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Monopole percolation in the compact Abelian Higgs model
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We have studied the monopole-percolation phenomenon in the four dimensional Abelian theory that con-
tains compact (@) gauge fields coupled to unitary norm Higgs fields. We have determined the location of the
percolation transition line in the plang(,By). This line overlaps the confined-Coulomb and the confined-
Higgs phase transition lines, originated by a monopole-condensation mechanism, but continues away from the
end point where this phase transition line stops. In addition, we have determined the critical exponents of the
monopole percolation transition away from the phase transition lines. We have performed the finite size scaling
in terms of the monopole density instead of the coupling, because the density seems todtertiiparameter
when dealing with percolation phenomena.
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PACS numbgs): 11.15.Ha, 12.20.Ds, 14.80.Hv

[. INTRODUCTION pointed out that the strange behavior of this phase
transition—its unexpected first order character and strange
Much work has been devoted in recent years to the uneritical exponents—can be related to the coincidence of these
derstanding of the pure gaugd lattice field theory. De- two phenomena.
spite the apparent simplicity of this model, which can be Furthermore, Baig, Fort, Kogut and Kifi6] showed that
considered a limit of the well know#(n) gauge models in in the case of non-compact QED coupled to scalar Higgs
four dimensions, the order of their phase transition is a rathefields, the monopole percolation phenomena—previously ob-
controversial issue. Pioneering simulations suggested that tlserved over the gauge line—actually propagate into the full
transition was actually of second order, i.e., a continuun(g8y,8y) plane,B4 and B being the gauge and Higgs cou-
limit for this lattice theory is possiblgl]. Posterior analysis plings. It is surprising that the monopole percolation phe-
showed the presence of a two-peak structure in the histaiomenon is not related to the phase transition line that sepa-
grams questioning the order of the phase transifi®,3]. rates the confined and the Higgs phases, a second order
Several new approaches have been proposed: extended ltgnsition that is logarithmically trivial.

tice actions[4], different topologied5,6], monopole sup- In the present paper we have performed a numerical simu-
pressed actions7], etc. For a summary of the history of this lation of the compact lattice gauge(1) coupled to Higgs
transition see Ref8]. fields of unitary norm. First of all, we have reproduced some

The main point in order to clarify the nature of the phaseresults concerning the phase diagram previously obtained by
transition in pure gauge (1) lattice field theory is the under- Alonso et al. [17], but we have measured at the same time
standing of the role of topological excitations. This analysisthe behavior of monopoles, condensation and percolation.
was initiated in the early 1980s by several groups: EinhoriWe have determined the location of the percolation transition
and Savit[9] and Banks, Kogut and Myersdi0]. Their line—the line defined by the maxima of the monopole
conclusion was that topological excitations are actuallysusceptibility—in the plane 4y,8y). We have observed
strings of monopole current. In addition, DeGrand and Tousthat this line overlaps the confined-Coulomb and the
saint[11] showed that these monopoles can be actually studsonfined-Higgs phase transition lines, which result from a
ied by direct numerical simulation, in particular the mono- monopole-condensation mechanism. But it continues away
pole condensation phenomenon over the phase transitiofrom the end point where this phase transition line stops. In
Posterior analysis by Barber, Shrock and Schrdd@r13  addition, we have determined the critical exponents of the
confirmed the role of monopoles in the confinement-monopole percolation transition away from the phase transi-
deconfinement phase transition. On the other hand, it ifon lines. We have performed the finite size scaling in terms
widely accepted that the observed problems in the analysis aff the monopole density instead of the coupling, because the
the phase transition can be related to the one-dimensiondensity seems to be tmatural parameter when dealing with
character of the topological excitations. percolation phenomena.

An important observation was made by Kogut, Koaitw Although in scalar QED there seems to be no physical
Hands[14]. They showed that in pure gauge non-compactphenomena associated to percolation in the strong coupling
U(1) (i.e. the action obtained keeping only the first order inregion, i.e. away from the end point of the confinement-
the Taylor expansiognwhich is Gaussian, monopoles perco- Higgs phase transition, the knowledge of the location and the
late and satisfy the hyperscaling relations characteristic of apharacteristics of the monopole-percolation transition is rel-
actual second-order phase transition. evant when fermions are considered. Indeed, it has been ar-

Baig, Fort and Kogu{15] showed that in the compact gued that monopoles can account for the chiral symmetry
pure gauge theory, just over the phase transition pointbreaking. In a recent workl8] it has been shown that the
monopoles not onlycondensatebut also percolate They  expectation value of the chiral condensate computed using
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FIG. 1. Qualitative phase diagrams for the compact and non-compact scalar QED.

monopole configuration&and dressed by the effect of pho- 1

tons can account for the full (1) condensate. Furthermore, SnCZEBgE 0 ,,(N?= By (¢5 Uy ubxs ..

