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Worldline approach to eikonals for QED and linearized quantum gravity
and their off mass shell extensions
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We construct the worldline expression pertaining to a four-point process involving the scattering of two
spin-1/2 particles via photon exchange. Restricting our attention to the case of forward scattering at extremely
high energies, we show how to formulate the corresponding eikonal version of the four-point Green’s function.
We proceed to distinguish between the on and off mass shell cases within the framework of our description.
For the on mass shell situation we recover the well-known result for the QED eikonal which corresponds to the
infinite Coulomb phase. Thslightly) off mass shell case is confronted next. We produce a relevant expression
for the eikonal phase in analytic form. Finally, we extend our considerations to a linearized quantum gravita-
tional model and recover, via a series of elementary steps, the Oth order eikonal result for Planckian scattering
(both for on and off mass shgl[ S0556-282(198)05004-9

PACS numbd(s): 12.20.Ds, 04.66-m, 11.80.Fv

[. INTRODUCTION The origins of our own involvement with the subjé¢&0]
can be traced to our attempt to understand the field theoret-
The eikonal approximation in quantum field theory offersical basis of Polyakov's workl1] which discusses geometri-
the most powerful methodological tool for the study of par-cal aspects of particle path propagation in a givenclid-
ticle collisions at very high energies. Perhaps the greatestan space-time backgrouridGiven the worldline casting of
asset of the eikonal approach is its capacity to account for thiield systems, our present attempt focuses on its application
unitarity-induced behavior of amplitudes and/or cross secto a four-point process, in the eikonal approximation. In par-
tions as the center of mass energy of the collisions reachd&ular, we shall consider the forward, very high energy, scat-
asymptotically large values. With respect to gauge theoriegering among two spin-1/2 matter particles in an Abelian
(Abelian or non-Abeliap at least, the seminal work of gauge field theory as well as for a linearized version of quan-
Cheng and WU1,2] exemplifies the validity of the above tum gravity.
claim at a basic calculational level. A systematic program which advocates Fradkin’s repre-
More recent advances in the application of eikonal techsentation of Green’s functions, both in potential theory and
niques in field theory, QCD in particular, have been pro-quantum field theory, for generalized eikonal approximations
moted by Lipatov{3] in connection with multiparticle pro- to particle scattering is currently being pursued by Fried and
duction at high energies. This corresponds well with theGambellini[12,13. The computational techniques employed
traditional view that the eikonal approach applies more di-by these authors rely on Schwinger’s functional methodol-
rectly to the forward scattering amplitude, at high energiespgy [5], as opposed to particle-based path integrals. It has
the imaginary part of which relates, via unitarity, to the totalalready been successful on two important frofi$:A well-
cross section. defined strategy has been produced which leads to bonafied
A second aspect of eikonal modeling in field theory is, forcorrections to the eikonal approximation of a nonperturbative
QED at least, its natural association with the infraféRl) nature[12] and(2) a partial, nonperturbative confrontation of
structure of the full theory. In a general context, this can behe non-Abelian eikonal probleiffior noninteracting gluons
understood on the basis of the no-recoil assumption entailelblas been attained, which leads to an effective “Reggeiza-
by the eikonal approximation. Indeed, for such a regime thdion” of the exchanged bosor{43].
matter particles appear too heavy for the, emitted or ab- Our current undertaking is a natural continuation of recent
sorbed, live gauge field degrees of freedom. work which has applied the, geometrically based, worldline
A unified treatment of the above and other important asformalism to infrared physics, where nonperturbative consid-
pects of the eikonal methodology, encompassing mangrations invariably enter. So far we have considered cases
branches of physics, have been pursued by Fried, with #volving two- and three-point functiorf44—16. Our inau-
comprehensive account of relevant results to be found in gural efforts, aiming at the study of a four-point process,
monograpt4] which contains original references. With par- have been chosen to apply to cases where nonperturbative
ticular reference to quantum field theory, QED especiallyresults in the infrared can be arrived at without too many
Fried’s approach to eikonal physics adopts the functionatomplications. The present work not only serves to illustrate
language of Schwingdb] and its subsequent recasting, in athe viability of our approach toward the confrontation of
particle-based representation, by Fradk®]. Nowadays,
Fradkin’s path integral casting of field systems has been re-=—
formulated and goes by the name of “worldline approach,” Special emphasis, in Polyakov's scheme, is placed on the “geo-
having widened its scope of applicatiois-9]. metrical accommodation” of the particle’s spin.
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processes involving a pair openfermionic lines but also to fields leads to the following expression for the partition func-
demonstrate its ability to produce a relevafslightly) off  tion:
mass shell eikonal expression. Entering the non-Abelian
[2,13] and—to a fuller degree than presently attempted—
quantum gravity17—21 domains is a task that will be left to Z[;n_‘]#]zj DA de(y~D+m)exp[ J d[ #(x)(y-D
future investigations.
Let us close our introductory discussion with a brief
sketch of the worldline philosophy. The basic idea is that one + m)ln(x)]] e~ SlAgl (1)
translates the description of a system, originally given in
terms of field degrees of freedom, into particle-based ones. — . . — _
Explicitly, one goes from a functional to a path integral cast-where 7,7 are sources for Dirac fieldg, ¢ respectively,
ing of the system: and where Sj[A,é]=9A,£]-[J,A, d%%, with FA,£]
standing for the Maxwell action in a covariant gauge, while
J,, is a source for the gauge potentfg] . We shall adopt the
W o Feynman gauge throughout, corresponding to the chéice
J’ DyDy exp{Stieidl 4 ¥/1} _o.
We introduce the four-point function

—>f [dx(7)][dp(7)]exp{Sparticie X(7),p(7)]}.

