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Decay amplitudes in two-dimensional QCD
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Decay amplitudes for mesons in two-dimensional QCD are discussed. We show that in spite of an infinite
number of conserved charges, particle production is not entirely suppressed. This phenomenon is explained in
terms of quantum corrections to the combined algebra of higher-conserved and spectrum-generating currents.
We predict the qualitative form of particle production probabilities and verify that they are in agreement with
numerical data. We also discuss four-dimensional self-dual Yang-Mills theory in the light of our results.
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I. INTRODUCTION re-fermionised action provides a convenient starting point for
the analysis of the mesonic spectrum. The significant out-
Major advances in two-dimensional QCD have beencome of this procedure is that the Poisson brackets receive
made since the pioneering work of 't Hodft], who found quantum corrections. The conserved Noether currents then
the mesonic spectrum of the theory in the limit of a largesatisfy the Kac-Moody algebra only on taking the contribu-
number of colors. In subsequent works, an exact expressidiPn from the anomalous Poisson bracket into account. In
for the decay amplitudes of the mesons was foliBg]. Sec. lll, we combine the algebra of these conserved currents
However, both the 't Hooft equation and the decay amp"_with that of the fermionic bilinears, which have been shown
tudes could only be solved numerically. The numerical solut0 generate &V, algebra. We show that, except for the pion,
tion of the theory has been enterprised by many authorfle mesons generated by the abWgalgebra are not eigen-
[4,5]. The numerical calculations are difficult to converge forstates of the Sugawara operator. Conservation of the Sug-
massless fermions. A strongly convergent algorithm for veryawara operator indicates the existence of an infinite number
reliable numerical computations is also available in the Iit-0f conservation laws. If such conservation laws survive
erature[14]. These new results open challenging ways ofduantization and physical states are eigenstates of the Sug-
testing various aspects of the theory, specifically those corAwara operator then the dynamics of the theory is severely
cerning decay amplitudes of the theory. constrained. On the other hand, the breakdown of conserva-
It has been suggestdd] that massless two-dimensional tion laws by anomalous terms permits the decay of higher
QCD is an integrable system. It is believed that integrabilitystates. This explains the small decay rate numerically ob-
of a theory implies stability of its bound states. One could;served in the massless theory. Based on these results, we
therefore7 expect Vanishing decay amp"tudes for the mesoni@ake detailed predictions, in Sec. IV, about various features
states of the theory. The numerical results indicate otherwis@f the spectrum. In Sec. V, we use the recent numerical
The decay amplitudes, however, are small relative to thoskesults to verify our predictions and hence the accuracy of

obtained for the massive theory. our calculational results.
The main purpose of this article is to resolve this apparent
conflict by relating diverse properties of two-dimensional [l. BOSONISATION VS FERMIONISATION

QCD, as well as understand more about the dynamical struc- . i
ture of two-dimensional QCD. Specifically, we show that the Ve start with the Lagrangian
't Hooft sector and the integrable sector of the theory are
decoupled, in the sense'that the conservation Iavys found be- [=— EF FMVH%,,LD ¥, (1)
fore do not commute with the spectrum generating algebra 4~ K
due to quantum corrections. We also believe that the theory
is not integrable in the 't Hooft sector, that is to say that thewhich describes QCD with massless fermions. In two dimen-
integrability properties are spoiled by quantum correctionssions, the theory can be bosonised by computing the fermi-
However, we think that a strong simplification occurs in theonic determinant which arises in performing the path integra-
massless case as Compared to the massive fermion theof&@ln. In the bosonisation procedure one first defines left and
allowing us to draw special attention to such a difference infight components of the gauge field in terms of the matrix-
terms of the conservation laws and the anomalies, whicivalued fieldsU andV, i.e.,
presumably have a mild contribution semi-classically. ] ]
We review the known bosonisation procedu_re in Sec_. I[ A+=I—U*1a+U and A_=I—V&_V*1. @)
and show how the theory can be re-expressed in a fermionic e e
language, by using gauge-invariant chiral fermions. The final
It is well-known that the Jacobian resulting from the above
change of variables together with the effective action can be
*Email address: eabdalla@fmal.if.usp.br expressed in terms of the Wess-Zumino-WitteNZW)
TEmail address: roya@fmadl.if.usp.br functional[8]. That is to say,
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. , by the currentl_. As in the case of conformally
detimEéW[A]:J Dge/SFiAdl, (3 invariant theories, the conservation la|_=0 implies
that there is an infinite number of conserved charges,
The bosonic actio®:[A,g] may be obtained by the repeated Q™= [1_(x")(x")"dx". These act on asymptotjé fields
application of the Polyakov-Wiegmann ident{{9,6] and is  as multiplications by powers of th@egativé component of

