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Worldline approach to eikonals for QED and linearized quantum gravity
and their off mass shell extensions

G. C. Gellas, A. I. Karanikas, and C. N. Ktorides
University of Athens, Department of Physics, Nuclear and Particle Physics Section, Panepistimiopolis, GR-15771, Athens, G
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We construct the worldline expression pertaining to a four-point process involving the scattering of two
spin-1/2 particles via photon exchange. Restricting our attention to the case of forward scattering at extremely
high energies, we show how to formulate the corresponding eikonal version of the four-point Green’s function.
We proceed to distinguish between the on and off mass shell cases within the framework of our description.
For the on mass shell situation we recover the well-known result for the QED eikonal which corresponds to the
infinite Coulomb phase. The~slightly! off mass shell case is confronted next. We produce a relevant expression
for the eikonal phase in analytic form. Finally, we extend our considerations to a linearized quantum gravita-
tional model and recover, via a series of elementary steps, the 0th order eikonal result for Planckian scattering
~both for on and off mass shell!. @S0556-2821~98!05004-8#

PACS number~s!: 12.20.Ds, 04.60.2m, 11.80.Fv
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I. INTRODUCTION

The eikonal approximation in quantum field theory offe
the most powerful methodological tool for the study of pa
ticle collisions at very high energies. Perhaps the grea
asset of the eikonal approach is its capacity to account for
unitarity-induced behavior of amplitudes and/or cross s
tions as the center of mass energy of the collisions reac
asymptotically large values. With respect to gauge theo
~Abelian or non-Abelian!, at least, the seminal work o
Cheng and Wu@1,2# exemplifies the validity of the abov
claim at a basic calculational level.

More recent advances in the application of eikonal te
niques in field theory, QCD in particular, have been p
moted by Lipatov@3# in connection with multiparticle pro-
duction at high energies. This corresponds well with
traditional view that the eikonal approach applies more
rectly to the forward scattering amplitude, at high energ
the imaginary part of which relates, via unitarity, to the to
cross section.

A second aspect of eikonal modeling in field theory is,
QED at least, its natural association with the infrared~IR!
structure of the full theory. In a general context, this can
understood on the basis of the no-recoil assumption enta
by the eikonal approximation. Indeed, for such a regime
matter particles appear too heavy for the, emitted or
sorbed, live gauge field degrees of freedom.

A unified treatment of the above and other important
pects of the eikonal methodology, encompassing m
branches of physics, have been pursued by Fried, wit
comprehensive account of relevant results to be found
monograph@4# which contains original references. With pa
ticular reference to quantum field theory, QED especia
Fried’s approach to eikonal physics adopts the functio
language of Schwinger@5# and its subsequent recasting, in
particle-based representation, by Fradkin@6#. Nowadays,
Fradkin’s path integral casting of field systems has been
formulated and goes by the name of ‘‘worldline approach
having widened its scope of applications@7–9#.
570556-2821/98/57~6!/3763~14!/$15.00
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The origins of our own involvement with the subject@10#
can be traced to our attempt to understand the field theo
ical basis of Polyakov’s work@11# which discusses geometr
cal aspects of particle path propagation in a given~Euclid-
ean! space-time background.1 Given the worldline casting of
field systems, our present attempt focuses on its applica
to a four-point process, in the eikonal approximation. In p
ticular, we shall consider the forward, very high energy, sc
tering among two spin-1/2 matter particles in an Abeli
gauge field theory as well as for a linearized version of qu
tum gravity.

A systematic program which advocates Fradkin’s rep
sentation of Green’s functions, both in potential theory a
quantum field theory, for generalized eikonal approximatio
to particle scattering is currently being pursued by Fried a
Gambellini@12,13#. The computational techniques employe
by these authors rely on Schwinger’s functional method
ogy @5#, as opposed to particle-based path integrals. It
already been successful on two important fronts:~1! A well-
defined strategy has been produced which leads to bona
corrections to the eikonal approximation of a nonperturbat
nature@12# and~2! a partial, nonperturbative confrontation o
the non-Abelian eikonal problem~for noninteracting gluons!
has been attained, which leads to an effective ‘‘Regge
tion’’ of the exchanged bosons@13#.

Our current undertaking is a natural continuation of rec
work which has applied the, geometrically based, worldl
formalism to infrared physics, where nonperturbative cons
erations invariably enter. So far we have considered ca
involving two- and three-point functions@14–16#. Our inau-
gural efforts, aiming at the study of a four-point proce
have been chosen to apply to cases where nonperturb
results in the infrared can be arrived at without too ma
complications. The present work not only serves to illustr
the viability of our approach toward the confrontation

1Special emphasis, in Polyakov’s scheme, is placed on the ‘‘g
metrical accommodation’’ of the particle’s spin.
3763 © 1998 The American Physical Society
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processes involving a pair ofopenfermionic lines but also to
demonstrate its ability to produce a relevant,~slightly! off
mass shell eikonal expression. Entering the non-Abe
@2,13# and—to a fuller degree than presently attempted
quantum gravity@17–21# domains is a task that will be left to
future investigations.

Let us close our introductory discussion with a br
sketch of the worldline philosophy. The basic idea is that o
translates the description of a system, originally given
terms of field degrees of freedom, into particle-based on
Explicitly, one goes from a functional to a path integral ca
ing of the system:

E Dc̄Dc exp$Sf ield@ c̄,c#%

→E @dx~t!#@dp~t!#exp$Sparticle@x~t!,p~t!#%.

We have implicitly used notation pertaining to spin-1
fields since this is the main case of interest in worldli
applications. The reason is that, for renormalizable theo
at least, the integration over fermionic fields, in a Euclide
space-time, is Gaussian and therefore lends itself t
particle-based casting without the involvement of some
proximation. As far as the~dynamical! contribution from the
gauge field sector is concerned, one aims at extracting f
the corresponding functional integration an expression of
form I @x(t),(p(t)# which communicates directly with th
path integral. How this is accomplished in practice will b
come amply evident in the course of our analysis.

The paper is organized as follows. In the next section
sketch the procedure that leads to the derivation of
worldline expression for the four-point Green’s function a
propriate to the physical situation under study. Section
tends to matters of an organizational nature which pertai
a convenient kinematical decomposition and to factorizat
issues between ‘‘soft’’ and ‘‘hard’’ contributions to th
Green’s function. The on mass shell eikonal description
the dynamical piece of the amplitude is taken up in Sec.
while an off mass shell extension is considered in Sec.
The case of Planckian scattering, where the exchanged
quanta are gravitons, is taken up in Sec. VI within a line
ized gravity setting@16#. Technical aspects entering th
analysis of the last three sections are dealt with in three
pendixes. Finally, in Sec. VII we present an outlook th
stems from our work.

