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Touching random surfaces, two-dimensional quantum gravity, and noncritical string theory

Oleg Andreev*
Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0484
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A set of physical operators which are responsible for touching interactions in the framework ofc,1 unitary
conformal matter coupled to 2D quantum gravity is found. As a special case, the noncritical bosonic strings are
considered. Some analogies with four-dimensional quantum gravity are also discussed, e.g., creation-
annihilation operators for baby universes and the Coleman mechanism for the cosmological constant.
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I. INTRODUCTION

In the last decade there has been much progress in un
standing string theory in two dimensions as well as 2D qu
tum gravity~see, e.g.,@1# and references therein!. Of course,
for most physical applications one needs to consider m
more complicated models; however, many principal issue
string theory and quantum gravity are still not understo
and the hope is that the two-dimensional theory will serve
a useful toy model, in which some of these issues may
addressed. For instance, a renormalization group~RG! ap-
proach developed for matrix models by Bre´zin and Zinn-
Justin@2# can be used to formulate a large-N renormalization
group in a newM ~atrix! theory@3#. Another example of this
is topological fluctuations in spacetime that produce ba
universes. They were intensively discussed in a framew
of four-dimensional quantum gravity in relation with
theory of the cosmological constant and loss of quant
coherence@4#. Recently, it was proposed by David@5# that
such fluctuations could lead to a scenario for the so-ca
c51 barrier in two dimensions@6#. The work discussed in
this paper was influenced by David’s paper.

David begins with the renormalization group analysis
matrix models, with a new coupling constant that gove
the dynamics of touching surfaces, i.e., surfaces which
allowed to touch each other at isolated points. In ma
models trace-squared terms are responsible for touching
example, the one-matrix model with such interaction is giv
by @7#

Z5E DF expF2N trS F2

2
2g

F4

4 D2
x

2 S tr
F2

2 D 2G .
~1.1!

It is known that the model is solvable. Its phase diagr
looks like that in Fig. 1.

The pointC at x5xc corresponds to a critical behavio
with the string exponent~string susceptibility! g5 1

3 @7#. On
the other hand, critical linesx,xc andx.xc are character-
ized by the string exponentsg52 1

2 andg5 1
2 , respectively.

The first is described in terms ofc50 matter coupled to 2D

*On leave from the Landau Institute for Theoretical Physi
Moscow.
570556-2821/98/57~6!/3725~11!/$15.00
er-
-

h
in
,
s
e

y
rk

d

f
s
re
x
or
n

gravity ~pure gravity!. As to the second, it is a branche
polymer critical line. It should be noted that the multicritic
point C appears due to fine-tuned touching interactions.
the same time, touching is not very important for the pu
gravity phase. In fact, the above picture is valid forc<1
models too.

It is well known that the scaling for the critical lines wit
g,0, associated with the conventional matrix models~no
trace-squared terms!, is described in terms of the Liouville
effective action1 @8#

Seff5
1

2p E d2zS ]f]̄f2
1

4
QAĝR̂f1t0Aĝea1fD ,

~1.2!

where

a15
1

2)
~A12c2A252c!, Q5A252c

3
.

t0 is the renormalized cosmological constant. In the abo
we also assume that the unitary conformal matter has
central chargec. The string exponent is given by

g5
Q

a1
12. ~1.3!

Klebanov and co-workers@9# argued that the scaling fo
the multicritical points, associated with the modified mat
models, is also described in terms of the Liouville-type a
tion, but with a negatively dressed Liouville potential~cos-
mological term!: namely,

S̄eff5
1

2p E d2zS ]f]̄f2
1

4
QAĝR̂f1 t̄0Aĝea2fD ,

~1.4!

where

a252
1

2)
~A12c1A252c!.

, 1Here and in the subsequent we restrict ourselves to the sphe
topology. We also omit kinetic terms for matter in effective action
3725 © 1998 The American Physical Society
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It provides the string exponent

ḡ5
Q

a2
12. ~1.5!

Comparing to Eq.~1.3!, one finds

ḡ5
g

g21
, ~1.6!

which is in agreement with the matrix model results2 @7#.
However, the missing point of the continuum formulatio

sketched above is ‘‘touching’’ operators, i.e., local operat
which are responsible for the touching interactions. Our p
pose is to show that the touching interactions can be re
duced in the continuum~Liouville! formulation too. At first
sight, it seems naive that a network of touching surface
approximated by a surface with insertions of local operat
as indicated in Fig. 2. At the present time it is not know
whether the situation may be taken under control. Good m
tivations for this are the reproduction of the string expone
via the Liouville action and the rather special structure
surfaces when they touch each other at isolated points,
locally. So we are bound to learn something if we succe

Before continuing our discussion of the touching ope
tors, we will make a detour and recall some basic results
2D gravity coupled toc<1 matter.

First, let us summarize notations for a matter sector. I
convenient to bosonize it as

Sm5
1

2p E d2zS ]X]̄X1 i
1

2
a0AĝR̂XD , ~1.7!

wherea05A(12c)/12. In this language the primary field o
the conformal dimensionD (0) is represented as the expone
of the free fieldX(z,z̄):

Va~z,z̄!5eiaX~z, z̄!, ~1.8!

whereDa
(0)5 1

2 a(a22a0).
Dotsenko-Fateev models@10# arise at

a5an,m5
12n

2
a2

m1
12m

2
a1

m , ~1.9!

2The same relation was also found in multiple spins on dynam
triangulations. The interested reader is referred to lectures
Ambjo”rn for details@1#.

FIG. 1. Phase diagram of the one-matrix model.
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with integersn, m and

a6
m5

1

2)
~A12c6A252c!. ~1.10!

The corresponding primary fields are given by

Vn,m~z,z̄!5eian,mX~z, z̄!. ~1.11!

Their conformal dimensions are written as

Dn,m
~0! 5

1

8
@~na2

m1ma1
m!22~a2

m1a1
m!2#. ~1.12!