given by the momentum times right-Sdj transformation, i.e.,
1 ()1} gkl A" silyyin| gkn
SHAGI=TIg]+ 5 f Px[e2A2—e?A, gA gt Q™8 (p))~pl&UIN BT, ©)
) . . This puts a stringent requirement on particle scattering, for-
—ieA,gd_g "—ieA_g "d.9] bidding particle production or decdy.
~T[UgV]-T[UV], (4) Recently, there have been suggestid that the stabil-

ity of the spectrum can be tested in the framework of

whereT is the WZW action functional. Subsequent inclusion t Hooft's mesons decay amplitudes. The numerical compu-
of the Faddeev-Popov ghost acti®igh], replacement of tations of the amplitudes provide a detailed check of the

the variablesJV by S andUgV by g—using systematically claims presented here, namely that the infinite number of

the invariance of the Haar measure, and finally the introducgonservaﬂon laws does not imply absence of particle produc-

tion of a scalar fielcE, to disentangle thé ,,F#" interac- tion or stability of the meson and zero decay amplitude.

. . - . . ’ As mesons are fermionic bound states, the relevance of
tion, yields the following form of the partition functidi6, 7] the above conserved quantities to the decay of mesons can be

_ conveniently studied by writing th@ sector of the theory,
Z=J Dge' 191D gh]eSloN D3 DEe (v DITE] defined in Eq(7), in terms of fermions. In the fermionisation
procedure, the WZW term is equivalent to an action for
massless fermions and the interactions are treated in pertur-
X exp{ —(cy+ 1)trf d’x9, EZ9_371 bation theory by using the adiabatic principle of form invari-
ance[15].
Using these techniques, we obtain the following fermion-

2 2 2 2
—2e“(cy+1) trJ d°xE"|. (®)  ized form of the action:

satisfying the relatiow E=(i/47) B 19, B, the factorized

From a further replacement of the variatileby a field g, _ j Px
form of the partition function,

Hi(sllg_—ieCl)yl +1tr(a C_)?
+ - — + 2 +~—

. (10

2=2[9,1]2[S,— (cy+1)1 24025, ©) +igla, o

is obtained. In the above expressidiM,n] is the partition  The 't Hooft spectrum can be algebraically generated by us-
function of a WZW fieldM with central charge, Z,,isthe  ing the spectrum-generating algebra of gauge-invariant fer-
ghost contribution, the non-trivial coupling-constant- mion bilinears. Since thg fields in Eq.(7), as well as their

dependent part of the partition function is fermionic replacements in Eq10), are gauge-invariant ob-
jects, the above action represents a chiral theory which has to
=z EJ DIB,Dciei]“[B]Hrfdzx[%(3+C7)2+ie07’3’13+g], be quantized using anomalous Poisson bracke® (sge
B also chapters 13 and 14 ¢15]). Indeed, the left-moving

(7)  Noether currents,

and the auxiliary fieldC_ is introduced to make the action 2 e
local! The equations of motion are equivalent to the conser- If = szw— EH’_— yp. C_+i[C_ ,II_], (11
vation lawd, |1 _=0, where

