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Touching random surfaces, two-dimensional quantum gravity, and noncritical string theory
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A set of physical operators which are responsible for touching interactions in the framewmklafinitary
conformal matter coupled to 2D quantum gravity is found. As a special case, the noncritical bosonic strings are
considered. Some analogies with four-dimensional quantum gravity are also discussed, e.g., creation-
annihilation operators for baby universes and the Coleman mechanism for the cosmological constant.
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I. INTRODUCTION gravity (pure gravity. As to the second, it is a branched
polymer critical line. It should be noted that the multicritical
In the last decade there has been much progress in undgyeint C appears due to fine-tuned touching interactions. At
standing string theory in two dimensions as well as 2D quanthe same time, touching is not very important for the pure
tum gravity (see, e.g.,1] and references thergirOf course, gravity phase. In fact, the above picture is valid fos1l
for most physical applications one needs to consider mucmodels too.
more complicated models; however, many principal issues in It is well known that the scaling for the critical lines with
string theory and quantum gravity are still not understood,y<0, associated with the conventional matrix modgis
and the hope is that the two-dimensional theory will serve asrace-squared termsis described in terms of the Liouville
a useful toy model, in which some of these issues may beffective action [8]
addressed. For instance, a renormalization grdR@) ap-
proach developed for matrix models by Bie and Zinn- 2 @
Justin[2] can be used to formulate a larferenormalization Sefr= 2w J d (a¢aq§— 4 Q\/—R¢+t°\/—e +d))
group in a newM (atrix) theory[3]. Another example of this (1.2
is topological fluctuations in spacetime that produce baby
universes. They were intensively discussed in a framewori/nere
of four-dimensional quantum gravity in relation with a 1
theory of the cosmological constant and loss of quantum - = (e pE_A~ —
coherencd4]. Recently, it was proposed by Davjd] that o (Vi 25-¢). Q
such fluctuations could lead to a scenario for the so-called
c=1 barrier in two dimension§6]. The work discussed in to is the renormalized cosmological constant. In the above
this paper was influenced by David’s paper. we also assume that the unitary conformal matter has the
David begins with the renormalization group analysis ofcentral charge. The string exponent is given by
matrix models, with a new coupling constant that governs
the dynamics of touching surfaces, i.e., surfaces which are y= g+2. (1.3
allowed to touch each other at isolated points. In matrix ay
models trace-squared terms are responsible for touching. For
example, the one-matrix model with such interaction is given

Klebanov and co-workerg9] argued that the scaling for
the multicritical points, associated with the modified matrix

7
by 7] models, is also described in terms of the Liouville-type ac-
o2 4 x ®2\2 tion, but with a negatively dressed Liouville potent{abs-
fD(b exp{ N tr( 5 g T) > (tr 7) mological term: namely,
(1.9
Set=5— fdz &¢5¢——Q\rR¢+tofe“ ¢

It is known that the model is solvable. Its phase diagram
looks like that in Fig. 1.

The pointC at x=Xx, corresponds to a crltlcal behavior \ynere
with the string exponentstring susceptibility y= 3 [7]. On
the other hand, critical lines<<x, andx>x. are character- 1
ized by the string exponents= — 3 and y= 3, respectively. a_=———(y1-c++25—c).
The first is described in terms of=0 matter coupled to 2D 2v3

(1.4)

*On leave from the Landau Institute for Theoretical Physics, Here and in the subsequent we restrict ourselves to the spherical
Moscow. topology. We also omit kinetic terms for matter in effective actions.
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FIG. 1. Phase diagram of the one-matrix model. 1
a@zﬁ(\ll—Ci \/25—C). (11@

It provides the string exponent

_ Q Y 8 The corresponding primary fields are given by
Y= _ . . . _
“ Vom(2,2) = lonmX(z2), (119

Comparing to Eq(1.3), one finds Their conformal dimensions are written as

— Y
Y=L T 1.6 A© 1

nm-g [(naT+maT)2—(aT+ a’T)Z]. 1.12

which is in agreement with the matrix model resti[tg]. . , )
However, ?he missing point of the continuum formulation Mmlm_al models[ll] are defined by ‘(‘T)Zzzq/p’ with )

sketched above is “touching” operators, i.e., local operatordh® coprime integerg andp. These models are very special

which are responsible for the touching interactions. Our purP&cause of the basic grid of the primary fields:

pose is to show that the touching interactions can be repro-

duced in the continuunfLiouville) formulation too. At first

sight, it seems naive that a network of touching surfaces iﬁ/loreover for conformal theories with<1. there is a fa-

approximated by a surface with insertions of local operators, s result of Friedan, Qiu, and Shenker that the only uni-

as indicated in Fig. 2. At the present time it is not known ; : - :
L tary conformal theories witlt<<1 are the unitary series of
whether the situation may be taken under control. Good mo y y

tivations for this are the reproduction of the string exponentst:]fvg] tlﬂgm:;nr::g?iﬁ;géjf S%/%c(’gisf)o r\:\ﬁtrt]qp=:p2+31 and

via the Liouville action and the rather special structure of Physical states in 2D gravity coupledds: 1 matter were

surfaces when they touch each other at isolated points, i-6,yigq in the framework of the Becchi-Rouet-Stora-Tyutin
locally. So we are bound to learn something if we succeed

N ; . i (BRST) quantization13]. There an important role is played
Before continuing our discussion of the touching opera-by the BRST operator

tors, we will make a detour and recall some basic results on
2D gravity coupled taw=<1 matter. 1

First, let us summarize notations for a matter sector. It is QgrsT™= § dz o(z)(Tm(z)+TL(z)+ > Tgn(2) |,
convenient to bosonize it as

Isn=qg—-1, 1smsp-—-1.

