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Decay amplitudes in two-dimensional QCD

E. Abdalla* and R. Mohayaee†

Instituto de Fı´sica-USP, C.P. 66.318, S. Paulo, Brazil
~Received 31 March 1997; published 17 February 1998!

Decay amplitudes for mesons in two-dimensional QCD are discussed. We show that in spite of an infinite
number of conserved charges, particle production is not entirely suppressed. This phenomenon is explained in
terms of quantum corrections to the combined algebra of higher-conserved and spectrum-generating currents.
We predict the qualitative form of particle production probabilities and verify that they are in agreement with
numerical data. We also discuss four-dimensional self-dual Yang-Mills theory in the light of our results.
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I. INTRODUCTION

Major advances in two-dimensional QCD have be
made since the pioneering work of ’t Hooft@1#, who found
the mesonic spectrum of the theory in the limit of a lar
number of colors. In subsequent works, an exact expres
for the decay amplitudes of the mesons was found@2,3#.
However, both the ’t Hooft equation and the decay amp
tudes could only be solved numerically. The numerical so
tion of the theory has been enterprised by many auth
@4,5#. The numerical calculations are difficult to converge f
massless fermions. A strongly convergent algorithm for v
reliable numerical computations is also available in the
erature@14#. These new results open challenging ways
testing various aspects of the theory, specifically those c
cerning decay amplitudes of the theory.

It has been suggested@7# that massless two-dimension
QCD is an integrable system. It is believed that integrabi
of a theory implies stability of its bound states. One cou
therefore, expect vanishing decay amplitudes for the mes
states of the theory. The numerical results indicate otherw
The decay amplitudes, however, are small relative to th
obtained for the massive theory.

The main purpose of this article is to resolve this appar
conflict by relating diverse properties of two-dimension
QCD, as well as understand more about the dynamical st
ture of two-dimensional QCD. Specifically, we show that t
’t Hooft sector and the integrable sector of the theory
decoupled, in the sense that the conservation laws found
fore do not commute with the spectrum generating alge
due to quantum corrections. We also believe that the the
is not integrable in the ’t Hooft sector, that is to say that t
integrability properties are spoiled by quantum correctio
However, we think that a strong simplification occurs in t
massless case as compared to the massive fermion th
allowing us to draw special attention to such a difference
terms of the conservation laws and the anomalies, wh
presumably have a mild contribution semi-classically.

We review the known bosonisation procedure in Sec
and show how the theory can be re-expressed in a fermi
language, by using gauge-invariant chiral fermions. The fi
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re-fermionised action provides a convenient starting point
the analysis of the mesonic spectrum. The significant o
come of this procedure is that the Poisson brackets rec
quantum corrections. The conserved Noether currents
satisfy the Kac-Moody algebra only on taking the contrib
tion from the anomalous Poisson bracket into account.
Sec. III, we combine the algebra of these conserved curr
with that of the fermionic bilinears, which have been show
to generate aW` algebra. We show that, except for the pio
the mesons generated by the aboveW` algebra are not eigen
states of the Sugawara operator. Conservation of the S
awara operator indicates the existence of an infinite num
of conservation laws. If such conservation laws surv
quantization and physical states are eigenstates of the
awara operator then the dynamics of the theory is seve
constrained. On the other hand, the breakdown of conse
tion laws by anomalous terms permits the decay of hig
states. This explains the small decay rate numerically
served in the massless theory. Based on these results
make detailed predictions, in Sec. IV, about various featu
of the spectrum. In Sec. V, we use the recent numer
results to verify our predictions and hence the accuracy
our calculational results.

II. BOSONISATION VS FERMIONISATION

We start with the Lagrangian

L52
1

4
FmnFmn1 i c̄gmDmc, ~1!

which describes QCD with massless fermions. In two dim
sions, the theory can be bosonised by computing the fer
onic determinant which arises in performing the path integ
tion. In the bosonisation procedure one first defines left a
right components of the gauge field in terms of the matr
valued fieldsU andV, i.e.,

A15
i

e
U21]1U and A25

i

e
V]2V21. ~2!