_ 2n-1 CoTr! 4 2.3 generate a Kac-Moody algebra only if the anomalous Pois-
l_(X)=4me B ~d,B—2Il_+i(4m)7e°C_ son bracket¢APB),
—(4me)’[C_,I1_], )
e
t — S(x—
II_=4,C_ andIlz=(1/4m)d, B '+ieC_p ! are canoni- - 00, (Y )b ape= 72 X =Y), (12

cal momenta conjugate ©_ and B respectively. Canonical
commutation relations lead to a Kac-Moody algebra obeyedre used.

The factorized form of the partition function is actually elusive, 2A detailed discussion of the action of conserved currents3on
due to several Becchi-Rouet-Stora-TyutlBRST) constraints re- field, and the consequences f@iscattering have been discussed in
maining from the gauge condition and change of variables. For th&®ef. [13], where an exact S-matrix has been conjectured.
definition of vacuum and physical states the reader is referred to *The bosonic formulation is advantageous since it contains infor-
[10-12. mation of orders already at the classical level.
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The operator(11) [or (8)] contains color indices. How- M__ =&/ WWM_ ) ..e "NV (16)

ever, in 't Hooft's formulation one deals exclusively with

colorless states and, therefore, it is natural to consider thgne finds that the Fourier modes W, which represent

Sugawara operators guantum fluctuation around classical solution, obey the 't
. i Hooft equation. Thus, thé/,, algebra found for the bilinears

L) =21 0015 (x)-, 13 i [17] is a spectrum-generating algebra.
where the color indices are contracted and the divergent W€ €mphasize that in the massive theory, the full content
terms in the Wilson expansiofcorresponding to the Kac- of the theory is preserved in the individual chiral sectors,

Moody algebri are subtracted by means of a normal-M++ andM__, which are related to each other by the
ordering prescription. fermion equation of motion. In the massless case, however,
we study the bilinears constructed frafm . There is a mix-
IIl. CLASSIFICATION OF THE MESONIC STATES ing of the sectors and it does not suffice to study one sector
' on its own.

In this section, we review the action of tN¢, algebra on
the spectrum. The spectrum-generating algebra, as obtained IV. THE COMBINED ALGEBRA

in [17], arises from the bilinears M,,(X,y)

= ¢Z(x)éef¥Au(§)df”¢y(y), wherea and y are the chirality

indices(+,—). In the massive case, these bilinears are relate
by the equations of motion. In the massless case, howeve
the mixed termM, _, corresponds to the integrabBesec-

In this section, we study the interplay between the
.-Spectrum-generating algebra and the conserved current
%{3). We identify the biIinearszpJr as the pion and
lﬁLDnlﬂ_'_ as the higher states obtained from the fermion bi-

tor, while the right-right termM __, corresponds to the N€arM... . _ P
usual meson bound states of 't Hooft. Therefore, we take 1€ pion is an eigenstate af(x);
M__(xy ix D) =gt x Dyl (yixt) (19 e

[LOO T W Y)]= 5oz v i)
, 2(x—y)
as the spectrum-generating current. In the momentum space
of the x™ variables, a classical solution of the equations of +
motion obeying the Gauss constraint is T 2=y Iy (y))+regular terms.

2

(M__(k_ k- ;X+))c|ass: S(k_—kL)O(k_). ) 17

ExpandingM _ _ around such a solution in the larg&limit ~ The higher-state fermion bilinears, however, due to various
[17] and using anomalous terms, are not eigenstates;

2

e
[LO) a9t py) =o' () aw(y)]= -

1 2
@) =l oY) = S = AP TIY) — TRy~ =

(x—=y)? (x—=y)*

o 1 it it 1 it a0t ie? Kjki _ ~ikyyik
€ Gy T = S WA T |+ | - S [ITNC - Y]
—166—30“+e<91H” —La(l//”l/;‘)jL ! 21//”1/)}