Minimal models@11# are defined by (a1
m)252q/p, with

the coprime integersq andp. These models are very speci
because of the basic grid of the primary fields:

1<n<q21, 1<m<p21.

Moreover, for conformal theories withc,1, there is a fa-
mous result of Friedan, Qiu, and Shenker that the only u
tary conformal theories withc,1 are the unitary series o
the minimal models@12#. They correspond toq5p11 and
have the central chargec5126/p(p11) with p52,3,... .

Physical states in 2D gravity coupled toc<1 matter were
studied in the framework of the Becchi-Rouet-Stora-Tyu
~BRST! quantization@13#. There an important role is playe
by the BRST operator

QBRST5 R dz c~z!S Tm~z!1TL~z!1
1

2
Tgh~z! D ,

whereTm(z), TL(z), andTgh(z) are the stress energy tenso
for matter, Liouville, and ghost sectors, respectively. T
physical states~operatorsO! are defined as the cohomolog
classes of this BRST operator. In this work we will main
focus on the physical operators without ghost excitatio
i.e., the tachyon and discrete states@14#. It is convenient to
use a representation for such states when a matter sec
bosonized in a way as we sketched earlier. The tachyon-
states are given by

Tn,m
6 5E d2zVn,m~z,z̄!eb6~Dn,m

~0!
!f~z, z̄!, ~1.13!

b6~Dn,m
~0! !5

1

2)
~6A12c124Dn,m

~0! 2A252c!.

~1.14!

Since in the case of interestDn1p11,m1p
(0) 5Dn,m

(0) , n is re-
stricted to a range 1<n<p11. Thus one has the matte

al
of

FIG. 2. Approximation of a network of touching surfaces by
single surface with insertions of local operatorsTi .
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57 3727TOUCHING RANDOM SURFACES, TWO-DIMENSIONAL . . .
primariesVn,m not only inside the basic grid, but also outsid
it. The discrete states appear as the border case operatn
5p11 or m50 modp ~see, e.g.,@15# and Appendix B!.
Notice that there are two independent Liouville expone
b6, corresponding to two choices of dressing. From t
point of view the scalings for the critical lines withg,0 and
multicritical points are described by the effective actio
with the positively and negatively dressed Liouville pote
tials, respectively.

The outline of the paper is as follows. In Secs. II A a
II B we describe touching interactions in the continuum. W
not only reproduce the known matrix model results, but fi
rather amusing new ones. Moreover, analogies with fo
dimensional quantum gravity appear. Section III will prese
the conclusions and directions for future work. In two appe
dixes we give some technical details which are relevant
our discussion of the touching operators.

II. TOUCHING INTERACTIONS IN THE CONTINUUM

A. c<1 models

Let us now show how touching interactions appear in
continuum formulation. To do this, it is useful to begin wi
a geometrical analysis.

1. Geometry

First of all, we turn to a geometrical interpretation of o
erators contained in the effective actions~1.2! and~1.4!. It is
well known thatP[T1,1

6 5*d2zAĝea6f are called the punc
ture operators. A motivation for this is that an insertion
such operator into the path integral fixes a point on a R
mann surface. Such fixing corresponds to what in the the
of Riemann surfaces is called a puncture~see, e.g.,@16# and
references therein!. This can be formulated in terms of th
partition functions. RegardingZ5^1& as the partition func-
tion of an original surface, the partition function for th
punctured surface isZpunc5^P&. Note that this definition of
the puncture operator differs from the one used in@17#,
namely,*d2zAĝVe(2Q/2)f. They can only coincide atc51
which is special becausea15a252Q/252&.

Let us now look more specifically at touching intera
tions. Heuristically, the idea is that a network of touchi
spheres includes both the main surface~parent! as well as the
pinched spheres attached to the parent~see Fig. 2!. It is well
known that a surface attached to the parent by a wormh
~tiny neck! is called a baby universe@4#. However, in the
context of two-dimensional gravity, the notion is simplifie
A sphere attached to the parent is usually called a baby
verse@1#. In our case we also have pinched spheres attac
to the parent. After this is understood, it immediately com
to mind to introduce a new notion. By analogy with the ba
universe, we define ak-branched baby universe as thek
21)-pinched sphere attached to the parent by a tiny ne3

Here we identify the standard baby universe with the
branched baby universe.

3A motivation for such name is the structure of the attached s
face. It allows one to label the baby universes by the integer num
k.
s
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The distribution of the baby universes on a surface w
analyzed in@18# via dynamical triangulations. It was show
that the average number of minimum neck baby univer
~whose neck thickness is of order of the ultraviolet cutoff! of
areaB on a closed genusg surface of areaA scales as

NA~B!}A32g~g!~A2B!g~g!22Bg22, ~2.1!

whereg(g)5g(12g)12g.
We want now to repeat the analysis of Ref.@18# in order

to find the average number of the minimum neckk-branched
baby universes of areaB on a closed genusg surface of area
A. Note that the derivation is sufficiently generic, and so o
can apply it for both the critical lines and multicritical poin
~conventional and modified matrix models!. We claim that

NA~k,B!}A32G~g!~A2B!G~g!22BkG22, ~2.2!

whereG5g,ḡ andNA(1,B)[NA(B). The only fact needed
to get Eq.~2.2! is that the partition function for thek-pinched
sphere of areaA scales asZk(A)}A(k11)G23. It can be found
repeatedly, reducing to the 1-pinched sphere via a sew
procedure. In the last case it is simply obtained by sew
two spheres with punctures.

It follows from the statement~2.2! that the average num
ber of thek-branched baby universes on the surface sho
scale as

NA~k!5E dBNA~k,B!}AkG. ~2.3!

Suppose that thek-branched baby universes can be rep
duced by a local operator. This means that its normali
one-point correlation function should scale as

^^ak
†&&A5

^ak
†&A

^1&A
}AkG. ~2.4!