II. WORLDLINE CASTING OF THE FERMION
FOUR-POINT FUNCTION IN THE EIKONAL

APPROXIMATION

In this section we establish the basic worldline express
which will become the object of calculational interest in t
present paper. It refers to a four-point process in QED p
taining to elastic scattering between two spin-1/2 matter p
ticles under conditions which favor an eikonal mode of d
scription.

Consider the generating functional for an Abelian gau
theory with Dirac, spin-1/2 matter fields in a Euclidea
space-time setting. Formal integration over the fermio
n

e
n
s.
-

s
n
a
-

m
e

-

e
e

-
I
to
n

f
,
.
ld
-

-
t

n

r-
r-
-

e

c

fields leads to the following expression for the partition fun
tion:

Z@ h̄,h.Jm#5E DA det~g•D1m!expH E ddx@ h̄~x!~g•D

1m!21h~x!#J e2SJ@A,j#, ~1!

where h̄,h are sources for Dirac fieldsc, c̄, respectively,
and where SJ@A,j#[S@A,j#2*JmAm ddx, with S@A,j#
standing for the Maxwell action in a covariant gauge, wh
Jm is a source for the gauge potentialAm . We shall adopt the
Feynman gauge throughout, corresponding to the choicj
50.

We introduce the four-point function

G4~x1 ,x2 ,y1 ,y2!

5
d4

dh̄~x1!dh̄~x2!dh~y1!dh~y2!

Z/ h̄5h5Jm50 , ~2!

which, via the use of Eq.~1!, assumes the form

G4~x1 ,x2 ,y1 ,y2!5E DA det~g•D1m!e2SJ@A,j#^x1u~g•D

1m!21uy1&^x2u~g•D1m!21uy2&. ~3!

Employing the Schwinger proper time representation
the matrix elements of the inverse Dirac propagator, ente
Eq. ~3!, we achieve a worldline form for the fermioni
Green’s functionG(2)(x,yuA) @[^xu1/(g•D1m)uy&# in the
presence of a background gauge field, which reads as
lows:

G~2!~x,yuA!5E
01

`

dTEx~0!5x
x~T!5y

@dx~t!#E @dp~t!#

3expH 1 i E
0

T

dtp~t!• ẋ~t!J
3PexpH 2E

0

T

dt@ ig•p~t!1m#J
3expH igE

0

T

dt ẋ~t!•A„x~t!…J . ~4!

A well-defined procedure which leads to the above res
has been given in@9#. The main point is that the functiona
measures entering Eq.~4! can be carefully defined so that th
worldline casting of the field system can support both p
turbative and nonperturbative considerations@7–16#.

Substituting into Eq.~3!, we obtain the worldline expres
sion for the full four-point function which reads
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G4~x1 ,x2 ,y1 ,y2!5E
0

`

dT1E
0

`

dT2Ex1~0!5x1
x1~T1!5y1

@dx1~t!#E @dp1~t!#Ex2~0!5x2
x2~T2!5y2

@dx2~t!#E @dp2~t!#

3expH 1 i E
0

T1
dtp1~t!• ẋ1~t!J expH 1 i E

0

T2
dtp2~t!• ẋ2~t!JPexpH 2E

0

T1
dt@ ig•p1~t!1m#J

3PexpH 2E
0

T2
dt@ ig•p2~t!1m#J K expH igE

0

T1
dt ẋ1~t!•A„x1~t!…1 igE

0

T2
dt ẋ2~t!•A„x2~t!…J L

A

,

~5!

where we have abbreviated^O&A[*DAe2SJ@A,j#O det(g•D1m).
In a diagrammatic language the above expression incorporates all Feynman diagrams with four external fermion

arbitrary number of loops. In the strict context of the eikonal approximation we admit only that subclass which compr
so-called exchange diagrams. Their features are~1! no closed fermion loops make their entrance and~2! the photon propaga
tors cannot attach to the same fermion line.

Our next step is to align the general expression~5! with the requirements~1!, ~2! above. The first one guides us to th
constraint~quenched approximation!

det~g•D1m!51. ~6!

Next, to enforce the second requirement, we write

K expH igE
0

T1
dt ẋ1~t!•A„x1~t!…1 igE

0

T2
dt ẋ2~t!•A„x2~t!…J L

A

5 (
k50

`

(
n50

2k
~ ig !2k

~2k!! S 2k

n D E DAe2SJ@A,j#S E
0

T1
dt ẋ1~t!•A„x1~t!…D 2k2nS E

0

T2
dt ẋ2~t!•A„x2~t!…D n

. ~7!

With reference to the above relation, we demand that the summation overn be restricted only to terms for whichn5k. It can
easily be seen that this particular choice obliges a photon propagator to attach itself on each of the two spin-1/2 parti

It follows that the exchange graphs lead to the specification

K expH igE
0

T1
dt ẋ1~t!•A„x1~t!…1 igE

0

T2
dt ẋ2~t!•A„x2~t!…J L

A

→expH 2g2E
0

T1
dt1E

0

T2
dt2ẋ1m~t1!ẋ2n~t2!

3^Am„x1~t1!…An„x2~t2!…&A, ~8!

where^Am„x1(t1)…An„x2(t2)…&A denotes the free photon correlator whose well-known expression, in the Feynman ga

^Am„x1~t1!…An„x2~t2!…&A5dmn

1

~2p!4E d4k
1

k2
eik•@x2~t2!2x1~t1!#. ~9!

Putting everything together, our worldline expression for the exchange-type diagrams becomes

Gexch
4 ~x1 ,x2 ,y1 ,y2!5E

0

`

dT1E
0

`

dT2Ex1~0!5x1
x1~T1!5y1

@dx1~t!#E @dp1~t!#Ex2~0!5x2
x2~T2!5y2

@dx2~t!#E @dp2~t!#

3expH i E
0

T1
dtp1~t!• ẋ1~t!J expH i E

0

T2
dtp2~t!• ẋ2~t!JPexpH 2E

0

T1
dt@ ig•p1~t!1m#J

3PexpH 2E
0

T2
dt@ ig•p2~t!1m#J expH 2g2E

0

T1
dt1E

0

T2
dt2ẋ1m~t1!ẋ2n~t2!dmn

1

~2p!4

3E d4k
1

k2
eik•@x2~t2!2x1~t1!#J . ~10!