It is well-known that the Jacobian resulting from the abo
change of variables together with the effective action can
expressed in terms of the Wess-Zumino-Witten~WZW!
functional @8#. That is to say,
3777 © 1998 The American Physical Society
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3778 57E. ABDALLA AND R. MOHAYAEE
det iD” [eiW[A]5E DgeiSF[A,g] . ~3!

The bosonic actionSF@A,g# may be obtained by the repeate
application of the Polyakov-Wiegmann identity@9,6# and is
given by

SF@A,g#5G@g#1
1

4p E d2x@e2A22e2A1gA2g21

2 ieA1g]2g212 ieA2g21]1g#

5G@UgV#2G@UV#, ~4!

whereG is the WZW action functional. Subsequent inclusi
of the Faddeev-Popov ghost actionS@gh#, replacement of
the variablesUV by S andUgV by g̃ –using systematically
the invariance of the Haar measure, and finally the introd
tion of a scalar fieldE, to disentangle theFmnFmn interac-
tion, yields the following form of the partition function@6,7#:

Z5E Dg̃eiG[ g̃ ]D@gh#eiS[gh]DSDEe2 i ~cV11!G[S]

3expF2~cV11!trE d2x]1ES]2S21

22e2~cV11!2trE d2xE2G . ~5!

From a further replacement of the variableE by a field b,
satisfying the relation]1E5( i /4p)b21]1b, the factorized
form of the partition function,

Z5Z@g,1#Z@S̃,2~cV11!#ZghZb , ~6!

is obtained. In the above expression,Z@M ,n# is the partition
function of a WZW fieldM with central chargen, Zgh is the
ghost contribution, the non-trivial coupling-constan
dependent part of the partition function is

Zb[E DbDC2eiG[b] 1tr*d2x[
1
2 ~]1C2!21 ieC2b21]1b] ,

~7!

and the auxiliary fieldC2 is introduced to make the actio
local.1 The equations of motion are equivalent to the cons
vation law]1I 250, where

I 2~x!54pe2b21]1b22P28 1 i ~4p!2e3C2

2~4pe!2@C2 ,P2#, ~8!

P25]1C2 andPb5(1/4p)]1b211 ieC2b21 are canoni-
cal momenta conjugate toC2 andb respectively. Canonica
commutation relations lead to a Kac-Moody algebra obe

1The factorized form of the partition function is actually elusiv
due to several Becchi-Rouet-Stora-Tyutin~BRST! constraints re-
maining from the gauge condition and change of variables. For
definition of vacuum and physical states the reader is referre
@10–12#.
c-

r-

d

by the current I 2 . As in the case of conformally
invariant theories, the conservation law]1I 250 implies
that there is an infinite number of conserved charg
Q(n)5* I 2(x2)(x2)ndx2. These act on asymptoticb fields
as multiplications by powers of the~negative! component of
the momentum times right-SU(n) transformation, i.e.,

Q~n! i j
ubkl~p!&;p2

n d j l U jnubkn&. ~9!

This puts a stringent requirement on particle scattering,
bidding particle production or decay.2

Recently, there have been suggestions@14# that the stabil-
ity of the spectrum can be tested in the framework
’t Hooft’s mesons decay amplitudes. The numerical com
tations of the amplitudes provide a detailed check of
claims presented here, namely that the infinite number
conservation laws does not imply absence of particle prod
tion or stability of the meson and zero decay amplitude.

As mesons are fermionic bound states, the relevanc
the above conserved quantities to the decay of mesons ca
conveniently studied by writing theb sector of the theory,
defined in Eq.~7!, in terms of fermions. In the fermionisatio
procedure, the WZW term is equivalent to an action
massless fermions and the interactions are treated in pe
bation theory by using the adiabatic principle of form inva
ance@15#.

Using these techniques, we obtain the following fermio
ized form of the action:

S5E d2xFc1
†i i ~d j i ]22 ieC2

i j !c1
j 1

1

2
tr~]1C2!2

1 ic2
†i

]1c2
i G . ~10!