1 _ 1 A whereT(2), T (2), andTy,(2) are the stress energy tensors
Sﬂ=2— f dzz( IXIX+i > ao\/ﬁRX , (1.7  for matter, Liouville, and ghost sectors, respectively. The
m physical statesoperators)) are defined as the cohomology

_ i : - lasses of this BRST operator. In this work we will mainly
h =J(1—c)/12. Inthis | th field of ¢ . . mal
wherea= (1~ c)/ n this language the primary field o focus on the physical operators without ghost excitations,

the conformgl d|men_s'|oA is represented as the exponenti_e_, the tachyon and discrete staféd]. It is convenient to

of the free fieldX(z,2): ) :
use a representation for such states when a matter sector is

V. (z,2)=¢ aX(z,2) (1.9 bosonized in a way as we sketched earlier. The tachyon-type

states are given by
whereA©=1a(a—2ay).

Dotsenko-Fateev modeJ40] arise at Tr;:,m:J dszn,m(z,z_)eﬁi(Ai‘?f)“)d’(z’?). (1.13
1-n 1-m
a=ann=——=—a"+ al, (1.9
o2 2 (A0 L )
B (A= = (= V1-c+24A0) —\25-¢).

(1.149
2The same relation was also found in multiple spins on dynamical ) . . 0) ) )
triangulations. The interested reader is referred to lectures oBince in the case of interesty, |, p=Agy, N is re-
Ambjérn for details[1]. stricted to a range £n<p+1. Thus one has the matter
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primariesV, ,, not only inside the basic grid, but also outside ~ The distribution of the baby universes on a surface was
it. The discrete states appear as the border case operatorsainalyzed in18] via dynamical triangulations. It was shown
=p+1 or m=0modp (see, e.g.[15] and Appendix B.  that the average number of minimum neck baby universes
Notice that there are two independent Liouville exponentdwhose neck thickness is of order of the ultraviolet cytoff
B*, corresponding to two choices of dressing. From thisareaB on a closed genug surface of are#\ scales as

point of view the scalings for the critical lines with<0 and

multicritical points are described by the effective actions Na(B)xA3"79(A-B)"972B772, (0
with the positively and negatively dressed Liouville poten-
tials, respectively. where y(g) = y(1-9) +2g.

The outline of the paper is as follows. In Secs. Il A and e want now to repeat the analysis of Rf] in order
Il B we describe touching interactions in the continuum. Wel© find the average number of the minimum néekranched
not only reproduce the known matrix model results, but fingP@by universes of are on a closed genug surface of area
rather amusing new ones. Moreover, analogies with fourf- NOte that the derivation is sufficiently generic, and so one
dimensional quantum gravity appear. Section Il will presentc@n apply it for both the critical lines and multicritical points
the conclusions and directions for future work. In two appen-{conventional and modified matrix modgl$Ve claim that
dixes we give some technical details which are relevant for _ _ _
our discusgsion of the touching operators. Na(k,B) AT HO(A-B)HO 728K 2, 22

whereI'=y,y andN,(1,B)=N4(B). The only fact needed
IIl. TOUCHING INTERACTIONS IN THE CONTINUUM to get Eq.(2.2) is that the partition function for thie-pinched
sphere of area scales ag(A)xAK+* VI3 |t can be found
repeatedly, reducing to the 1-pinched sphere via a sewing
Let us now show how touching interactions appear in theprocedure. In the last case it is simply obtained by sewing
continuum formulation. To do this, it is useful to begin with two spheres with punctures.
a geometrical analysis. It follows from the statement2.2) that the average num-

ber of thek-branched baby universes on the surface should
1. Geometry scale as

A. c<1 models

First of all, we turn to a geometrical interpretation of op-
erators contained in the effective actiqis?) and(1.4). Itis Na(K) = J dBN,(k,B)xAKT. 2.3
well known thatP=7; ,= [d?z\/§e*+* are called the punc-

ture operators. A motivation for this is that an insertion of Suppose that thie-branched baby universes can be repro-
such operator into the path integral fixes a point on a Rie-

mann surface. Such fixing corresponds to what in the theorduced by a local operator. This means that its normalized
: ' Xing P }Sne-point correlation function should scale as
of Riemann surfaces is called a punct(see, e.g.[16] and

references thereinThis can be formulated in terms of the <aT>A
partition functions. Regarding= (1) as the partition func- ((al))a= KA AKT (2.9
tion of an original surface, the partition function for the (Da

punctured surface i&,,,=(P). Note that this definition of
the puncture operator differs from the one used[17],
namely, [ d?z\/gVel~2?¢_ They can only coincide at=1
which is special because, =a_=—Q/2=—V2.