According to the eikonal setting, the fermions travel with large momenta while the exchanged photons are soft,
parison. In a worldline context, this means that the absorption and/or emission of virtual photons does not induce rec
spin-1/2 matter particles. We view the latter as travelling practically on mass shell with almost constant energy and
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direction, i.e., with fixed four-velocities. This allows us to introduce two constant four-velocities in Eq.~10!, one for each
fermion, and cast the exponential associated with the gauge sector in the form

Eexch~u1 ,u2![expH 2g2u1•u2E
0

T1
dt1E

0

T2
dt2E d4k

~2p!4

1

k2
eik•~u2t22u1t11x22x1!J . ~11!

The four-velocitiesu1 ,u2 entering the above expression should, first of all, obey the~near! mass shell conditionuu1u
5uu2u.1. Second, because of the fact that the eikonal approximation is used to describe only forward scattering, we
that uW 1 //uW 2 hold true. Note thatu1•u2Þ1 due to the fact that the two fermions have different energies.

In summary, our worldline approach for the eikonal four-fermion Green’s function is encoded in the formula

Gexch
4 ~x1 ,x2 ,y1 ,y2!5E

0

`

dT1E
0

`

dT2Ex1~0!5x1
x1~T1!5y1

@dx1~t!#E @dp1~t!#Ex2~0!5x2
x2~T2!5y2

@dx2~t!#

3E @dp2~t!#expH i E
0

T1
dtp1~t!• ẋ1~t!J expH i E

0

T2
dtp2~t!• ẋ2~t!JPexpH 2E

0

T1
dt@ ig•p1~t!1m#J

3PexpH 2E
0

T2
dt@ ig•p2~t!1m#J expH 2g2u1•u2E

0

T1
dt1E

0

T2
dt2

3E d4k

~2p!4

1

k2
eik•~u2t22u1t11x22x1!J . ~12!
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The extraction of specific results from the above express
will be the objective of our work in this paper.

III. KINEMATICAL DECOMPOSITION
AND SOFT FACTORIZATION

The most important feature of the expression for the
change part of the four-point function arrived at in the p
vious section and on which our eikonal considerations w
be based is the Wilson line operator~expectation value of!. It
carries all the dynamical aspects of any given calculation
addresses itself toGexch. For the Abelian case in hand and
the quenched approximation we are adopting, it gives ris
the nonperturbative expression furnished, in the Feynm
gauge, by Eq.~11!. In the present section we shall mak
some general assessments related to this quantity which
facilitate our subsequent analysis.

Let us begin by writing

Eexch5exp$2g2I ~u1 ,u2!%. ~13!

Allowing for the possibility of being forced to regulariz
at some point let us revert tod dimensions and focus ou
attention on

I ~u1 ,u2!5E ddk

~2p!d

eik•x

k2

e2 ik•u1T121

2 ik•u1

eik•u2T221

ik•u2
,

~14!

where T1, T2 are the limits of the parametric integration
over t1 andt2, respectively.

We observe that
n

-
-
ll

at

to
n

ill

I ~u1 ,u2!→E kd21dk

~2p!d

1

k2
,

ask→0, and therefore remains finite ford→4 as long asT1
andT2 do not go to infinity. In other words,T1 andT2 offer
protection against IR divergences via an off mass shelln
of the matter particles and this we understand on the b
that a Wilson line of finite extent does not take into accou
the full gauge field cloud with which they interact; hen
they remain somewhat off shell. We shall, of course, assu
that T1;T2(5T) are long enough so that the off shellne
can be as sufficiently small as we wish. If, on the other ha
we let T1 ,T2→`, then we are creating an on mass sh
description with an IR divergence that must be controlled
a small photon massl or, alternatively, by dimensionally
regularizing tod.4.

On the ultraviolet~UV! end we determine, asd→4, that
lime→0*dkeik•x/k11e remains finite due to the very quic
oscillations of the termeik•x, as long asx does not go to
zero. A further comment on this point will be made at t
end of this section.

Consider, now, the following decomposition of the fou
vector k̃ entering Eq.~14!:

k̃5kW'1k1û11k2ê, ~15!

with

kW'•û15kW'•ê5û1•ê50, ~16!

whereû1 is the unit vector alongũ1, i.e., ũ15u ũ1uû1.
We write
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k̃•û15k1 , k̃• ũ25k1û1•û21k2ê•û25k1cosg1k2sing,

k̃25k'
2 1k1

21k2
2 ~17!

and determine that

I ~u1 ,u2!5
u1•u2

4p E dd22k'

~2p!d22E0

`dz

z
e2zk'

2
1 ikW'•xW' Ĩ ,

~18!

where the quantityĨ is given by

Ĩ 5E
0

T

dt1E
0

T

dt2ei ~k1cosg1k2sing!t22 ik1t1. ~19!

Our first observation is that, in such a kinematical ana
sis, the UV protection is taken over byxW' which registers as
the impact parameter for the four-point process. Second
notice that for the on shell case (T1 ,T2→`) Ĩ comes out of
the t i integrals,i 51,2. For the off-shell case, on the oth
hand, calculational complicationsdo present themselves an
they will occupy our attention later~Sec. V!.

Our final remarks pertain to the factorization of th
‘‘soft’’ behavior at the Green’s-function level. To this en
we shall use renormalization properties of the field system
a guide. Let us begin by forming a physical picture asso
ated with our requirement that the matter particles propag
along straight lines. As already mentioned, the no-recoil
sis on which emission and absorption of gauge field qua
occurs implies that the corresponding ‘‘live’’ degrees of fre
dom entering the computation of the four-point Gree
function are ‘‘soft.’’ Clearly, the meaning of softness here
relative to the c.m. energy of the colliding fermions and
cludes all photons that cannot cause appreciable derailm
from their propagation paths. It follows that our restriction
straight line path propagation corresponds to isolating a
tor of the full theory that involves only ‘‘soft’’ photon ex
changes. We shall refer to this subsystem as the soft sect
the full theory.

We have already demonstrated, in a number of previ
studies@15,16,22#, that a subtheory factorized in this way h
its own high and low energy domains, the former of whi
calls for a renormalization treatment. Furthermore, strai
line path propagation will invariably identify any multiplica
tive renormalization factor common to all contours joinin
given initial and final points in space-time~which pertain
exclusively to the Wilson line operators! and hence factor-
izes itself from the overall result. Of course, non-straight-l
propagation in the path integral induces extra contributi
to the full n-point Green’s function. This allows us to write
in general,

G5Gren
~s! G~h!, ~20!

whereGren
(s) is the contribution to the Green’s function from

the soft sector, as defined by our worldline approach. It
corporates the renormalization factor which is picked up
the straight line configurations and will be the object of stu
in what follows. In an eikonal setting, whereins→`, t/s
→0, it contains thetotal contribution toG. On the other
-
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hand,G(h) represents what the rest of the theory~hard sector!
contributes toG in the generic case.