The ’t Hooft spectrum can be algebraically generated by
ing the spectrum-generating algebra of gauge-invariant
mion bilinears. Since theb fields in Eq.~7!, as well as their
fermionic replacements in Eq.~10!, are gauge-invariant ob
jects, the above action represents a chiral theory which ha
be quantized using anomalous Poisson brackets@16# ~see
also chapters 13 and 14 of@15#!. Indeed, the left-moving
Noether currents,

I 2
f 5c†c2

2

e
P28 2

e

4p
C21 i @C2 ,P2#, ~11!

generate a Kac-Moody algebra only if the anomalous P
son brackets~APB!,

$P2~x!,c†c~y!%APB5
e

4p
d~x2y!, ~12!

are used.3

e
to

2A detailed discussion of the action of conserved currents ob
field, and the consequences forb-scattering have been discussed
Ref. @13#, where an exact S-matrix has been conjectured.

3The bosonic formulation is advantageous since it contains in
mation of order\ already at the classical level.
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57 3779DECAY AMPLITUDES IN TWO-DIMENSIONAL QCD
The operator~11! @or ~8!# contains color indices. How
ever, in ’t Hooft’s formulation one deals exclusively wit
colorless states and, therefore, it is natural to consider
Sugawara operators

L~x!5:I i j ~x!I j i ~x!:, ~13!

where the color indices are contracted and the diverg
terms in the Wilson expansion~corresponding to the Kac
Moody algebra! are subtracted by means of a norm
ordering prescription.

III. CLASSIFICATION OF THE MESONIC STATES

In this section, we review the action of theW` algebra on
the spectrum. The spectrum-generating algebra, as obta
in @17#, arises from the bilinears Mag(x,y)

5ca
†(x)eie*x

yAm(j)djm
cg(y), wherea and g are the chirality

indices~1,2!. In the massive case, these bilinears are rela
by the equations of motion. In the massless case, howe
the mixed term,M 12 , corresponds to the integrable-b sec-
tor, while the right-right term,M 22 , corresponds to the
usual meson bound states of ’t Hooft. Therefore, we take

M 22~x2,y2;x1!5c2
i†~x2,x1!c2

i ~y2;x1! ~14!

as the spectrum-generating current. In the momentum s
of the x2 variables, a classical solution of the equations
motion obeying the Gauss constraint is

„M 22~k2 ,k28 ;x1!…class5d~k22k28 !u~k2!. ~15!

ExpandingM 22 around such a solution in the largeN limit
@17# and using
e
ug

s

e

nt

ed

d
er,

ce
f

M 225ei /AN W~M 22!classe
2 i /AN W ~16!

one finds that the Fourier modes ofW, which represent
quantum fluctuation around classical solution, obey the
Hooft equation. Thus, theW` algebra found for the bilinears
in @17# is a spectrum-generating algebra.

We emphasize that in the massive theory, the full cont
of the theory is preserved in the individual chiral secto
M 11 and M 22 , which are related to each other by th
fermion equation of motion. In the massless case, howe
we study the bilinears constructed fromc1 . There is a mix-
ing of the sectors and it does not suffice to study one se
on its own.

IV. THE COMBINED ALGEBRA

In this section, we study the interplay between t
W`-spectrum-generating algebra and the conserved cur
~13!. We identify the bilinearc1

† c1 as the pion and
c1

† Dnc1 as the higher states obtained from the fermion
linear M 11 .

The pion is an eigenstate ofL(x);4

@L~x!,c†~y!c~y!#5
e2

2~x2y!2 c†c~y!

1
e2

2~x2y!
]„c†c~y!…1regular terms.

~17!

The higher-state fermion bilinears, however, due to vario
anomalous terms, are not eigenstates;
@L~x!,]c†c~y!2c†~y!]c~y!#52
e2

4 F 2

~x2y!2 „]c†c~y!2c†]c~y!…2
1

x2y
]„]c†c~y!2c†]c~y!…2

2

~x2y!4G
1e2F 1

~x2y!2 ~c i†c jc j †c i !2
1

x2y
„c i†c j]~c j †c i !…G1F2

ie2

2
@Pk jCki2CjkP ik#

216
e3

p
Cji 1e]1P i j GF2

1

x2y
]~c j †c i !1

1

~x2y!2 c j †c i G
1anomalous Poisson Brackets terms1regular terms. ~18!
er-
, the

se
Using the above two equations, we can write down the g
eral form of the algebra obtained from the action of the S
awara operator on the physical states, that is,

L•Mn'
n11

~x2y!2 Mn1
1

x2y
]Mn1anomalous terms.