Here the symbol̂ &A denotes the correlation functions com
puted using the actions~1.2! and~1.4! at fixed areaA. Here
ak

†5Ak
† ,Āk

† , whereA,Ā correspond to the conventional an
modified matrix models, respectively.

On the other hand, this implies@6#

^^ak
†&&A}A12Dk

KPZ
. ~2.5!

As a result, one finds that the Knizhnik-Polyako
Zamolodchikov~KPZ! scaling dimension ofak

† is given by

Dk
KPZ512kG. ~2.6!

It seems natural from physical point of view to call th
ak

†’s as the creation operators as it was done in four dim
sions@4#. Then it immediately comes to mind to define th
annihilation operators. A possible way to do this is to ma
use of two-point correlation functions. Letak be the annihi-
lation operators. Then two-point functions obey

^^ak
†ak&&A}O~1!. ~2.7!

This allows one to find the KPZ scaling dimension of t
operatorak . It is given by

r-
er
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3728 57OLEG ANDREEV
Dk
KPZ511kG. ~2.8!

It should be stressed that a difference from the fo
dimensional case is that we define theak’s via a scalar prod-
uct and not the standard commutation relations.

Of course, the annihilation operators can be defined b
geometrical analysis too. Let us give an example. Cons
the case where a surface is the 1-pinched sphere; more
plicated cases can be treated in a similar way. The numbe
the 1-pinched spheres of areaA scales asA2G23. On the
other hand, the number of degenerate 1-pinched sphere
the same area scales asAG23. The latter assumes that th
1-pinched sphere degenerates into the sphere. It is clea
cause the baby universe vanishes. From the above s
ments, it follows that the average number of the degene
1-pinched spheres scales asAG23/A2G235AG. This means
that the normalized one-point function of the annihilati
operatora1 should scales asAG. As a result, we recover its
KPZ scaling dimensionD1

KPZ511G.

2. Detailed examination of operators

Let local operators which are responsible for t
k-branched baby universes belong to the physical opera
of 2D gravity coupled to conformal matter. It is known th
such operators are characterized by the KPZ scaling dim
sion @6#. In the conformal gauge this dimension is com
pletely defined by thef zero mode@8#. So for the operator
Ok with the Liouville exponentbk , Ok}ebkf0, the KPZ
scaling dimension is given byDk

KPZ512bk /a, if the Liou-
ville potential iseaf. In the abovef0 is the zero mode off.

For the critical lines withg,0 ~conventional matrix mod-
els!, we use the above statements as well as Eqs~2.6! and
~2.8! in order to find the Liouville exponents of the creatio
and annihilation operators

Ak
†}ek~a12a2!f0, Ak}ek~a22a1!f0. ~2.9!

For the multicritical points~modified matrix models!,
similar calculations lead to

Āk
†}ek~a22a1!f0, Āk}ek~a12a2!f0. ~2.10!

It is interesting to note that all exponents vanish atc51,
which leads toDKPZuc5151.

Let us now consider the partition function, taking in
account contributions from the branched baby universes.
known that such configurations are present in the path i
gral over metrics. They correspond to singular world-sh
metrics. The partition function is given by

Zpinched5 (
k50

1`

wkZk , ~2.11!

whereZk is a contribution of thek-pinched sphere.wk is a
weight factor of each contribution. Suppose thatZpinched is
described by the actions~1.2! and ~1.4! perturbed by the
creation and annihilation operators4

4In fact, the sums are finite@see Eq.~2.20! below#.
-
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Seff8 5Seff1 (
k51

1`

tkAk1tk
†Ak

† , ~2.12!

S̄eff8 5S̄eff1 (
k51

1`

t̄ kĀk1 t̄ k
†Āk

† . ~2.13!

Under this assumption, the gravitational dimensions of
coupling constants obey5

dim tk.0, dim tk
†,0, dim t̄ k,0, dim t̄ k

†.0,

from which it follows that the actions~2.12! and ~2.13! are
not renormalizable. However, if we define the theory as

Seff8 5Seff1(
l 51

1`

tkAk , ~2.14!

S̄eff8 5S̄eff1 (
k51

1`

t̄ k
†Āk

† , ~2.15!

then the actions are renormalizable. In other words,Ak
† and

Āk are the irrelevant operators that disappear in the IR lim
Treating the actions such leads us to a conclusion that
baby universes can be neglected for the critical lines w
g,0, but they are relevant for the multicritical points. Th
fact has been noted previously in the framework of the R
approach to matrix models@5#.

It is interesting to note that all couplings (tk
† ,tk , t̄ k

† , t̄ k)
automatically become marginal atc51. This is in accor-
dance with the conjecture on their role in thec51 barrier.

Finally, let us discuss a relation with the result of Dav
@5#. To do this we must remember the definition of the sc
ing dimension in the framework of the renormalization gro
approach@2#. It is defined by

Dx
RG5

2b~Dx
~0!!

Q
, ~2.16!

whereQ andb(Dx
(0)) are the background charge and Lio

ville exponent.
Combining this with Eqs.~2.9! and ~2.10!, we learn that

for the operatorsA1
† , Ā1

† the scaling dimensions are simpl

D1
RG52A 12c

252c
, D̄1

RG522A 12c

252c
, ~2.17!

which are the formulas derived in Ref.@5#.

3. Examination revisited

Up to now our discussion has not been sensitive to
detailed structure of the physical operatorsOk . Suppose now
that the touching operators are the tachyon-type opera
Tn,m

6 ; i.e., they are given by the exponents of the free fie
as in Eq.~1.13!. Intuitively, this comes about because the
operators are somewhat descendant from the puncture o
tors T1,1

6 . Indeed, the dimensions of the operatorsA1
† , Ā1

†

5This dimension is equal to 12DKPZ.
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were obtained from the dimensions ofT1,1
6 via a sewing pro-

cedure@5#. On the other hand, the tachyon operators are
simplest physical operators in the theory and, moreover, t
are moduli of the theory; so it is natural to start by looki
for the touching operators among them. We will fill this g
in our determination of the touching operators in Appen
A.

