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Monopole percolation in the compact Abelian Higgs model

M. Baig and J. Clua
Grup de Fı´sica Teo`rica, IFAE, Universitat Auto`noma de Barcelona, 08193 Bellaterra (Barcelona), Spain

~Received 10 October 1997; published 19 February 1998!

We have studied the monopole-percolation phenomenon in the four dimensional Abelian theory that con-
tains compact U~1! gauge fields coupled to unitary norm Higgs fields. We have determined the location of the
percolation transition line in the plane (bg ,bH). This line overlaps the confined-Coulomb and the confined-
Higgs phase transition lines, originated by a monopole-condensation mechanism, but continues away from the
end point where this phase transition line stops. In addition, we have determined the critical exponents of the
monopole percolation transition away from the phase transition lines. We have performed the finite size scaling
in terms of the monopole density instead of the coupling, because the density seems to be thenaturalparameter
when dealing with percolation phenomena.
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PACS number~s!: 11.15.Ha, 12.20.Ds, 14.80.Hv
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I. INTRODUCTION

Much work has been devoted in recent years to the
derstanding of the pure gauge U~1! lattice field theory. De-
spite the apparent simplicity of this model, which can
considered a limit of the well knownZ(n) gauge models in
four dimensions, the order of their phase transition is a ra
controversial issue. Pioneering simulations suggested tha
transition was actually of second order, i.e., a continu
limit for this lattice theory is possible@1#. Posterior analysis
showed the presence of a two-peak structure in the hi
grams questioning the order of the phase transition@2,3#.
Several new approaches have been proposed: extende
tice actions@4#, different topologies@5,6#, monopole sup-
pressed actions@7#, etc. For a summary of the history of th
transition see Ref.@8#.

The main point in order to clarify the nature of the pha
transition in pure gauge U~1! lattice field theory is the under
standing of the role of topological excitations. This analy
was initiated in the early 1980s by several groups: Einh
and Savit@9# and Banks, Kogut and Myerson@10#. Their
conclusion was that topological excitations are actua
strings of monopole current. In addition, DeGrand and To
saint@11# showed that these monopoles can be actually s
ied by direct numerical simulation, in particular the mon
pole condensation phenomenon over the phase transi
Posterior analysis by Barber, Shrock and Schrader@12,13#
confirmed the role of monopoles in the confineme
deconfinement phase transition. On the other hand, i
widely accepted that the observed problems in the analys
the phase transition can be related to the one-dimensi
character of the topological excitations.

An important observation was made by Kogut, Kocic´ and
Hands@14#. They showed that in pure gauge non-comp
U~1! ~i.e. the action obtained keeping only the first order
the Taylor expansion! which is Gaussian, monopoles perc
late and satisfy the hyperscaling relations characteristic o
actual second-order phase transition.

Baig, Fort and Kogut@15# showed that in the compac
pure gauge theory, just over the phase transition po
monopoles not onlycondensatebut also percolate. They
570556-2821/98/57~7!/3902~8!/$15.00
-

er
he

o-

lat-

s
n

y
-

d-
-
n.

-
is
of
al

t

n

t,

pointed out that the strange behavior of this pha
transition—its unexpected first order character and stra
critical exponents—can be related to the coincidence of th
two phenomena.

Furthermore, Baig, Fort, Kogut and Kim@16# showed that
in the case of non-compact QED coupled to scalar Hig
fields, the monopole percolation phenomena—previously
served over the gauge line—actually propagate into the
(bg ,bH) plane,bg andbH being the gauge and Higgs cou
plings. It is surprising that the monopole percolation ph
nomenon is not related to the phase transition line that se
rates the confined and the Higgs phases, a second o
transition that is logarithmically trivial.

In the present paper we have performed a numerical si
lation of the compact lattice gauge U~1! coupled to Higgs
fields of unitary norm. First of all, we have reproduced so
results concerning the phase diagram previously obtained
Alonso et al. @17#, but we have measured at the same tim
the behavior of monopoles, condensation and percolat
We have determined the location of the percolation transit
line—the line defined by the maxima of the monopo
susceptibility—in the plane (bg ,bH). We have observed
that this line overlaps the confined-Coulomb and t
confined-Higgs phase transition lines, which result from
monopole-condensation mechanism. But it continues aw
from the end point where this phase transition line stops
addition, we have determined the critical exponents of
monopole percolation transition away from the phase tra
tion lines. We have performed the finite size scaling in ter
of the monopole density instead of the coupling, because
density seems to be thenatural parameter when dealing with
percolation phenomena.

