) calculated asxm(b,mq)(mq/0.01)zm using data forL
516: in ~a! we employ the measured valueszg50.6447,
zm51.033,bc(0)55.2353, and in~b! we take the O~4! val-
ues@20# for the exponentszg50.538,zm50.794 and substi-
tute the valuebc(0)55.2253 obtained with a fit ofbc(mq)
with zg fixed to the O~4! value. Similar to the experienc
with fits of peak height in Sec. IV B, we find that scaling
reasonable with the use of the measured exponents. Th
however, worsens if the O~4! exponents are employed; i
particular the curve for the smallest quark massmq50.01
deviates largely from the rest.

V. CONCLUSIONS

In this article we have presented results of our analysi
the two-flavor chiral phase transition with the Kogu
Susskind quark action on anNt54 lattice. By studying the
spatial volume dependence of various susceptibilities,
have confirmed the conclusion of previous investigatio
@5,6# that the transition is a smooth crossover formq>0.02.
At mq50.01 the susceptibilities exhibit an almost linear i
crease in spatial volume between 83 and 163 lattices, which
contradicts the results of previous work@6#, and may appea
to be consistent with a first-order phase transition. Howe
examination of time histories and histograms of observab
and in particular, a rescaling of spatial size in terms of
zero-temperature pion mass strongly suggests that the li
increase is a transient phenomenon arising from an ins
cient spatial size. It is our present conclusion that there is
evidence indicating a first-order transition down tomq
50.01.

We have also analyzed how susceptibilities depend on
quark mass. The pattern of critical exponents we have
tained is consistent with the existence of a second-o
phase transition atmq50, which is governed by a
renormalization-group fixed point with two relevant oper
tors, the energy and magnetization operators. The expon
however, do not agree with O~2!, O~4!, or mean-field theory
predictions. This means that the theoretical argument fo
second order phase transition from the chirals model re-
mains unjustified in the present work.
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A disagreement with the O~4! values may not come as
surprise since flavor symmetry breaking effects of the Kog
Susskind quark action is quite large atb'5.3 where the
transition is located forNt54. Indeed masses of non
Nambu-Goldstone pions are closer to those ofr meson,
rather than those of the Nambu-Goldstone pion, for th
values ofb.

Numerically, the O~2! values for exponents are close
those for O~4!. The deviation from the O~2! values is theo-
retically more puzzling for several reasons:~i! O~2! is an
exact symmetry group of the Kogut-Susskind action for a
lattice spacing,~ii ! this symmetry is preserved under the a
gorithmic expedient of taking a square root of the qua
determinant adopted in the hybridR algorithm, and~iii ! the
susceptibilityxm is precisely the second derivative of fre
energy with respect to the quark mass which is the conjug
field of the O~2! order parameter. Thus, if the two-flavo
system simulated by the hybridR algorithm undergoes a
second-order transition, we expect the O~2! values of expo-
nents to emerge toward the chiral limit.

The smallest quark massmq50.01 we have explored is
quite small atb'5.3, corresponding tomp /mr'0.19 which
is close to the experimental value of 0.18. It is possib
however, that the critical region where susceptibilities e
hibit the true scaling behavior is located even nearer to
chiral limit. If this is the origin of the discrepancy, establis
ing the universality nature of the two-flavor transition for th
Kogut-Susskind quark action will require further simulatio
toward substantially smaller quark masses and necess
much larger spatial lattices.
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