Accepting the above assumption, an interesting con
sion which we can draw is thatAk

†5Āk andAk5Āk
† . In-

deed, if the Liouville exponents are given by Eqs.~2.9! and
~2.10!, then it follows from Eq.~1.13! that for the creation
and annihilation operators, we get

Ak
†5Āk5T2k21,2k11

1

5E d2zV2k21,2k11~z,z̄!ek~a12a2!f~z, z̄!, ~2.18!

Ak5Āk
†5T2k11,2k21

1

5E d2zV2k11,2k21~z,z̄!ek~a22a1!f~z, z̄!. ~2.19!

In particular, the operators introduced by David are sim
T1,3

1 andT3,1
1 .

It is interesting to note that the theory has a finite num
of creation-annihilation operators for the branched baby u
verses, which means finite sums in Eqs.~2.12! and~2.13!. In
fact, since Eq.~1.13! n belongs to the range 1<n<p11, the
largest value ofk is given by6

max k5H Fp

2G11 for Ak
† and Āk ,

Fp

2G for Ak and Āk
† .

~2.20!

It is clear that it is dependent on the matter central charge
other words, the shape of world sheets is determined by m
ter residing on them.

So the two phases~critical lines withg,0 and multicriti-
cal points! differ not only by a branch of gravitational dres
ing for the puncture operators~cosmological terms!, but also
by different roles of the same operators: creation~annihila-
tion! of the branched baby universes in one case and t
annihilation~creation! in the other.

In order to take the assumption that the touching opera
are the tachyon-type ones into account completely, it is
vantageous to go in a slightly different way. Instead of us
the geometrical point of view, we will follow renormaliza
tion group arguments and look for perturbations which
come marginal atc51.

Let us perturb the continuum theory, so that the effect
actions~1.2! and ~1.4! become

Seff8 5Seff1 (
m52`

1`

(
n51

p11

tn,mTn,m , ~2.21!

6@a# means the integer part ofa.
e
y

-

y

r
i-

In
t-

ir

rs
d-
g

-

e

S̄eff8 5S̄eff1 (
m̄52`

1`

(
n̄51

p11

t̄ n̄,m̄Tn̄,m̄ . ~2.22!

Here tn,m , t̄ n̄,m̄ are renormalized couplings.Tn,m , Tn̄,m̄ de-
note the tachyon-type operators defined in Eq.~1.13!.

Since the transition occurs atc51, the gravitational di-
mensions of the couplings obey

dimtn,muc515dimt̄ n̄,m̄uc5150.

These conditions are equivalent to

b6~Dn,m
~0! !uc515A 1

2p~p11!

3„6unp2m~p11!u22p21…up5`50.

~2.23!

There are two solutions of equationb1(Dn,m
(0) )uc5150 in the

range 1<n<p11: namely,

n5m62, ~2.24!

while the equationb2(Dn,m
(0) )uc5150 has no solutions in this

range. By substituting Eq.~2.24! into b1(Dn,m
(0) ), we easily

find the Liouville exponents

b1~Dn,n62
~0! !5

16n

2
~a12a2!, ~2.25!

where

a152A 2p

p11
, a252A2~p11!

p
.

The main new novelty of the above calculation is t
appearance of operators withn even. As we have seen, th
operators withn odd arise from the idea on the role of th
touching interactions in thec51 barrier. From the geometri
cal point of view, they correspond to the creatio
annihilation operators for the branched baby universes. N
we would like to complement the discussion by including t
operatorsTn,n62

1 with even7 n. In general, this issue is no
completely understood. Here we can only speculate.
idea is heuristically that both string exponents of surfa
with boundaries and gravitational scaling dimensions of
operators forn even haveG/2 as a unit of ‘‘measurement.’
It is natural therefore to relate these operators with holes
a surface. To illustrate this, consider a geometry in whic
surface is made by pinching the hemisphere at a point o
boundary, as shown in Fig. 3 on the left. Such a surfac
reproduced by gluing the sphere to a point on the bound
of the hemisphere. It is easy to find the area dependenc
the partition function for this case. It is given byZ1/2(A)
}A3/2ḡ23. On the other hand, this scaling is recovered
inserting the operatorT2,0

1 into the path integral for the

7It should be noted thatn52m51 is special because
b1(D1,21

(0) )[0. As a result, the matter field is given by screeni
operators.
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3730 57OLEG ANDREEV
sphere, as in Fig. 3 on the right. This stimulates one to
troduce the notion of a banged baby universe as the he
sphere attached to the parent by a point on the boundary
interpretT2,0

1 as the creation operator for the banged ba
universe. Since we restrict ourselves to the spherical to
ogy, we leave the detailed analysis of these operators
future study.

It is also not difficult to recognize the discrete state inT2,0
1

@14#. This can be done using a linear map8

X5
Q

2&
X2

ia0

&
f, f5

ia0

&
X1

Q

2&
f. ~2.26!

Under this map one gets an effectivec51 matter dressed by
gravity. In terms of the new variables, the operatorT2,0

1 be-
comes

T2,0
1 5E d2z ei&X~z, z̄!. ~2.27!

The holomorphic~antiholomorphic! part of the integrand in
Eq. ~2.27! is the highest weight state of a spin-1 su~2! mul-
tiplet.

At this point, it is necessary to make a remark. One of
important statements about the discrete states was the
lowing notice by Polyakov@19#. The discrete states corre
spond to the contributions of singular world-sheet metri
pinched spheres in the models under discussion, in the
integral over metrics. From our discussion of this issue,
have seen that there is, however, an important new fea
that we must now clarify. We claim that for the unitaryc
,1 models, in addition to the conventional discrete sta
there are a set of statesTn,n62

1 which are also relevant. More
over, they are dominant. From the algebraic point of vie
the latter correspond to fractional values of the su~2! spin.