Let us now look more specifically at touching interac-
tions. Heuristically, the idea is that a network of touching
spheres includes both the main surfgoarenj as well as the T 1 AKPZ
pinched spheres attached to the pafert Fig. 2 It is well (@) axA™ % (2.9
known that a surface attached to the parent by a wormhol , N
(tiny neck is called a baby universpt]. However, in the As a result, one finds that the Kanzhmk_—Ponakov-
context of two-dimensional gravity, the notion is simplified. Z&molodchikov(KPZ) scaling dimension ogy is given by
A sphere attached to the parent is usually called a baby uni-
verse[1]. In our case we also have pinched spheres attached
to the parent. After this is understood, it immediately comes It seems natural from physical point of view to call the
to _mind to intrc()jdl;pe aansw no;io(;n.bB)éanalpgy with thehga(byal’s as the creation operators as it was done in four dimen-
universe, we detine a-branched baby universe as ¢ sions[4]. Then it immediately comes to mind to define the
e 2 e aninaton operatos. A possbe way 140 s s 0 e
branched baby universe use of two-point correlation functions. Lat, be the annihi-

' lation operators. Then two-point functions obey

((afaw)ax0(1). 2.7
3A motivation for such name is the structure of the attached sur-
face. It allows one to label the baby universes by the integer numbeFhis allows one to find the KPZ scaling dimension of the
k. operatora, . It is given by

Here the symbo{ ), denotes the correlation functions com-
puted using the actiond.2) and(1.4) at fixed areaA. Here
aj=A}, Al , whereA,A correspond to the conventional and
modified matrix models, respectively.

On the other hand, this implig§]

ARPP=1—kT. (2.6
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APZ=1+KkT. (2.9 , = -
Sei= Seft+ k21 teA+te Ay (2.12
It should be stressed that a difference from the four- B
dimensional case is that we define tygs via a scalar prod- +oo
uct and not the standard commutation relations. S =S+ t_Z +t—fZT 21
Of course, the annihilation operators can be defined by a eff— eff kZl KT Tk 213

geometrical analysis too. Let us give an example. Consider _ . o ] ]

the case where a surface is the 1-pinched sphere; more cofdnder this assumption, the gravitational dimensions of the

plicated cases can be treated in a similar way. The number &oUpling constants ob&y

the 1-pinched spheres of ardascales asA?" ~3. On the . ot — =

other hand, the number of degenerate 1-pinched spheres of dim,>0, dimt,<0, dimt<0, dimt>0,
-3

the same area scales A5~ 3. The latter assumes that the from which it follows that the action€.12 and (2.13 are

1-pinched sphere degenerates into the sphere. It is clear bgs; renormalizable. However, if we define the theory as
cause the baby universe vanishes. From the above state-

ments, it follows that the average number of the degenerate t
1-pinched spheres scales A5 3/A2T ~3=Al". This means SLi=Setr+ X tiAk (2.19
that the normalized one-point function of the annihilation =1
operatora; should scales aa'. As a result, we recover its .
KPZ scaling dimensiol\ ;" “=1+T. L= Sert+ kgl AL (2.15

2. Detailed examination of operators

. . then the actions are renormalizable. In other wordsand
Let local operators which are responsible for the— i

k-branched baby universes belong to the physical operatotlék are the irrele\_/ant operators that disappear in the IR limit.
of 2D gravity coupled to conformal matter. It is known that reatmg_the actions such leads us to a con_c_lu5|o_n that _the
such operators are characterized by the KPZ scaling dimerRaby universes can be neglected for t_he_ .cr|t|caI.I|nes W.'th
sion [6]. In the conformal gauge this dimension is com- v<0, but they are relevant for the multicritical points. This
pletely defined by thes zero mode[8]. So for the operator fact has been noFed previously in the framework of the RG
Ok with the Liouville exponentBy, O,xefk?, the KPZ approach to matrix mode($]. b 3
scaling dimension is given b&EPZ=1—,8k/a, if the Liou- It is mterestmg to note that all coupllr_lgsf._kct.k,tk,tk)

ville potential ise®®. In the aboves is the zero mode op. automatically become marginal at=1. This is in accor-

For the critical lines withy<<0 (conventional matrix mod- dant_:e with the conjecture on th_elr rol_e in the 1 barrier. .
els), we use the above statements as well as @¢® and Finally, IeF us discuss a relation with th_e_r_esult of David
(2.9) in order to find the Liouville exponents of the creation .[5]' TO do t.h's we must remember the def|n|t|o_n Of. the scal-
and annihilation operators ing dimension in the framework of the renormalization group

approacH?2]. It is defined by

2B(AL))
. _ . _ AXRG:—B =, (2.16
For the multicritical points(modified matrix models Q

similar calculations lead to

Aﬁocek(”_“*)‘f’o, Akocek(a:amaﬁo_ (2.9

whereQ and 3(A{?)) are the background charge and Liou-
Afocgkla-—ado  focghlar—ad (210  Ville exponent.
Combining this with Egqs(2.9) and (2.10, we learn that
It is interesting to note that all exponents vanishcatl, for the operators4! AI the scaling dimensions are simply
which leads taAXP4|._;=1.
Let us now consider the partition function, taking into ARG_ 5 [1-c ARG_ _ [1-cC 2.17

account contributions from the branched baby universes. It is 1 25—-¢’ L 25—-c¢’ '
known that such configurations are present in the path inte-

gral over metrics. They correspond to singular world-sheetvhich are the formulas derived in R¢6].
metrics. The partition function is given by

3. Examination revisited

+oo . . .
Up to now our discussion has not been sensitive to a

Zpinched™ IZO Wiy, (2.1 detailed structure of the physical operat6ls. Suppose now
that the touching operators are the tachyon-type operators
whereZ, is a contribution of thek-pinched spherew, is a  Tnm; i-€., they are given by the exponents of the free fields
weight factor of each contribution. Suppose tﬁ@tnched is as in Eq.(1.13. Intuitively, this comes about because these
described by the action€l.2) and (1.4) perturbed by the operators are somewhat descendant from the puncture opera-
creation and annihilation operatbrs tors 7; ;. Indeed, the dimensions of the operatots, AJ