T X—y (X—y)
+anomalous Poisson Brackets teramegular terms. (18

Using the above two equations, we can write down the gen-
eral form of the algebra obtained from the action of the Sug-  (N—N1=Nz=1)(Mp M [Mp, )= f dx(|Lout—Linl)
awara operator on the physical states, that is,

= d .
1 :j dxﬁxdt&(MnanJuMn):anomalles, (20)

1
L-M,~ =y M,+ X_yaMn+anomanus terms.

( . . o
(199  Which shows the existence of an infinite number of conser-
vation equations. In the absence of the anomalous terms, the

Thus we see that, in the absence of anomaliemthetate is

an eigenstate of with eigenvaluen+1. Taking this into

account, we find that the action bfon the in and out states  “Recall that in the present fermionic formulation we have to use
is given by the anomalous Poisson brackets.
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decay amplitudes vanish. However, when anomalous term® the enhanced significance of the larger-order terms in the
are present unphysicahon-mesonig operators are intro- 1/N expansiorf.

duced in the right-hand side. Therefore, the amplitude is non- (4) Finally, the decay amplitudes of very massive mesons
vanishing. If one of the out states is a pion, then we will havevanish, unexceptionally, in the massless fermion case.

the following set of recursive relations:

V. NUMERICAL BACK-UP AND LARGE N BEHAVIOUR

(n—n;—1) (MM, |M,) In this section, we verify these predictions by means of
! the numerical computation of the amplitudésr predictions
1, 2 and 3, as well as by using largd analysis(for predic-
=2 (MoXIM)+ 2 (MM [Y) (2D tion 4),
% v Amplitudes for meson decay were initially derived in the
framework of 1N-expansion in2], and in more detalil, in-

cluding higher order corrections, [8]. The 1N corrections

whereX,Y are bound states of lower states and a pion state iS5 nish in the massless cas€his can be explained by study-
always present on the right-hand side. The solution to thf?ng the expression for the decay amplit/@a
above relations is found by using

A_(l—C)L fwdx¢> (X) (i)(p (X__‘")
(MoMy|Y)=0, (22) 1-w Jo n DY B

1 1 X—w X
—(1-0)— dxf dx¢n(x)¢q<r)®p(—>
. . . . w ® w w
which is obtained from the 1/N expansion of the decay am-
plitude and is valid up to second order. These solutions re- 1 fq ® X
quire the vanishing of the decays involving piohs. +N1-91=, j dXd’n(X)(ﬁp(Z), (23

From Eq.(18), we see that there are further corrections 0
which come from both higher terms in the Wilson expansion
and anomalous Poissong bracket quantization of tr?e chiré’f’herew:ka/ki’ d)n(x)=f(1)dy[¢n(y)/(x—y)2] andc de-
fermions. These terms cannot cancel one another, due fiptes the interchange of f]nal states. .
their different functional forn{as an example, highdi de- We _observe that the higher-order corrections are always
rivatives never arise from anomalous Poisson bra¢ket:;mu'tIplled by the factor
There are further higher terms when one considers the L
gauge-covariantized current. f :f dx b, (X) (24)

The decay amplitudes in the massless thevhich is Mo Jo T
integrable in the absence of anomaliese suppressed as
compared to those of the massive thegmpn-integrable  where ¢,(x) is 't Hooft's wave function of the decaying
This is entirely due to the quantum corrections. Since thestate. It can be verified using 't Hooft's wave equation, that
anomalous terms are of ordér they disappear for quasi- f vanishes for massless fermioi®y. Moreover, the authors
classical decays. In the massive theory, in addition to quaref Ref. [3] claim that, as higher-order corrections amount to
tum corrections, there are mass terms which spoil integrabila redefinition of constants in the massless case, only the very
ity. These terms do not vanish in the quasi-classicafirst term in the 1N series survives. Because this does not
approximation. In the massless theory, this approximation isiold in the massive case, corrections to all order exist. We
reliable for decays of highly-placed stat@sg. near the con- restrict our analysis to the lardedimit where amplitude for
tinuum limit) to large-momentum states. On the contrary,both massless and massive fermions may be non-vanishing.
decays into small-momentum states, marked by interference |n order to fully understand the behavior of the leading-
terms, are highly influenced by quantum corrections whichorder term[i.e. the first term in expressiaf23)] we need to
spoil quasiclassical approximation. solve the 't Hooft equation numerically. The solution is then