4. Consequences

Now we can easily read off some interesting conclusio
One of the first important observations is the following o
servation about a structure of the partition functionZpinched.
According to Eq.~2.20!, there are no creation operators f
the branched baby universes withk larger than maxk. It
means that higher pinched spheres are obtained by attac
two or more creation operators to the parent. The effec
action underlying such picture is given by

8In fact, the map defined in Eq.~2.26! is a Lorentz boost in a
two-dimensional Minkowski space with coordinates (X,f). We re-
fer to @1,19# for more details.

FIG. 3. Approximation of the pinched hemisphere by the sph
with an insertion of the local operatorT2,0
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S̄eff8 5S̄eff1 (
k51

@p/2#

t̄ k
†Āk

† . ~2.28!

It should be stressed that this restriction is completely du
unitarity of thec,1 matter.

Next, let us go on to look more carefully at the cases
interest. For the critical lines withg,0, we find

Zk11 /Zk→0 under t0→0, ~2.29!

where Zk5^Ak
†&. So the leading contribution toZpinched

comes from the sphere, the next from the pinched sph
etc. We believe that this fact allows one to interpret th
phase as the weak coupling regime for the touching inte
tions. This time they can contribute to subleading ord
only. Formally, the most relevant operator isA1

† . This is also
in harmony with an idea of David that one should be able
catch the effects of touching in this phase via this operat

Now let us turn to the multicritical points. In contrast t
the previous case,Āk

† with k5@p/2# is proved to be the mos
relevant operator in Eq.~2.28!.9 From the geometrical poin
of view, it means that most branched baby universes
dominant. As a result, the expansion ofZpinchedin powers of
t̄ k
† , as may follow from the action~2.28!, is not valid. So we

no longer have the weak coupling regime for the touch
interactions. Instead of this, we interpret this phase as
strong coupling regime for the touching interactions. At th
point, it is necessary to discuss a relation with the Da
scenario where the touching interactions were taken into
count by the baby universes, i.e.,Ā1

† . In our consideration of
this issue, we have seen that the most relevant operat
Ā@p/2#

† . The latter means that the David picture is valid
least for the pure gravity (p52) and Ising (p53) models.
However, forp>4 this cannot be the whole story, for th
reason that the branched baby universes come into the g
and, moreover, they are dominant.

Finally, let us note that the conclusion by Klebanov@9#
that the scaling limits of the conventional matrix mode
~critical lines withg,0! and modified matrix models~mul-
ticritical points! differ due to the branches of gravitation
dressing for the Liouville potential can be extended. Acco
ing to our discussion, these scaling limits correspond to
ferent phases of the touching interactions, namely, weak
strong coupling regimes.

B. Strings

We now turn to the problem of shedding some light
touching interactions forc51 models. It is well known that
such models are noncritical bosonic strings or, equivalen
two-dimensional critical strings@1#. Thus we will try to ana-
lyze the effects of singular world-sheet metrics~pinched
spheres! in the Polyakov path integral. In doing so, we w

9It is straightforward to get this result in the framework of the R
approach @2#. Looking at the scaling dimensionsDk

RG52(k
11)/(2p11), we see thatt̄ @p/2#

† is the most relevant. However, it i
less relevant in comparison with the cosmological constantt̄0 .

e
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not follow the geometrical analysis of Sec. II A 1. Instead
this, we look for the limitp→`.

1. p˜` limit

One of the novelties that appears atc51 is that the string
exponents defined in Eqs.~1.3! and~1.5! vanish. As a result,
direct use of the geometrical point of view fails. Moreove
scaling violations for the phase associated with the conv
tional matrix models are also a serious obstacle on this w
In finding touching interactions forc51 models, it seems
sensible to take as a starting point the model of Sec. II A
arbitrary p and then define the limitp→`. To see what
really happens, consider the effective actions. The Liouv
exponentsa6 will be 2&. One can imagine that the effec
tive actionsSeff and S̄eff coincide, but it is not true. As
Polchinski pointed out@20#, the Liouville potential forSeff is
given byfe2&f, which leads to the scaling violations. O
the other hand, there are no scaling violations for the ph
associated with the modified matrix models, and so the
tential for S̄eff is simply e2&f @9#. Thus one has, for the
effective actions~1.2! and ~1.4! at c51,

Seff5
1

2p E d2zS ]f]̄f2
1

&
AĝR̂f1t0Aĝfe2&fD ,

~2.30!

S̄eff5
1

2p E d2zS ]f]̄f2
1

&
AĝR̂f1 t̄0Aĝe2&fD ,

~2.31!

with the background chargeQ52&.
Now we come to the analysis of the actions~2.12! and

~2.13!. Obviously, under the limitp→` these actions are
given by

Seff8 5Seff1 (
k51

`

tkAk1tk
†Ak

† , ~2.32!

S̄eff8 5S̄eff1 (
k51

`

t̄ kĀk1 t̄ k
†Āk

† , ~2.33!

with the operators

Āk5Ak
†5E d2z e2 i&X~z, z̄!, Ak5Āk

†5E d2z ei&X~z, z̄!.

~2.34!

There is an interesting observation related to the vanishin
the string exponents that the operators are independentk.
In other words, one cannot distinguish the branched b
universes atc51. Instead of this, there are collective pote
tials for the touching interactions with the following effe
tive couplings:

t5 (
k51

`

tk , t†5 (
k51

`

tk
† , t̄5 (

k51

`

t̄ k , t̄†5 (
k51

`

t̄ k
† .

The actions~2.32! and ~2.33! are rewritten as
f

,
n-
y.

r

e

se
o-

of

y

Seff8 5Seff1tE d2z ei&X~z, z̄!1t†E d2z e2 i&X~z, z̄!,

~2.35!

S̄eff8 5S̄eff1 t̄E d2z e2 i&X~z, z̄!1 t̄†E d2z ei&X~z, z̄!.

~2.36!

Thus we have generalized the touching operators toc51
models. At this point a few comments are in order.