G*(X1.,X2,Y1,Y2)
We have implicitly used notation pertaining to spin-1/2

fields since this is the main case of interest in worldline 5

applications. The reason is that, for renormalizable theories = — —

at least, the integration over fermionic fields, in a Euclidean 07(X1) 67(X2) 61(Y1) 67(Y2)

space-time, is Gaussian and therefore lends itself to a

particle-based casting without the involvement of some ap- ZI 5 = 3,=05 2

proximation. As far as thédynamica) contribution from the

gauge field sector is concerned, one aims at extracting fro%hich, via the use of Eq), assumes the form

the corresponding functional integration an expression of the

form I1[x(7),(p(7)] which communicates directly with the

path integral. How this is accomplished in practice will be- _

come amply evident in the course of our analysis. G4(xl,x2,yl,y2)=f DA de{(y-D+m)je” 3A& (x| (y-D
The paper is organized as follows. In the next section we

sketch the procedure that leads to the derivation of the +m) 7y (Xl (y-D+m) " Hy,).  (3)
worldline expression for the four-point Green’s function ap- _ _ _ _
propriate to the physical situation under study. Section Il Employing the Schwinger proper time representation for

tends to matters of an organizational nature which pertain tghe matrix elements of the inverse Dirac propagator, entering
a convenient kinematical decomposition and to factorizatiorFd- (3), we achieve a worldline form for the fermionic
issues between “soft” and “hard” contributions to the Green’s functionG?)(x,y|A) [=(x|1/(y-D+m)|y)] in the
Green's function. The on mass shell eikonal description oPresence of a background gauge field, which reads as fol-
the dynamical piece of the amplitude is taken up in Sec. IV)ows:

while an off mass shell extension is considered in Sec. V.

The case of Planckian scattering, where the exchanged field w

quanta are gravitons, is taken up in Sec. VI within a linear- G(x,y|A)= J +dTﬁ((o):X[dx(q-)]f [dp(7)]

ized gravity setting[16]. Technical aspects entering the 0 X(T)=y

analysis of the last three sections are dealt with in three Ap- T

pendixes. Finally, in Sec. VIl we present an outlook that Xex;{ +iJ' drp(r)~5<(r)
stems from our work. 0

.
Il. WORLDLINE CASTING OF THE FERMION XPGXW’ - fo dr{iy-p(7)+m]
FOUR-POINT FUNCTION IN THE EIKONAL

APPROXIMATION L
XexW’ igf0 dTX(T)~A(X(T))]- (4)

In this section we establish the basic worldline expression
which will become the object of calculational interest in the
present paper. It refers to a four-point process in QED per- A well-defined procedure which leads to the above result
taining to elastic scattering between two spin-1/2 matter parhas been given ifi9]. The main point is that the functional
ticles under conditions which favor an eikonal mode of de-measures entering E() can be carefully defined so that the
scription. worldline casting of the field system can support both per-

Consider the generating functional for an Abelian gaugeurbative and nonperturbative consideratipfs16).
theory with Dirac, spin-1/2 matter fields in a Euclidean  Substituting into Eq(3), we obtain the worldline expres-
space-time setting. Formal integration over the fermionicsion for the full four-point function which reads
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G*(X1.,%2,Y1, Y2)—f dTlf defxl(O) Xl[dxl(T)]J [dpl(T)]fXZ(O) xp [AXo( T)]f [dpa(7)]

X2(T2)=Y>

Ty . T2 . Ty
Xexp{—kifo dTpl(T)-Xl(T)}eX[{‘HfO drp2(7)~X2(T)]’Pexp[—f0 dT[iy~p1(T)+m]]

T . T . . T2 .
xPexW’—fO dr[|y~p2(r)+m]}<exp[|gfo dTXl(T)-A(Xl(T))-FIng d7x2(7)~A(x2(7-))]> ,
A
)

where we have abbreviaté®),= [DAe™ SIAO det(y- D +m).
In a diagrammatic language the above expression incorporates all Feynman diagrams with four external fermions and an
arbitrary number of loops. In the strict context of the eikonal approximation we admit only that subclass which comprises the

so-called exchange diagrams. Their features(ar@o closed fermion loops make their entrance &é)the photon propaga-
tors cannot attach to the same fermion line.

Our next step is to align the general expressipnwith the requirementgl), (2) above. The first one guides us to the
constraint(quenched approximation

de(y-D+m)=1. (6)

Next, to enforce the second requirement, we write

Ty . Ty .
<exp[igJ0 drxl(r)-A(xl(r))JrigJO drxz(r)-A(xz(r))}>

o 5 (ig)*(2K )
Z 20 (Zk)' ( )f DAe SJ[A §]

A

2k—n T, . n
[ Zasco. A(xm))) ( | drx2<r>-A<x2<r>>). @

With reference to the above relation, we demand that the summatiomdyerestricted only to terms for whialh=Kk. It can
easily be seen that this particular choice obliges a photon propagator to attach itself on each of the two spin-1/2 particle lines.
It follows that the exchange graphs lead to the specification

(T (T , (T T, . ,
ex 'QJ dTXl(T)'A(Xl(T))+|gJ d7x5(7)-A(Xa(7)) 1 ) —exp —g J dle d7oXy,(71)X2,(72)
0 0 A 0 0

X<A}L(Xl( T1))A,(X2(72)) As (8)

where(A,,(x1(71))A,(X2(72)))a denotes the free photon correlator whose well-known expression, in the Feynman gauge, is

<AM(X1( T))A,(Xo(72))) A= —Zeik'[XZ(TZ)fxl(Tl)]. 9

"2m)*

Putting everything together, our worldline expression for the exchange-type diagrams becomes

Gheetxaayryo)= | dT | dT, [ - o [0 | 1801 [ 015, 10,091 | Lo

x1(T1)= X2(T2)=Y2

T ) Ty . T
><exp‘if0 drp1(7)~x1(7-)]exp{iJO drpz(T)-xz(r)]Pexpl’—J’o driy-pi(7)+m]

Ty T, Ty . .
XPGXW’—f dT[i’)/'pz(T)+m]]eX _ng dTlf drleﬂ(Tl)Xzy(Tz)@u,,
0 0 0

(2m)*
XJ d4k%eik‘[xz(72)_xl(71)]]_ (10

According to the eikonal setting, the fermions travel with large momenta while the exchanged photons are soft, in com-
parison. In a worldline context, this means that the absorption and/or emission of virtual photons does not induce recoil of the
spin-1/2 matter particles. We view the latter as travelling practically on mass shell with almost constant energy and spatial
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direction, i.e., with fixed four-velocities. This allows us to introduce two constant four-velocities ifilBg.one for each
fermion, and cast the exponential associated with the gauge sector in the form

Ty T
Eexc{Uy,Up)=€X _92U1'U2j dTlJ def
0 0

4
d’k _eik~(u272—u171+x2—x1)

(2m)* k?