On the basis of the preceding results, we predict the folinserted back into Eq23) and the numerical integration is
lowing features: carried out. We are then in a position to compare the results

(1) The pion decouples in the massless fermion theoryfor the massless and the massive cases.

Such a decoupling is valid in all orders of thél¢xpansion. The method which employs MATHEMATICA program is

(2) For massless fermions, the decay of large-mass statefsatisfactory because of its bad-convergence behavior. The

into states with large momenta is severely suppressed.  numerical results are unreliable although they are compatible

(3) The probabilities for further decays, although reducedwith the predicted vanishing decay rate in the massless case,
are not very small. For smaM, the amplitudes are much

smaller than the corresponding ones in the massive case, due——

SWe recall again that N corrections are very important in the
massive case which strengthens these predictions for groups such as
St is worth mentioning that the algebra is independent of theSU(2).
number of colors, and the anomalous term only makes a first-order “The lowest-order term, however, seems to give a non-vanishing
contribution in the IN expansion. contribution. This is discussed later in this section.
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FIG. 1. Decay rate of the 5th excited state into the 1st and
ground (pion) states is plotted as a function of the outgoing mo-
menta. The first diagram corresponds to massless and the second
massive fermions. The vertical bars mark the on-mass-shell values

and the non-vanishing decay rate in the massive case. There
fore, a more sophisticated method of numerical computation
is needed.

A more elaborate method 4] confirms that particles do

not decay into states which contain the pion whereas in the -

massive case, the decay amplitudes are shown to be signifi
cantly large(see Fig. 1L
For the massless case, several decays of the type

—1+1, 2+2, where 1 and 2 denote the first and second T

excited states of 't Hooft's series, have been compusee
Figs. 2 and R For higher values oh the amplitude ap-
proaches zero rapidly. For the massive case, the amplitude
vary randomly(see Figure %

The overall results can be summarized as follows:

(). In the massless case, for a general ddcay + p the
amplitude can start from a high valysee specifically the
example 14-3+ 3 in Ref.[14]) but decreases rapidly with

-8

3781

\

L
01

04 0.5 0.6 0.7 0.8 0.9 1

(©

L
[eA]

'
02

0.3

L L
04 05 0.6 07 08 0.9 1

FIG. 2. Decay rates of the 10th, 11th and 12th states into two

mesons in the 2nd excited stdfer massless fermionsare plotted
as functions of the outgoing momenta. The vertical bars mark the
on-mass-shell values.

increasingk. These results are also compatible with the ear-
lier results of Ref[3]. Although the results for the massless

8For a survey of these methods using orthogonal eigenfunctionéase are very precise, those for the massive case require fur-

expansion we refer the reader[®18,19.

ther refinement. However, all the results obtained are precise
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FIG. 3. Decay rates of the 5th, 7th, 9th and 11th excited state into two mesons in the 1st excited state are plotted as functions of the
outgoing momenta for massless fermions. The vertical bars mark the on-mass-shell values.

enough for the conclusions drawn hitherto, and will be veri- In order to investigate the issue of pair production for

fied by other methods. large number of colors and high mesonic states, we calculate
(i). An exact computation of the decay rate of the higher-the amplitude of the decay of a very massive meson of mass

mass states guarantees the correctness of the numerical re; into two mesons of masses, andm,,. Such an ampli-

sults obtained so far. Indeed, using the lakyeechniques of  tyde, at lowest order in the inverse number of colors and up

