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The world sheet formulation is introduced for lattice gauge theories with dynamical fermions. The partition
function of lattice compact QED with staggered fermions is expressed as a sum over surfaces with a border on
self-avoiding fermionic paths. The surfaces correspond to the world sheets of loop-like pure electric flux
excitations and meson-like configuratiof@pen electric flux tubes carrying matter fields at their endike
proposed formulation does not have the problem of the additional doubling of the fermion species due to the
discretization of time. The gauge non-redundancy and the geometric transparency are two appealing features of
this description. From the computational point of view, the partition function involves fewer degrees of
freedom than the Kogut-Susskind formulation and offers an alternative and more economic framework to
perform numerical computations with dynamical fermiof&0556-282(98)00106-4

PACS numbd(s): 11.15.Ha

I. INTRODUCTION gauge invariant operators have a simple geometrical meaning
when realized in the loop space. Last but not least, the inter-
The problem of handling dynamical fermions is still a est on loops relies on the fact that it was realized that this
major challenge that faces lattice gauge theory at presenformalism goes beyond a simple gauge invariant description
Monte Carlo techniques have provided many important reand in fact it provides a natural geometrical framework to
sults clarifying several points about the dynamic, and recentreat gauge theories and quantum gravity. The introduction
computations are achieving 10% or better accuracy in théy Ashtekar[7] of a new set of variables that cast general
spectrum both for heavy quark and light quark sysfdrix  relativity in the same language as gauge theories allowed one
However, statistical algorithms are very expensive in com+o apply loop techniques as a natural non-perturbative de-
puter time, and the increased computing power of the comscription of Einstein’s theory.
ing generation of machines without further theoretical insight In 1991 theloop representation was extended in such a
will probably be insufficient in order to definitely improve way to include dynamical stagger¢@] fermions: the so-
results. Basically, the difficulty posed by the fermions stemsalledP-representatioh9]. Roughly the idea is to add to the
from the fact that they are represented not by ordinary numelosed pure gauge excitations, open ones corresponding to
bers but by anti-commuting Grassmann numbers which cari‘electromesons.” Afterwards the P-representation was used
not be directly simulated numerically. Since the fermion fieldto perform analytical Hamiltonian calculations, by means of
appears quadratically in the action, the usual procedure is @ cluster approximation, providing qualitatively good results
integrate it out producing the Matthews-Salam determinantfor the (2+1) [10] and the (3+1) [11] cases when com-
So, the problem of including dynamical fermions is reducedpared with the standard Lagrangian numerical simulations in
to one of evaluating the determinant of a large matrix. This igerms of the fields. The Hamiltonian method has the serious
a costly task. drawback of the explosive proliferation of clusters with the
An alternative to tackle this problem is to resort to theorder of the approximation.
analytical methods. These could be divided into two catego- Thus, our goal was to explore another approach: to build
ries: strong-coupling expansion and Hamiltonian variationala classical action in terms of strings and knit together the
like methods. The principal limitation of the former is the transparency and non-redundance of the string P-formulation
difficulty to reach the weak-coupling region. An exponent ofand the power of the Lagrangian simulations. The first step
the second group is tHeop approacH2,3]. The basis of the of this program was the introduction of new lattice action for
loop method can be traced to the idea of describing gaugpure QED in terms of closed strings of electric fl(lgops
theories explicitly in terms of Wilson loops or holonomies [12]. In the pure case the action is written as a sum of integer
[4,5] since Yand 6] noticed their important role for a com- variables attached to the closed world sheets of the loop ex-
plete description of gauge theories. The loop Hamiltoniarcitations. The second step was to include matter fields into
was given in terms of two fundamental operators: the Wilsorthe string description; with this aim we considered the sim-
Loop operator(the trace of the holonomyand the electric plest gauge theory: the compact scalar electrodynamics
field operator(its temporal loop derivatiye The loops re- (SQED) [13]. In the case of SQED the action is expressed in
place the information furnished by the vector potenthe  terms of open and closed surfaces which correspond to world
connection. A description in terms of loops or strings, in sheets of loop-like pure electric flux excitations and open
addition to the general advantage of only involving the gaugeelectric flux tubes carrying matter fields at their ends. The
invariant physical excitations, is appealing because all theprevious two world sheets actions were simulated using the
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Metropolis algorithm, the results being quite encouragingof the y(x) single Grassmann field8]. The path creation