Kogut and Wang19] conjectured that monopole percolation nuy ok

drivesthe chiral phase transition. It is important to remember

that the percolation threshold is reached when a monopole

line becomes infinitgi.e. reaches the boundary of the lat- The phase diagrams for the two models are well known.

tice). This implies that the influence of long monopoles in They are qualitatively represented in Fig. 1. Non-compact

the fermion dynamics will be maximum. scalar QED has two disconnected phases: a Coulomb phase
The plan of the paper is the following: In Sec. Il we and a Higgs phase. It is important to remark that there is no

define our model and we analyze the appearance of the t@hase transition over the pure gauge axis. In contrast, in the

pological excitations. In Sec. lll we extend the standard percompact case a transition separates the Coulomb and the

colation analysis to the case of monopole percolation, usingonfined phase while the transition separating the confined

densities as critical parameters. Section IV A contains thend Higgs phases has an end pdjint E in the Fig. 1a.

result of the relation between monopole percolation and

phase transition Section IV B is devoted to the finite size

analysis of the percolation phenomena. Finally, Sec. V con-

2

B. Monopoles

tains the conclusions of this wolk. Following [11] we can separate the plaquette anglg,
into two pieces: physical fluctuations which lie in the range
Il. THE MODEL — to 7 and Dirac strings which carrys2 units of flux.
Introducing an electric chargewe define an integer-valued
A. The action Dirac string by

In this paper, we resume the work initiated in Rf5],
and focus on the compact Abelian Higgs model with a fixed
length scalar field whose action is

e0,,=e0 ,,(n)+27S,,, 3)

Phase transition vs. monopole percolation
1 .5 T T T T T T T T T T T T

S=—By2 €050,,(N)~Bu (6} Uy by ,tcc),
nuv X, o
(o .
where® ,,(n) is the circulation of the compact gauge field 10 . ;2‘:};‘321;‘1";12?&3:;;;0“ 1
around a plaquetta(ﬁgzlle2 is the gauge coupling and, ° . _ Speciﬁfheatpeaks
=expia(X) is a phase factor. We choose fixed length Higgs Be .
fields because it has been shown that they live in the same .
universality class than conventional variable length Higgs 05 - e~ —————D -
fields but have the advantage that they do not require fine- e ——C
tuning[21]. In_addition, we want to keep as close as possible E ..\(ﬁ// i
to the analysis of the non-compact Abelian Higgs model of ? —
Refs.[16, 22 in order to compare to non-compact scalar 0.0 . ‘ . ‘ S
electrodynamics, whose action is 6o 02 04 06 08 10 12 14

FIG. 2. The planeg,,8y) showing the lines of phase transition
YWhile our work was being completed, a work appeared by Franand the monopole percolation. Thermal cycles have been done at
zki, Kogut and Lombard¢20] where they analyze a model with fixed g8, values: A (8,=0.00), B (8,=0.25), C (84,=0.30) and
both scalars and fermions. In the conclusions we compare the ré&d (B8,=0.30). The magnitudes measured along this lines are
sults coming from both simulations and, in particular, we discussshown in the Figs. 4a, 4b, 4c and 4d respectively. The point E is the
the different ways of extracting the critical exponents. end of the phase transition.
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FIG. 3. Some histograms. The pl) is evaluated in the poirB. Notice the clear two peaks structure revealing a first order phase
transition. This structure is not present in the flot, evaluated in the poinE where no specific heat peak is present.

where the integeB,, determines the strength of the string  If we defineg, as the relative number of clusters of size
threading the plaquette areb ,, represents physical fluc- n, the probability of any site to belong to a cluster of size
tuations. The integer-valued monopole currenf,(n), de- isng,. According to this definition, the mean cluster size is
fined on links of the dual lattice, is then
2.n°g,
gy’