For an Abelian systemGren
(s) registers directly in a nonper

turbative form given the relation

K expH 2 igE
0

T

dt ẋ~t!•A„x~t!…J L
A

5expH 2g2E
0

T

dt1E
0

T

dt2ẋm~t1!ẋn~t2!

3^Am„x~t1!…An„x~t2!…&AJ , ~21!

whereas for a non-Abelian system Eq.~20! holds true in the
sense of a perturbative expansion.

Our practice, throughout this paper, will be to bypa
renormalization issues in the soft sector by keeping a fin
impact parameter. In effect, then, we shall be dealing exc
sively with renormalized quantities. Therefore, we shall om
the indication ‘‘ren’’ from hereon.

IV. ON MASS SHELL CASE: THE INFINITE
COULOMB PHASE

The computation ofEexch for the strictly on mass shel
case arises in the limitT1 ,T2→`. Under this circumstance
the parametric integrations eventually factor out, leaving
hind a purely kinematical expression. We direct our effo
on the computation of the quantity

Eexch5expH 22g2u1•u2E
0

`

dt1E
0

`

dt2

3E d4k

~2p!4

1

k2
eik•~u2t22u1t11x22x1!J , ~22!

where the factor of 2 in the exponent mirrors the necess
ordering oft1 ,t2 during the integration course or, on phys
cal grounds, our inability to distinguish the two electrons

As already pointed out, the above quantity exhibits
ultraviolet divergences as long as the starting points of
fermion lines do not coincide, but does possess infrared o
We shall confront their regularization in two different way
First, we shall setd54 and introduce a small photon ma
while, second, we shall employ the dimensional technique
analytically continuing to a Euclidean space-time ofd54
1e dimensions.

An immediate issue we have to face is the obligation
take into account all the ways of avoiding the pole atk50 in
thek integration. This is reflected in the two possible relati
orientations of the four-velocitiesu1 and u2 as the param-
eterst1 andt2 follow their course from 0 tò . This subtlety
is taken care of by letting thet i ,i 51,2, run along the posi-
tive axis and compute the following quantity:
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Eexch5expH 22g2u1•u2E
0

`

dt1E
0

`

dt2

3E d4k

~2p!4

1

k2
eik•~u2t22u1t11x22x1!

22g2u1•u2E
0

`

dt1E
0

`

dt2

3E d4k

~2p!4

1

k2
eik•~u2t21u1t11x22x1!J . ~23!

The second term in the exponent corresponds to a ti
ordered propagation of the fermions while the first one
lows for an arbitrary ‘‘coexistence’’ of the two electron
~fermions!. Intuitively speaking, in the second term propag
tion of the ‘‘second’’ electron takes place when the propa
tion of the ‘‘first’’ has already been completed. We expec
contribution that gives rise only to bremsstrahlung radiat
owing to the instantaneous acceleration or deceleration o
two particles. As far as the first term is concerned, it ob
ously allows for the above mentioned but in addition the t
fermions now have the possibility of travelling together.
this case we can also view one of the electrons as provid
a Coulomb field source inside which the second one is m
ing. We would, consequently, expect the emergence of
well-known divergent Coulomb phase which attaches its
to the Green’s function.

Adopting the kinematical decomposition of the previo
section we write

Eexch5expH 22g2u1•u2E
0

`

dt1E
0

`

dt2E d4k

~2p!4

3E
0

`

dze2zk21 ik'•x'@ei ~k1cosg1k2sing!t22 ik1t1

1ei ~k1cosg1k2sing!t21 ik1t1#J . ~24!

Completing the squares and performing the Gaussian
tegrations over the first two components ofk we find

Eexch5expH 2
2

p
g2u1•u2@ I 11I 2#E d2k'

~2p!2

3E
0

`

dze2zk2'1 ik'•x'J , ~25!

with

I 15E
0

`

dt1E
0

`

dt2e2~ t1
2
1t2

2
22t1t2w!,

I 25E
0

`

dt1E
0

`

dt2e2~ t1
2
1t2

2
12t1t2w!, ~26!

wherew[u1•u2.
e-
l-

-
-

n
he
-

g
v-
e

lf

n-

Relegating the details of the respective calculations to A
pendix A we quote the final results:

I 15
p

2A12w2
2

arctanuw̃u

2A12w2
, I 25

arctanuw̃u

2A12w2
5

wg

sin2g
,

w̃25
1

w2
21. ~27!

Wick rotating back to Minkowski space involves the su
stitution g→ ig, which leads to the relation

w~ I 11I 2!52 i
p

2
cothg. ~28!

With respect to the remaining integration overd2k' we
initially observe that ultraviolet protection, which allows u
to think in terms of renormalized quantities, now resides
the termeik'•x'. As already mentioned,x' has the concrete
physical meaning of furnishing the impact parameter for
four-point process.

In contrast, there are infrared divergences and we proc
to regulate them via the introduction of a fictitious mass te
for the photon. We get

Eexch5expH ig2cothgE d2k'

~2p!2

eik'•x'

k'
2 1m2J , ~29!

which is in agreement with the known eikonal result@23#.
Employing, instead, dimensional regularization for tre

ing the infrared divergences we determine

E dd22k'

~2p!d22

eik'•x'

k'
2

5E
0

`

dzE dd22k'

~2p!d22
e2zk'

2
1 ik'•x'

5
1

~2Ap!d22

1

GS d22

2 D
3E

0

`

dze2 x'
2 /4zE

0

`

dxx~d24!/2e2zx

5
1

4p

1

~Apux'u!d24
GS d24

2 D
5

1

2p

1

d24
1FT, ~30!

where FT stands for ‘‘finite terms.’’
Referring to Eq.~28! we conclude

Eexch5expH i

2pb

g2

n24J , ~31!

with b5tanhg.
We have thereby obtained the well-known, infinite Co

lomb phase which is a trademark of infrared physics in QE
From an intuitive viewpoint it is, indeed, satisfying that th
simple setting of straight line paths in the worldline integ
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has given rise to this result. From the practical side, on
other hand, this should be viewed as just a first step on
way to fuller expressions that bring in correction terms. T
question is whether and how the worldline approach lead
to such terms. One source of corrections has already b
identified @4# and concerns contributions from an expans
of the Dirac determinant, i.e., going beyond the quenc
approximation. They correspond to what is yielded by
unitarity diagrams of Cheng and Wu@1,2#. More to the na-
ture of the worldline scheme are corrections from cusp
lines, corresponding to sizable momentum transfers, as
as small deformations of straight line contours coming fr
velocity expansions@15#. We shall not, in this paper, ventur
into such directions. What weshall do instead, in the nex
section, is consider the subtleties entering the off mass s
behavior.