(11)

The four-velocitiesu, ,u, entering the above expression should, first of all, obey(ttem) mass shell conditionu,|
=|u,|=1. Second, because of the fact that the eikonal approximation is used to describe only forward scattering, we demand
that Gl //Gz hold true. Note thati;- u,# 1 due to the fact that the two fermions have different energies.

In summary, our worldline approach for the eikonal four-fermion Green’s function is encoded in the formula

Géxcr{xl!xbyl’yZ):jo dTlfo defx1<0)=x1[dX1(T)]J [dpl(T)]fX2(0)=X2[dXZ(T)]

x1(T1)=y1

X2(T2)=Y>

(T . (T2 . T1 .
Xf [dpz(r)]ex%lf dTpl(T)~X1(7')]eXW'IJ' dsz(T)-Xz(T)}'PeXp{—f driy-pi(7)+m]
0 0 0

T2 Ty T2
xPexp[—f dr[iy~p2(r)+m]}ex —gzul-uzf dry d7,
0 0 0

4
XJ’ dk ieik-(uzrzfulrl+x27xl) .
(2m)* k2

The extraction of specific results from the above expression

will be the objective of our work in this paper.

lll. KINEMATICAL DECOMPOSITION
AND SOFT FACTORIZATION

(12

kd—1dk 1
(2a)® K2’

|(U1:U2)Hf

ask—0, and therefore remains finite fdr—~4 as long ag;
andT, do not go to infinity. In other words; andT, offer

The most important feature of the expression for the exProtection against IR divergences via an off mass shellness

vious section and on which our eikonal considerations willthat @ Wilson line of finite extent does not take into account

be based is the Wilson line operatexpectation value of It

the full gauge field cloud with which they interact; hence

carries all the dynamical aspects of any given calculation tha’€y remain somewhat off shell. We shall, of course, assume
addresses itself 16, For the Abelian case in hand and in that T;~T,(=T) are long enough so that the off shellness

the quenched approximation we are adopting, it gives rise t§an be as sufficiently small as we wish. If, on the other hand,
the nonperturbative expression furnished, in the FeynmaWe et T;, To—, then we are creating an on mass shell

gauge, by Eq(11). In the present section we shall make description with an IR divergence that must be controlled by
some general assessments related to this quantity which wfl Small photon masa or, alternatively, by dimensionally

facilitate our subsequent analysis.
Let us begin by writing

Eexchi= exp{—gzl(ul,uz)}. (13

Allowing for the possibility of being forced to regularize
at some point let us revert td dimensions and focus our
attention on

ddk eik~x e—ik~ulTl_1 eik~u2T2_1

I(ul=u2)=J (27T)d k2

—ik-uy ik-u,

(14

whereT,, T, are the limits of the parametric integrations

over 1 and r,, respectively.
We observe that

regularizing tod>4.

On the ultraviolet(UV) end we determine, a3— 4, that
lim,_ofdkeé**/k**< remains finite due to the very quick
oscillations of the terme’*, as long asx does not go to
zero. A further comment on this point will be made at the
end of this section.

Consider, now, the following decomposition of the four-

vectork entering Eq(14):
K=k, +kyU;+koe, (15

with
EJ_ ’ ':'1: IZJ_

.e=Uu;-e=0, (16)

whereu; is the unit vector alongiy, i.e., U;=|u;|U;.
We write
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~ A ~ o~ A A PPN h
K-Uy=ky, K-Up=Kyly- Uyt kol Uy=k,cosy+kysiny, ~ hand.G" represents what the rest of the thetmard sector
contributes toG in the generic case.
- . (s) . . . _
K2= ki + k§+ k% (17) For an Abelian systerts,; 2, registers directly in a nonper

turbative form given the relation
and determine that

T
d-2 w0 o :
I(ul,uz):ul'UZJ d ka d_Ze*ZkarilzL.)ZLT, <9XD{ |gJOde(T).A(x(T))]>
4 (2m)972Jo 2 A
(18)
—~ T T .
where the quantityl is given by =exp[ —ng drlf d7X,(T1)X,(72)
0 0
T T T i (kqcosy+kssiny) ik
| = d jd 1 2SINY) 72— 1K 71 19
fo i P 19 ><<A,L<x<n>>Ay<x<rz>)>A}, (21)

Our first observation is that, in such a kinematical analy-

sis, the UV protection is taken over by which registers as whereas for a non-Abelian system Eg0) holds true in the

the impact parameter for the four-point process. Second, weense of a perturbative expansion.

notice that for the on shell cas& {,T,— ) T comes out of Our practice, throughout this paper, will be to bypass

the 7; integrals,i=1,2. For the off-shell case, on the other renormalization issues in the soft sector by keeping a finite

hand, calculational complicatior® present themselves and impact parameter. In effect, then, we shall be dealing exclu-

they will occupy our attention lateiSec. \). sively with renormalized quantities. Therefore, we shall omit
Our final remarks pertain to the factorization of the the indication ‘tren” from hereon.

