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We report on a study of the two-flavor finite-temperature chiral phase transition employing the Kogut-
Susskind quark action and the plaquette gluon action in lattice QCD for a latticeNyitd temporal size.
Hybrid R simulations of 16 trajectories are made at quark massesng# 0.075,0.0375,0.02,0.01 in lattice
units for the spatial sizes®812%, and 16. The spatial size dependence of various susceptibilities confirm the
previous conclusion of the absence of a phase transition down,te0.02. At m;=0.01 an increase of
susceptibilities is observed up to the largest volumeeblored in the present work. We argue, however, that
this increase is likely to be due to an artifact of too small a lattice size and it cannot be taken to be the evidence
for a first-order transition. Analysis of critical exponents estimated from the quark mass dependence of sus-
ceptibilities shows that they satisfy hyperscaling consistent with a second-order transition locaige Gat
The exponents obtained from larger lattice, however, deviate significantly from both tho§®) ofvBich is the
exact symmetry group of the Kogut-Susskind action at finite lattice spacing, and tho$é) @&@ected from
an effectivec model analysis in the continuum lim{{S0556-282(98)04107-1

PACS numbgs): 11.15.Ha, 12.38.Gc, 12.38.Mh, 12.39.Fe

[. INTRODUCTION mass ofm,~0.01-0.0125, and this was taken to be consis-
tent with the prediction of ther model analysid1] for a

The nature of the finite-temperature chiral phase transitiosecond-order transition which takes placenaj=0, and
has been pursued using lattice QCD over many years. Thehanges into a crossover @t # 0.
commonly adopted simplification is to approximate the real If the N;=2 transition is indeed to follow the prediction
world with N¢ flavors of degenerate quarks. Theoretical ar-of the effectiveoc model, critical exponents for thB;=2
guments[1] based on an effective model that preserves system should agree with those of thg4D Heisenberg
chiral symmetry of QCD suggest the order of the transitionmodel in three dimensions. This point was first studied by
changing from first to probably second s decreases from Karsch[7]. Examining world data for the critical coupling
N¢=3 to N¢y=2, which is a reasonably close approximation 3.(m,) as a function of quark mass,, he concluded that
to reality. the dependence is consistent with a second-order scaling be-

Lattice QCD simulations with the Kogut-Susskind quark havior with the @4) critical exponents. This analysis has
action have shown that the transition is indeed of first ordebeen extended in Ref8] in which various susceptibilities
for N;=4 [2-5]. There are indications, though much lesswere measured on an 384 lattice at my
extensive, that thdl;=3 transition is also of first ord¢6]in ~ =0.075,0.0375,0.02, and critical exponents were extracted
agreement with the theoretical expectation. A physically im-from the quark mass dependence of the peak height of sus-
portant case ofl;=2, on the other hand, has turned out to beceptibilities. The results showed that the magnetic exponent
more elusive. In Ref[5] a finite-size scaling analysis was was in fair agreement with the(@ value, while that for the
attempted at quark masseg=0.025 and 0.0125 in lattice thermal exponent exhibited a sizable deviation.
units for a temporal lattice size &f;=4 employing the spa- In these earlier analyses there are a number of respects
tial sizes 6, 82, and 12. While the results clearly confirmed that deserve further investigations. First, the conclusion on
that theNy=2 transition is much weaker than that fbl; ~ the absence of a first-order transition m,~0.01 from
=4, a first-order transition could not be quite excluded sincdinite-size scaling was based on a combination of finite-size
various susceptibilities exhibited some increase with spatiadlata from two groupfbs,6] which employed slightly different
volume up to 13. Simulations on a 16<4 lattice atm, quark massesnf,=0.0125[5] and 0.01[6]). There is also a
=0.025 and 0.01 carried out by the Columbia grd@  suspicion that the simulation may not be long enough. It is
showed, however, that the susceptibilities flatten off betweewlearly desirable to reexamine finite-size scaling behavior
12% and 16 spatial sizes. The combined results led to thewith a homogeneous data set generated under the same simu-
conclusion that a phase transition is absent down to the quathtion conditions. Second, the method of second-order scal-
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ing analysis should be applicable only for sufficiently largeassigned to half-integer time steps and conjugate momenta to
lattice sizes to avoid finite-size effects. It is not clear if theinteger times. Inversion of the quark operator is made with
spatial size of 8 employed by Karsch and Laermaf@] is  the conjugate gradient algorithm.
sufficient, especially toward light quark masses. An addi-
tional question is whether the range of quark masg B. Observables and method of measurement
=0.075-0.02 they explored is small enough for the true
critical behavior to manifest in the susceptibilities. Thus an
extension of their work toward larger spatial sizes and 1.
smaller quark masses is undoubtedly desired. Y= \—/E Py (4)
In order to address these points we have carried out new X
simulations for the two-flavor chiral phase transition with the 1
Kogut-Susskind quark action, gnd systematically coIIecte_d YDo= _2 UDoxyiby (5)
data over a range of spatial sizes and quark masses with Viy
statistics higher than in the previous work. Our simulations
have been made fan,=0.075, 0.0375, 0.02, and 0.01 on 1 >
lattices of size 8x4, 12x4, and 18x4, accumulating P=ov 15
10 000 trajectories of the hybrid algorithm for each param-
eter set. In this article we present details of the runs and 1
results of our analyses on both finite-size and second-order Pe=3v > Tr(Uyy),
scaling behavior. The calculations have been performed on x 1=i<]=3 @
the Fujitsu VPP500/80 supercomputer at KEK.
A preliminary account of our results was reported in Ref. 1
[9]. A similar study has been carried out by the Bielefeld a==> q;,
group [10] with lattice sizes up to %<4 but keeping the L35
quark mass only tan,=0.02. The MILC Collaboration has
recently started simulations for small quark masses down to 1 ( Ne )