V. OFF MASS SHELL CONTINUATION
OF EIKONAL BEHAVIOR

In this section we shall treat the off mass shell case,
the fermions entering the scattering process. This situatio
attained by putting a finite upper limit on thedt i integra-
tions. We focus, as previously, on the term

Eexch5exp$22g2w@ I 1~u1 ,u2!1I 2~u1 ,u2!#%, ~32!

where, now,

I 1~u1 ,u2!5E d4k

~2p!4

eik'•x'

k2

e2 ik•u1T121

2 ik•u1

eik•u2T221

ik•u2

~33!

and

I 2~u1 ,u2!5E d4k

~2p!4

eik'•x'

k2

eik•u1T121

ik•u1

eik•u2T221

ik•u2
,

~34!

corresponding to the two possible relative orientations of
four-velocitiesu1 andu2.

Using the identities

1

AB
5E

0

1

dx
1

„xA1~12x!B…

2
,

1

A~2!
5E

0

`

dz~z!e2zA,

A.0, we castI 1(u1 ,u2) in the form

I 1~u1 ,u2!5E d4k

~2p!4E0

`

dze2zk21 ik'•x'

3E
0

1

dyE
0

`

dwwe2wik•@yu12~12y!u2#

3~e2 ik•u1T121!~eik•u2T221!. ~35!

We proceed to split the above integral into three parts
settingI 15I 111I 122I 13, where
e
e

e
us
en

d
e

d
ell

ell

r
is

e

y

I 115E ddk

~2p!dE0

`

dze2zk21 ik'•x'

3E
0

1

dyE
0

`

dwwe2wik•@yu12~12y!u2#, ~36!

I 125E ddk

~2p!dE0

`

dze2zk21 ik'•x'

3E
0

1

dyE
0

`

dwwe2wik•@yu12~12y!u2#1 ik•~u2T22u1T1!,

~37!

and

I 135E ddk

~2p!dE0

`

dze2zk21 ik'•x'E
0

1

dy

3E
0

`

dwwe2wik•@yu12~12y!u2#

3~eik•u2T21e2 ik•u1T1!. ~38!

Notice that we have reverted tod dimensions as each of th
quantitiesI 1i , i 51,2,3, above possesses, on its own, inf
red divergences, even though the full quantityI 1 does not.

The computation ofI 11 is quite obvious and is accom
plished by first performing the quadratick integration and
subsequently the one with respect todw. We obtain

I 115
2

~2Ap!dE0

1

dy
1

y21~12y!222y~12y!w

3E
0

`

dzz12d/2e2x'
2 /4z. ~39!

The remainingz integration is straightforward after th
substitutionz→1/z. Our final answer is

I 115
4

~2Ap!dS 4

x'
2 D d/222

1

A12w2
arctanS 12w

11wD 21/2

3GS d

2
22D . ~40!

We immediately recognize the presence of an infra
pole in the limitd→4. Of course, this pole will disappear, a
we have already mentioned, in the full expression forI 1.

The computation ofI 12 is much more involved. For the
details of the calculation the reader is referred to Appen
B. The final result is



21/2 GF ~d22!G

e limit

3770 57G. C. GELLAS, A. I. KARANIKAS, AND C. N. KTORIDES
I 125
1

4pd/2
GS d

2
22D 1

A12w2
arctanS 12w

11wD ~x'
2 1T1

21T2
222T1T2w!22d/22

4

2dpd/2

2

d23

3E
0

1

dy
1

f 11
2 @22Af 11

2 #d24f 12
42dFS d23

2
,
d22

2
;
d21

2
;

2 f 13f 11
2

f 12
2 D , ~41!

with f 11(y)5yu12(12y)u2 , f 12(y)5 f 1f 11(y), f 13(y)5x'
2 1 f 1

22 f 12(y)2/ f 11(y)2, f 15u2T22u1T1, while F(a,b;g;z) de-
notes a hypergeometric function.

We observe that the second term is finite asd→4 and so we write

I 125
1

4pd/2
GS d

2
22D 1

A12w2
arctanS 12w

11wD 21/2

~x'
2 1T1

21T2
222T1T2w!22d/22

1

4p2E0

1

dy
1

f 11
2

FS 1

2
,1;

3

2
;

2 f 13f 11
2

f 12
2 D . ~42!

The integralI 13 is performed in the same fashion and we obtain, as a final answer forI 1, the following:

I 1~u1 ,u2!5
1

4pd/2
GS d

2
22D 1

A12w2
arctanS 12w

11wD 21/2

$~x'
2 !22d/21~x'

2 1T1
21T2

222T1T2w!22d/22~x'
2 1T1

2!22d/2

2~x'
2 1T2

2!22d/2%2
1

4p2E0

1

dy
1

f 11
2 H FS 1

2
,1;

3

2
;

2 f 13f 11
2

f 12
2 D 2FS 1

2
,1;

3

2
;

2 f̃ 12f 11
2

f̃ 11
2 D 2FS 1

2
,1;

3

2
;

f 128
2~y! f 11

f 118
2 D J ,

~43!

with f̃ 11(y)5 f 11(y) f̃ 1 , f̃ 12(y)5x'
2 1 f̃ 1

22 f̃ 11
2 / f 11

2 , f̃ 15u2T2 and f 118 (y)5 f 11(y) f 18 , f 128 (y)5x'
2 1 f 18

22 f 118
2/ f 11

2 , f 185

2u1T1 . The ~last! term containing the hypergeometric functions will be denoted byĨ 1(u1 ,u2) in what follows.
One witnesses the~anticipated! cancellation of the individual infrared poles, asd→4, leaving us with the infrared finite

expression

I 1~u1 ,u2!5
1

4p2

1

A12w2
arctanS 12w

11wD 21/2

$2 lnx'
2 2 ln~x'

2 1T1
21T2

222T1T2w!1 ln~x'
2 1T1

2!1 ln~x'
2 1T2

2!%1 Ĩ 1~u1 ,u2!.

~44!

Treating in a similar fashion the integralI 2(u1 ,u2) we find

I 2~u1 ,u2!5
1

4p2

1

A12w2
arctanS 12w

11wD 1/2

$2 lnx'
2 2 ln~x'

2 1T1
21T2

212T1T2w!1 ln~x'
2 1T1

2!1 ln~x'
2 1T2

2!%1 Ĩ 2~u1 ,u2!.

~45!