4In fact, the sums are finitesee Eq.(2.20 below]. 5This dimension is equal to-1A P2,
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+

were obtained from the dimensions ﬁl via a sewing pro- ptl

+ o0
cedure[5]. On the other hand, the tachyon operators are the St=Serrt_ 2, mmZn,m- (2.22

simplest physical operators in the theory and, moreover, they mee el

are moduli of the theory; so it is natural to start by looking Heret, ., I_Fa are renormalized couplingd;, ,, 7= de-

for the touching operators among them. We will fill this gap 5te the tacﬁyon-type operators defined in Elql3)

in our determination of the touching operators in AppendiX  gince the transition occurs at 1, the gravitational di-

A . . _ . mensions of the couplings obey
Accepting the above assumption, an interesting conclu-

sion which we can draw is thatl]= 4, and A,=A/. In- dimt,, mlc= 1= dimtq il c—1=0.
deed, if the Liouville exponents are given by E¢&.9) and . ]
(2.10, then it follows from Eq.(1.13 that for the creation 1hese conditions are equivalent to

71

and annihilation operators, we get
— B A= \ e
A= A= Ty 1z ' 2p(p+1)
_ _ X(xnp—m(p+1)|=2p—1)|,-.=0.
:f d2zVy 1 x4 1(2,2) €K@+ 720922 (2,18 (2.23
_ A There are two solutions of equatigi (A{))|.-,=0 in the
A= A= Tacr 1201 range kn<p+1: namely,
=f A22Voyy 1 a1 (z,Z) €K@ -"2)922) (2 19 n=mx=2, (2.24

. . _ ___while the equation8™ (A{%))|.—1 =0 has no solutions in this
I;p:::jc;lar, the operators introduced by David are Slmplyrange. By substituting Eq2.24) into ﬁ+(A$1(,)r)n)i we easily
1,3 3,1

o . - find the Liouville exponent:
It is interesting to note that the theory has a finite number d the Liouville exponents

of creation-annihilation operators for the branched baby uni- 1+

n
verses, which means finite sums in E€512 and(2.13. In BH(AL. )= —— (e —a), (2.2
fact, since Eq(1.13 n belongs to the rangedn<p+1, the
largest value ok is given by where

g+1 for Af and A, - 2_pl R A Ch )

+ 1 — .
max k= B (2.20 P p
{g for A, and Al. The main new novelty of the above calculation is the

appearance of operators witheven. As we have seen, the

. - operators withn odd arise from the idea on the role of the
It is clear that it is dependent on the matter central charge. I'ﬂouching interactions in the= 1 barrier. From the geometri-
other words, the shape of world sheets is determined by ma, point of view, they correspoﬁd to the creation-

ter residing on them. annihilation operators for the branched baby universes. Now

lSo the t;‘_’f? phase(srliti%al Iinbes Withh 7’f<0 and _mult:cdriti- we would like to complement the discussion by including the
cal pointg differ not only by a branch of gravitational dress- operatorﬂjniz with everl n. In general, this issue is not

ing for the puncture operatotsosmological terms but also completely understood. Here we can only speculate. The

t:_)y ()j'ff?rtim LOIeS r?f(;ht? iame operators: creatqanmhnz- th idea is heuristically that both string exponents of surfaces
lon) of the branched baby UNIVErSes In-one case and e, poundaries and gravitational scaling dimensions of the

annihilation(creation in the other. operators fom even havd'/2 as a unit of “measurement.”

In order to take the assumption that the touching ope_ratorﬁ is natural therefore to relate these operators with holes on
are the tachyon-type ones into account completely, it is ad:

i . . .“~a surface. To illustrate this, consider a geometry in which a
vantageous to go in a slightly different way. Instead of USiNG, 1t ce is made by pinching the hemisphere at a point on a
the geometrical point of view, we will follow renormaliza-

. . ) boundary, as shown in Fig. 3 on the left. Such a surface is
tion group arguments and look for perturbations which be'reproduced by gluing the sphere to a point on the boundary
come marginal at=1.

Let us perturb the continuum theory, so that the effectiv

actions(1.2) and(1.4) become

of the hemisphere. It is easy to find the area dependence of
She partition function for this case. It is given &y,(A)
«A%27=3 On the other hand, this scaling is recovered by
4o ptl inserting the operatorz’zf0 into the path integral for the
Séff: Seff+ E E tn,m,]Fl,mv (2-2])
m=-—o n=1
It should be noted thatn=—m=1 is special because

BT (AP )=0. As a result, the matter field is given by screening
[a] means the integer part af operators.
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[p/2]

0 = O ReRE e

It should be stressed that this restriction is completely due to
Qnitarity of thec<1 matter.
Next, let us go on to look more carefully at the cases of

o ) o . interest. For the critical lines witly<<0, we find
sphere, as in Fig. 3 on the right. This stimulates one to in-