Although in scalar QED there seems to be no physi
phenomena associated to percolation in the strong coup
region, i.e. away from the end point of the confineme
Higgs phase transition, the knowledge of the location and
characteristics of the monopole-percolation transition is
evant when fermions are considered. Indeed, it has been
gued that monopoles can account for the chiral symme
breaking. In a recent work@18# it has been shown that th
expectation value of the chiral condensate computed u
3902 © 1998 The American Physical Society
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FIG. 1. Qualitative phase diagrams for the compact and non-compact scalar QED.
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the
monopole configurations~and dressed by the effect of pho
tons! can account for the full U~1! condensate. Furthermore
Kogut and Wang@19# conjectured that monopole percolatio
drivesthe chiral phase transition. It is important to rememb
that the percolation threshold is reached when a mono
line becomes infinite~i.e. reaches the boundary of the la
tice!. This implies that the influence of long monopoles
the fermion dynamics will be maximum.

The plan of the paper is the following: In Sec. II w
define our model and we analyze the appearance of the
pological excitations. In Sec. III we extend the standard p
colation analysis to the case of monopole percolation, us
densities as critical parameters. Section IV A contains
result of the relation between monopole percolation a
phase transition Section IV B is devoted to the finite s
analysis of the percolation phenomena. Finally, Sec. V c
tains the conclusions of this work.1

II. THE MODEL

A. The action

In this paper, we resume the work initiated in Ref.@15#,
and focus on the compact Abelian Higgs model with a fix
length scalar field whose action is

S52bg(
nmn

cosQmn~n!2bH(
x,m

~fx* Ux,mfx1m1c.c.!,

~1!

whereQmn(n) is the circulation of the compact gauge fie
around a plaquette,bg51/e2 is the gauge coupling andfx
5exp ia(x) is a phase factor. We choose fixed length Hig
fields because it has been shown that they live in the s
universality class than conventional variable length Hig
fields but have the advantage that they do not require fi
tuning @21#. In addition, we want to keep as close as possi
to the analysis of the non-compact Abelian Higgs model
Refs. @16, 22# in order to compare to non-compact sca
electrodynamics, whose action is

1While our work was being completed, a work appeared by Fr
zki, Kogut and Lombardo@20# where they analyze a model wit
both scalars and fermions. In the conclusions we compare the
sults coming from both simulations and, in particular, we disc
the different ways of extracting the critical exponents.
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1
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bg(

nmn
Qmn~n!22bH(

x,m
~fx* Ux,mfx1m1c.c.!.

~2!

The phase diagrams for the two models are well know
They are qualitatively represented in Fig. 1. Non-comp
scalar QED has two disconnected phases: a Coulomb p
and a Higgs phase. It is important to remark that there is
phase transition over the pure gauge axis. In contrast, in
compact case a transition separates the Coulomb and
confined phase while the transition separating the confi
and Higgs phases has an end point~point E in the Fig. 1a!.

B. Monopoles

Following @11# we can separate the plaquette angleQmn

into two pieces: physical fluctuations which lie in the ran
2p to p and Dirac strings which carry 2p units of flux.
Introducing an electric chargee we define an integer-value
Dirac string by

eQmn5eQ̄mn~ ñ !12pSmn , ~3!

-

e-
s

FIG. 2. The plane (bg ,bH) showing the lines of phase transitio
and the monopole percolation. Thermal cycles have been don
fixed bH values: A (bH50.00), B (bH50.25), C (bH50.30) and
D (bH50.30). The magnitudes measured along this lines
shown in the Figs. 4a, 4b, 4c and 4d respectively. The point E is
end of the phase transition.
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FIG. 3. Some histograms. The plot~a! is evaluated in the pointB. Notice the clear two peaks structure revealing a first order ph
transition. This structure is not present in the plot~b!, evaluated in the pointC where no specific heat peak is present.
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where the integerSmn determines the strength of the strin
threading the plaquette andeQmn represents physical fluc
tuations. The integer-valued monopole current,mm(n), de-
fined on links of the dual lattice, is then

mm~ ñ !5
1

2
emnklDn

1Skl~n1m̂ !, ~4!

whereDn
1 is the forward lattice difference operator, andmm

is the oriented sum of theSmn around the faces of an eleme
tary cube. This gauge-invariant definition implies the cons
vation lawDm

2mm( ñ)50, which means that monopole worl
lines form closed loops.