[2] or [20] one finds the required amplitude in the larlge to an overall constant, is given by the vertex
limit. In terms of the fermion masm, a parametety satis-

fying o, (1 L 1
)
. m? - annzn_e E fo dxjo dy(XT_l)Z d’nl(x) ¢n2(y)

Ty cotmy=1— N (25 0
- . 1-y 1+xpi/p2
is defined(the massless case correspondsyte0). In the x| by, — .27
largen limit, the decay amplitude is found to obey 1+pi/p; 1+p1/p;

A~sin y, (26)  wherep; is the plus-component of the momentum. For decay

of very massive mesong),— =, energy-momentum conser-
which is valid up to constants describing the behavior of theyation implies
't Hooft wave functions at the origirisee[20] for further
detaily and which shows a non-vanishing result only for
non-zero values of the parametgr The same computation m2= m%ﬁ_ (28)
may be explicitly carried out in the massless case. P2
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Thus the main contribution to the integral comes frem0.
Next, we make the following substitutions

m, |2
X= 77( ?) ’ (29)
?i(x)~Cix?, (30)
where vy is defined in Eq(25) andx is small, and
e\? ¢
én f( ) ~¢(&)=sin —+5(¢) |, (31)
where §¢) is a phasé,in Eq. (27) to find
¢2(X )
nyn,n = le d??f dx’'n 7]+X )2
m3 m3
X| | (1—x") 2 —¢ (1+77)g
my| 27

Since the vertex is symmetric under the exchange2] the
relation C;/l;=r must be the same fdr=1,2 and can be
computed in a convenient limit. We thus computfor i =2

and large values ah,. In this limit, the asymptotic behavior

3783

1
fdg b(%) __(; 36

In order to confirm these conclusions further, we make a
detailed comparison between the amplitudes obtained in the
massive and massless cases. This can be conveniently done
by considering the table presented below.

1)¢>(77)-

Decay series A k Alk
8—1+1, m=0. .25 A4 .65
8—1+1, m#0 5 .25 2
9—1+1, m=0 2 il 5
9—1+1, m#0 5 .28 1.8
10—-1+1, m#0 .8 3 2.7
11—1+1, m=0 <.05 .45 <.l
13—-1+1,m=0 ~0 .45 ~0

In this table, the second column represents the momenta of
the outgoing particles and the figures in the last column are
proportional to the decay probabiliti€$These tabulated re-
sults once again confirm the prediction that the ratio between
massless and massive fermion decay rates goes to zero-being
smaller than 3% for the 11th state. For other series of decays,
this ratio approaches zero more slowly. Nevertheless, one
clearly observes that this ratio approaches zero, e.g., for
massless serids—2+2 (see Fig. 2

of the wave functions can be used to find the explicit values

of C, andl,, i.e.,

m,\ ~27 my\%
C,~ o , = | msinwy. (33
Subsequently, the expression
2 mn 27 .
Vin,n~€ - sinmy (39

is obtained which shows that the vertex vanishesyfer0.
For massless fermions, that is fer=0, the 7 integration

in the first term of Eq(32) can be performed. Moreover, by

using 't Hooft's equation in the same terfto replace¢/x)
we obtain

To=- | axaa0 fowdn

1
—j dxeo(X)| w
0

g d’fw(

Xx—1+—
/.L

L (1+ n)pu?]
(7+x)?

2+ T—x|PL(1— X)u?]

(39

whereu=m,/m, . The last two terms canci21] due to the
identity

%The validity of Eq.(31) is confirmed for massless fermions by

using numerical simulations.