troduce the notion of a banged baby universe as the hemi-
sphere attached to the parent by a point on the boundary and
interprethf o as the creation operator for the banged baby + ) o
universe. Since we restrict ourselves to the spherical topol¥nere Zy=(A). So the leading contribution t&gincheq
ogy, we leave the detailed analysis of these operators fdtomes from the sphere, the next from the pinched sphere,
future study. etc. We believe that this fact allows one to interpret this
Itis also not difficult to recognize the discrete stateZj, ~ Phase as the weak coupling regime for the touching interac-
[14]. This can be done using a linear fiap ' tions. This time they can contribute to sublegdmg orders
only. Formally, the most relevant operatotd$ . This is also
in harmony with an idea of David that one should be able to
X = i X— Vﬁ b b= Vﬂ X+ & b (2.20 catch the effects of touching in t_h_is pha§e via this operator.
23 v V3 23 ' Now let us turn to the multicritical points. In contrast to
the previous caseé,ll with k=[p/2] is proved to be the most
relevant operator in Eq2.28.° From the geometrical point
of view, it means that most branched baby universes are
dominant. As a result, the expansion&,cheqin powers of
TI, as may follow from the actiofR.28), is not valid. So we
no longer have the weak coupling regime for the touching
interactions. Instead of this, we interpret this phase as the
strong coupling regime for the touching interactions. At this
point, it is necessary to discuss a relation with the David
scenario where the touching interactions were taken into ac-
Eq. (2.27) is the highest weight state of a spin-1(Zumul- count by the baby universes, i.gl} . In our consideration of _
tiplet. tﬁ:ts issue, we have seen that the most relevant operator is
At this point, it is necessary to make a remark. One of theAjpz)- The latter means that the David picture is valid at
important statements about the discrete states was the fdgast for the pure gravitya=2) and Ising p=3) models.
lowing notice by Polyako19]. The discrete states corre- However, forp=4 this cannot be the whole story, for the
spond to the contributions of singular world-sheet metricsfeason that the branched baby universes come into the game
pinched spheres in the models under discussion, in the paftnd, moreover, they are dominant.
integral over metrics. From our discussion of this issue, we Finally, let us note that the conclusion by Klebar®}
have seen that there iS, however, an important new featu[@at the Scaling limits of the conventional matrix models
that we must now clarify. We claim that for the unitacy ~ (critical lines with y<<0) and modified matrix modelénul-
<1 models, in addition to the conventional discrete statesficritical points differ due to the branches of gravitational
there are a set of statds . , which are also relevant. More- _dressmg fori the L|_0UV|IIe potenthl can be extended. Accor(_j—
over, they are dominant. From the algebraic point of view,nd to our discussion, these scaling limits correspond to dif-

the latter correspond to fractional values of thé2sispin. ferent phase_s of the_ touching interactions, namely, weak and
strong coupling regimes.

FIG. 3. Approximation of the pinched hemisphere by the spher
with an insertion of the local operatdp .

Zyi1/Z2,—0 underty—0, (2.29

Under this map one gets an effectiwve 1 matter dressed by
gravity. In terms of the new variables, the operaI’QB be-
comes

Th o= J d2z d2X@2), (2.27

The holomorphidantiholomorphig part of the integrand in

4. Consequences

Now we can easily read off some interesting conclusions. B. Strings

One of the first important observations is the following ob- We now turn to the problem of shedding some light on
servation about a structure of the partition functify,cheq touching interactions foc=1 models. It is well known that
According to Eq.(2.20, there are no creation operators for such models are noncritical bosonic strings or, equivalently,
the branched baby universes wikhlarger than mak. It  two-dimensional critical stringgl]. Thus we will try to ana-
means that higher pinched spheres are obtained by attachihge the effects of singular world-sheet metrigsinched
two or more creation operators to the parent. The effectivespheresin the Polyakov path integral. In doing so, we will
action underlying such picture is given by

91t is straightforward to get this result in the framework of the RG
8In fact, the map defined in Eq2.26) is a Lorentz boost in a approach[2]. Looking at the scaling dimensionAEG:—(k
two-dimensional Minkowski space with coordinate§ §). We re-  +1)/(2p+1), we see thaEf[p,z] is the most relevant. However, it is
fer to[1,19] for more details. less relevant in comparison with the cosmological congignt
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not follow the geometrical analysis of Sec. Il A 1. Instead of , — _ —
this, we look for the limitp— c. Si= Seﬂ+tJ d?z éﬂX(Z’DHTJ d?z e VX227,
2.3
1. p—c limit (2:39
One of the novelties that appearscat 1 is that the string - _ _ _ _
exponents defined in Eq&l.3) and(1.5) vanish. As a result, Si= Seﬁ+tf d?z e*"/ix(zvz>+ﬁf d?z €2X(z2),

direct use of the geometrical point of view fails. Moreover, (2.36
scaling violations for the phase associated with the conven-
tional matrix models are also a serious obstacle on this Wayr
In finding touching interactions foc=1 models, it seems

sensible to take as a starting point the model of Sec. Il A fo (i) It is interesting to note that the holomorplantiholo-

arbitrary p and then define the limip—o. To see what . ; .
really happens, consider the effective actions. The LiouviIIernorphld parts of the touching operators for the string mod-

exponentsy.. will be —v2. One can imagine that the effec- els are none other than the screening operators o thi
. : = o e conformal field theorymatter sector in the particular case at
tive actionsSy and Sy coincide, but it is not true. As

O S . . hand. It is well known that they represent the raising and
Polchinski pointed ouf20], the Liouville potential forSy; is lowering operators of the £2) algebra and generate the mul-
given by e~ ?¢, which leads to the scaling violations. On g op &) alg J