~19!

Thus we see that, in the absence of anomalies, thenth state is
an eigenstate ofL with eigenvaluen11. Taking this into
account, we find that the action ofL on the in and out state
is given by
n-
- ~n2n12n221!^Mn1

Mn2
uMnj

&5E dx^uLout2Linu&

5E dxE
2`

`

dt
d

dt
^Mn1

Mn2
uLuMn&5anomalies, ~20!

which shows the existence of an infinite number of cons
vation equations. In the absence of the anomalous terms

4Recall that in the present fermionic formulation we have to u
the anomalous Poisson brackets.
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3780 57E. ABDALLA AND R. MOHAYAEE
decay amplitudes vanish. However, when anomalous te
are present unphysical~non-mesonic! operators are intro-
duced in the right-hand side. Therefore, the amplitude is n
vanishing. If one of the out states is a pion, then we will ha
the following set of recursive relations:

~n2n121!^M0Mn1
uMn&

5(
X

^M0XuMn&1(
Y

^M0Mn1
uY& ~21!

whereX,Y are bound states of lower states and a pion sta
always present on the right-hand side. The solution to
above relations is found by using

^M0M0uY&50, ~22!

which is obtained from the 1/N expansion of the decay a
plitude and is valid up to second order. These solutions
quire the vanishing of the decays involving pions.5

From Eq.~18!, we see that there are further correctio
which come from both higher terms in the Wilson expans
and anomalous Poisson bracket quantization of the ch
fermions. These terms cannot cancel one another, du
their different functional form~as an example, higherP de-
rivatives never arise from anomalous Poisson bracke!.
There are further higher terms when one considers
gauge-covariantized current.

The decay amplitudes in the massless theory~which is
integrable in the absence of anomalies! are suppressed a
compared to those of the massive theory~non-integrable!.
This is entirely due to the quantum corrections. Since
anomalous terms are of order\, they disappear for quasi
classical decays. In the massive theory, in addition to qu
tum corrections, there are mass terms which spoil integra
ity. These terms do not vanish in the quasi-classi
approximation. In the massless theory, this approximatio
reliable for decays of highly-placed states~e.g. near the con
tinuum limit! to large-momentum states. On the contra
decays into small-momentum states, marked by interfere
terms, are highly influenced by quantum corrections wh
spoil quasiclassical approximation.

On the basis of the preceding results, we predict the
lowing features:

~1! The pion decouples in the massless fermion theo
Such a decoupling is valid in all orders of the 1/N expansion.

~2! For massless fermions, the decay of large-mass st
into states with large momenta is severely suppressed.

~3! The probabilities for further decays, although reduc
are not very small. For smallN, the amplitudes are muc
smaller than the corresponding ones in the massive case

5It is worth mentioning that the algebra is independent of
number of colors, and the anomalous term only makes a first-o
contribution in the 1/N expansion.
s

n-
e

is
e

-
e-

n
al
to

e

e

n-
il-
l

is

,
ce
h

l-

y.

tes

,

ue

to the enhanced significance of the larger-order terms in
1/N expansion.6

~4! Finally, the decay amplitudes of very massive meso
vanish, unexceptionally, in the massless fermion case.

V. NUMERICAL BACK-UP AND LARGE N BEHAVIOUR

In this section, we verify these predictions by means
the numerical computation of the amplitudes~for predictions
1, 2 and 3!, as well as by using largeN analysis~for predic-
tion 4!.

Amplitudes for meson decay were initially derived in th
framework of 1/N-expansion in@2#, and in more detail, in-
cluding higher order corrections, in@3#. The 1/N corrections
vanish in the massless case.7 This can be explained by study
ing the expression for the decay amplitude@3#,

A5~12C!
1

12v E
0

v

dxfn~x!fpS x

v DFqS x2v

12v D
2~12C!