We consider local observables defined by

Tr(Uyai), (6)

my=0.008 employing lattices as large as’241]. Q=3 Tr
In Sec. Il we describe details of our simulation. In par-

ticular we explain our method for computing the discon-\here v=L3.N, denotes the lattice volume of drPx N,

nected part of fermionic susceptibilities which is nontrivial. |atice, D, the temporal hopping term of the Kogut-Susskind

In Sec. Il we discuss finite-size scaling analysis for a give_”operator as defined in E¢8), andU,,, the plaquette in the

quark mass. In Sec. IV analyses of exponents and scaling, pjane. In the course of our simulation, we measure these

functions extracted from the quark mass dependence of SUgyantities and the corresponding susceptibilities given by
ceptibilities are presented. Conclusions of the present work

H Ux4

Xe=1

®

are given in Sec. V. Xm= V()% = (0)°), ©
Il. SIMULATION AND MEASUREMENTS Xet= V() (D oh) ) — () (Do) ], (10)
A. Simulation algorithm — — ]
The present study is carried out with the plaquette action Xui = VI P) = (Pl =0, (1)
for gluons and the Kogut-Susskind action for quarks. The — —
effective action is given by Xe,t=VI{(#Do1h)?) = (¥Do¥h)?], (12)
N =V[{((yDoth) Py — (yDop)(P))], i=o0,7,
Seﬁ:_é E Tr(UpIaquetta__fTr In[D(U)TD(U)]e, Xe,i [<(‘// 0‘//) |> (lﬂ o¢>< |>] g,T (13)
6plaquette 4
1 .
D e =VIPPY—(PYPY], ii=o.r, 14
whereN; =2, the subscript means the even part, abjU) _ 2 2
denotes the Kogut-Susskind quark operator xa=V(Q9)—(Q)"]. (15)
1 Calculation of the fermionic susceptibilitieg,, x;¢, and
D(U)=my+ =>, D,(U), (2)  Xer is nontrivial because of the presence of disconnected
9" 5 2 ’ oo :
s quark loop contributions. Let us illustrate our procedure for

xm- After quark contractions and correcting by powers of

with N;/4 for normalization toN; flavors, x,, is written
- - - ut
D,L(U)x,y_ 7]x,u( 5x+,u,yUx,u_ 5X—;L,yUy,u,)' ) Xm= XdiscT Xconns (16)
We employ the standard hybrR algorithm to simulate the N¢\21 1
system, adopting the same normalization of the step/size Xdisc™ | 4 v[(( TrD™)%)

as in the original literatur¢12]. In the leap-frog update to
solve the molecular dynamics equations, link variables are —(TrD~1)?], a7
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N 1 1
Xconn— — vazy <Dx,)]/-Dy,>% :
(18)

We employ the volume source method without gauge fixing
[13] to evaluate the two parts. Let

GaP=> (D Hay (19
y

be the quark propagator for unit source placed at every
space-time site with a given colbr. Define

0,=2> > G&GP®, (20)
X,y a,b
0,=> > G2°GP2, (21)
X,y a,b
05=2 >, G3°G;”, (22
X a,b
0.1 B P RPN
0,=> >, G&bgha, (23 0 200 400 600 800 1000
X a,b T
Up to terms which are gauge noninvariant, and hence vanish FIG. 1. Time history of chiral order parameter for a series of
on the average, we find values of the stopping condition on arf>84 lattice atm,=0.02
' andA7=0.03.
TD’12—+90— 0,— o+3o 24
( r ) - 8 1 8 2 8 3 8 45 ( ) rE\/Hbe_(DTDX)e”Z (26)
3V '
S b-ip-ic 3 9 3 1
= DyDyx=~ §Ol+ §02+ §O3_ §O4- where, as in Eq(1), the subscripe means the even part. The

(25) choice of the factor 8 is motivated by the fact that the norm
of the residue vectofib,— (D'Dx),||? is proportional toV
Note thatO, contains the connected contribution in addition =L°- N, for a Gaussian noise source employed for the hy-
to the dominant disconnected part, and vice versadgr  brid R algorithm.
The termsO; and O, represent contact contributions in  To test effects of the stopping condition, we choose an
which the source and sink points of the quark coincide. ~ approximate value of the critical coupling=5.282 form,

To calculate the susceptibility,  we need to replace one =0.02, and generate 1000 trajectories of unit length with a
of the volume source propagat@rﬁ'b in Egs. (20)—(23) by  fixed step size ofA7= 0.03,.varying the stopping condition
(DoG)*P. Both propagators should be replaced in this wayfom r=10"2to 10"°. The time histories of the chiral order
for xe - parameter) s for the runs are shown in Fig. 1. We observe

that a looser stopping condition leads to a smaller value and

C. Choice of run parameters a larger magnitude of fluctuations &z/x. The results, how-
ever, are stable far<10 %—10"°. In all of our production

The distribution of observables generated by the hyBrid '\« therefore take the condition given by

algorithm suffers from systematic errors arising from a finite
molecular dynamics step sizer and a finite-stopping con-
dition taken for the conjugate gradient inversion of the quark
operator. For analyses of critical properties of phase transi . : e
tions, potential prg/blems caused %y I2hese sysgamatic erménother possnple measure of the stopping condition is to
are a shift of the critical coupling. and a modification of employ the ratio
susceptibilities, in particular a change in the magnitude of

r<10°S. (27

—_(pt

the peak height of susceptibilities A= 8. . In order to ex- T= w (28)
amine these effects we carry out test runs on 3xi4 lattice el

atmg=0.02.