“soft” behavior at the Green’s-function level. To this end,

we shall use renormalization properties of the field system as

a guide. Let us begin by forming a physical picture associ- IV. ON MASS SHELL CASE: THE INFINITE

ated with our requirement that the matter particles propagate COULOMB PHASE

along straight lines. As already mentioned, the no-recoil ba-

sis on which emission and absorption of gauge field quant%a

occurs implies that the corresponding “live” degrees of free-

dom entering the computation of the four-point Green’s

function are “soft.” Clearly, the meaning of softness here is

relative to the c.m. energy of the colliding fermions and in-

cludes all photons that cannot cause appreciable derailment

from their propagation paths. It follows that our restriction to - -
Eexch:ex _292U1'U2f dTlf d7'2
0 0

The computation oE,,, for the strictly on mass shell
se arises in the limif,,T,—o. Under this circumstance
the parametric integrations eventually factor out, leaving be-
hind a purely kinematical expression. We direct our efforts
on the computation of the quantity

straight line path propagation corresponds to isolating a sec-
tor of the full theory that involves only “soft” photon ex-
changes. We shall refer to this subsystem as the soft sector of 4
the full theory. xf d'k ie”"‘”272“171+"2xl)} (22)
We have already demonstrated, in a number of previous (2m)* k2 '

studieq15,16,23, that a subtheory factorized in this way has
its own high and low energy domains, the former of which
calls for a renormalization treatment. Furthermore, straightvhere the factor of 2 in the exponent mirrors the necessary
line path propagation will invariably identify any multiplica- ordering ofr;, 7, during the integration course or, on physi-
tive renormalization factor common to all contours joining cal grounds, our inability to distinguish the two electrons.
given initial and final points in space-tim@vhich pertain As already pointed out, the above quantity exhibits no
exclusively to the Wilson line operatorand hence factor- ultraviolet divergences as long as the starting points of the
izes itself from the overall result. Of course, non-straight-linefermion lines do not coincide, but does possess infrared ones.
propagation in the path integral induces extra contributiondVe shall confront their regularization in two different ways.
to the full n-point Green’s function. This allows us to write, First, we shall seti=4 and introduce a small photon mass
in general, while, second, we shall employ the dimensional technique by

analytically continuing to a Euclidean space-time st 4

G=G'S 6", (200  + e dimensions.
An immediate issue we have to face is the obligation to

whereG(S. is the contribution to the Green’s function from take into account all the ways of avoiding the poléat0 in
the soft sector, as defined by our worldline approach. It inthek integration. This is reflected in the two possible relative
corporates the renormalization factor which is picked up byorientations of the four-velocities, and u, as the param-
the straight line configurations and will be the object of studyetersr, and, follow their course from 0 tae. This subtlety
in what follows. In an eikonal setting, wheregx, t/s s taken care of by letting the, ,i=1,2, run along the posi-
—0, it contains thetotal contribution toG. On the other tive axis and compute the following quantity:
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o o Relegating the details of the respective calculations to Ap-
Eexch=eXpy —29°u; sz drlf dr, pendix A we quote the final results:
a1 L arctanw| . arctanw|  wy
x j o oWk 21w 2 2)1w? sin2y’
a
oo o) —~ 1
—292u1~u2f dTlf de W2:_2_1 (27)
0 0 w
d*k 1 K- (Ut Ug 714 X Xp) Wick rotating back to Minkowski space involves the sub-
(2m)° —e Zaiiin e (23 stitution y— iy, which leads to the relation
The second term in the exponent corresponds to a time- Wl +1,)=—i gcothy. (28)

ordered propagation of the fermions while the first one al-

lows for an arbitrary “coexistence” of the two electrons

(fermiong. Intuitively speaking, in the second term propaga-

tion of the “second” electron takes place when the propaga

tion of the “first” has already been completed. We expect a gto think mlkte)r(ms of renormalized quantities, now resides in

contribution that gives rise only to bremsstrahlung radiatiori€ terme™: ™. As already mentionec, has the concrete

owing to the instantaneous acceleration or deceleration of thhysical meaning of furnishing the impact parameter for the

two particles. As far as the first term is concerned, it obvi-1OUr-PoInt process. _ ,

ously allows for the above mentioned but in addition the two !N contrast, there are infrared divergences and we proceed

fermions now have the possibility of travelling together. In to regulate them via the introduction of a fictitious mass term

this case we can also view one of the electrons as prowdePr the photon. We get

a Coulomb field source inside which the second one is mov- ok X

ing. We would, consequently, expect the emergence of the Eoper=eXpl ig cothyf - (29)

well-known divergent Coulomb phase which attaches itself exch (2w )2 k2 +u?l’

to the Green'’s function.

Adopting the kinematical decomposition of the previouswhich is in agreement with the known eikonal red28].

section we write Employing, instead, dimensional regularization for treat-

ing the infrared divergences we determine

d*k
Eexch—exp{ 29%u, - sz drlf rzf (2 f dd-2k, e.ki X, J» J'dd 2K, 7Zkf+iki.&

(27T)d 2 (2’7T)d 2

With respect to the remaining integration ow#k, we
initially observe that ultraviolet protection, which allows us

% fcdze—zk%fikl X, [ gi(kacosy+kpsiny) 7o~ iky 7y
0 1 1

(2?2 F(d—_Z)

2

+ ei(klc03y+ kpsiny) ro+ iklrl]] . (24)

* —x2/4z * d—4)/2,—zx
Completing the squares and performing the Gaussian in- X fo dze % fo dxx e

tegrations over the first two componentskotve find

1 1 d-4
2 “4m (x il 72
Eexcri=€X ——g Uy - uz[I1+I2]f (N[x.|)
(2m )2
11 +FT (30
- . “2rg-4a
Xfo dzezkﬂﬂkl-xL], (25) ™ d
where FT stands for “finite terms.”
with Referring to Eq.(28) we conclude
. i g
= jo dt]_JO dtze (t +t2 2t1t2W) Eexch: €Xx 27TB n_4 I (31)
with g=tanhy.
_ fxdt f dt,e — (5 +t5+ 2t tow) (26) We have thereby obtained the well-known, infinite Cou-
o o ' lomb phase which is a trademark of infrared physics in QED.