1 )
mM(n):Eeﬂvk)\A:—SK)\(n—'—lu’)l (4) L . )
where the infinite cluster is excluded from the sum. This

. ) . quantity diverges at the critical concentration.

whereA [ is the forward lattice difference operator, amg Thus,P.. is the order parameter of the transition &

is the oriented sum of th§,, around the faces of an elemen- jts associated susceptibility. Their behaviors near the critical

tary cube. This gauge-invariant definition implies the consernoint are

vation IawA;mM(ﬁ) =0, which means that monopole world

lines form closed loops. P.~(p—pc)? for p > pc, (6)
The appearance of topological excitations in the Abelian d

Higgs model was studied in Reff9, 10]. Furthermore, in an

Ref. [23] a Monte Carlo simulation was performed to look S~|p—pd 7. )

for the density of monopoles. They observed that the con-

fined (Higgs and Coulomp phase was characterized by a ) )

large (vanishing density of monopoles, vortices and electric B. Percolation of monopoles in QED

current densities. Posterior investigatidag,25, that intro- We have defined the monopole curremt(x) in Eq. (4).

duced a parameter that suppresses monopoles, found that th@e can define a connected cluster of monopoles as a set of

Coulomb-confinement and Higgs-confinement phase transkites joined by monopole line elemefif¥]. Notice that this

tions are actually monopole driven, while the Coulomb-definition ignores the fact that monopoles are actually vec-
Higgs transition is insensible to the presence of monopolestors. The density of occupation is

Mmax

n
lll. PERCOLATION p= % — 24 gnn, ®)
A. Concepts of percolation

The role of the monopole percolation in this model is Wheren,, is the total number of connected sites amgy is
ana]yzed using the techniques of standard perco|iﬂﬁﬂ] the size of the Iargest cluster. The number 4 in the sum
In the simplest models the sites are occupied with a probabilcomes from the conservation law.
ity p. One can define a cluster as a group of occupied sites The order parametei™.) is
connected by nearest-neighbor distances. When a cluster be-
comes infinite in extent, it is called a percolation cluster. M = nmaX_ (9)
Obviously, forp=0 all the sites are empty and there is no Niot
percolation cluster. Fop=1 all the sites are occupied and , o .
onepercolation cluster exists. There exists a critical concen- 't corresponding susceptibilifghe mean cluster sizg)
tration p, such that fop<p, (p>p.) no (one percolation 'S
cluster exists. This is the typical behavior of a phase transi- (nmax )

tion. We defineP,, as the probability for an occupied site to 1 E 2_ .2
L X OnN™— N ax
belong to the infinite cluster. Ntot

(10
n=4
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FIG. 4. Results for thermal cycles at differey; (points A, B, C and D in Fig. 2 The values op andM can be read in the left axes,
and the energies in the right axes.

Near the critical pointM should have a non-analytical Clearly, the two parametrizations might have the same criti-
behavior with a “magnetic” exponens. We have followed cal exponents, but the first one seems to exhibit stronger

lines of constanBy, so finite size effects.
~(B¢— B c
M~(Bg=By)" for Bg<pyq (12) IV. NUMERICAL RESULTS
where the superscrift means “critical.” The susceptibility A. Phase transition vs monopole percolation
also diverges: We have performed numerical simulations with the action
. B (1) on hypercubical lattices with standard periodic boundary
X”(Bg—ﬁg) 7 (12 conditions. In these simulations we have measured the inter-

nal gauge and Higgs energies
One should remark that theatural parameter when

studying percolation is the probability of occupati@n ran-

dom percolation it determines all the observablés a lat- Eg:%} cos®,,(n), (15
tice gauge model, the fundamental variables are the cou-

plings, which determine all the other observables. In

particular, they determine the density of monopgkes.e., Eq=>, (3 Uy pxstC.C) (16)
the probability of occupation. In this sense, it is also possible X i ’

to parametrize percolation as a function of the densities. In

this case the critical behavior will be as well as all magnitudes related to monopole percolation,
i.e. p, M and y, which are defined in Eq48), (9), (10
M~(p—pc)? for By<pBy, (13)  respectively.
In order to locate the continuation into the fulB{,8y)
and plane of the monopole percolation transition previously de-

termined over the pure gauge axis in REI5], we have
x~(p—pe) 7. (14)  performed repeated measurements over thermal cycles
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Susceptiblility peaks along the percolation line monopole transition is completely independent of the
‘ ‘ Coulomb-Higgs phase transition.
——0 In Fig. 3 we compare two sets of histograms correspond-
15 - //O’O/L ] ing to cycles:(a) for B,=0.25, over the confined-Higgs

phase transition line an) for 8,=0.3, i.e. just beyond the
end pointE. In the two figures the solid line corresponds to