Let us define a residual of the conjugate gradient inver- With a Gaussian noise source we epotxgHZocc(mq)V
sion algorithm applied for a source vectoiby with the coefficient c(m,) increasing asm, becomes
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5.295 T T T T TABLE |. Parameters of our runs. For each parameter point
10 000 trajectories are generated with the stopping condition
Be(aT) Mq =002 83x4 =10 for Jthe conjugate%radient solver. PPIng
5.200 | -
Ng m,=0.075 0.0375 0.02 0.01
A7=0.05 0.02 0.01 0.005
5.285 |- .
1 8 B=5.35 5.306 5.282 5.266
12 £=5.348 5.306 5.282 5.266
5.280 - 5.2665
16 B=5.345 5.306 5.282 5.266
5.275 - - . -
0 0.0001 00002  0.0003 00004 00005 ) ) ) _
@ A2 quark mass we employ three spatial lattice sizes given by
o5 . . il i L=8, 12 and 16. For each setf,L) we choose a single
value of 8 close to the critical coupling, which is selected by
AmMaX(AT) mg=0.02 83x4 ] preliminary short runs, and carry out a long simulation of

10 000 trajectories of unit length starting from an ordered
configuration using the stopping condition as described in
Sec. Il C. Variation of observables as a function @fis
calculated by the reweighting technig(®4] from a single
run.

In applying the reweighting technique one may consider
an alternative procedure of making a number of shorter runs
for a set of values of around B.. In practice we find
long-range fluctuations ofO(1000) trajectories toward
. smaller quark masses and larger volumes, so that a simula-

0 0.0001 0.0002 0.0003 0.0004 0.0005 tion at a single parameter point is already quite computer
(b) Ar? time intensive to get rid of these fluctuations. We therefore

adopt the approach of making a single long run at a well-
FIG. 2. (a) Critical coupling as a function of step sizs) Peak  chosen value o3 in the present work.

height of x, as a function of step size. Data are taken on &n 8 In Table | we list the values o8 where our runs are
. © : i
X4 lattice atmy=0.02 withr <10"". carried out and the molecular dynamics step sizeused.
_ o _ . Two runs are made fom,=0.01 on a 12x 4 lattice since
smaller. Thus our stopping condition is relatively tighter to-the first run a{3=5.266 turns out to be predominantly in the
ward smaller quark masses compared to that given in termgw-temperature phase. We collect time histories of the chi-

of Eq.(28). , _ ral order parametegy and their histograms in Fig. 3.

We examine systematic effects of the step size by |, 5y of the runs observables are calculated at every tra-
carrying out runs of 10 000 trajectories of unit length for eciory, discarding the initial 2000 trajectories of each run.
the combinations #,A7)=(5.282,0.01), (5-28410_-214)’ Jackknife analysis is carried out for the reminaing 8000 tra-
(5.284,0.02) with the stopping condition fixedrat 10" °. jectories to estimate errors. Examining the bin size of 400

_ The critical coupling3.(A 7) estimated from the peak po- 4334 800 we find that the magnitude of errors is stable, and
sition of the chiral susceptibilityyr,, and its peak height \ye adopt 800 for the bin size of our error estimations.
xm(A7) are plotted in Figs. @ and 2b) as a function of

10 L L 1

2 . . . .
A 7%, where the standard reweighting technidqad] is em- 1. ANALYSIS OF SPATIAL VOLUME DEPENDENCE
ployed to estimates.(Ar) and ypm®{A7). We observe that S ' _
the results are consistent with &(A %) dependence theo- A. Finite-size scaling analysis

retically expected12,15,1@. Since quark mass is expected  We start our analysis with an examination of the spatial
to affect the systematic error in the combinatianr{mg)®,  volume dependence of susceptibilities for each quark mass.
we parametrizg8.(A7) andxy (A7) in the forma[1+c(A7  The B dependence of susceptibilities, evaluated with the re-
mq)z] and find a=5.2812(26),c=0.0011(6) forB.(A7) weighting technique for eacim, and spatial sizé, is illus-
and a=14.1(1.2),c=0.34(16) forxp*{(A7). These values trated for the chiral and Polyakov susceptibilitigs and ¢,
suggest that choosing 7~m,/2 leads to an accuracy of in Fig. 4. Let us denote by, and x™® the position and
0.03%(or 0.0015 in magnitudefor 8. and 9% forym™. We  height of the peak of a susceptibility. Our numerical results
think these accuracies to be sufficient compared to our stdor these quantities are summarized in Table Il for each of
tistical errors, and adopk 7~m,/2 for our production runs. the susceptibilities defined by Eq®)—(15). As typical ex-
amples, we plojn™, x{'f, andx>*as a function of spatial
volume L3 in Fig. 5. Two points formy=0.01 on a 12
lattice represent two runs at these parameters. The agreement
We carry out runs for the temporal lattice sikge=4 at  between the two points justifies the robustness of the re-
the quark masses,=0.075,0.0375,0.02, and 0.01. For eachweighting method: the method works well even if the simu-

D. Summary of runs
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FIG. 3. Time history ofry and histograms of the runs.