The appearance of topological excitations in the Abel
Higgs model was studied in Refs.@9, 10#. Furthermore, in
Ref. @23# a Monte Carlo simulation was performed to loo
for the density of monopoles. They observed that the c
fined ~Higgs and Coulomb! phase was characterized by
large~vanishing! density of monopoles, vortices and electr
current densities. Posterior investigations@24,25#, that intro-
duced a parameter that suppresses monopoles, found th
Coulomb-confinement and Higgs-confinement phase tra
tions are actually monopole driven, while the Coulom
Higgs transition is insensible to the presence of monopo

III. PERCOLATION

A. Concepts of percolation

The role of the monopole percolation in this model
analyzed using the techniques of standard percolation@26#.
In the simplest models the sites are occupied with a proba
ity p. One can define a cluster as a group of occupied s
connected by nearest-neighbor distances. When a cluste
comes infinite in extent, it is called a percolation clust
Obviously, for p50 all the sites are empty and there is
percolation cluster. Forp51 all the sites are occupied an
onepercolation cluster exists. There exists a critical conc
tration pc such that forp,pc (p.pc) no ~one! percolation
cluster exists. This is the typical behavior of a phase tra
tion. We defineP` as the probability for an occupied site
belong to the infinite cluster.
r-

n

-

the
i-

-
s.

il-
es
be-
.

-

i-

If we definegn as the relative number of clusters of siz
n, the probability of any site to belong to a cluster of sizen
is ngn . According to this definition, the mean cluster size

S5
(nn2gn

(nngn
, ~5!

where the infinite cluster is excluded from the sum. Th
quantity diverges at the critical concentration.

Thus,P` is the order parameter of the transition andS is
its associated susceptibility. Their behaviors near the crit
point are

P`;~p2pc!
b for p . pc , ~6!

and

S;up2pcu2g. ~7!

B. Percolation of monopoles in QED

We have defined the monopole currentmm(x) in Eq. ~4!.
One can define a connected cluster of monopoles as a s
sites joined by monopole line elements@27#. Notice that this
definition ignores the fact that monopoles are actually v
tors. The density of occupation is

r5
ntot

L4 5 (
n54

nmax

gnn, ~8!

wherentot is the total number of connected sites andnmax is
the size of the largest cluster. The number 4 in the s
comes from the conservation law.

The order parameter (P`) is

M5
nmax

ntot
. ~9!

Its corresponding susceptibility~the mean cluster sizeS!
is

x5
1

ntot
S (

n54

nmax

gnn22nmax
2 D . ~10!
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FIG. 4. Results for thermal cycles at differentbH ~points A, B, C and D in Fig. 2!. The values ofr andM can be read in the leftY axes,
and the energies in the rightY axes.
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Near the critical point,M should have a non-analytica
behavior with a ‘‘magnetic’’ exponentb. We have followed
lines of constantbH , so

M;~bg
c2bg!b for bg,bg

c ~11!

where the superscriptc means ‘‘critical.’’ The susceptibility
also diverges:

x;~bg
c2bg!2g. ~12!

One should remark that thenatural parameter when
studying percolation is the probability of occupation~in ran-
dom percolation it determines all the observables!. In a lat-
tice gauge model, the fundamental variables are the c
plings, which determine all the other observables.
particular, they determine the density of monopolesr, i.e.,
the probability of occupation. In this sense, it is also poss
to parametrize percolation as a function of the densities
this case the critical behavior will be

M;~r2rc!
b for bg,bg

c , ~13!

and

x;~r2rc!
2g. ~14!
u-

e
In

Clearly, the two parametrizations might have the same c
cal exponents, but the first one seems to exhibit stron
finite size effects.