, the value ofg for which the monopole susceptibility has a
Kinax —0 Susceptibility peaks maximum. The appearance of a two-peak structure over the
10 - — End of phase transition 1 phase transition confirms that the lattice size, the statistics
used and the coupling step in the thermal cycle are enough to
establish the appearance of the phase transition.

o~ . . . N
An interesting question to establish is the concordance of
all the phenomengphase transition, monopole condensation
5 o . s and monopole percolatiprat the same coupling. In this

B sense it was proposed in Regfl5] to useM as an order
t parameter to determine the location of the phase transition.
FIG. 5. Susceptibility peaks along the percolation line. Notice The existence of an end point for the confined-Higgs phase
the change of behavior at the end of the phase transition. transition line gives us a chance to check the behavior of
these three parameters over and right beyond the end point.
changing theg, coupling, until the entire region inside the In Fig. 4 we have coIIect_ed the results for thermal cycles at
limits 0< B;< 1.5 and 6< 8 < 1.5 has been coverdih par- different values of,8.H . Figure 4a correspond§ to the pure
ticular, the confined-Coulomb and confined-Higgs phasdlauge compact actiofpoint A in the phase diagramthe
transition lineg. Lattice size for these exploratory runs has case of Ref[15]. Figure 4b corresponds {6,=0.25, i.e.,
been of & and the, step has been 8,=0.005. over the confined-Higgs phase trans!U@mmt B). The be-
We have not used any reweighting technique when meadavior of all three parameters is similar to that observed in
suring the monopole-related magnitudes. In all the plotsthe pure gauge case, although the discontinuity is more
lines are only to guide the eyes and the errors are not showdrupt. Figure 4c corresponds g)=0.30 (point C), just
because they are smaller than the symbols used. after the end point, and Fig. 4d 18,=0.5 (point D), a line
The number of iterations at each, value has been that crosses the maximum of the monopole susceptibility but
30000, discarding the first 10000. In addition, several theriS far away from the end point. In these last cases the energy
mal cycles have been performed at different valueg,pin clearly shows no discontinuity and the monopole density is
order to determine the location of the Coulomb-Higgs phas&€ompletely smooth. Nevertheless, thieparameter shows a
transition line. fast decrease corresponding to the percolation phenomena
Figure 2 collects the results of these runs. The small blackvestigated in the next subsection.
points represent the maximum of the monopole susceptibil- Figure 5 shows another hint of the change of nature of the
ity. The solid line is the phase-transition line. Note that thePercolation at the end point. We show the maximumyof
monopole percolation transition line is on top of both the@long the percolation line. A clear change can be seen at the
confined-Coulomb line and the confined-Higgs line up to theend point.
end point. Beyond this point the monopole percolation tran-
sition line continues, now unrelated to any energy phase
transition, approaching the vertical axis. This behavior is in  We want to determine the critical exponents of the mono-
clear contrast with the non-compact cgdd#] where the pole percolation away from the phase transition lines, at the

B. Finite size scaling of monopole percolation transition

Scaling of M(B)) (8,=0.5) Scaling of X(B,) (B,=0.5)

0.8 120
T
100 t O—0O14
o—012
o—o10°
80 b ~—ng
X 60

Y . . . 0 . . . .
0.58 0.59 0.60 0.61 0.62 0.57 0.58 0.59 0.60 0.61 0.62 0.63

(a) (b)

FIG. 6. M [in (@] and x [in (b)]. Both as a function ofy, keepingB,=0.5. The finite size effects dVl are stronger than in Fig. 7a.
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Scaling of M(p) (B,=0.5)

0.8 Scaling of x(p) (B,=0.5)

—
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0 L L . . .
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FIG. 7. M [in (@] and x [in (b)]. Both as a function op, keepingB,=0.5. The finite size effects dfl are lesser than in Fig. 6a.

point D=(0.5,0.606) in the planedy,By). To do this, we Y

keep By=0.5 fixed, and we varyB, within the range 5 =2:381). (19
[0.594,0.620 for lattice sizes ranging from“to 12*. We

have recorded some percolation parameters for each simulghe straight line resulting from the fit is also shown.

tion: the density of monopolgs M andy. The statistics for We measures fitting the values that are not distorted by
each point is of 10000 iterations once the first 5000 haveinjte-size effects to Eq(13). The result is

been discarded.