lation is carried out in one side of the two phases, i.e at tinue beyond.=12, with the peak height for =16 consis-
off the critical value. The behavior of other susceptibilities tent with that forL=12. We then conclude an absence of a
are similar as one may find from Table II. phase transition also fan,=0.02. The histogram shown in
For the heavier quark masses mf=0.075 and 0.0375 Fig. 3(c) provides further support for this conclusion; while
the peak height of the susceptibilities increases little over théhe histogram for the size=8 is broad and even hint at a
sizesL =8—16, showing that a phase transition is absent fompossible presence of a double peak structure, such an indica-
these masses. Fan,=0.02, a significant increase is seen tion for metastability is less visible fdc=12, and a single
betweenL=8 and 12. The increase, however, does not conpeak structure becomes quite manifestlfer 16.
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80 — r T ——— . 100 T . . r .
max * my=0.01
70 1 . Xm 4 mg=002 ]
60 [ ] v my=0.0375
N = my=0.075
50 : 60 |- .
40 ]
40 | -
30 ]
20 | ] ol * t 4 ]
A
A4
10 M M
0 1 1 s ad 1 1
ol L L. i 0 1000 2000 3000 4000 5000 6000
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B 20 T T T T T
20 T T T T T T _ xl,f max [ ] mq =0.01
my=0.01 xQ 4 mg=0.02
s v mq=0.0375 |
15 | 1 = my=0.075
’ 10 b+ E
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10 |- i +
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: . .
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‘ 0 1000 2000 3000 4000 5000 6000
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(b) B o mg=0.01
14 ygmex q ]
FIG. 4. (a) Chiral susceptibilityy,, as a function of3. (b) Same 4 mg=0.02
for the Polyakov susceptibilityq . ForL=12 atm,=0.01 the run 12F v Mg=0.0375 4
with 8=5.266 is employed. wol = mg=0.075 ]
. . 8l h
For my=0.01 the peak height also increases between *
=8 and 12. Furthermore, the increase continues up to 6F # .
=16. In fact the rate of increase is consistent with a linear " ¥
behavior in volume, which is expected for a first-order phase F
transition. 2| ]
We think, however, that caution must be exercised to ' . . .
draw a corEIusion solely from Fig. 5. Comparing the time 00 1000 2000 3000 4000 5000 6000
histories ofysys for the three lattice sizds=8, 12, and 16 in L3

Fig. 3(d), we observe that a flip-flop behavior between two

different values of/y is most distinct for the smallest lattice
sizeL =8, and the time histories for the larger lattice sizes
L=12 and 16 are dominated more by irregular patterns, the
width of fluctuations becoming smaller as the size increaseg/0lume, which is similar to an increase betwéen8 and 12
These features are also reflected in the histograms. A doubléer mq=0.02 for which the susceptibilities level off fdr
peak distribution, clearly seen far=8, is less evident for =16. In order to make a comparison of volume dependence
L=12 and barely visible foL. = 16. Moreover, the width of for different quark masses, we need to normalize the lattice
the distribution is narrower for larger lattice sizes. Thesesize in terms of a relevant length scale, which may be taken
trends show a marked contrast with the case of the first-orddp be the pion correlation length,=1/m_ at zero tempera-
deconfining phase transitions of the pure(Skgauge theory ture. Results ofm, precisely at the values g6 and m,
and of four-flavor QCD, where a flip-flop behavior in the where our simulations are made are not available. The MILC
time history and a double-peak distribution in histogramsCollaboration, however, has given a parametrization of avail-
become progressively pronounced toward larger spatial volable data form andp meson masses as a function®fand
umes, for instance, as is seen in Fig. 1 of R&%]. mg [16], from which we find¢,~3.0 for my=0.02 and¢ .

The observations above indicate that the increase of sus=4.4 for mq=0.01 at the respective critical couplings.
ceptibilities seen fomy=0.01 is due to insufficient spatial Hence the sizé.=8 for my=0.02 roughly corresponds to

FIG. 5. Peak height of the susceptibiligy,, x;¢, andxq as a
function of spatial volume.3.



3916 S. AOKI et al.

TABLE Il. Peak position3, and peak height™* of various susceptibilities for each quark magsand
spatial lattice size..

L=8 L=12 L=16

my Be Xm Be Xm Be Xm
0.0750 5.349417) 5.90.3 5.347714) 6.3(0.6) 5.344318) 6.30.7)
0.0375 5.307@8) 10.50.95 5.309916) 11.61.6 5.30727) 14.1(2.2)
0.0200 5.28313) 14.71.0 5.28238) 24.63.1) 5.28195) 22.92.2
0.0100 5.26680) 24.41.6) 5.26817) 44.46.2) 5.26574) 63.912.3
0.0100 5.2666) 38.03.9

My Bc XT?X Be waax Be X{ijax

0.0750 5.34847)  -1.970.13  5.347212  -2.080.24  5.344114)  -2.170.24
0.0375 53069  -2.760.16  5.308614)  -3.200.43 5.30647) -4.1%0.72
0.0200 528208  -3.230.27) 5.28199) -5.820.77 5.28175) -5.71(0.56

0.0100 5.265@0) -4.770.39 5.26787) -9.021.3) 5.265%4) -14.053.29
0.0100 5.266@) -8.2000.89