[12,13. . , . __operatord, in the space of ket§ P)} of a path with end
Here we show how to introduce dynamical fermions in 3andy is defined as

world sheet or Lagrangian description. This paper is orga-

nized as follows. Section Il is a “bird’s-eye-view” review of

the P-representation on a hypercubic lattice. We show the

realization of the lattice QED Hamiltonian in the Hilbert - ot . : _ .

space of path§P}. In Sec. Ill we present the Lagrangian Its adjoint operator, acts in two possible way$]: annhi-

counterpart of the previous P-representation and we write thiting the pathQs or joining two existing paths ifP), one

partition function in terms of world sheets of the string-like €nding atx and the other starting at o

excitations. In Sec. IV, by using the transfer matrix proce- _Let us show the realization of the QED Hamiltonian in the

dure, we check that we get the Hamiltonian of Sec. Il fromHilbert space of ket$P). This Hamiltonian is given by

the path integral of Sec. Ill. Notice that this enabled us to get

the Kogut-Susskind formulation via the transfer matrix; this A=(g22)W

is an interesting problem which was not properly solved.

Finally, Sec. V is devoted to conclusions and some remarks.

bo=3"()0Q)X(Y). 3

W:WE+ )\W| + )\2\ANM

Il. THE P-REPRESENTATION ON THE LATTICE )
A=1/g
The P-representation offers a gauge invariant description

of physical states in terms of kelt®), whereP labels a set

of connected pathB}, with endsx andy.! In order to make W, ZE g2

the connection on the lattice between the P-representation B

and the ordinary representation, in terms of the fermion

fields ¢ and the gauge fieldd ,(x) =exdieaA,(x)], we need R R

a gauge invariant object constructed from them. The most \7v|= —2 (c1>/+q>T/) 4
natural candidate in the continuum is 3

D (PY) =y () U(PY (y), 1) (@5 = 2,00 X700 Un(0) ¥ (x+n))

— _l X1+ . ..+Xi,1,
whereU(P}) = exdieaf pA,dx"]. 7g(X)=(=1)

The immediate problem we face is thhtis not purely an
object belonging to the “configuration” basis because it in- n_q(x+ ag)= ng(x),
cludes the canonical conjugate momentumyofy'. The
lattice offers a solution to this problem consisting in the de-
composition of the fermionic degrees of freedom. Let us WM:_E (0,+0h
consider the Hilbert space of kdtﬁl,zﬁd ,A,), whereu cor- p PR
responds to theap part of the Dirac spinor and to thedown
part. Those kets are well defined in terms of “configuration” \ynere x labels sites,”=(x,n) the spatial links pointing
variables(the canonical conjugate momentayef andy, are along the spatial unit vecton, p=(x,n,n’) the spatial

p . . R
¥q andy, respectively. Then, the internal product of one of - ettesE , is the electric field operator, which is diagonal
such kets with one of the path dependent representatiof, ihe P-representation

(characterized by a lattice paf, with endsx andy) is
given by E,IP)=N,(P)|P), (5)

where the eigenvalueN (P) are the number of times that
the link / appears in the set of patRs U,=11,_,U,. The

®, are “displacement” operators corresponding to the
wherei andj denote a component of the spinorand d quantity defined in Eq(2) for the case of a one-link path, i.e.
respectively. Thus, it seems that the choice of staggered feP=/". The realization of the different Hamiltonian terms in
mions is the natural one in order to build the lattice P-this representation is as folloW8].
representation. Therefore, the lattice pafsstart in sitesx First, by Eq.(5) the action of the electric Hamiltonian is
of a given parity and end in sitgswith opposite parity. The given by
one spinor component at each site can be described in terms

D(PY)=(PY 0! g A= vl COU(PY dgi(y), (2

WE|P>=Z NZ(P)|P). (6)

'For a more detailed exposition of the P-representation and the R
realization of the different operators see Réf. The interaction termV, can be written as
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FIG. 1. A summary of the different actions of operatdrs applied over path-stateé®). The link / is represented by a dashed bond in
the pictures on the top and the resulting pdf&) are plotted below.