VI. CONCLUSION

Massless QCD contains higher-conservation laws which
in general imply integrability. These conservation laws have
been derived in the massiyg) sector. The mesons in the 't
Hooft sector are built up of fermion bilinears which are
dressed with bosonic fields of the massless sector. We have
shown here that the spectrum-generating algebra, which de-
fines the 't Hooft sector, does not commute with the higher
conservation laws due to quantum corrections to the short-
distance expansions. This implies the breakdown of integra-
bility in the meson sector. The quantum nature of these cor-
rections means that they are insignificant for quasi-classical
decays. This renders the theoguasi-integrableand ac-
counts for the exact decoupling of the pion.

The theory has a complex structure of constraints. The
mesonic states, although physical, are not eigenstates of the
conserved charges obtained from the Sugawara operators.
This is because the massive and the massless sectors of the
theory are connected by the constraint equations. The mas-
sive sector alondthe B sectoy is integrable but does not
generate the physical Hilbert space since it is not BRST in-
variant. The change of variables made to decouple the dy-
namics of the massive and the massless sectors of the theory
[see Egs(2), (5) and(6)] leads to non-trivial Jacobian which
breaks the BRST invariandé1,12.

Therefore, due to quantum corrections, the integrability
and the BRST-invariance properties of the theory fall into

10%e have chosen the units such that the mass of the initial state
is unity (the influence of the fermion mass is small in the present
cases
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FIG. 4. Decay rates of the 7th, 8th, 9th and 10th states into two mesons in the 1st excited state are plotted for massive fermions.

two different sectors, the former being valid in the massive The result of our paper is to show that in spite of the
sector alone and the latter in the meson sector. This can mmplexity of the situation, and the fact that the model is
interpreted as the stability of the unphysigaparticles. We used to study QCD mesons, the decaying amplitudes are
have verified this characteristic of the theory in the quasisimpler than imagined before, and indicate further structures
classical approximation by numerical methods. not known before. The zeroes of the decaying amplitudes are
The theory simplifies in the largdl limit, and meson a demonstration of that fact. The theory is not integrable, but
wavefunctions and masses can be computed. LArgmr-  the decay amplitudes are nearly vanishing. Our numerical
rections are well known in the literature, and the numericakresults are an “experimental” demonstration of that fact, and
problem can be tackled. in Sec. lll we give a field theoretic argument to support that
Nevertheless, two dimensional QCD is far from trivial. In fact.
spite of the largeN techniques, the formal aspects of the Finally, we wish to point out that the methods are not
theory have not been fully understood, and only recently thdorrowed from techniques invented for integrable systems,
vacuum structure has been studied, and separated from thet rather well defined and established techniques based on
description of the massive excitations. Such structures arde computation of the exact fermionic determinant, leading
the core of the understanding of the Schwinger model, antb the bosonised version, namely the gauge Wess-Zumino-
led to very profound consequences in that case. Our aim had/itten model and its gauge interaction.
been to deepen the understanding of the theory, obtaining It is of prime importance to generalize the concept of
results similar to those known to two dimensional QED, thequasi-integrability to higher dimensions. Indeed, Bardeen
Schwinger model. [22] has recently pointed out that helicity amplitudes in high-
However, it is clear that a development in that directionenergy QCD are very simple at tree level and are described
encounters a wall, since the theory is not soluble. Nevertheby a self-dual Yang-Mills theory. The classical solution of
less, the numerical methods used, permit to obtain new strudhis theory strongly resembles the Bethe ansatz solution of
tures otherwise unknown. Moreover, there are indicationgntegrable two-dimensional models. Moreover, the one-loop
that the theory has an unexpected simplification in the masssmplitudes are reminiscent of those corresponding to anoma-
less case. lous conservation laws. It is known that the self-dual Yang-
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Mills theory is an integrable theory and is described by verylaws, in general space-time dimensions, in spite of the

simple actions [23]. On the other hand, integrable
Lagrangians with either anomalieR24] or with non-
vanishing amplitudes for particle productip25] are known

and are well documented in the literature. It remains an in-

Coleman-Mandula no-go theoref@6] and its more general
version[27].