My Bc X{ngx Be X'EL?X Be X{?ﬁx
0.0750 5.348@3L6) -0.71(0.05 5.347414) -0.760.10 5.344116) -0.800.1)
0.0375 5.306(9) -1.04(0.07 5.308519) -1.150.19) 5.30698) -1.480.27)
0.0200 5.281@2) -1.240.1) 5.28199) -2.220.29 5.28166) -2.120.22
0.0100 5.265@2) -1.91(0.15 5.26797) -3.7000.57) 5.26564) -5.621.17)
0.0100 5.266(7) -3.180.39

mq Be Xt Be Xtr Be Xis

0.0750 5.348¢L6) -0.790.06) 5.347314) -0.840.11) 5.343917) -0.890.12
0.0375 5.306119) -1.160.08 5.308822) -1.290.22 5.30698) -1.680.32
0.0200 5.28122) -1.400.12 5.28199) -2.530.33 5.28166) -2.41(0.29

0.0100 5.265@1) -2.120.19 5.26797) -4.090.63 5.26584) -6.321.3H
0.0100 5.266(7) -3.560.42
my Be Xg??x Be Xem,?1>< Be XreTj?X

0.0750 5.348@7) 1.31(0.06 5.346216) 1.410.10 5.344113) 1.380.09
0.0375 5.30625) 1.530.06 5.307815) 1.550.11) 5.306%7) 1.960.25
0.0200 5.2828.9) 1.600.11 5.281313) 2.090.18 5.281510) 2.180.18
0.0100 5.262@1) 2.140.19 5.267&9) 2.390.39 5.265€4) 3.820.89
0.0100 5.265(®) 2.580.3))

Mgy Be Xem,ix Be X‘r:(arx Be Xem,?rx
0.0750 5.3478L7) 0.2360.021) 5.347q14) 0.2590.040 5.344115) 0.2710.04))
0.0375 5.305@1) 0.2760.02) 5.308@18) 0.321(0.050 5.30678) 0.4380.088
0.0200 5.281@0) 0.2790.03) 5.281&9) 0.5380.076 5.281%7) 0.5300.059
0.0100 5.265@1) 0.3990.032 5.26717) 0.7540.120 5.265%4) 1.2450.314
0.0100 5.265@) 0.7150.089

Mg Be Xes Be Xes Be Xer
0.0750 5.3477) 0.3020.025 5.347q14) 0.321(0.043 5.343916) 0.3350.045
0.0375 5.305@0) 0.3510.023 5.308219) 0.3990.060 5.30678) 0.5390.100
0.0200 5.281Q9) 0.3580.032 5.28189) 0.6590.085 5.281%7) 0.6420.066
0.0100 5.265R1) 0.4870.039 5.26717) 0.8710.133 5.265%4) 1.4400.362
0.0100 5.2658) 0.8340.098

mq Be Xeoo Be Xe.oo Be Xeioo
0.0750 5.34785) 0.1410.008 5.347414) 0.1490.015 5.344314) 0.1590.019
0.0375 5.305@1) 0.1610.010 5.307522) 0.1700.020 5.30679) 0.2120.033
0.0200 5.280@3) 0.1620.013 5.28149) 0.2610.028 5.28147) 0.2520.023
0.0100 5.265@2) 0.2140.016 5.26788) 0.3690.053 5.265%5) 0.5570.11))
0.0100 5.2658) 0.3310.040
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TABLE Il. (Continued.

L=8 L=12 L=16

max max max
my Be Xeor Be Xe,or Be Xeor

0.0750 5.347d5) 0.1350.010 5.347414) 0.1430.018 5.344116) 0.1520.02])
0.0375 5.305€1) 0.1550.010 5.307924) 0.1660.0249 5.30679) 0.2180.039
0.0200 5.280@3) 0.1570.019 5.281610) 0.2720.032 5.28146) 0.2620.026
0.0100 5.265@12) 0.2140.018 5.26787) 0.3850.058 5.265%5) 0.6000.127
0.0100 5.265@) 0.3450.043

max max
m,

q Be ng,i:(' Be Xe,rr Bc Xe,rr

0.0750 5.347{L6) 0.1680.012 5.347313) 0.1750.020 5.343818) 0.1860.0249
0.0375 5.305€0) 0.1890.011) 5.308327) 0.2020.030 5.30679) 0.2650.046
0.0200 5.280@2) 0.1940.015 5.281610) 0.3260.036 5.28146) 0.3140.030
0.0100 5.265(22) 0.2540.019 5.26787) 0.4420.069 5.265%5) 0.6890.146
0.0100 5.265@) 0.4030.047

max max max
my Bc X Be Xa Be X

0.0750  5.347@9) 4.220.29 5.346213) 4.520.51) 5.343914) 4.630.54
0.0375  5.306(20) 4.1000.25 5.308715) 4.530.57) 5.30687) 6.051.03
0.0200  5.282@0) 3.730.32) 5.28199) 6.300.75 5.28175) 6.170.62)
0.0100  5.26582) 4.450.34 5.26779) 8.061.17 5.26554) 12.573.00
0.0100 5.266(7) 7.210.78

L=12 for my=0.01, andL=12 to L=16. Comparing the of 4000- 10 000 trajectories of unit length were made for the
histograms form,=0.02 and 0.01 which are in correspon- spatial sizes & 8% and 12 at m;=0.0125 and 0.025 using
dence in this sense, we find that they are similar not only irthe step size oA 7=0.02 for both cases. In R€i6] a larger
shape but also in the trend that a double peak type distribuspatial lattice of 18 was employed, and 2500 trajectories
tion changes toward that of a single peak for larger sizes. were generated atmg=0.01(A7=0.0078) and m,

A more quantitative comparison is made in Fig. 6 where=0.025@ 7=0.01). The quantities examined in these stud-

Xc=V

we plot the dimensionless combinatioph®m? against ies were the Polyakov susceptibiligy, and the pseudochiral
to L=16 for my=0.01 does not stand out as particularly
=24, where¢ is a Gaussian noise vector.