. ) tiplets of the discrete statgsee Appendix B for details
the other hand, there are no scaling violations for the phasg,q this point of view our introduction of the annihilation
associated with the mod|f|3d matrix models, and so the pogperators seems plausible. However, such operators do not
tential for Serr is simply e™*2 [9]. Thus one has, for the |ead to the standard Heisenberg algebra, as happens in the
effective actiong1.2) and(1.4) atc=1, framework of four-dimensional quantum gravity, bu(2u
(i) According to our discussion in Sec. Il A 4, the weak
1 - 1 ~ and strong coupling regimes for the touching interactions are
Se =27 f dzz( I99¢= 5 ViRAto\Gge VM) ' associated with the conventional and modified matrix models
(2.30 for c<1. At c=1 relations which are similar to Eq2.29
are not valid anymore. Instead of them, we hayg ,/Z,
~1, which indicates the presence of a boundary between
these phases. However, this boundary looks singular because
one does not get into the same theory undempthex limit.
(2.3) (iii) If one makes use of a perturbation of the actions
. (2.35 and(2.36 according to which the creation and anni-
with the background charg@=2v2. _ hilation operators are involved with the same effective cou-
Now we come to the analysis of the actiof®s12 and  pling constant, a result will be the sine-Gordon model
(2.13. Obviously, under the limip— these actions are coupled to 2D gravity. Thus the sine-Gordon model coupled
given by to 2D gravity is an appropriate framework to take into ac-
count effects of singular world-sheet metrics in the Polyakov
path integral for the noncritical strings. Unfortunately, one

hus we have generalized the touching operators=d
Imodels. At this point a few comments are in order.

1 — 1 .
Seﬁzz f dzz( a¢a¢—‘72 JOR¢+1o\/ge 2%

©

= T4t
Seit = Se + gl b Ay (232 knows very little about integrable models in the presence of
guantum gravity. Some issues have been discussed in
% [1,21,23.
Serr=Sefrt kZl A AL, (2.33

2. Cosmological constant and touching interactions

There is a serious problem in quantum gravity related to
the vanishing of the cosmological constant. Several different
o B . B proposals are known to solve it. One of them is based on the
Aszlzf d?z e V2X(z2), Aszlzf d?z dv2X(z2), idea of uncontrollable emissions of tiny baby universes. It

(2.34 was intensively discussed in the framework of a four-

dimensional casésee, e.g.[4]).
There is an interesting observation related to the vanishing QEL Iﬁthus nhow trly a tV\I/o-d|mtensthnatl) case. Itis We|I.I kgo.W”
the string exponents that the operators are independéat of a I € cosmz)oglca constant IS being renormalized in a
In other words, one cannot distinguish the branched bab§Ingu arway &
universes at= 1. Instead of this, there are collective poten-

with the operators

tials for the touching interactions with the following effec- th — 23
tive couplings: I'[0] o, (237
t=> t, th=>1t, t=> 1, t=>tl.
= k=1 k=1 k=1 10n the literature on thee=1 models, the cosmological term

(puncture operatdris usually chosen as™">¢ which in our lan-
The actiong2.32 and (2.33 are rewritten as guage corresponds to the multicritical points.
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whereI'[x] is the gamma function. The origin of this mul- is formulated as the deformation of the operator product
tiplicative renormalization is, of course, the short distance(OP) algebra of the discrete states by the presence of nonva-
divergences. In calculating amplitudes one needs to performishing cosmological and touching coupling constants. Al-
multiple integrals. There are some prescriptions to do thisthough a special solution is known5,23, the problem is
One of them is an analytic continuation. Shifting the expo-still open. Some progress in this direction has already been
nents of the integrals, one brings them into a standardone[24].
Dotsenko-Fateev form. Next, the integrals are computed by (iii) The operatoﬂg , is special because it interpolates
an analytic continuation. between matrix model£5]. In the simplest case it describes
We are going to find the multiplicative renormalization of the flow from Ising = 3) to pure gravity p=2). We offer
the touching couplings. In order to do this, we follow a simi- a qualitative physical interpretation of such a transition based
lar procedure as it was used to derive E237). The calcu-  on our geometrical picture. First, let us recall that the shape
lation for this casdésee Appendix Bleads to the result of world sheets depends on the central charge of matter re-
To]=t tr[o]=t" (2.38 siding on them; namely, higher pinched world sheets corre-
T T ' spond to higher central charges. Next note ﬂ@atis nothing

We see that the bare cosmological constant and touchin@m the annihilation operator for the baby universes in the
amework of the conventional matrix models, and so it

couplings are renormalized in different ways; namely, the .
cosmological constant goes to “zero,” but the touching in_smooths a shape that leads to a proper reducmg.of the central
teraction couplings go to “infinity.” Here an analogy with char_ge. gs ﬁ resﬁlt’ ﬁ”edhf”‘s. thﬁ flow f_rom Ising to_ pulze
the four-dimensional case appears again because such beh§{AVIY- On the other hand, it is the creation operator In the

ior reminds one of Coleman’s idea, that touching interaction§ONtext of t.he modified matrix models, and'so. it wrinkle§ a
(wormholes have the effect of making the cosmological shape that increases the central charge. This time there is the

constant vanish4]. Although it looks in many ways attrac- flow from pure gravity to Ising. Of course, these conclusions

tive, we have to stress its speculative character. It rests on tHEe heuristic and further work is needed to make them more

multiplicative renormalization argument only, and so further90rous.
work is needed to prove it strictly.
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for touching, namely, the weak and strong coupling regimes.
Next, we defined the touching operators for the noncritical
bosonic strings. It shows that if the creation and annihilation APPENDIX A
operators are involved with the same effective coupling con- |y discussing touching interactions, we assumed in Sec.
stant, then the sine-Gordon model coupled to 2D gravity i A 3 that local operators which are responsible for the
an appropriate framework to take into account effects of sinyranched baby universes are the tachyon-type physical op-
gular world-sheet metrics in the Polyakov path integral.qraiors. In the present appendix, we will analyze some as-
Some analogies with the four-dimensional case are also digsects of this story in somewhat more depth.
cussed, e.g., the creation-annihilation operators for the baby 1 begin with, we review some facts about the BRST
universes and Coleman mechanism for the cosmologicghrmalism|[13,26. The physical states are the cohomology
constant. o classes of the BRST operatQgrst Whose explicit form is