~i! It is interesting to note that the holomorphic~antiholo-
morphic! parts of the touching operators for the string mo
els are none other than the screening operators of thec51
conformal field theory~matter sector in the particular case
hand!. It is well known that they represent the raising a
lowering operators of the su~2! algebra and generate the mu
tiplets of the discrete states~see Appendix B for details!.
From this point of view our introduction of the annihilatio
operators seems plausible. However, such operators do
lead to the standard Heisenberg algebra, as happens in
framework of four-dimensional quantum gravity, but su~2!.

~ii ! According to our discussion in Sec. II A 4, the wea
and strong coupling regimes for the touching interactions
associated with the conventional and modified matrix mod
for c,1. At c51 relations which are similar to Eq.~2.29!
are not valid anymore. Instead of them, we haveZk11 /Zk
;1, which indicates the presence of a boundary betw
these phases. However, this boundary looks singular bec
one does not get into the same theory under thep→` limit.

~iii ! If one makes use of a perturbation of the actio
~2.35! and ~2.36! according to which the creation and ann
hilation operators are involved with the same effective co
pling constant, a result will be the sine-Gordon mod
coupled to 2D gravity. Thus the sine-Gordon model coup
to 2D gravity is an appropriate framework to take into a
count effects of singular world-sheet metrics in the Polyak
path integral for the noncritical strings. Unfortunately, o
knows very little about integrable models in the presence
quantum gravity. Some issues have been discussed
@1,21,22#.

2. Cosmological constant and touching interactions

There is a serious problem in quantum gravity related
the vanishing of the cosmological constant. Several differ
proposals are known to solve it. One of them is based on
idea of uncontrollable emissions of tiny baby universes
was intensively discussed in the framework of a fou
dimensional case~see, e.g.,@4#!.

Let us now try a two-dimensional case. It is well know
that the cosmological constant is being renormalized in
singular way as10

t̄0

G@0#
5 t̄0 , ~2.37!

10In the literature on thec51 models, the cosmological term
~puncture operator! is usually chosen ase2&f, which in our lan-
guage corresponds to the multicritical points.
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whereG@x# is the gamma function. The origin of this mu
tiplicative renormalization is, of course, the short distan
divergences. In calculating amplitudes one needs to perf
multiple integrals. There are some prescriptions to do t
One of them is an analytic continuation. Shifting the exp
nents of the integrals, one brings them into a stand
Dotsenko-Fateev form. Next, the integrals are computed
an analytic continuation.

We are going to find the multiplicative renormalization
the touching couplings. In order to do this, we follow a sim
lar procedure as it was used to derive Eq.~2.37!. The calcu-
lation for this case~see Appendix B! leads to the result

t̄G@0#5 t̄, t̄G@0#5 t̄†. ~2.38!

We see that the bare cosmological constant and touc
couplings are renormalized in different ways; namely,
cosmological constant goes to ‘‘zero,’’ but the touching
teraction couplings go to ‘‘infinity.’’ Here an analogy wit
the four-dimensional case appears again because such b
ior reminds one of Coleman’s idea, that touching interactio
~wormholes! have the effect of making the cosmologic
constant vanish@4#. Although it looks in many ways attrac
tive, we have to stress its speculative character. It rests on
multiplicative renormalization argument only, and so furth
work is needed to prove it strictly.

III. CONCLUSIONS AND REMARKS

First, let us say a few words about the results.
In this work we have found a set of the physical operat

which are responsible for the touching interactions in
framework ofc,1 unitary conformal matter coupled to 2
quantum gravity. It turned out that one can interpret the cr
cal lines withg,0 ~conventional matrix models! and multi-
critical points ~modified matrix models! as different phases
for touching, namely, the weak and strong coupling regim
Next, we defined the touching operators for the noncriti
bosonic strings. It shows that if the creation and annihilat
operators are involved with the same effective coupling c
stant, then the sine-Gordon model coupled to 2D gravity
an appropriate framework to take into account effects of s
gular world-sheet metrics in the Polyakov path integr
Some analogies with the four-dimensional case are also
cussed, e.g., the creation-annihilation operators for the b
universes and Coleman mechanism for the cosmolog
constant.

Let us conclude by mentioning a few open problems
gether with interesting features of the touching interactio
in the continuum.

~i! Of course, the most important open problem is to u
derstand the touching interactions in the critical strings
how to take into account effects of singular world-sheet m
rics in the Polyakov path integral. Unfortunately it is u
known in general how to realize this program. Our analy
of Sec. II essentially rests on the Liouville modef, and so
any attempt to use it for critical strings will fail.

~ii ! In order to calculate the multiplicative renormaliz
tions of the coupling constants, we found special correla
of the discrete states. This seems strange because it is
sible to find them directly from the action~2.36!. However,
by calculating correlators we solve one more problem wh
e
m
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is formulated as the deformation of the operator prod
~OP! algebra of the discrete states by the presence of no
nishing cosmological and touching coupling constants.
though a special solution is known@15,23#, the problem is
still open. Some progress in this direction has already b
done@24#.

~iii ! The operatorT3,1
1 is special because it interpolate

between matrix models@25#. In the simplest case it describe
the flow from Ising (p53) to pure gravity (p52). We offer
a qualitative physical interpretation of such a transition ba
on our geometrical picture. First, let us recall that the sh
of world sheets depends on the central charge of matter
siding on them; namely, higher pinched world sheets co
spond to higher central charges. Next note thatT3,1

1 is nothing
but the annihilation operator for the baby universes in
framework of the conventional matrix models, and so
smooths a shape that leads to a proper reducing of the ce
charge. As a result, one has the flow from Ising to pu
gravity. On the other hand, it is the creation operator in
context of the modified matrix models, and so it wrinkles
shape that increases the central charge. This time there i
flow from pure gravity to Ising. Of course, these conclusio
are heuristic and further work is needed to make them m
rigorous.
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APPENDIX A

In discussing touching interactions, we assumed in S
II A 3 that local operators which are responsible for t
branched baby universes are the tachyon-type physical
erators. In the present appendix, we will analyze some
pects of this story in somewhat more depth.