Lm,_ . Data points for various quark masses and spatial sizesusceptibility defined by
roughly fall on a single curve, and the increase observed up 1 ) 1 )
— TD—l _ | = TD—l 29
large. It is quite plausible that the peak height for, <<3§ E) > <3§ §> } (29
=0.01 levels off if measured on a larger lattice, elg.,
While a definitive conclusion has to await simulations on We also calculate the pseudochiral susceptibility in the
larger spatial sizes, our examinations lead us to conclude tharesent work. In Fig. (&) previous data for this quantity

a first-order phase transition is absent alsongt0.01. from Refs.[5,6] are compared with the new results. A simi-
lar comparison for the Polyakov loop susceptibility is made
B. Comparison with previous studies in Fig. 7(b). We observe that the data are consistent for the

sizesL=8 andL=12. A reasonable agreement is also seen
Between the present simulation and the earlier results for
=16 at my=0.025-0.02. At the smallest quark mass of

Finite-size analyses similar to those reported here wer
previously carried out by two group$,6]. In Ref.[5] runs

5 , , : : : my=0.01, however, the result from Rd6] is by a factor
Ao (g L) 2 2-3 smal!er compared to our values. _
s L ] A technical point to note in the calculation of RE6] for
Xc IS that it used a multiple set of noise vectors for each
3| * } b configuration in contrast to a single vector employed in Ref.
+ +} [5] and the present work. This, however, would not be the
+ ¥ . ) .
2 4 o mg=0.01 ] main source of the discrepancy since the result of fgfior
4 4 mg=0.02 m,=0.025 is in agreement with the other calculations. This
1 ' . :“‘3'23;5 ] difference also cannot explain the discrepancy in the Polya-
o kov susceptibility. We think it likely that the underestimate
0 : : . : : of Ref. [6] originates from a shorter length of their run. In-
0 2 4 6 8 10 12

deed dividing our full set of trajectories at;=0.01 andL
=16 into subsets of 2500 each, we find susceptibilities re-

FIG. 6. Peak height of chiral susceptibilify, as a function of duced by a similar factor for some of the subsets owing to a
spatial sizel, both normalized by zero-temperature pion mass long-range fluctuations over~O(1000).

Ly,
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3L KM o mg=001 - 535 | Bo(mq)=Pc(0)+cq My

a0k s my=0.02

25 E ]

+ 530 |
20 ¢ + ]
15F 1
‘ ++ % ——L=8
0E 4 Ref.[5] J(‘ Ref.[6] 1 525 =12 ]
TR * o mg=00125 o me=001 | ~oL=16
2 4 mg=0.025 v my=0.025 . . . . . . '
0 - . : : ' 000 001 002 003 004 005 006 007 008
0 1000 2000 3000 4000 5000 6000

(@) L3 Mq

16 T ' ' T ' FIG. 8. Pseudocritical couplingg,(m,) as a function ofm,
14 L yomax o my=001 determined from the peak position of susceptibility. Lines are

fits to Eq.(393).

ol s me=002 its to Eq.(33)

10 + 1 t:BC(mq)_IBC(O)Y (31)

8t } —

ﬁ*# + h=m, (32

6 - "

d ﬂ where Bc(mq)=6/g§(mq) denotes the pseudocritical cou-
ar 21 Ref.[5] Rel.[6] ] pling defined as the peak position of a susceptibility for a
S o mg=00125 o me=001 1 given quark massn,. The choice forh corresponds td

A my=0.025 v mg=0.025 «mg /T up to a numerical factor of 4. The scaling law for the
0 1 i 1 1 2l 11 H 1 H
0 00 wno0 8000 4000 5000 6000 pseudo critical coupling is then given by
(b) L3

Bc(mq)zﬁc(o)+cgmég (33
FIG. 7. (a) Peak height of pseudochiral susceptibilify as a

function of m,, for various spatial volumegb) Same for the Polya-

kov susceptibilityy, . Previous results are plotted with open sym-

bols. Zg:)¥- (34)
h

with

IV. ANALYSIS OF QUARK MASS DEPENDENCE

One can define three types of susceptibilities depending on

the combination of variables taken for the second derivative
We have seen in the previous section that our finite-sizef the free energy. Theh¢h) combination corresponds to the

data do not show clear evidence for a first-order phase trarchiral susceptibilityy,,, and we find the scaling form of its

sition down tomg=0.01. In the present section we assumepeak height to be

that the two-flavor chiral transition is of second-order which

takes place am,=0, and turns into a smooth crossover for TABLE III. Criti_cal exponents _e)_(t_rgcted b)_/ fits of c_ritice}l cou-

my# 0. Various scaling laws follow from this assumption for pling and peak height of susceptibilities for_ fixed spatial dizas

the quark mass dependence of the susceptibilities. We angompared to @), O(4) [18-20, and mean-fieldMF) values.

lyze to what extent our data support the expected scaling

laws. In particular, we examine whether the scaling expo-

A. Scaling laws and exponents

02 0@ MF L=8 L=12 L=16

nents agree with the @) values as predicted by the effective z, 0.60 054 2/3 071 0.746) 0.64(5)
sigma model analysigl], or at least the @) values corre- 079 079 2/3 07@) 0998  1.039)
sponding to exact (1) chiral symmetry of the Kogut- , 039 033 1/3

Susskind quark action used in our simulations. 2. 0425 0759 0.7810)