1

v
dxE

v

1

dxfn~x!fqS x2v

12v DFpS x

v D
1

1

N
~12C!

f q

12v E
0

v

dxfn~x!fpS x

v D , ~23!

wherev5k1
p /k1

n , Fn(x)5*0
1dy@fn(y)/(x2y)2# andC de-

notes the interchange of final states.
We observe that the higher-order corrections are alw

multiplied by the factor

f n5E
0

1

dxfn~x!, ~24!

where fn(x) is ’t Hooft’s wave function of the decaying
state. It can be verified using ’t Hooft’s wave equation, th
f n vanishes for massless fermions@2#. Moreover, the authors
of Ref. @3# claim that, as higher-order corrections amount
a redefinition of constants in the massless case, only the
first term in the 1/N series survives. Because this does n
hold in the massive case, corrections to all order exist.
restrict our analysis to the large-N limit where amplitude for
both massless and massive fermions may be non-vanish

In order to fully understand the behavior of the leadin
order term@i.e. the first term in expression~23!# we need to
solve the ’t Hooft equation numerically. The solution is th
inserted back into Eq.~23! and the numerical integration i
carried out. We are then in a position to compare the res
for the massless and the massive cases.

The method which employs aMATHEMATICA program is
unsatisfactory because of its bad-convergence behavior.
numerical results are unreliable although they are compat
with the predicted vanishing decay rate in the massless c

e
er

6We recall again that 1/N corrections are very important in th
massive case which strengthens these predictions for groups su
SU~2!.

7The lowest-order term, however, seems to give a non-vanish
contribution. This is discussed later in this section.
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57 3781DECAY AMPLITUDES IN TWO-DIMENSIONAL QCD
and the non-vanishing decay rate in the massive case. Th
fore, a more sophisticated method of numerical computa
is needed.8

A more elaborate method@14# confirms that particles do
not decay into states which contain the pion whereas in
massive case, the decay amplitudes are shown to be sig
cantly large~see Fig. 1!.

For the massless case, several decays of the typn
→111, 212, where 1 and 2 denote the first and seco
excited states of ’t Hooft’s series, have been computed~see
Figs. 2 and 3!. For higher values ofn the amplitude ap-
proaches zero rapidly. For the massive case, the amplit
vary randomly~see Figure 4!.

The overall results can be summarized as follows:
(i). In the massless case, for a general decayk→ l 1p the

amplitude can start from a high value~see specifically the
example 14→313 in Ref. @14#! but decreases rapidly with

8For a survey of these methods using orthogonal eigenfunct
expansion we refer the reader to@3,18,19#.

FIG. 1. Decay rate of the 5th excited state into the 1st a
ground ~pion! states is plotted as a function of the outgoing m
menta. The first diagram corresponds to massless and the seco
massive fermions. The vertical bars mark the on-mass-shell va
re-
n

e
ifi-

d

es

increasingk. These results are also compatible with the e
lier results of Ref.@3#. Although the results for the massles
case are very precise, those for the massive case require
ther refinement. However, all the results obtained are pre

ns

d
-
d to
s.

FIG. 2. Decay rates of the 10th, 11th and 12th states into
mesons in the 2nd excited state~for massless fermions! are plotted
as functions of the outgoing momenta. The vertical bars mark
on-mass-shell values.
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FIG. 3. Decay rates of the 5th, 7th, 9th and 11th excited state into two mesons in the 1st excited state are plotted as functio
outgoing momenta for massless fermions. The vertical bars mark the on-mass-shell values.
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enough for the conclusions drawn hitherto, and will be ve
fied by other methods.