To begin with, we review some facts about the BRS
formalism @13,26#. The physical states are the cohomolo
classes of the BRST operatorQBRST whose explicit form is
given in Sec. I. These classes are labeled by the ghost n
ber G. The tachyon and discrete operators appear at g
number 2. So the operators~1.13! are rewritten as

Tn,m
6 ~z,z̄!5c~z!c̄~ z̄!Vn,m~z,z̄!eb6~Dn,m

~0!
!f~z, z̄!. ~A1!

Such a class was intensively discussed in Sec. II A 3.
As for the new BRST classes, the first nontrivial examp

appears atG50. These operators are denoted asOj ,mŌj ,m .
It is well known that the holomorphic~antiholomorphic! op-
eratorsOj ,m (Ōj ,m) generate the chiral~antichiral! ground
ring @27#, namely,Oj 1 ,m1

Oj 2 ,m2
5Oj 11 j 2 ,m11m2

. This allows
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one to determine the explicit form of an arbitrary opera
from the first few, which are given by11

O1/2,1/25S cb1
i

&
]X2

1

&
]fD expS i

&
X1

1

&
fD ,

~A2!

O1/2,21/25S cb2
i

&
]X2

1

&
]fD expS 2

i

&
X1

1

&
fD ,

~A3!

where ~X,f! refer to the effectivec51 matter dressed by
gravity. In order to translate these operators into thec,1
theory, one can use a linear map

X5
Q

2&
X1

ia0

&
f, f52

ia0

&
X1

Q

2&
f, ~A4!

which is inverse to Eq.~2.26!. However, we do not need t
do this. It is easy to understand that the operatorsOj ,mŌj ,m
are not responsible for the branched baby universe. Ind
they have nonzero Liouville exponents atc51, and so they
cannot be written as in Eqs.~2.9! and ~2.10!.

Up to now we have discussed only a part of the BR
cohomology. Another part is recovered by the operatora1ā
@26#, where

a5cS 2 ia0]X1
Q

2
]f D12]c. ~A5!

It is BRST invariant. So applyinga1ā to Tn,m
6 and

Oj ,mŌj ,m , one can form the new families of BRST-invaria
~physical! operators12 (a1ā)Tn,m

6 with G53 and (a
1ā)Oj ,mŌj ,m with G51. Obviously, they have the sam
Liouville exponents asTn,m

6 andOj ,mŌj ,m . Because of this
reason, the operators (a1ā)Oj ,mŌj ,m are not appropriate fo
a role of the touching operators. As for the (a1ā)Tn,m

6 ’s, as
their Liouville exponents are fitted to Eqs.~2.9! and~2.10! at
n5m62, they may be responsible for the branched ba
universes. So there is a puzzle here. Before continuing
discussion of this puzzle, we wish to complete the review
the BRST cohomology classes.

Given a state with ghost numberG and Liouville expo-
nent b, the two-point function on the sphere defines a d
state with ghost number 62G and Liouville exponent2Q
2b @26#. One immediately see that, with the Liouville e
ponents as defined in Eq.~1.14!, b2(D (0))52Q
2b1(D (0)). So this definition provides a pairing betwee
the positively and negatively dressed states. Note tha
comes from the ghost zero modes on the sphere, while2Q

11Note thatO0,0[1.
12To be precise,aO(0)5rC0

(dz/z)a(z)O(0); thecontourC0 sur-
rounds 0.
r

d,

y
ur
f

l

6

appears from the Liouville background charge.13 Using such
a procedure, it is possible to find two new BRST cohomo
gies classesPn,mP̄n,m and (a1ā)Pn,mP̄n,m at ghost numbers
4 and 5, respectively@26#. SincePn,mP̄n,m are dual toTn,m

1 ,
it implies that they are the negatively dressed states with
Liouville exponentsb2(Dn,m

(0) ). At these values of the expo
nents, it is impossible to satisfy Eqs.~2.9! and ~2.10!. This
follows from the fact that k(a12a2)uc5150, while
b2(Dn,m

(0) ) never vanishes atc51 for 1<n<p11. So the
operatorsPn,mP̄n,m are not appropriate for the touching op
erators. For essentially this reason the operatorsa
1ā)Pn,mP̄n,m are also rejected. However, it is not the who
story about the BRST cohomology. Witten and Zwieba
found that there exist BRST-invariant operators which c
not be written as products of the holomorphic and antiho
morphic operators@26#. If Yn,m

6 denotes the holomorphic pa
of the operatorTn,m

6 defined in Eq.~A1!, then the rest of the
BRST cohomology is given by

Yn,m
1 Ōn̄,m̄ , On,mȲn̄,m̄

1 , Yn,m
2 P̄n̄,m̄ , Pn,mȲn̄,m̄

2 ,
~A6!

and their products with (a1ā). It is well known that in
tensoring together holomorphic and antiholomorphic ope
tors ~left- and right-moving states!, one should restrict one
self to operators of equal ‘‘left’’ and ‘‘right’’ Liouville ex-
ponents. This allows one to reject these operators by
same arguments as it was done forOj ,mŌj ,m , Yn,m

2 Ȳn,m
2 , and

Pn,mP̄n,m and their products with the operator (a1ā) in
above.

Summarizing, we have two classes of the BRST-invari
operators which may formally be the touching operato
namely,Tn,n62

1 and (a1ā)Tn,n62
1 . It remains to make our

choice. Before doing it, let us discuss two points.
First, let us recall what we want. Our goal is to describ

network of touching surfaces by a single surface~parent!
with insertions of local operators. Moreover, we would lik
to have a field theory description, i.e., an effective act
whose terms are responsible for pinched spheres attach
the parent.