The scaling laws follow from a well-known
renormalization-group argument which predicts that th
leading singular part of the free energy per unit volume ha§”
the scaling form ©

z, 0475 0.8110) 0.8212)
0475 0819 0.8312)
001 -013 0

Ze s 0.214) 0.287) 0.397)
fy(t,h)= hd/yh¢(th_yt I¥hy, (30) Ze & 0.256) 0.5611) 0.5813

Ze., 0.226) 0.5210) 0.5512)

wheret and h are reduced temperature and quark mass, z,,, 0.195) 0.468) 0.4310)
andy;, are the thermal and magnetic critical exponents, and,, .. 0.20(5) 0.519) 0.5012)
d=3 is the space dimension. We take the reduced variableg , . 0.195) 0.489 0.471)1)

to be
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FIG. 9. Peak height of susceptibilityy,, xi¢, and xe, as a
function of my for fixed spatial sizeL. Lines are fits to a single
power y;ocm~%. Dashed lines indicate slope expected fa2)Qor
O(4) exponents.

Xmmt mq) = Cmm; m ) (39
where
2 d (36)
Zp=2——.
m Yh

Thet derivative generates susceptibilities involving the en-
ergy operatore. Decomposinge into the gluon terms that
depend on the spatial and temporal plaquette averages al

the quark term proportional t¢D g, we expect

—
Xmax(mq)zct,i m, o

(37

i=f,o,7,

3919
Xeoi (Mg) =Cej m;Ze’i, i=f,o,7, (38)
Xeif(Mg)=Cejj My, i,j=o,7.

(39

For these susceptibilities only the leading exponent needs to
be constrained by the thermal and magnetic exponents, i.e.,

Yi
z=1+———, z=Mma%_¢, AZi} 40
t vy t X=t,0,7 2, (40)
2y, d
® Yn Yn'
Ze= MAX—t g 1 k=0 Ze,i 1 Ze,jk} - (41)

Since all the exponents are expressed in termg ahdyy,,
two relations exist among the four exponenjsz,,z;, and
Z., which may be taken to be

24+ 2zn=2+1, (42

22— 7= 2. (43

B. Results for exponents

Our study of exponents is based on the results for the
peak position and height of various susceptibilities summa-
rized in Table Il. Form,=0.01 andL=12 two runs are
made. We present results employing the first run carried out
at 3=5.266, since the exponents obtained with the second
run are consistent with those with the first run.

Let us start with an examination of the exponegtthat
governs the scaling behavior of the critical coupliidm,).

In Fig. 8 we plotB.(m,) defined as the peak position of the
chiral susceptibilityy,. Solid lines represent fit of the data
to the form (33), which reasonably go through the data
points. Results foey are listed in the first row of Table IIl.
Other susceptibilities yield results consistent with those from
xm Well within the errors.

We observe that the values rf do not exhibit clear size
dependence, and are in agreement with the theoretical pre-
dictions based on @) or O(4) symmetry within one to two
standard deviations. As expected from this observation, a
reasonable fit is also obtained fixiag to either the @2) or
O(4) exponent.

Let us turn to the exponents determined from peak height
of the susceptibilities. In Fig. 9 we plot the quark mass de-
pendence of peak height for the representative susceptibili-
ties. Exponents are extracted by fits employing a scaling be-
havior with a single power as given in Eq85), (37)—(39).
Results are summarized in Table lll. Fgrand z, various
operator combinations yield results which are in mutual
agreement within estimated errors.

We observe that all the exponeiztg,z;, andz, exhibit a
sizable increase betweén=8 and 12, and the larger values
stay forL=16. Comparing the exponents with those ¢2D
O(4), or mean-field MF) predictions, we find that an appar-
Bt agreement of,, and z; for the smallest sizé =8 be-
comes lost forL=12. The magnitude of discrepancy is
smallest forz,, for which we find a 10—20 % larger value
amounting to a one to two standard deviation difference. For
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FIG. 10. Consistency check of exponents for a given spatial size 80 T T T T T
L. Horizontal lines indicate values expected fo(2Dexponents. 0F  Frx) ——mg=0.075 ]
Values for G4) are similar. ——m=0.0375
60 —a—mg=0.02

z, the discrepancy is by a factor two far=12 and 16. The
disagreement is even more pronounced for the exponent 50
for which a value in the range.,~0.5—0.6 is obtained in
contrast to negative values for(®) and Q4).

One can ask how inclusion of subleading singularities 30
and/or analytic terms in the fitting function modifies the re-
sults above. A thorough examination of this question is dif- s
ficult with our limited data sets, and we restrict ourselves to 10
the simplest case where a constant term is included in the fit:
Ximaanq)ZCiO_FCilm;Zi- The points to be examined afe 0.036 0.038 0.040 0.042 0.044 0.046
how the values of exponents change, &gl whether rea- (b) X
sonable fits are obtained with the exponents fixed to theoreti-
cally expected values.