A T = N — ") Nt
“Wi= 3 dolxe)+ 2 Palxo) W=2 7505+ 0p).

where

where the subscripts ando denote the parity of the lattice

sites. This term is realized i{jP)} as m=11 n,=-1,

/ep

and then
_WI|P>:XEn G(P!/xe)|P'/xe>+ 2 E(Pv/x0)|P'/xo>

7 WM|P>=§ (IP-p)+|P-p))

8

where p and p respectively denote the clockwise and the
where/, is the link starting inx and ending irx+na. For ~ counter-clockwise plaguette contour.
links of even origin,e(P,/) is zero whenever an end af
coincides with an end d?, itis —1 when® , “deletes” the
link /e P, dividing one connected component into two, and
itis +1 in any other case. For links of odd origi(,P,/) is
zero unless both ends &f coincide with two ends irP. In
that case, it is- 1 when/ joins two disconnected pieces and
it is +1 when it closes a connected piece or when it annhi

Ill. THE WORLD SHEET OR P-ACTION

In order to cast the preceding path description in the La-
grangian formalism let us begin by considering the path in-
tegral for lattice QED with staggered fermions. We will
show that this leads to a surface action which is not possible

to connect directly with the Hamiltonia@) via the transfer

lates a link. The different actions of operatdps over path-
stateg|P(t)) are schematically summarized in Fig. 1.

Finally W), is the sum of the operatots(p) andUT(p)
which add plaquettes, and can be writteA as

B
zzf [dXTdX]f [de]{n% exp{—ig [6,+2

B 1 -
- [ taxon [ (03 enf ~SIvorzaniis 53 a® 20U it Ho .

matrix in the Hilbert spac¢|P)}. However, this action will
serve as a guide in order to build the genuine P-ac8en

For simplicity we choose the Villain form of the action,
which is given by

1
m, 12+ EZ a® P, (U X ant H-C-)]

(€)

2In such a way that a generic pafhis generated out from the 0-path stés¢rong coupling vacuujrby the application of the operator

string xT()11, . pgn/o/)A((Y)-
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where we used in the second line the notations of the calcu-

lus of differential forms on the lattice dfL4]. In the above Z:J [do]lexp{ — Syaugd 0)}Z(6), (11
expressionD is the lattice dimensiond=1/e?, ¢ is a real
compact 1-form defined in each link of the latticd,
=e'? andy and x' are Grassmannian variables defined on
the sites of the latticéy is the co-boundary operator—which
mapsk-forms into k+ 1)-forms,n are integer 2-forms de-
fined at the lattice plaquettes afid|*=(g,9)=3, g*(c), 1
whereg is any k-form andcy are thek-cells (c, sites,c, ZF=J [dxfdx]exp{zE ﬂ/(X:rU/XHa;L'*‘ H.c)i,
links, ...). The measure in Eq9) is ’ (12

where

dé,
[dx'dx]=11 dxfdx.. [do1=I] 5. (10
' 4 where Sy, 4 Stands for the pure gauge part afg denotes

Let us forget for the moment the global facasP ). The the fermionic partition function. Now if we expand the ex-
equation(9) can be written as ponential inZg we get

.
ZF:j [dXTdX]l:[ EXD[%n/XrTU/XHa,;}l:[ expl3 7, X, . 23Ul X}

.
= f [dx"dx]L] (14 270U xecaid LT (1 27x 2 U0x0); (13

.e. in the above product we have to consider each link and The Grassmann integration over each elemer&br 7

its opposite. _ gives a—1. Thus, after integrating the fermion fields, the
Let us recall the rules of Grassmann variables calculus: fermionic path integral becomes

gt h f_
Xsf= Xst= Xar=0, 14 -
{xeoxst={xr oxsh=1{xr xst (14 ZFZE (—1)Nf-°(—1)N]-'H U 17)
F e F¢
f er:f dx; =0, (15 WwhereV is the total number of lattice sites and we used that
the termsy U , for / in the partZ of F cancel out. It is easy
q N to check that the numbéiz of “null” links in a given Fis
Xexr= | dxrxr=1. (18 connected with the numbeN = of fermionic loops as

follows®

Therefore, when we expand the products in B@) and
the Grassmann variables are integrated out, the only non- N~:V_LF
vanishing contributions arise from these terms withand o2
X: appearing one and only one time for every sitén other _ i i
words, the integration of the Grassmann variables produc¥hereL s is the number of links i* (the length. Thus, up
products ofU’s along closed paths, i.e. Wilson loops. We [© @ global sign, we have
denote byF a generic configuration of multicomponent (= 1)NF= (= 1)~ L2 (19)
paths.F is specified by a set of oriented links verifying the '
rule that they enter and leave one and only one time each one can define the s for a fermionic loopF®:
lattice siter. This self-avoiding character is the geometric
expression of the Pauli exclusion principle. A