IV. NUMERICAL RESULTS

A. Phase transition vs monopole percolation

We have performed numerical simulations with the act
~1! on hypercubical lattices with standard periodic bound
conditions. In these simulations we have measured the in
nal gauge and Higgs energies

Eg5(
nmn

cosQmn~n!, ~15!

EH5(
x,m

~fx* Ux,mfx1m1c.c.! ~16!

as well as all magnitudes related to monopole percolat
i.e. r, M and x, which are defined in Eqs.~8!, ~9!, ~10!
respectively.

In order to locate the continuation into the full (bg ,bH)
plane of the monopole percolation transition previously d
termined over the pure gauge axis in Ref.@15#, we have
performed repeated measurements over thermal cy
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3906 57M. BAIG AND J. CLUA
changing thebg coupling, until the entire region inside th
limits 0,bg,1.5 and 0,bH,1.5 has been covered~in par-
ticular, the confined-Coulomb and confined-Higgs pha
transition lines!. Lattice size for these exploratory runs h
been of 64 and thebg step has beenDbg50.005.

We have not used any reweighting technique when m
suring the monopole-related magnitudes. In all the plo
lines are only to guide the eyes and the errors are not sh
because they are smaller than the symbols used.

The number of iterations at eachbg value has been
30000, discarding the first 10000. In addition, several th
mal cycles have been performed at different values ofbH in
order to determine the location of the Coulomb-Higgs ph
transition line.

Figure 2 collects the results of these runs. The small bl
points represent the maximum of the monopole suscept
ity. The solid line is the phase-transition line. Note that t
monopole percolation transition line is on top of both t
confined-Coulomb line and the confined-Higgs line up to
end point. Beyond this point the monopole percolation tr
sition line continues, now unrelated to any energy ph
transition, approaching the vertical axis. This behavior is
clear contrast with the non-compact case@16# where the

FIG. 5. Susceptibility peaks along the percolation line. Not
the change of behavior at the end of the phase transition.
e
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monopole transition is completely independent of t
Coulomb-Higgs phase transition.

In Fig. 3 we compare two sets of histograms correspo
ing to cycles: ~a! for bH50.25, over the confined-Higg
phase transition line and~b! for bH50.3, i.e. just beyond the
end pointE. In the two figures the solid line corresponds
the value ofbg for which the monopole susceptibility has
maximum. The appearance of a two-peak structure over
phase transition confirms that the lattice size, the statis
used and the coupling step in the thermal cycle are enoug
establish the appearance of the phase transition.

An interesting question to establish is the concordance
all the phenomena~phase transition, monopole condensati
and monopole percolation! at the same coupling. In this
sense it was proposed in Ref.@15# to use M as an order
parameter to determine the location of the phase transit
The existence of an end point for the confined-Higgs ph
transition line gives us a chance to check the behavior
these three parameters over and right beyond the end p
In Fig. 4 we have collected the results for thermal cycles
different values ofbH . Figure 4a corresponds to the pu
gauge compact action~point A in the phase diagram!, the
case of Ref.@15#. Figure 4b corresponds tobH50.25, i.e.,
over the confined-Higgs phase transition~point B!. The be-
havior of all three parameters is similar to that observed
the pure gauge case, although the discontinuity is m
abrupt. Figure 4c corresponds tobH50.30 ~point C!, just
after the end point, and Fig. 4d tobH50.5 ~point D!, a line
that crosses the maximum of the monopole susceptibility
is far away from the end point. In these last cases the ene
clearly shows no discontinuity and the monopole density
completely smooth. Nevertheless, theM parameter shows a
fast decrease corresponding to the percolation phenom
investigated in the next subsection.

Figure 5 shows another hint of the change of nature of
percolation at the end point. We show the maximum ox
along the percolation line. A clear change can be seen a
end point.

B. Finite size scaling of monopole percolation transition

We want to determine the critical exponents of the mon
pole percolation away from the phase transition lines, at
.
FIG. 6. M @in ~a!# andx @in ~b!#. Both as a function ofbg , keepingbH50.5. The finite size effects ofM are stronger than in Fig. 7a
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FIG. 7. M @in ~a!# andx @in ~b!#. Both as a function ofr, keepingbH50.5. The finite size effects ofM are lesser than in Fig. 6a.
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point D5(0.5,0.606) in the plane (bg ,bH). To do this, we
keep bH50.5 fixed, and we varybg within the range
@0.594,0.620# for lattice sizes ranging from 84 to 124. We
have recorded some percolation parameters for each sim
tion: the density of monopolesr, M andx. The statistics for
each point is of 10000 iterations once the first 5000 h
been discarded.