20

S : _ FIG. 11. Scaling function F.(x) calculated by
Concerning(i), the fitted values of,,, andz for L=8 and e(vm(ﬁ,mq)(quO.Ol)Zm as a function of x=[Be(Mg)— Bo(0)]

those for L 16 becom larger and (ake  valae 15 <(OOL s for L=16 using (o measireq valiesz,
*+0.5. Forz, large values of such a magnitude are obtainecL8:gggz&tifgiﬁ&f%)nd561293:3&regr:,iﬁz(o?fé_z\gges “
for all three sized =8, 12, and 16 with similar errors. Thus
adding a constant term does not alleviate the discrepancy. exponents change from volume to volume and deviate from
Turning to (i), the quality of fit significantly worsens theoretical expectations. This implies that our susceptibility
when one fixes the value of exponents to the theoreticafiata are consistent with a second-order transitiomgt 0
value. Values ofy? per degree of freedom increase to 2 governed by the magnetic and thermal operators.
—3 as compared to 051 for the single-power fit wittz; as Given this result, we may estimate the magnetic and ther-
a free parameter, and the fit generally misses the point for theal exponents through ¢ fit of the four exponentgy m+e
smallest quark mass,=0.01 forL = 16. In particular the fit to the form(34), (36), (40), (41). Using average values of
for x, accommodates a negative valuezgfonly by forcing  results in Table Il for zz and z,, we find (y,,y:)
the coefficientc, ; in front of the power term to a negative =[2.31(7),1.74(5)](L=8), [3.02(19),2.24(12)L=12),
value of a magnitude similar to that of the constant tegp.  and [3.31(25),2.22(15)L=16), as compared to
Altogether fits with theoretical values of exponents do not(2.48,1.49) for @2) symmetry and (2.49,1.34) for (®
appear any more reasonable than fits with a single power. symmetry[18-20.
These examinations lead us to conclude that the expo-
nents do show a trend of deviation from thé2Dor O(4) C. Results for scaling function
values, at least in the range of quark masg=0.075 . . .
—0.01 explored in our simulation. Defining a scaling variable
Let us recall from Sec. IV A that the four expone . . -z
Zm. Z; andz, should satisfy two consistency equatid':l% X=[Bc(Mg) = Be(0)]m, 2, 44
and(43). In Fig. 10 we plot the two sides of the hyperscaling one expects the singular part of the susceptibility to take the
equations using the exponents obtained with a single powe(,,tional form
fit in Table Ill. For z, and z, we take averages over the
channels as the exponents are mutually consistent. We ob- Xm(ﬁumq):m_szm(X)- (45)
serve that the hyperscaling relations are well satisfied for d
each spatial volume even though the values of individuaWe plot in Fig. 11 two estimates of the scaling function
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Fm(x) calculated ag(m(8,m,)(my/0.01)m using data for A disagreement with the @) values may not come as a
=16: in (@) we employ the measured valugg=0.6447, surprise since flavor symmetry breaking effects of the Kogut-
zn=1.033,8.(0)=5.2353, and inb) we take the @) val-  Susskind quark action is quite large At=5.3 where the
ues[20] for the exponentg,=0.538,z,=0.794 and substi- transition is located forN;=4. Indeed masses of non-
tute the valugB (0)=5.2253 obtained with a fit oB.(mg) Nambu-Goldstone pions are closer to thosepofneson,
with z, fixed to the @4) value. Similar to the experience rather than those of the Nambu-Goldstone pion, for these
with fits of peak height in Sec. IV B, we find that scaling is values ofg.

reasonable with the use of the measured exponents. The fit, Numerically, the @2) values for exponents are close to
however, worsens if the @) exponents are employed; in those for @4). The deviation from the @) values is theo-
particular the curve for the smallest quark masg=0.01  retically more puzzling for several reasors) O(2) is an

deviates largely from the rest. exact symmetry group of the Kogut-Susskind action for any
lattice spacing(ii) this symmetry is preserved under the al-
V. CONCLUSIONS gorithmic expedient of taking a square root of the quark

) . ~determinant adopted in the hybriRl algorithm, and(iii) the

In this article we have presented results of our analysis o§ysceptibility x,,, is precisely the second derivative of free
the two-flavor chiral phase transition with the Kogut- energy with respect to the quark mass which is the conjugate
Susskind quark action on &4, =4 lattice. By studying the fie|d of the Q2) order parameter. Thus, if the two-flavor
spatial volume dependence of various susceptibilities, W&ystem simulated by the hybrigt algorithm undergoes a
have confirmed the conclusion of previous investigationsecond-order transition, we expect thé2Dvalues of expo-
[5,6] that the transition is a smooth crossover figg=0.02.  pents to emerge toward the chiral limit.
At my=0.01 the susceptibilities exhibit an almost linear in-  The smallest quark masg,=0.01 we have explored is
crease in spatial volume betweef &nd 16 lattices, which quite small a{8~5.3, corresponding tm,./m,~0.19 which
contradicts the results of previous wdl, and may appear s close to the experimental value of 0.18. It is possible,
to be consistent with a first-order phase transition. Howevemowever, that the critical region where susceptibilities ex-
examination of time histories and histograms of observablegiit the true scaling behavior is located even nearer to the
and in particular, a rescaling of spatial size in terms of theghjral limit. If this is the origin of the discrepancy, establish-
zero-temperature pion mass strongly suggests that the lineg{g the universality nature of the two-flavor transition for the
increase is a transient phenomenon arising from an insuffik ogut-Susskind quark action will require further simulations

cient spatial size. Itis our present conclusion that there is Ngyward substantially smaller quark masses and necessarily
evidence indicating a first-order transition down m,  mych larger spatial lattices.

=0.01.

We have also analyzed how susceptibilities depend on the
guark mass. The pattern of critical exponents we have ob-
tained is consistent with the existence of a second-order
phase transition atm,=0, which is governed by a We would like to thank Frithjof Karsch and Edwin Laer-
renormalization-group fixed point with two relevant opera-mann for informative discussions. This work was supported
tors, the energy and magnetization operators. The exponentsy the Supercomputer Proje@tlo. 97-15 of High Energy
however, do not agree with(@), O(4), or mean-field theory Accelerator Research OrganizatiREK), and also in part
predictions. This means that the theoretical argument for &y the Grants-in-Aid of the Ministry of EducatiotNos.
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