We expect to obtain the results of the previous section as the mass shell is approached. Indeed, taking first thT
[T1;T2@x' , using, next, the identity

arctanx1arctan
1

x
5

p

2
, x.0, ~46!

and Wick rotating back to Minkowski space we get

Eexch5expH g2

2p2b
ip ln

T

ux'u
2

g2

4p2b
ip ln~222w!2

1

4p2
g2

1

2b
ln

11b

12b
ln

12w

11w
1RJ , ~47!

with

R[
g2w

2p2E0

1

dy
1

f 11
2 H FS 1

2
,1;

3

2
;

2 f 13f 11
2

f 12
2 D 2FS 1

2
,1;

3

2
;

2 f̃ 12f 11
2

f̃ 11
2 D 2FS 1

2
,1;

3

2
;
2 f 128

2f 11

f 118
2 D J 1

g2w

2p2E0

1

dy
1

f 21
2 ~y!

3H FS 1

2
,1;

3

2
;

2 f 23f 21
2

f 22
2 D 2FS 1

2
,1;

3

2
;

2 f̃ 22f 21
2

f̃ 21
2 D 2FS 1

2
,1;

3

2
;

2 f 228 f 21
2

f 218
2 D J , ~48!
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where the quantitiesf 2 j , j 51,2,3, etc. are similarly define
as their counterpartsf 1 j , j 51,2,3, etc.~see also Appendix
C!.

We immediately recognize the emergence of the div
gent Coulomb phase in the limitT→`. We also see that the
ultraviolet divergent behavior, in the limitux'u→0, is in a
one-to-one correspondence with the infrared one. Conc
trating on the near-mass-shell case, in the sense tha
lengths of the particle paths are finite but very large w
respect to the impact parameter, the explicit computation
R becomes our next objective. The relevant work is carri
always in the limitT@ux'u, in Appendix C. As it turns out,
R is independent of both the ultraviolet and infrared cutof
In the asymptotic limits@m2 we obtain the following final
answer:

Eexch5expH ig2

2p
ln

T

ux'u
1

g2

p2

m2

s
ln

s

m2
1

ig2

4p
ln

s

m2

1OS m2

s D J . ~49!

The above off mass shell eikonal result exhibits a ph
readjustment, with respect to the on mass shell express
The extra piece has an imaginary part which vanishes in
limit s→` and a real part which contributes to the eikon
function. An alternative way to view the final expression
by introducing an UV cutoff and off mass shellness via t
correspondencesx'↔1/L and T↔1/( p̃22m2)1/2, respec-
tively, whereu p̃u;(As/2)(11coshg) is a characteristic four-
momentum for the system. Then, the two logarithms can
recombined so that the phase is exhibited in the form

aF ln
L2

m2
2 ln

m22 p̃2

s G .

The appearance of this expression is typical of that wh
enters unrenormalized Green’s functions whose regular
tion against infrared divergences has been effected by g
off shell. The form registered in Eq.~49!, on the other hand
possesses the meaning of an off mass shell extended eik
function.

One final point to be made here concerns
Enonexch-containing piece of the four-point Green’s functio
which we have systematically neglected up to now a
which enters theT-matrix element in the eikonal description
providing the unit term in the expression (eix21). It corre-
sponds to the configuration of two noninteracting fermio
lines. As is well known@24#, Wilson operators defined o
open lines of finite extent are subject to renormalization
fects which can be absorbed via a redefinition of the w
function. The relevant divergences can be viewed as co
ear bremsstrahlung radiation emitted from the end point
the line where the matter particle suddenly accelerates an
decelerates.

VI. APPLICATION TO PLANCKIAN SCATTERING

The methodology developed in this paper is transfera
to Planckian scattering. This we shall show in the pres
r-

n-
the

of
,

.

e
n.
e

l

e

h
a-
ng

nal

e

d

f-
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-
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/or
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section by resorting to a linearized version of gravity whi
will make it possible for us to apply the same procedure
have used for QED. In fact, Jackiwet al. @25# haveworked
the opposite way by transferring the gravitational work
@18# to QED. Moreover, Fabbrichesiet al. @26# havealready
discovered the feasibility of employing Fradkin’s formalis
@6# to Planckian scattering descriptions,albeit in a different
framework from the one presently adopted.

Confining ourselves to the dynamical part of the calcu
tion pertaining to the scattering amplitude, i.e., the part
ferring to Eexch, let us consider the ramifications broug
about by the adoption of the following linearized action f
gravity, resulting by settinggmn5hmn1hmn (hmn the
Minkowski metric tensor! and keeping the lowest orde
terms in the expansion. The relevant action functional re

S5E d4x
1

16pGH 1

8
hab@haghbg2habhgd#hhgd

1
1

2
hmnJmnJ , ~50!

whereJmn is a matter field current which we shall continu
to view as being composed of a bilinear in spin-1/2 field
but can be assigned to other types of matter fields, e.g.,
lar.

The worldline analysis goes through as in QED once
Wilson line replacement

expH igE
0

T

dt ẋ~t!•A„x~t!…J
→expH imE

0

T

dt ẋm~t!ẋn~t!hmn„x~t!…J
is made. The corresponding recasting of the exponential
sociated with the gauge sector in the expression for the fo
point function is

expH 2g2E
0

T1
dt1E

0

T2
dt2ẋ1m~t1!ẋ2n~t2!

3^Am„x1~t1!…An„x2~t2!…&AJ
→expH 2m2E

0

T1
dt1E

0

T2
dt2ẋ2a~t1!ẋ1b~t1!ẋ2g~t2!

3 ẋ2d~t2!^hab
„x~t1!…hgd

„x~t2!…&hJ . ~51!

In the so-called De Donder gauge, specified by the c
dition

]nhm
n 2

1

2
]mhn

n50, ~52!

the h-field correlator becomes@21#
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^hab„x1~t1!…hgd„x2~t2!…&h

516pG~haghbd1hadhbg2habhgd!

3E d4k

k2
eik•@x2~t2!2x1~t1!#. ~53!

Aside from the longer tensor structure and the appeara
of dimensionful parameters in the above expressions,
computational procedure matches step for step the QED
Setting ẋ1(t)[u1 and ẋ2(t)[u2 we find, in place of Eq.
~25!, for the on mass shell case,

Eexch
gr 5expH 2

2

p
m2@2~u1•u2!22~u1!2~u2!2#

3@ I 11I 2#16pGE d2k'

~2p!2E0

`

dze2k'
2

1 ik'•x'J .

~54!

But

m2@2~u1•u2!22~u1!2~u2!2#52p1•p22)~u1•u2!2m2

~55!

and since 2p1•p25s/422m2, we obtain, upon going to the
limit s@m2 as well as using Eq.~28!,

Eexch
gr 5expH icothg4pGsE d2k'

~2p!2

eik'•x'

k'
2 1m2J ~56!

or (mux'u!1, coth;1)

Eexch
gr 5exp~22iGs lnmx'!, ~57!

which is the well-known, 0th order, result for Planckian sc
tering @17–21#.