ACKNOWLEDGMENTS

teresting open problem to see whether the quasi-integrability

idea is the most efficient framework for the description of
non-trivial dynamics in theories with higher conservation

We wish to thank Chand Devchand for a critical reading
of the manuscript and many useful suggestions.

[1] G. 't Hooft, Nucl. Phys.B75, 461(1974.

[2] C. G. Callan, N. Coote and D. J. Gross, Phys. Re.3D1649
(1976.

[3]J. C. F. Barbon and K. Demeterfi, Nucl. PhyB434, 109
(1995.

[4] M. Burkardt, Nucl. PhysA504, 762 (1989.

[5] K. Hornbostel, S. J. Brodsky and H.-C. Pauli, Phys. Re¥.1D
3814(1990.

[6] E. Abdalla and M. C. B. Abdalla, Phys. Re?65 253(1996.

[7] E. Abdalla and M. C. B. Abdalla, Int. J. Mod. Phys. X0,
1611(1995.

[8] E. Witten, Commun. Math. Phy82, 455(1984.

[9] A. M. Polyakov and P. B. Wiegmann, Phys. LetB1B, 121
(1983.

[10] E. Abdalla and K. D. Rothe, Phys. Lett. 33, 85 (1995.

[11] K. D. Rothe, F. Scholtz and N. Theron, Ann. Ph{is.Y.) 255
97 (1997.

[12] K. D. Rothe and D. Cabra, Phys. Rev.55, 2240(1997.

[13] E. Abdalla and M. C. B. Abdalla, Phys. Rev. B2, 6660
(1995.

[14] W. Krauth and M. Staudacher, Phys. Lett3B8 808 (1996.

[15] E. Abdalla, M. C. Abdalla and K. D. Roth&lon-perturbative
Methods in Two Dimensional Quantum Field Thegvyorld
Scientific, Singapore, 1991

[16] H. J. Rothe and K. D. Rothe, Phys. Rev4D, 545(1989; F.
Otto, H. J. Rothe and K. D. Rothe, Phys. Lett.2B1, 299
(1989; F. Otto and K. D. Rothe, Phys. Rev. B2, 2829
(1990.

[17] K. Kikkawa, Ann. Phys(N.Y.) 135 222(1981); A. Dhar, G.
Mandal and S. Wadia, Mod. Phys. Lett. & 3557 (1993;
Phys. Lett. B329 15 (1994).

[18] H. Hanson, R. D. Peccei and M. K. Prasad, Nucl. PB#21,
474 (1977).

[19] R. L. Jaffe and P. F. Mende, Nucl. Phy369 189(1992; B.
Grinsteins and P. F. Mendiid. B425, 451 (1994).

[20] R. C. Brower, J. Ellis, M. Schmidt and J. H. Weisz, Nucl.
Phys.B128 131(1977; B128 175(1977.

[21] M. B. Einhorn, Phys. Rev. 14, 3451(1976.

[22] W. A. Bardeen, Prog. Theor. Phys. Supp23 1 (1996.

[23] G. Chalmers and W. Siegel, Phys. Revbl) 7628(1996); A.
N. Leznov and A. Mukhtarov, J. Math. Phy&8, 2574(1987);
A. Parkes, Phys. Lett. B86, 265(1992.

[24] E. Abdalla, M. C. B. Abdalla and M. Gomes, Phys. ReV2®
1800(1981); E. Abdalla, M. Forger and A. Lima-Santos, Nucl.
Phys.B256, 145 (1985.

[25] T. L. Curtright and C. Zachos, Phys. Rev.49, 5408(1994).

[26] S. Coleman and J. Mandula, Phys. R&§9, 1251(1967).

[27] R. Haag, J. Lopuszanski and M. Sohnius, Nucl. PB@8, 257
(1975.