In Fig. 6, we collect the results fov and y as a function £=0.4834). (20
of B4. In Fig. 7, we show the same results fdrand x as a
function of p. In Fig. 8b we show the selected points and the fit, with a
According to finite size scaling argumeri8], the peak Vvalue for the critical density of about,=0.377.
of the susceptibility should grow with the lattice sizeas The fit of (18) is not very good. It giveg3/»=0.7(1).
Putting our measurements ¢fy into the hyperscaling rela-
Xmax™ Ly/vi (17) tion
and the value oM at the critical point must vanish as s 1 ( 7)
—==|d——], (21)
v 2 %
Ivlcritwl-iﬁlv- (18)
we obtain
We show the value of a1, as a function ot. in a log-log
plotin Fig. 8a. Notice that the scaling law is satisfied. A fit to E ~0.811) 22)
Eq. (17) gives v '

Xmax SCaling  (By=0.5) M,,, scaling PB,=0.5

125 F 0.7 y
100 + 0.6
o |
.| éﬁ“a‘) O Points
—— Regression|
05 |
g s0f 7 2
& a3 £
2 XL = %o L = . M= M, (o)’
X = 0.207(6) ) M, =2.28(3)
v =238(1) B =0.483(4)
2
25 X 40r, =0-54 x2/d0f=1.45
oal Lof.
8 1b 12 14 0‘62 0.64 0.2)6 0.08
L p - pC

(a) (b)

FIG. 8. Log-log plots forya{L) andM(p—p.), with p.=0.377.
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TABLE I. Comparison between several works. norm. Some results concerning the phase diagram previously
obtained by Alons@t al.[17] have been confirmed, measur-
Pc B v ing at the same time the behavior of monopoles, condensa-
our results 0377 0.48) 0.601) t?on a_md perco!ation. The location of the percolation transi-
Non-compact quenched QEDA4] ) 0.582) 0.6§3  tion line—the line defined by the maxima of the monopole
Pure four dimensional 0161 0.715 0.683  susceptibility—in the planef,,5y) has been determined.
site percolatiori29] This line overlaps the confined-Coulomb and the confined-
FKL97 [20] - 0.504) 0.61(4) Higgs phase transition lines, which are originated by a

monopole-condensation mechanism, but it continues away
from the end point. This is in contrast with the behavior of
which is more accurate than our measurement. So, we takle monopole percolation transition in the non-compact Abe-
Fhis value and regard the measurement as a test of hyperscahn Higgs model where it is unrelated to any phase transi-
Ing. tion. In addition, the critical exponents of the monopole per-
Combining Eqs(20) and(22), the value ofv is colation transition in the region far away from the phase
_ transition lines have been determined. The finite size scaling
v=0.601). (23 . o
has been performed in terms of the monopole density instead

The remaining critical exponents can be derived fromof the coupling, because the density seems to bengeral

those above using hyperscaling relations. parameter when dealing with percolation phenomena.
In Table | we compare our results with other related While this paper was being written we received ReD]
works. where a model with both scalar and fermion matter fields has

The vector nature of the monopole current suggests thdieen considered. Their results for the scalar sector are in
our model does not lie in the same universality class as thperfect agreement with our simulations. It is interesting to
four-dimensional site percolation. compare the finite size scaling analysis for the critical expo-

We also see that our values are close to the non-compaangnts in the pure-percolation region obtained using couplings
QED [14], but more data is required to decide if the two and density parameterizations. The values obtained in both
models belong to the same universality class. cases are in perfect agreement. However our density param-

Finally, we would like to stress the remarkable agreemenetrization results have been obtained with lattice sizes
with [20]. Nevertheless, they perform their analysis using asmaller than those in Ref20]. This suggests that the finite
different value of the Higgs coupling3y~0.9. As was volume effects are smaller if our parametrization is used.
pointed out in[20], a more careful analysis is necessary to
decide if the critical exponents are the same along the per-
colation line beyond the end point. ACKNOWLEDGMENTS
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