Next, let us turn to moduli. We recall that the moduli a
operators that can be added to the action of the confor
field theory. In the particular case at hand, they come fr
spin-0 operators of ghost number 2@26#. For the operators
Tn,n62

1 (z,z̄) defined in Eq.~A1! the corresponding modul

areVn,n62(z,z̄)eb1(Dn,n62
(0) )f(z, z̄); i.e., they are the integrand

of the tachyon-type operators~1.13!. It is clear that this is
precisely what we need. Thus the touching operators
given byTn,n62

1 .

APPENDIX B

The purpose of this appendix is to compute the multip
cative renormalization of the touching couplings. It turns o

13Notice that the dual states arising under factorization of co
lation functions are not the ones defined via the two-point functi
on the sphere, but states differing from them byb02b̄0 . It leads to
ghost number 52G.
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that it is easy to find it by computing correlators of the d
crete states of thec51 models.

To begin with, let us recall how the discrete states app
in the theory. Taking the limitp→`, one has, for the matte
sector@see Eqs.~1.9! and ~1.10!#,

a1
m52a2

m5&, an,m5& j , j [
n2m

2
. ~B1!

In addition, the primaries~1.11! are rewritten asVj ,6 j (z,z̄)
5e6 i& jX(z, z̄).

It is well known that the theory has suˆ(2)% sû(2) as the
symmetry algebra. The holomorphic currents are

H6~z!5e6 i&X~z!, H05
i

&
]X~z!. ~B2!

Obviously, their zero modesHa5rdz Ha(z) generate the
su~2! algebra.14 H6 also play a role of the screening oper
tors of thec51 conformal field theory.

It was realized a long time ago@28# that the primary fields
form tensor products of su~2! multiplets ~holomorphic and
antiholomorphic!

Vj ,m~z,z̄!5N0~ j ,m!~H2H̄2! j 2mVj , j~z,z̄!, ~B3!

N0~ j ,m!5
~ j 1m!!

~2 j !! ~ j 2m!!
, j 50,1

2 ,1,..., ~B4!

such that onlyVj ,6 j are the tachyon-type primary fields d
fined in Eq.~1.11!. As to the others, they are ‘‘discrete pr
maries.’’

Now let us couple theVj ,m’s to gravity. It can be done
directly, using the formulas~1.13! and ~1.14!. As a result,
one gets

Tj ,m
6 5N1~ j ,m!E d2z Vj ,m~z,z̄!eb6~ j !f~z, z̄!,

b6~ j !5&~216 j !. ~B5!

Here the normalization factorsN1( j •m)5(2 j )!( j 1m)!( j
2m)! are introduced to have the following OP algebra of t
integrands:

Tj 1 ,m1

1 ~z,z̄!Tj 2 ,m2

1 ~0!

5
1

uzu2 ~ j 1m22 j 2m1!Tj 11 j 221,m11m2

1 ~0!, ~B6!

14We use the normalizationrC0
dz/z51 and omit 2~p! when it is

irrelevant in the context of the present work.
-

ar

with a vanishing value of the cosmological constant as w
as touching couplings@27,29#.

In order to find the multiplicative renormalizations of co
plings, let us compute a few terms on the right-hand side
Eq. ~B6! due to the presence of the nonvanishing cosmolo
cal and touching coupling constants.15 The coefficient at
Tj 3 ,2m3

6 is given by

^Tj 1 ,m1

1 ~0!Tj 2 ,m2

1 ~1!T̃j 3 ,m3

2 ~`!&, ~B7!

with a conjugate operator defined as

T̃j ,m
2 ~z,z̄!5Ñ1~ j ,m!~H1H̄1! j 1mVj ,2 j~z,z̄!e2&~11j !f~z, z̄!,

Ñ1~ j ,m!5@~2 j !! ~ j 1m!! #22.

To find it, one can expande2S̄eff8 in powers oft̄0 , t̄, and t̄†

and interpret the resulting terms as correlation functions
the free theory.

As a warmup, let us reproduce the multiplicative reno
malization of the cosmological constant. Following Do
senko @15#, set m15 j 1 , m25 j 32 j 2 , and m352 j 3 . It is
clear that the normalization factors do not lead toG@0#, and
so we drop them. The contribution of the matter sector
given by

G2@ j 11 j 22 j 311# )
i 51

j 11 j 22 j 3 G2@ i #G2@2 j 31 i #

G2@2 j 1112 i #G2@2 j 2112 i #

1O~ t̄ t̄†!. ~B8!

It also does not lead toG@0# ~at least in the leading order o
t̄ t̄ †!. On the other hand, the Liouville sector contributes

S t̄0

G@0# D
j 11 j 22 j 321

)
i 51

j 11 j 22 j 321
G2@2 j 12 i #G2@2 j 22 i #

G2@11 i #G2@2 j 3111 i #
.

~B9!

This expression shows that one has the multiplicative ren
malization ~2.37! for the cosmological constant. Note th
such a computation is an old story@15#. The only novelty is
the contributions of the touching operators in Eq.~B8!. How-
ever, they can be neglected.

Now let us turn to the touching couplings. In contrast
the previous case, setm15 j 1 , m25 j 2 , m352 j 3 , and,
moreover,j 35 j 11 j 221. The normalization factors do no
give G@0#, and we drop them again. The Liouville correlat
is trivial. So the only contribution is due to the matter sect
It is given by

15The deformation of this algebra only by the nonvanishing c
mological constant was found in@15,23#.
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G2@2 j 311#

G2@2 j 1#G2@2 j 2# (
k50

`
G@k11#G@k12#

G@2k12#

3~ t̄G@0# !k11~ t̄†G@0# !k. ~B10!

The result~B10! is obtained by using Dotsenko-Fateev mu
nd
. R
D
F

d

,

d

ys

,

,

tiple 2D integrals@10#. Some further transformations of th
resulting products have been done to simplify the final
pression.

A conclusion which we can draw from this calculation
that the multiplicative renormalizations of the touching co
plings are given by Eq.~2.38!.
ys.

ol,
2.
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