From an intuitive viewpoint it is, indeed, satisfying that the
wherew=u, - U,. simple setting of straight line paths in the worldline integral
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has given rise to this result. From the practical side, on the di [ _
other hand, this should be viewed as just a first step on the ll:f df g 2tk
way to fuller expressions that bring in correction terms. The (2m)%Jo

guestion is whether and how the worldline approach leads us 1 -

to such terms. One source of corrections has already been xj dyf dwwe Wik [yu—(1=y)ua] (36)
identified[4] and concerns contributions from an expansion 0 0

of the Dirac determinant, i.e., going beyond the quenched
approximation. They correspond to what is yielded by the

unitarity diagrams of Cheng and Wi, 2]. More to the na- dik (=
ture of the worldline scheme are corrections from cusped 12:fwf
lines, corresponding to sizable momentum transfers, as well
as small deformations of straight line contours coming from 1 o Wik [yt — (1= y)y] ik (U Ty g Ty)
velocity expansion§l5]. We shall not, in this paper, venture X dyfo dwwe ! 2 2
into such directions. What wshall do instead, in the next

e—zk2+ikJ_-XJ_
0

0

section, is consider the subtleties entering the off mass shell 37
behavior.
and
V. OFF MASS SHELL CONTINUATION
OF EIKONAL BEHAVIOR
. . d w
In this section we shall treat the off mass shell case, for | :f d°k j e,zkzﬂkL.fold
the fermions entering the scattering process. This situation is 13 (2m)9Jo 0 y

attained by putting a finite upper limit on ther; integra-
tions. We focus, as previously, on the term

x Fdwwefwik{yur(lfy)uz]
0
Eexcri=€Xp{ — 29°W[ 1 1(ug,Up) +15(ug,ux)1}, (32

X(eik~u2T2+e7ik-u1T1). (38)
where, now,
ik, - —ik- ik- . . .
1 ):f dk elu grtiemni—g glttaTo—1 Notice that we have reverted tbdimensions as each of the
nenTe 2m* k¥ —ikup  ikeup quantitiesl;;, i=1,2,3, above possesses, on its own, infra-

(33 red divergences, even though the full quantifydoes not.
The computation ofl ;; is quite obvious and is accom-
and plished by first performing the quadraticintegration and
B ek gkuTa_ g kT 1 subsequently the one with respectdw. We obtain

2m)* K2 ik-ug ik-u,

(34

|2(U11U2):f
_ 2 fld 1
1 odmile Yy (1my P 2y(1-y)w

corresponding to the two possible relative orientations of the
four-velocitiesu; andu,.

Using the identities X fo dzZA-d2ex1%2, (39)
1 fl
= [ dx———,
AB Jo = (xA+(1—x)B)? The remainingz integration is straightforward after the

substitutionz— 1/z. Our final answer is

1 Jocdz(z)e*ZA
A2 Jo ’

| 4 [4\¥2 4 t ’61—w 12
, = = arcta
A>0, we castl 1(uq,U,) in the form 1 (2\/;)d xf 1—w2 1+w
d*k (= A d
l1(ug,u )=f j dze 2é+ikix xT ——2). (40)
1(Ug, U3 (2m*Jo 2
1 % ,
Xf dyJ’ dwwe Wik-lyur = (1=y)u] We immediately recognize the presence of an infrared
o /0 pole in the limitd— 4. Of course, this pole will disappear, as
X (e kK uiTi—1)(glku2T2— 1), (35) we have already mentioned, in the full expressionlfor

The computation of 1, is much more involved. For the
We proceed to split the above integral into three parts bydetails of the calculation the reader is referred to Appendix
settingl =141+ 15— 1413, Where B. The final result is
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(d=2)
)

2 2 2 _ 2—d/2_
(X[ +Ti+T5—2T,Tow) i a2 d-3

| 1 r d 9 1 1-w
e |22 e T Tw

d—3 d—2 d-1 —flsfil) )

11
X | dy—-[—2f2]9 44 9F : ; ;
fo yfil[ m 12 2 2 2 £2,

with f13(y)=yus—(1=Y)Uz, f1y)=F1f11(y), f1a(y) =3¢ +Fi=f1(y)/F12(y)? F1=U,To—usTy, while F(a,b;y;2) de-
notes a hypergeometric function.
We observe that the second term is finitedas4 and so we write

112 —f
(X2 +T24+T5— 2T, Tow)2 92— fdy (2, 15 o ) (42)

o 1 r d ) 1 1
12——477(1/2 57 1_W2urcta Trw
The integrall 15 is performed in the same fashion and we obtain, as a final answeéy,fre following:

-1/2

d 1-w
{(X)27 924 (X + TIH T 2T, Tow) 2 92— (x2 + 75242

1 1
I1(uq,up)= mr(§—2>ﬁ arctarﬁm

1 3 _f13f11
_(XJ_+T2 2— d/Z}__f y { ( '1,
fl 12720 fh

1 _§__’fv12fil>_ (E _§_fi§(y)f11)]
i A R E T

(43

with  Tiy(y)=f1u(y) 1, Toly)=xE +F1-F1/f5,, T1=u,T, and fil(y):fll(’}f)fiv f1y)=xC + 12— f13/60,, f1=
—uyT,. The(lash term containing the hypergeometric functions will be denoted bfu4,u,) in what follows.

One witnesses th@nticipated cancellation of the individual infrared poles, ds-+4, leaving us with the infrared finite
expression

{=InX®=In(x2 + T2+ T5— 2T, T, W)+ In(x® + T3+ In(x> + T3)} + T 1(Uq,Uy).

| 1 1-w)| -2
1(u1,u2)—mwarcta Trw

(44)
Treating in a similar fashion the integred(u,,u,) we find
11 1-w\"2 s
Iz(ul,u2)=4—772 Warcta Ttw {=Inx®—IN(X* + T2+ T3+ 2T, Tow) +In(X2 + T2) +In(x? + T3) } + T 5(Uy,uy).
(45)

We expect to obtain the results of the previous section as the mass shell is approached. Indeed, taking firstTthe limit
=T,~T,>X,, using, next, the identity