(ii). An exact computation of the decay rate of the high
mass states guarantees the correctness of the numeric
sults obtained so far. Indeed, using the largeN techniques of
@2# or @20# one finds the required amplitude in the largek
limit. In terms of the fermion massm, a parameterg satis-
fying

pg cot pg512
pm2

e2N
~25!

is defined~the massless case corresponds tog50!. In the
largen limit, the decay amplitude is found to obey

A;sin pg, ~26!

which is valid up to constants describing the behavior of
’t Hooft wave functions at the origin~see@20# for further
details! and which shows a non-vanishing result only f
non-zero values of the parameterg. The same computation
may be explicitly carried out in the massless case.
-

-
re-

e

In order to investigate the issue of pair production f
large number of colors and high mesonic states, we calcu
the amplitude of the decay of a very massive meson of m
mn into two mesons of massesmn1

andmn2
. Such an ampli-

tude, at lowest order in the inverse number of colors and
to an overall constant, is given by the vertex

Vn1n2n5e2
p1

p2
E

0

1

dxE
0

1

dy
1

S x
p1

p2
D 2 fn1

~x!fn2
~y!

3FfnS 12y

11p1 /p2
D2fnS 11xp1 /p2

11p1 /p2
D G , ~27!

wherepi is the plus-component of the momentum. For dec
of very massive mesons,mn→`, energy-momentum conser
vation implies

mn
25m2

2 p1

p2
. ~28!
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57 3783DECAY AMPLITUDES IN TWO-DIMENSIONAL QCD
Thus the main contribution to the integral comes fromx;0.
Next, we make the following substitutions

x5hS m2

e D 2

, ~29!

f i~x!'Cix
g, ~30!

whereg is defined in Eq.~25! andx is small, and

fnFjS e

mn
D 2G'f~j![sinS j

p
1d~j! D , ~31!

whered~j! is a phase,9 in Eq. ~27! to find

Vn1n2n5S m2

mn
D 2g

C1E
0

`

dhE
0

1

dx8hg
f2~x8!

~h1x8!2

3FfS ~12x8!
m2

2

e2 D 2fS ~11h!
m2

2

e2 D G
5S mn

e D 22g

C1I 2 . ~32!

Since the vertex is symmetric under the exchange 1↔2, the
relation Ci /I i5r must be the same fori 51,2 and can be
computed in a convenient limit. We thus computer for i 52
and large values ofm2 . In this limit, the asymptotic behavio
of the wave functions can be used to find the explicit valu
of C2 and I 2 , i.e.,

C2'S m2

e D 22g

, I 2'S m2

e D 2g

p sin pg. ~33!

Subsequently, the expression

Vn1n2n'e2S mn

e D 2g

sinpg ~34!

is obtained which shows that the vertex vanishes forg→0.
For massless fermions, that is forg50, theh integration

in the first term of Eq.~32! can be performed. Moreover, b
using ’t Hooft’s equation in the same term~to replacef/x!
we obtain

Ĩ 252E
0

1

dxf2~x!E
0

`

dh
f@~11h!m2#

~h1x!2

2E
0

1

dxf2~x!Fm21
1

12xGf@~12x!m2#

2E
0

` dj

m2 E
0

1

dxf~j!
f2~x!

S x211
j

m2D 2 ~35!

wherem5m2 /mn . The last two terms cancel@21# due to the
identity

9The validity of Eq.~31! is confirmed for massless fermions b
using numerical simulations.
s

E
0

`

dz
f~z!

~z2h!2 52S 1

h
11Df~h!. ~36!

In order to confirm these conclusions further, we make
detailed comparison between the amplitudes obtained in
massive and massless cases. This can be conveniently
by considering the table presented below.

Decay series A k A/k

8→111, m50. .25 .4 .65
8→111, mÞ0 .5 .25 2
9→111, m50 .2 .4 .5
9→111, mÞ0 .5 .28 1.8
10→111, mÞ0 .8 .3 2.7
11→111, m50 ,.05 .45 ,.1
13→111, m50 '0 .45 '0

In this table, the second column represents the moment
the outgoing particles and the figures in the last column
proportional to the decay probabilities.10 These tabulated re
sults once again confirm the prediction that the ratio betw
massless and massive fermion decay rates goes to zero-
smaller than 3% for the 11th state. For other series of dec
this ratio approaches zero more slowly. Nevertheless,
clearly observes that this ratio approaches zero, e.g.,
massless seriesk→212 ~see Fig. 2!.