The off mass shell extension follows the analysis of S
V in a straightforward manner. The resulting expression
Eexch is (s@m2)

Eexch
gr 5expF2iGs ln

T

x'

1 iGs ln
s

m2G . ~58!

VII. CONCLUSIONS AND OUTLOOK

Our major attempt in this paper has been to establish
applicability of the worldline approach@4,6–10# to a non-
trivial ~scattering! process which involves open fermion
lines. As in a series of previous papers@14–16,22#, we have
focused our efforts on a situation where straight lines do
nate the path integral. Such a restriction corresponds to
stances where the ‘‘live’’ gauge field degrees of freedom
soft and is tantamount to employing an eikonal mode
description.

Besides reproducing the leading eikonal for QED in a t
spin-1/2 particle collision process, we were able to deriv
corresponding expression for an off mass shell situat
This occurrence encourages us to think beyond the lea
approximation as well as consider extensions of our
ce
e
e.

-

.
r

e

i-
n-
e
f

a
n.
ng
-

proach to other cases of interest. Already, Fried and G
bellini @12# havediscussed a strategy for correcting eikon
results which, in our approach, amounts to small distortio
of straight line paths. Another direction towards which o
particle-based language could be tested is when acuspedline
enters the four-point configuration@16#, in which case a non-
negligible momentum transfer takes place. Even though
is not an exact eikonal situation, itwould serve as an ap
proach to momentum transfer corrections in a high ene
scattering process involving four fermions.

With respect to recent string-based work on quant
gravity, Planckian scattering in particular@17–21#, we have
been able to turn things around and circumvent string the
~in favor of worldline! input in the analysis of extremely
high energy gravitational scattering, to leading order at le
This is the analogue of the string-inspired idea for clos
fermion line calculations@27# being replaced by the world
line philosophy@7#. It is our conviction that, as long as on
can effectively ensure UV protection, such as the one p
vided by the string, the worldline approach always offers
alternative framework for physical descriptions. Moreov
our present work has explicitly exemplified its capability f
factoring out the soft sector of a given field theory—which
by far a more demanding task than that of securing UV i
munity.

As far as applications to non-Abelian gauge systems
concerned, the, apparent, inevitability of a perturbative
pansion of the Wilson line operator has already been circu
vented, albeit under restricted conditions, by the brea
through work of Ref.@13#. This offers solid hope that eve
more general approaches to the non-Abelian eikonal can
attempted. The true challenge, of course, is how to incor
rate gluon interaction vertices into the worldline scheme. W
find very promising, in this respect, the work of Di Vecch
et al. @28# which, in combination with the methodology em
ployed for the computation of eikonals in gravity theor
especially those of Refs.@17,20#, could point the way to-
wards confronting non-Abelian eikonals in a fully nonline
context.
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APPENDIX A

The goal of this appendix will be the computation of th
integralsI 1 ,I 2 defined in Eq.~26! of the text. Referring first
to I 1 we write

I 15E
0

`

dt1E
0

`

dt2e2~ t1
2
1t2

2
22t1t2w!

5E
0

`

dt1e2t1
2
~12w2!E

2t1w

`

dt2e2t2
2
. ~A1!

According to our conventionsw.0, whereupon we ob-
tain
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I 15E
0

`

dt1e2t1
2
~12w2!F E

2t1w

0

dt2e2t2
2
1

Ap

2 G5
p

4A12w2

1E
0

`

dt1e2t1
2
~12w2!

Ap

2
F~ t1w! ~A2!

with

F~x!5
2

Ap
E

0

x

e2t2dt. ~A3!

Using the tabulated integral@28#

E
0

`

@12F~x!#e2m2x2
dx5

arctanm

Apm
Rem.0 ~A4!

we find

E
0

`

F~x!e2m2x2
dx5

Ap

2m
2

arctanm

Apm
Rem.0 ~A5!

and consequently

I 15
p

2A12w2
2

arctanw̃

2ww̃
, ~A6!

with w̃251/w221. Making use of the ‘‘angle’’ parameterg
we obtain the alternative expression

I 15
p2g

2sing
. ~A7!

Wick rotation back to Minkowski space involves the su
stitution g→ ig. Denotingb5tanhg we find

g5
1

2
ln

11b

12b

and so

wI152
1

2bS 1

2
ln

11b

12b
1 ip D . ~A8!

We now turn our attention to the integralI 2 given by

I 25E
0

`

dt1E
0

`

dt2e2~ t1
2
1t2

2
12t1t2w!

5E
0

`

dt1e2t1
2
~12w2!E

t1w

`

dt2e2t2
2
. ~A9!

For w.0 we determine (t2
2[x)

I 25
1

2E0

`

dt1e2t1
2
~12w2!E

t1
2w2

`

dxx21/2e2x

5
1

2E0

`

dt1e2t1
2
~12w2!GS 1

2
,t1

2w2D . ~A10!

Substituting nowt1
2→x we get
I 25
1

4E0

`

dxx21/2e2x~12w2!GS 1

2
,xw2D

5
uwu
2

FS 1,1;
3

2
;sin2g D5

g

2sing
. ~A11!

The corresponding Minkowskian expression is

wI25
1

2b

1

2
ln

11b

12b
. ~A12!

APPENDIX B

In this appendix we dispose of the calculation
I 12(u1 ,u2) given by Eq. ~37! in the text. Performing the
quadratick integration we obtain

I 12~u1 ,u2!5E
0

`

dzE
0

1

dyE
0

`

dww
1

~2p!dS p

z D d/2

3e2@x'2w f11~y!1 f 1#2/4z, ~B1!

with f 11(y)5yu12(12y)u2 , f 15u2T22u1T1.
Equivalently, we write

I 12~u1 ,u2!5
1

~2Ap!dE0

`

dzz2d/2e2~x'
2

1 f 1
2
!/4z

3E
0

1

dyE
0

`

dw we2w2f 11~y!2/4z1~w/2z! f 11~y! f 1.

~B2!

Denoting f 11(y) f 1[ f 12(y) and using the tabulated integra
@28#

E
0

`

xn21e2bx22gxdx5~2b!2n/2G~n!expH g2

8bJ D2nS g

A2b
D ,

Reb.0, Ren.0, ~B3!

where D2n(z) is the parabolic cylinder function of order
2n, we find

I 12~u1 ,u2!5
2

~2Ap!dE0

`

dzz12d/2e2~x'
2

1 f 1
2
!/4z

3E
0

1

dy
1

f 11~y!2
expS f 12

2

8z f11
2 D D22S 2

f 12

A2z f11
2 D .

~B4!