1
arctanx+ arctan; = g , x>0, (46)
and Wick rotating back to Minkowski space we get
2 2
Eoxer= g, | T g In(2—-2 ! 1+B 1w R 4
exch— €X ZWZBIWH|XL|_4772ﬂI7Tn( W)_ 2g 2,3 1 3 1+W+ ) (47)
with
—f4f2 - — f13f 2w 1
de 1.2 123 u|_e , , 122 11 +9 dy
f 2 2 f2 2 2 f11 27 le(y)
1 3 —fyfd 1 3 —Tpfd 1 3 —fyf2
X[F(E,l,z, 2 “Fl3lz—=—|-Fl3L3 02 ; (48)
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where the quantities,; , j=1,2,3, etc. are similarly defined section by resorting to a linearized version of gravity which
as their counterpartéy;, j=1,2,3, etc.(see also Appendix will make it possible for us to apply the same procedure we
C). have used for QED. In fact, Jackiet al. [25] haveworked
We immediately recognize the emergence of the diverthe opposite way by transferring the gravitational work of
gent Coulomb phase in the limlt—c. We also see that the [18] to QED. Moreover, Fabbrichest al.[26] havealready
ultraviolet divergent behavior, in the limjk, |—0, is in a  discovered the feasibility of employing Fradkin's formalism
one-to-one correspondence with the infrared one. Concer6] to Planckian scattering descriptiorabeit in a different
trating on the near-mass-shell case, in the sense that thieamework from the one presently adopted.
lengths of the particle paths are finite but very large with Confining ourselves to the dynamical part of the calcula-
respect to the impact parameter, the explicit computation ofion pertaining to the scattering amplitude, i.e., the part re-
R becomes our next objective. The relevant work is carriedferring to Eq,cn, let us consider the ramifications brought
always in the limitT>|x, |, in Appendix C. As it turns out, about by the adoption of the following linearized action for
R is independent of both the ultraviolet and infrared cutoffs.gravity, resulting by settingg,,=7,,+h,, (7., the
In the asymptotic limits>m? we obtain the following final Minkowski metric tensor and keeping the lowest order

answer: terms in the expansion. The relevant action functional reads
in2 2 2 in2
ig T g-m° s ig S 1 (1
— ~ In—+— —In—+ —In— = Ay @y pBY _ paB ,vo
Eeych exp{27_rln|xLI 25 Inmz 47_rlnmz S fd XleG[Sh“B[n 7 n*Pn7°]10h s
m2 1 v
+0| — (49) +5hu 3 (50)

The above off mass shell eikonal result exhibits a phaséVhere\]‘uV is a matter field current which we shall continue
readjustment, with respect to the on mass shell expressiofP View as being composed of a bilinear in spin-1/2 fields,
The extra piece has an imaginary part which vanishes in thBUt can be assigned to other types of matter fields, e.g., sca-
limit s—o and a real part which contributes to the eikonallar- _ _ _
function. An alternative way to view the final expression is _The worldline analysis goes through as in QED once the
by introducing an UV cutoff and off mass shellness via theWilson line replacement

correspondences, < 1/A and T— 1/(p2—m?)2 respec- ;
tively, Where|'|5|~(\/§/2)(1+ coshy) is a characteristic four- expr igf dTi((r)~A(x(r))]
momentum for the system. Then, the two logarithms can be 0

recombined so that the phase is exhibited in the form

T . .
—>exp[imJ' drx“(r)x”(r)hW(X(T))]
0

a

A2 m2_~2
In—2—ln P .
m . . . .
is made. The corresponding recasting of the exponential as-
The appearance of this expression is typical of that Whic@oplated w_|th the gauge sector in the expression for the four-
enters unrenormalized Green’s functions whose regulariza?0int function is
tion against infrared divergences has been effected by going

off shell. The form registered in E¢49), on the other hand, ) Tld Tzd : .
possesses the meaning of an off mass shell extended eikonal exp —3g o T1 0 ToX1,(T1)X2,(72)
function.

One final point to be made here concerns the
Enonexcicontaining piece of the four-point Green’s function X<A#(X1(Tl))Av(XZ(TZ)»A)

which we have systematically neglected up to now and

which enters th@-matrix element in the eikonal description, T T

providing the unit term in the expressioa'{—1). It corre- Hexp{ _mzf 1d71f 2 A7 pXpn(71) X1 5(71) X (T2)
sponds to the configuration of two noninteracting fermionic 0 0 “ P 4

lines. As is well known[24], Wilson operators defined on

open lines of finite extent are subject to renormalization ef- ><5(25(7-2)<h“'3(x(Tl))hyﬁ(x(rz)))h]. (51)
fects which can be absorbed via a redefinition of the wave

function. The relevant divergences can be viewed as collin-

ear bremsstrahlung radiation emitted from the end points of |n the so-called De Donder gauge, specified by the con-
the line where the matter particle suddenly accelerates and/@jtion

decelerates.

V__

1
VI. APPLICATION TO PLANCKIAN SCATTERING a,h,— 59uM,=0, (52

The methodology developed in this paper is transferable
to Planckian scattering. This we shall show in the presenthe h-field correlator become®1]
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<haﬁ(x1(71))hy5(x2(72))>h progqh to other cases of interest. Already, Frieq anq Gam-
bellini [12] havediscussed a strategy for correcting eikonal
=167G(7* 7P+ n*°nP7— n*F 5 results which, in our approach, amounts to small distortions
4K of straight line paths. Another direction towards which our
< f = ek [xa(r) =X (1)1, (53) particle-based language could be tested is whemspedine
k? enters the four-point configuratig@6], in which case a non-

negligible momentum transfer takes place. Even though this
Aside from the longer tensor structure and the appearandg not an exact eikonal situation, Would serve as an ap-
of dimensionful parameters in the above expressions, thproach to momentum transfer corrections in a high energy
computational procedure matches step for step the QED onegcattering process involving four fermions.