VI. CONCLUSION

Massless QCD contains higher-conservation laws wh
in general imply integrability. These conservation laws ha
been derived in the massive~b! sector. The mesons in the
Hooft sector are built up of fermion bilinears which a
dressed with bosonic fields of the massless sector. We h
shown here that the spectrum-generating algebra, which
fines the ’t Hooft sector, does not commute with the high
conservation laws due to quantum corrections to the sh
distance expansions. This implies the breakdown of integ
bility in the meson sector. The quantum nature of these c
rections means that they are insignificant for quasi-class
decays. This renders the theoryquasi-integrableand ac-
counts for the exact decoupling of the pion.

The theory has a complex structure of constraints. T
mesonic states, although physical, are not eigenstates o
conserved charges obtained from the Sugawara opera
This is because the massive and the massless sectors o
theory are connected by the constraint equations. The m
sive sector alone~the b sector! is integrable but does no
generate the physical Hilbert space since it is not BRST
variant. The change of variables made to decouple the
namics of the massive and the massless sectors of the th
@see Eqs.~2!, ~5! and~6!# leads to non-trivial Jacobian whic
breaks the BRST invariance@11,12#.

Therefore, due to quantum corrections, the integrabi
and the BRST-invariance properties of the theory fall in

10We have chosen the units such that the mass of the initial s
is unity ~the influence of the fermion mass is small in the pres
cases!.
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FIG. 4. Decay rates of the 7th, 8th, 9th and 10th states into two mesons in the 1st excited state are plotted for massive ferm
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two different sectors, the former being valid in the mass
sector alone and the latter in the meson sector. This ca
interpreted as the stability of the unphysicalb particles. We
have verified this characteristic of the theory in the qua
classical approximation by numerical methods.

The theory simplifies in the largeN limit, and meson
wavefunctions and masses can be computed. LargeN cor-
rections are well known in the literature, and the numeri
problem can be tackled.

Nevertheless, two dimensional QCD is far from trivial.
spite of the largeN techniques, the formal aspects of th
theory have not been fully understood, and only recently
vacuum structure has been studied, and separated from
description of the massive excitations. Such structures
the core of the understanding of the Schwinger model,
led to very profound consequences in that case. Our aim
been to deepen the understanding of the theory, obtai
results similar to those known to two dimensional QED, t
Schwinger model.

However, it is clear that a development in that directi
encounters a wall, since the theory is not soluble. Never
less, the numerical methods used, permit to obtain new st
tures otherwise unknown. Moreover, there are indicati
that the theory has an unexpected simplification in the m
less case.
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The result of our paper is to show that in spite of t
complexity of the situation, and the fact that the model
used to study QCD mesons, the decaying amplitudes
simpler than imagined before, and indicate further structu
not known before. The zeroes of the decaying amplitudes
a demonstration of that fact. The theory is not integrable,
the decay amplitudes are nearly vanishing. Our numer
results are an ‘‘experimental’’ demonstration of that fact, a
in Sec. III we give a field theoretic argument to support th
fact.

Finally, we wish to point out that the methods are n
borrowed from techniques invented for integrable syste
but rather well defined and established techniques base
the computation of the exact fermionic determinant, lead
to the bosonised version, namely the gauge Wess-Zum
Witten model and its gauge interaction.

It is of prime importance to generalize the concept
quasi-integrability to higher dimensions. Indeed, Barde
@22# has recently pointed out that helicity amplitudes in hig
energy QCD are very simple at tree level and are descri
by a self-dual Yang-Mills theory. The classical solution
this theory strongly resembles the Bethe ansatz solution
integrable two-dimensional models. Moreover, the one-lo
amplitudes are reminiscent of those corresponding to ano
lous conservation laws. It is known that the self-dual Yan
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Mills theory is an integrable theory and is described by v
simple actions @23#. On the other hand, integrabl
Lagrangians with either anomalies@24# or with non-
vanishing amplitudes for particle production@25# are known
and are well documented in the literature. It remains an
teresting open problem to see whether the quasi-integrab
idea is the most efficient framework for the description
non-trivial dynamics in theories with higher conservati
y

-
ty
f

laws, in general space-time dimensions, in spite of
Coleman-Mandula no-go theorem@26# and its more genera
version@27#.
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