Let us conclude by mentioning a few open problems t0-iyen in Sec. I. These classes are labeled by the ghost num-
gether with interesting features of the touching interactiongyer . The tachyon and discrete operators appear at ghost

in the continuum. _ _ number 2. So the operatof$.13 are rewritten as
(i) Of course, the most important open problem is to un-

derstand the touching interactions in the critical strings or
how to take into account effects of singular world-sheet met-
rics in the Polyakov path integral. Unfortunately it is un-

known in general how to realize this program. Our analysis

of Sec. Il essentially rests on the Liouville mode and so ) ) ) ]
any attempt to use it for critical strings will fail. Such a class was intensively discussed in Sec. Il A 3.

(i) In order to calculate the multiplicative renormaliza- ~ AS for the new BRST classes, the first nontrivial example
tions of the coupling constants, we found special correlator@ppears aG=0. These operators are denoted®3$,0; .
of the discrete states. This seems strange because it is pdis well known that the holomorphi@ntiholomorphig op-
sible to find them directly from the actiof2.36. However, eratorsO; , (O; ) generate the chiralantichira) ground
by calculating correlators we solve one more problem whichring [27], namely,OJl,mleZszzOJlHZVmﬁmz. This allows

Tt (2.2 = C(2) (D Vp m(z.Z)€F Bam @D (A1)
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one to determine the explicit form of an arbitrary operatorappears from the Liouville background chargéJsing such

from the first few, which are given By a procedure, it is possible to find two new BRST cohomolo-
gies classe®, P, m and @+ a) P, nPnm at ghost numbers
i 1 i 1 ) 4 and 5, respectivel}26]. SinceP, P, n, are dual toZ, .,
@ =| Cb+ — dX——do|exg — X+ — ¢/, it implies that they are the negatively dressed states with the
12,112~ v s ¢ v v p y g y

Liouville exponentsB‘(Ag?r)n). At these values of the expo-
nents, it is impossible to satisfy EgR.9) and (2.10. This
follows from the fact thatk(a,.—a_)|.—;=0, while
B (AP)) never vanishes at=1 for 1<n<p+1. So the
operatorsP, P, , are not appropriate for the touching op-
(A3) erators. For essentially this reason the operatoas (
_ +a) P, mPa.m are also rejected. However, it is not the whole
where (X,¢) refer to the effectivec=1 matter dressed by story about the BRST cohomology. Witten and Zwiebach
gravity. In order to translate these operators into ¢kel  foyng that there exist BRST-invariant operators which can-
theory, one can use a linear map not be written as products of the holomorphic and antiholo-
morphic operatorf26]. If yﬁm denotes the holomorphic part

(A2)

V2 V2 V2

i 1 i 1
Oq1p_1p=| Cb—— IX——3d¢|exp —— X+ —
1/2,-1/2 ( ¢) F{ \/2 ¢

Q iag iag Q of the operatof7,, ,, defined in Eq(A1), then the rest of the
X= o7 X+ w3 ¢, ¢=- w3 X+ > ¢, (A4)  BRST cohomology is given by
o Yt - D A
which is inverse to Eq(2.26). However, we do not need to YomOnm: Onmdom: YamPam: Pamdam A6
do this. It is easy to understand that the opera@s0; n (A6)

are not responsible for the branched baby universe. Indee@nd their products with g+a). It is well known that in
they have nonzero Liouville exponentsat 1, and so they  tensoring together holomorphic and antiholomorphic opera-
cannot be written as in Eq§2.9) and(2.10. tors (left- and right-moving statésone should restrict one-

Up to now we have discussed only a part of the BRSTself to operators of equal “left” and “right” Liouville ex-
cohomology. Another part is recovered by the operatbla  ponents. This allows one to reject these operators by the
[26], where same arguments as it was done @1,O; m, Yy, mVn.m. and
Po.mPnm and their products with the operatoa<{a) in
above.

Summarizing, we have two classes of the BRST-invariant
. operators which may formally be the touching operators,
It is BRST invariant. So applyinga+a to ﬁm and name|y,7;{nt2 and (a+§)7;{ni2, It remains to make our
0; mOj m, one can form the new families of BRST-invariant choice. Before doing it, let us discuss two points.
(physica) operator¥ (a+a)7,, with G=3 and @ First, let us recall what we want. Our goal is to describe a

+§)@j mOjm With G=1. Obviously, they have the same network of touching surfaces by a single surfaparen}
LiouviI'Ie e>’<ponents ag*  and O .O. Because of this with insertions of local operators. Moreover, we would like
n,m ~X,m~pm:

reason, the operatora ¢ a)O; O: . are not appropriate for to have a field theory description, i.e., an effective action
' perak L,m=j,m pprop } whose terms are responsible for pinched spheres attached to
a role of the touching operators. As for the- a)?ﬁms, as

R . the parent.
their Liouville exponents are fitted to Eq2.9) and(2.10 at Next, let us turn to moduli. We recall that the moduli are

n:_mtz, they may _be responsible for the branched_ bab36perators that can be added to the action of the conformal
universes. So there is a puzzle here. Before continuing OYfg|q theory. In the particular case at hand, they come from
discussion of this puzzle, we wish to complete the review Ospin-o operators of ghost number26]. For the operators

the BRST cohomology classes. = ' ; . .
Given a state witr?yghost numb& and Liouville expo- ﬁ”ﬂ(z’z) defined in Eq.(A1) the corresponding moduli