In Fig. 6, we collect the results forM andx as a function
of bg . In Fig. 7, we show the same results forM andx as a
function of r.

According to finite size scaling arguments@28#, the peak
of the susceptibility should grow with the lattice sizeL as

xmax;Lg/n, ~17!

and the value ofM at the critical point must vanish as

Mcrit;L2b/n. ~18!

We show the value ofxmax as a function ofL in a log-log
plot in Fig. 8a. Notice that the scaling law is satisfied. A fit
Eq. ~17! gives
la-

e

g

n
52.38~1!. ~19!

The straight line resulting from the fit is also shown.
We measureb fitting the values that are not distorted b

finite-size effects to Eq.~13!. The result is

b50.483~4!. ~20!

In Fig. 8b we show the selected points and the fit, with
value for the critical density of aboutrc50.377.

The fit of ~18! is not very good. It givesb/n50.7(1).
Putting our measurements ofg/n into the hyperscaling rela
tion

b

n
5

1

2 S d2
g

n D , ~21!

we obtain

b

n
50.81~1!, ~22!
FIG. 8. Log-log plots forxmax(L) andM (r2rc), with rc50.377.
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3908 57M. BAIG AND J. CLUA
which is more accurate than our measurement. So, we
this value and regard the measurement as a test of hyper
ing.

Combining Eqs.~20! and ~22!, the value ofn is

n50.60~1!. ~23!

The remaining critical exponents can be derived fro
those above using hyperscaling relations.

In Table I we compare our results with other relat
works.

The vector nature of the monopole current suggests
our model does not lie in the same universality class as
four-dimensional site percolation.

We also see that our values are close to the non-com
QED @14#, but more data is required to decide if the tw
models belong to the same universality class.

Finally, we would like to stress the remarkable agreem
with @20#. Nevertheless, they perform their analysis using
different value of the Higgs coupling,bH;0.9. As was
pointed out in@20#, a more careful analysis is necessary
decide if the critical exponents are the same along the
colation line beyond the end point.

V. CONCLUSIONS

We have performed a numerical simulation of the co
pact lattice gauge U~1! coupled to Higgs fields of unitary

TABLE I. Comparison between several works.

pc b n

Our results 0.377 0.483~4! 0.60~1!

Non-compact quenched QED@14# - 0.58~2! 0.66~3!

Pure four dimensional
site percolation@29#

0.161 0.715 0.683

FKL97 @20# - 0.50~4! 0.61~4!
.

ne
ke
al-

at
e

ct

t
a

r-

-

norm. Some results concerning the phase diagram previo
obtained by Alonsoet al. @17# have been confirmed, measu
ing at the same time the behavior of monopoles, conden
tion and percolation. The location of the percolation tran
tion line—the line defined by the maxima of the monopo
susceptibility—in the plane (bg ,bH) has been determined
This line overlaps the confined-Coulomb and the confin
Higgs phase transition lines, which are originated by
monopole-condensation mechanism, but it continues a
from the end point. This is in contrast with the behavior
the monopole percolation transition in the non-compact A
lian Higgs model where it is unrelated to any phase tran
tion. In addition, the critical exponents of the monopole p
colation transition in the region far away from the pha
transition lines have been determined. The finite size sca
has been performed in terms of the monopole density ins
of the coupling, because the density seems to be thenatural
parameter when dealing with percolation phenomena.

While this paper was being written we received Ref.@20#
where a model with both scalar and fermion matter fields
been considered. Their results for the scalar sector ar
perfect agreement with our simulations. It is interesting
compare the finite size scaling analysis for the critical ex
nents in the pure-percolation region obtained using coupli
and density parameterizations. The values obtained in b
cases are in perfect agreement. However our density pa
etrization results have been obtained with lattice si
smaller than those in Ref.@20#. This suggests that the finit
volume effects are smaller if our parametrization is used
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Muñoz Sudupe, G. Parisi, and J. J. Ruiz-Lorenzo, Phys. Let
400, 346 ~1997!.