Setting >'<1(T)Eu1 and >'<2(7-)Eu2 we find, in place of Eq. With respect to recent string-based work on quantum
(25), for the on mass shell case, gravity, Planckian scattering in particulgk7—21), we have
been able to turn things around and circumvent string theory
2 (in favor of worldling input in the analysis of extremely
Edxer= exp{ - ;mz[z(ul' Uz) %= (u)?(up)?] high energy gravitational scattering, to leading order at least.
This is the analogue of the string-inspired idea for closed
d2k. (= , fermion line calculation$27] being replaced by the world-
><[|1+|2]16ij = f dze—kﬁikin]_ line philosophy[7]. It is our conviction that, as long as one
2m)%Jo can effectively ensure UV protection, such as the one pro-
(54) vided by the string, the worldline approach always offers an
alternative framework for physical descriptions. Moreover,

But our present work has explicitly exemplified its capability for

factoring out the soft sector of a given field theory—which is

m2[2(Uy-Up)?—(up)?(uy)?]=2p;- p—2)(Uyg- Up) —m? by far a more demanding task than that of securing UV im-
(55  munity.

) ) ] . As far as applications to non-Abelian gauge systems are
and 5'”08231' p2=Ss/4—2m*, we obtain, upon going to the oncerned, the, apparent, inevitability of a perturbative ex-
limit s>m*" as well as using Eq28), pansion of the Wilson line operator has already been circum-

5 - vented, albeit under restricted conditions, by the break-
dk, e™ (56) through work of Ref[13]. This offers solid hope that even
(2m)2 K2+ u? more general approaches to the non-Abelian eikonal can be

attempted. The true challenge, of course, is how to incorpo-

Edcr= exp{ icothydnG SJ

or (u|x,|<1, coth~1) rate gluon interaction vertices into the worldline scheme. We
find very promising, in this respect, the work of Di Vecchia
Edlr=exp—2iGs Inux, ), (57) et al.[28] which, in combination with the methodology em-

ployed for the computation of eikonals in gravity theory,
which is the well-known, Oth order, result for Planckian scat-especially those of Ref417,20, could point the way to-
tering[17-21. wards confronting non-Abelian eikonals in a fully nonlinear
The off mass shell extension follows the analysis of Seccontext.
V in a straightforward manner. The resulting expression for

. > 2
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VIl. CONCLUSIONS AND OUTLOOK

Our major attempt in this paper has been to establish the APPENDIX A
applicability of the worldline approacf4,6—1Q to a non-
r vial (sc_atterlng_ process V.Vh'Ch involves open fermionic integralsl,,1, defined in Eq(26) of the text. Referring first
lines. As in a series of previous papé¢igl—16,22, we have .

. ; . . .to I, we write
focused our efforts on a situation where straight lines domi-
nate the path integral. Such a restriction corresponds to in-

The goal of this appendix will be the computation of the

stances where the “live” gauge field degrees of freedom are l,= J dtlf dtze—(tfﬂg—ﬂﬁzw)
soft and is tantamount to employing an eikonal mode of 0 0
description. " -
Besides reproducing the leading eikonal for QED in a two :J dtle—tf(l—vﬂ)f dtze“g. (A1)
spin-1/2 particle collision process, we were able to derive a 0 —tiw

corresponding expression for an off mass shell situation.
This occurrence encourages us to think beyond the leading According to our conventiong/>0, whereupon we ob-
approximation as well as consider extensions of our aptain
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» 2 2| O 2 \/; ™
| =f dtje” W) f dt,e 2+ —|=———=
o w2 2 | ay1—w?
* T
+f dtletf(lwz)gq)(tlw) (A2)
0
with
®(x) ZJX*@ (A3)
X)=—|[ e
Jalo
Using the tabulated integrg28]
o 2.2 arctamn
f [1-®(x)]e " * X dx= Reu>0 (A4)
0 Ve
we find
© 7 arcta
f d(x)e 2 dx—£— i Reu>0 (A5)
0 2u mu
and consequently
L arctanw (A8)
Yoi-w? 2ww

with w?=1/w?—1. Making use of the “angle” parameter
we obtain the alternative expression

Ty
2siny’

.= (A7)
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l= 4j dxx~ LZgx(1-w? (— xwz)

=MF 1,1
2 L}

,;;sinzy) S (A11)

2siny’
The corresponding Minkowskian expression is

11 1+p
26218

APPENDIX B
In this appendix we dispose of the calculation of

l15(uq,uy) given by Eq.(37) in the text. Performing the
quadratick integration we obtain
d/i2
(277)( )

X e*[XL7Wf11(Y)+f1]2/4Z,

|12(U11U2)—f dzf dy

(B1)

with f14(y)=yu;—(1=y)u,,f1=u,To,—u; T;.

Equivalently, we write

d/2e—(xf+f§)/4z

1 s
l1o(Ug,Up) = (ZWJO dzz

1 o
X f dyJ dw we W)zt (wizz)fyy(y)fy
0 0

Wick rotation back to Minkowski space involves the sub- Denoting f,(y)f;=f,,(y) and using the tabulated integral

stitution y—i+y. Denoting 8= tanhy we find

1 14p
=2

and so

(A8)

1(1 1+
W|1=_

26\2"'1-8

We now turn our attention to the integrgl given by

|2:J dtlJ dtzef(ti+t§+2tltzw)
0 0

= f dt,e 50w [ de b, (A9)

0 tyw
Forw>0 we determine tg=x)
1
lo= Zf dt e~ tid-w )JZ dxx e x
t W
1 1
Zf dt, e ti1- WZ)F( tiw ) (A10)

Substituting nowt5—x we get

(B2)
(28]
fooXV la— Bx? ~YXdx= (2,3) V/ZF(V)eX4 »),2] L
: 85) " 25/

Res>0, Re>0, (B3)

whereD _,(2) is the parabolic cylinder function of order
—v, we find

e 2, .2
|12(U1,U2):—df dz A~ 42— (X{ +ipi4z
(2ym)Jo

1 1 2, ) f12
xf dy exp( D_,| ——|.
0 " fiy(y)? 8Zf§1 VZZfil

(B4)

The last function is well known:

D ,(2)=e #¥-7 \/gezz"1 1- CI>( %) 1 . (B5)

With the aid of the above relation we may split the integral
I15(uq,U,) in the form

l1o(Ug,Up) =115(Ug,Up) + 115Uy, Up). (B6)



3774 G. C. GELLAS, A. I. KARANIKAS, AND C. N. KTORIDES 57

The first term can be computed along the lines followed forfunctions appearing ifR. Throughl,(u;,u,) the following
the computation of14(u;,U,), as discussed in the text. The quantities enter:
final result is

4 dre-2 fr(y)=yu;—(1-y)u,,

4
1 (ug,uy) = ——
12( 1 2) (2\/;)(]( Xi-i—fi

fray)=y(1+wW)(T,—T)+wWT— Ty,

X ! arctarEH—W 1/21“(9—2>. fayfl  1+w 2
1—w2 1-w 2 T =— 1_W(1—2y) . (C1
(B7) 12
As far as the second term in E@6) is concerned, after Tu(y)=To[y(1+w)—1],
the substitutiorz— 1/z2 it can be cast in the form
Ty)f? 2(1—w?
g =2 [y [ ) 12%1 n:_[y<y1(+w>—)1]2’ 2
2AUg,U2)— PN
’ f1a(y)2Faa(y) 2o
f1(y) =T w—y(1+w)],
X e~ 2 f1Ay) 1_¢(_ﬂz” .
2\f1(y)? £ (y)f2 w2 (1 )2
YL (1-w9)(1-y)
(B9) —— = 5 (C3
, , R fi1 [y(1+w)—w]
wheref5(y) =x7 +f1—f12(y) 7f12(y)".
One more tabulated integral is now needed, namely,  Throughl,(u;,u,) we gain the quantities
J [1-®(Bx)]e“x"tdx for(y)=yur+(1-y)uy,
0
v+1 foly)=y(W=1)(To=Ty) +WTy+ Ty,
r 2
_ 2 E v v+l V+ _/.L ,
\/;vﬁv 2" 2 "2 ,32 ’ _ f23()/)“21 1- W(l 2y)2, )
, 1+
Rer>0, Re82>Reu?, (B9)
with the aid of which we obtain Tor(y)=Ta(yw—y+1),
d—2 -
F(—) d—4 f f2 2(1—w?
1251 f%l \/—(d 3\ fio 21 [1-y(1-w)]
d—3 d—2 d-1 fyf] foy)=Ti[y+(1—y)w],
Y E ' ; - 1311 . (B10) 2(Y)=Ti[y+(1-y)w]
2 2 2 f%z
fo(y)f2 1-w?)(1-y)?
We may freely setl=4 and so we are led to the result _ A ( (1Y) (C6)

£ [why(l-w)]?’

We mention that the above arguments of the hypergeo-
B11 metric functions are given in the limi;~T,>|x, | and we
(B11) see explicitly the claim introduced in the text, namely, that in

In a similar fashion we treat the terms. Collecting this limit the quantityR becomes independent ofand|x, |.

2\2 3 faf?
=22 [ ay | 5050 |
11

2
f12

—

pieces together we finally arrive at expressi@3) of the Subsequently we use the analytic expression
text.
1 3 2 arctarz
APPENDIX C Flolsi—2)=——, (C7)

Here we perform the calculations referring to the quantity
R given EQq.(47) in the text. To this end we must, first of all, and after performing simple integrations we arrive at the re-
specify the arguments entering the various hypergeometrisult
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rR= W e tm+2fld Iny tar
=—0 — ——In arctal arca
2 1-w? 2 0 y2y2(1+w) 2y(1+w)+1 NG Y
1 jld In(1+A?y?) 1 I1+w . 1+2f1 Iny .
- — n arctan— arcan—
1w @Y 1+A?%y? 1-w? 2 A 0 2y2(1 w)—2y(1—w)+1 \/
2
In(1+y—)
1 A2
_1+Wj0dy y2 ' (C8
1+ =
A2

with A=[(1+w)/(1—w)]"2
The integrals involving “primed” arguments are identical to the corresponding ones with “tilde” arguments, after the

substitutiony—1—y. Wik

To evaluate the remaining integrals we first return to Minkowski sggace: —iawith a=[(coshy-+1)/(coshy—1)]*? and
then use the expressions

fld In(1-—ax)  1(@® In?2 1I Lol +a g 1-a o
o Trax a2 2 ) Ta ATl o)) €9
J'ld Inx = 1L' C10

where Li(z) denotes the so-called double-logarithmic or Spence function defined according to

Liy(z)= 21 P (C1))

Using the well-known properties

2

Lio(22)=2[Lix(2) +Liz(~2)],  Lio(1)=~ -, (12
1 1
Li,(z)+Li, E)ZZLi2(1)+§'”2|Z|' Lin(2)+Lio(1—2)=Liy(1)+In|z|In|1—Z|, (C13
we finally arrive at
Eexci= igle 92[728L'1 2Liy(1—a? 2L'1 2|_1 !
exch™ €X 277Bn|xl|+477213[§77+ io(1—a)—2Li,(1—a“)—2Li, 5 + 2|5~ 55
i 2

—2Ina[1+In2+In(a—1)]+4Inaln(a+1) —4WB[3In2—4Ina+In(a—1)] , (C19

with the conventions/—1=i, Inx=i7+In|x|, for x<0.
To obtain the final result we mention that ce#(coshy—1)=acoshy/(1+coshy). Using the definition of the center of mass
energy,

s=(py+P,)?=2m?+2m?coshy, (C15

with the fermions practically on mass shell, we determine

S
coshy=——-1 C16
=" (C16
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and so in the limits>m? we obtain

w+1

a= w—1

This result allows us to give the asymptotic expressiol gf.

G. C. GELLAS, A. I. KARANIKAS, AND C. N. KTORIDES

1/2

2m?

(C17

nin the above-mentioned limit.

Taking into account that the contribution of the Spence functions is at least ofroféiemve are led to Eq(49) of the text.
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