— L+ ,A(0 = . .
nent 3, the two-point function on the sphere defines a duaPr€Vnn=2(z,2)e” (=297, ., they are the integrands
state with ghost number-6G and Liouville exponent-Q of th'e tachyon-type operatofg.13. It is cle_ar that this is
— 3 [26]. One immediately see that, with the Liouville ex- p_reC|ser what we need. Thus the touching operators are
ponents as defined in Eq.1.149, B (A®)=-qQ given by 7y n=2-
— BT (A®). So this definition provides a pairing between
the positively and negatively dressed states. Note that 6 APPENDIX B
comes from the ghost zero modes on the sphere, while

a=c —iaoax+§a¢> +24c. (A5)

The purpose of this appendix is to compute the multipli-
cative renormalization of the touching couplings. It turns out

Notice that the dual states arising under factorization of corre-
Note thatOp o=1. lation functions are not the ones defined via the two-point functions
'2To be precisea0(0)=§ (dZ/z)a(2) O(0); thecontourCy sur-  on the sphere, but states differing from themtiay- by . It leads to
rounds 0. ghost number 5 G.
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that it is easy to find it by computing correlators of the dis- . s .
_ with a vanishing value of the cosmological constant as well
crete states of the=1 models. : .
o2 . as touching couplingg27,29.
To begin with, let us recall how the discrete states appear X A o

. : T In order to find the multiplicative renormalizations of cou-
in the theory. Taking the limip—, one has, for the matter . . )
sector[see Eqs(1.9) and (1.10] plings, let us compute a few terms on the right-hand side of

ast2- B Eq. (B6) due to the presence of the nonvanishing cosmologi-

cal and touching coupling constafdfsThe coefficient at

n—m T~ _.. isgivenb
al=—a"=v2, a,,=V2j, j= 5 (B1) i.—my 1 9 Y
_ T (O T o (DT, (), (B7)
In addition, the primarie¢1.11) are rewritten a3/; -;(z,2) im0 T m )Ty mg( )
— *V2iX(27)

It is well known that the theory has €)®su(2) as the With @ conjugate operator defined as
symmetry algebra. The holomorphic currents are

T (22 =Ni(j,m(HTH")IT™Y, _(z,z)e 21D 422),

F N — T iVIX(2) o:i_ _
H ()=, Ho=— iX(@). (B2 NG m)=[(2) G +m)!] 2

Obviously, their zero modebl®=¢dz H*(z) generate the To find it, one can expand—géff in powers oft,, t, andt’
su2) algebrat* H* also play a role of the screening opera- and interpret the resulting terms as correlation functions in

tors of thec=1 conformal field theory. the free theory.

It was realized a long time ad@8] that the primary fields As a warmup, let us reproduce the multiplicative renor-
form tensor products of $8) multiplets (holomorphic and malization of the cosmological constant. Following Dot-
antiholomorphig senko[15], setm;=j;, My=jz—j,, andmg=—j3. It is

clear that the normalization factors do not lead{6], and
so we drop them. The contribution of the matter sector is

Vj,m(Z,Z_)ZNo(jam)(Hf':f)jmeJ,J(z’z_)’ (B3) given by

(j+m)! o hilatls T2 2)5+i]

MM =gy 170 B Piariemiat 1) 1 g ey, 1

such that onlyv; -.; are the tachyon-type primary fields de-
fined in Eq.(1.11). As to the others, they are “discrete pri-
maries.”
Now let us couple the/; 's to gravity. It can be done It also does not lead tb[0] (at least in the leading order of
. ) im 0 o :
directly, using the formula$l.13 and (1.14. As a result, tt'). On the other hand, the Liouville sector contributes
one gets

+0(t tT). (BY)

( b )imzjgl PR TA2), - r72), -]
Qﬁm=J\/1(j,m)f 42z V, (2,2)eF (42D, I'[0] i1 P1+ir [213+1+|(]89)
This expression shows that one has the multiplicative renor-
malization (2.37) for the cosmological constant. Note that
such a computation is an old stdri5]. The only novelty is
Here the normalization factord/;(j-m)=(2j)!(j+m)!(] the contributions of the touching operators in Egg). How-
—m)! are introduced to have the following OP algebra of theever, they can be neglected.

integrands: Now let us turn to the touching couplings. In contrast to
the previous case, seh;=j;, My=j,, Mz=—j3, and,
moreover,j3=j1+j,—1. The normalization factors do not
give I'T0], and we drop them again. The Liouville correlator
is trivial. So the only contribution is due to the matter sector.

1 . . . .
=2 M= 1M Ty, (0), (B6) 1115 Gven by

B=(1)=v2(-1%)). (BS)

7?—1“1(2’?)7?2'”“2(0)

“We use the normalizatiofic dz/z=1 and omit 2m) when it is 15The deformation of this algebra only by the nonvanishing cos-
irrelevant in the context of the present work. mological constant was found [15,23.
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I2[2j5+1] I[k+1]T[k+2] tiple 2D integrals[10]. Some further transformations of the
22,72 2],] 2 T[2k+ 2] resulting products have been done to simplify the final ex-
It J2l k=0 pression.
X (tC[oD* L(tTrropk. (B10) A conclusion which we can draw from this calculation is

that the multiplicative renormalizations of the touching cou-
The result(B10) is obtained by using Dotsenko-Fateev mul- plings are given by Eq2.398.
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