The last function is well known:

D22~z!5e2z2/42zAp

2
ez2/4F12FS z

A2
D G . ~B5!

With the aid of the above relation we may split the integ
I 12(u1 ,u2) in the form

I 12~u1 ,u2![I 12
I ~u1 ,u2!1I 12

II ~u1 ,u2!. ~B6!
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The first term can be computed along the lines followed
the computation ofI 11(u1 ,u2), as discussed in the text. Th
final result is

I 12
I ~u1 ,u2!5

4

~2Ap!dS 4

x'
2 1 f 1

2D d/222

3
1

A12w2
arctanS 11w

12wD 1/2

GS d

2
22D .

~B7!

As far as the second term in Eq.~B6! is concerned, after
the substitutionz→1/z2 it can be cast in the form

I 12
II ~u1 ,u2!52A2E

0

1

dy
f 12~y!

f 11~y!2Af 11~y!2E0

`

dzzd24

3e~2z2/4! f 13~y!F12FS 2
f 12~y!

2Af 11~y!2
zD G ,

~B8!

where f 13(y)5x'
2 1 f 1

22 f 12(y)2/ f 11(y)2.
One more tabulated integral is now needed, namely,

E
0

`

@12F~bx!#em2x2
xn21dx

5

GS n11

2 D
Apnbn

FS n

2
,
n11

2
;
n

2
11;

m2

b2D ,

Ren.0, Reb2.Rem2, ~B9!

with the aid of which we obtain

I 12
II ~u1 ,u2!52A2E

0

1

dy
1

f 11
2

GS d22

2 D
Ap~d23!

S 2
2Af 11

2

f 12
D d24

3FS d23

2
,
d22

2
;
d21

2
;2

f 13f 11
2

f 12
2 D . ~B10!

We may freely setd54 and so we are led to the result

I 12
II ~u1 ,u2!5

2A2

Ap
E

0

1

dy
1

f 11
2

FS 1

2
,1;

3

2
;2

f 13f 1
2

f 12
2 D .

~B11!

In a similar fashion we treat the termI 13. Collecting
pieces together we finally arrive at expression~43! of the
text.

APPENDIX C

Here we perform the calculations referring to the quan
R given Eq.~47! in the text. To this end we must, first of al
specify the arguments entering the various hypergeome
r

y

ic

functions appearing inR. ThroughI 1(u1 ,u2) the following
quantities enter:

f 11~y!5yu12~12y!u2 ,

f 12~y!5y~11w!~T22T1!1wT12T2 ,

2
f 13~y! f 11

2

f 12
2

52
11w

12w
~122y!2, ~C1!

f̃ 11~y!5T2@y~11w!21#,

2
f̃ 12~y! f 11

2

f̃ 11
2

52
y2~12w2!

@y~11w!21#2
, ~C2!

f 118 ~y!5T1@w2y~11w!#,

2
f 128 ~y! f 11

2

f 118
2

52
~12w2!~12y!2

@y~11w!2w#2
. ~C3!

ThroughI 2(u1 ,u2) we gain the quantities

f 21~y!5yu11~12y!u2 ,

f 22~y!5y~w21!~T22T1!1wT11T2 ,

2
f 23~y! f 21

2

f 22
2

52
12w

11w
~122y!2, ~C4!

f̃ 21~y!5T2~yw2y11!,

2
f̃ 22~y! f 21

2

f̃ 21
2

52
y2~12w2!

@12y~12w!#2
, ~C5!

f 218 ~y!5T1@y1~12y!w#,

2
f 228 ~y! f 21

2

f 218
2

52
~12w2!~12y!2

@w1y~12w!#2
. ~C6!

We mention that the above arguments of the hyperg
metric functions are given in the limitT1;T2@ux'u and we
see explicitly the claim introduced in the text, namely, that
this limit the quantityR becomes independent ofT andux'u.

Subsequently we use the analytic expression

FS 1

2
,1;

3

2
;2z2D5

arctanz

z
, ~C7!

and after performing simple integrations we arrive at the
sult
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g2w

2p25 2
1

A12w2
ln

12w

2
arctanA12E

0

1

dy
lny

2y2~11w!22y~11w!11
1

2

A12w2E0

1dy

y
arctanAy

2
1

12wE0

1

dy
ln~11A2y2!

11A2y2
2

1

A12w2
ln

11w

2
arctan

1

A
12E

0

1

dy
lny

2y2~12w!22y~12w!11
1

2

A12w2E0

1dy

y
arctan

y

A

2
1

11wE0

1

dy

lnS 11
y2

A2D
11

y2

A2
6 , ~C8!

with A5@(11w)/(12w)#1/2.
The integrals involving ‘‘primed’’ arguments are identical to the corresponding ones with ‘‘tilde’’ arguments, afte

substitutiony→12y.

To evaluate the remaining integrals we first return to Minkowski space„a →
Mink

2 iawith a[@(coshg11)/(coshg21)#1/2
… and

then use the expressions

E
0

1

dx
ln~12ax!

11ax
52

1

aS p2

12
2

ln22

2 D1
1

aF ln~12a!ln
11a

2
1Li2S 12a

2 D G , ~C9!

E
0

1

dx
lnx

12ax
52

1

a
Li2~a!, ~C10!

where Li2(z) denotes the so-called double-logarithmic or Spence function defined according to

Li2~z!5 (
k51

`
zk

k2
. ~C11!

Using the well-known properties

Li2~z2!52@Li2~z!1Li2~2z!#, Li2~1!52
p2

6
, ~C12!

Li2~z!1Li2S 1

zD52Li2~1!1
1

2
ln2uzu, Li2~z!1Li2~12z!5Li2~1!1 lnuzu lnu12zu, ~C13!

we finally arrive at

Eexch5expH ig2

2pb
ln

T

ux'u
1

g2

4p2b
F7

2
p218Li2~12a!22Li2~12a2!22Li2S 12a

2 D12Li2S 1

2
2

1

2aD
22lna@11 ln21 ln~a21!#14lnaln~a11!G2

ig2

4pb
@3ln224lna1 ln~a21!#J , ~C14!

with the conventionsA215 i , lnx5ip1lnuxu, for x,0.
To obtain the final result we mention that coshg/a(coshg21)5acoshg/(11coshg). Using the definition of the center of mas

energy,

s5~p11p2!252m212m2coshg, ~C15!

with the fermions practically on mass shell, we determine

coshg5
s

2m2
21 ~C16!
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and so in the limits@m2 we obtain

a[S w11

w21D 1/2

511
2m2

s
. ~C17!

This result allows us to give the asymptotic expression ofEexch in the above-mentioned limit.
Taking into account that the contribution of the Spence functions is at least of orderm2/s we are led to Eq.~49! of the text.
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