We distinguish two parts itF: the set of connected closed Nre= H n,= 11 7p=(=1)", (20
paths where a link is never run in more than onEeand the e ze pesse

set of isolated links traversed in both opposite directions OlvhereA s is the number of plaquettes which make up any
“null” links . ThenF=F°UF. The number of connected surfaceS; enclosed by® (different choices 084Sy dif-
closed components of each kind is calldd: and N%z. In

Fig. 2 we show a two-dimensional sketch on&2x 3 lat-

tice of a possible configuratiaR consisting in one fermionic  °This is true for a lattice with an even number of siteslattice
loop and two “null” links. with an odd number of sites cannot be “filled” wit paths.

(18
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FIG. 3. Different examples of fermionic loops contributing with
: : a—1.

FIG. 2. A possible configuration of self-avoiding paths in a 2
X2X3 Iatti(_:e. Fermionic loops are represented by filled bold lines 7 — f [d 0]2 E o-Cf H U, exp[ _ EHV 9+ 277”“2’_
and “null” links by dashed bold lines. n F JeFe 2
o (23
fer by an even number of plaquettes so the sign is well de- o . _
fined and one can choose the as the minimal area We can express the fermionic path$in terms of integer
bounded byF®). Neglecting a global sign we get 1-forms—attached to the linksf-with three possible values:

0 and=1 with the constraint that they are non self-crossing
¢ and closedf =0 whered is the boundary operator adjoint of
ZF:; oIl U, (2) v which mapsk-forms into - 1)-forms. Both operators

le 7 verify the integration by parts rule
where (9g,hy=(g,Vh), (24)
—( Nc—L zc/2+A
op= (= 1), (22) whereg andh are respectivelk andk—1 arbitrary forms.

The factorll, . U , in Eq.(23) is nothing but the product of

Let us analyze a little closer the sig:-. ForD =2 we show . : :
in Appendix A that all the non-vanishing contributions have YVilson loops along thé-loops, i.e. expiz, o 0,1/} The

o= +1. In more than two space-time dimensions there aref can be expressed by means of functions attached to links
non-null contributionsF to Zg with both signs. The reasonis T with value 0 or 1 and defined ovér 1(0), the“nucleus”

that. connected fermionic_ Iqops enclosing odd number_s 0bf f. In terms of thef and T we get

vertices do not necessarily imply any more a null contribu-

tion. Different examples of a simple fermionic loop contrib- _ B 2
uting with a— 1 are shown in Fig. 3. For instance, in cdae Z= [dg]En: zf: ; &xp -~ §||V0+27m” +i(o.0).

the enclosed arefis is 4, the lengthL < is 8. Therefore, the (25)
fermionic loop(a) hasN c— L c/2+Ax=1—-4+4=1, and ] .
theno = —1. If we use the Poisson summation formuld,g(n)
Coming back to the total path integr@) we can write it =3, /7.dBg(B)e?*"®" —wheren andn’ are integer 2-
as forms andB is a real 2-form—we get
|
z=f [do]1>, > > U(f)f [dB]exp{—§||Va+2w|3|2+i<a,f>+2wi<|3,n> . (26)
n f T —x

Performing the displacemeBt—B—V #/27r and integrating  &(f —dn). Equation(27) is a geometrical expression of the
in B, path integral of lattice QED with staggered fermions in terms
of surfaces with self-avoiding boundaries.
1 Now, let us return to our goal, namely to set up the world
Z=f [do]Y, > > cr(f)expl’—2—||n||2+i<0,f—an>] sheet Lagrangian formulation corresponding to the P-
notoF B representation of Sec. Il. The path integfalr) includes
1 world sheets of paths with ends of any parity. Therefore,
:E E 2 g(f)exp{ — —||n|2} S(f—an) obviously, it does not produce the Hamiltoniéd) by the
n f ¥ 2B transfer matrix method.
1 As a matter of fact, the transfer matrix for staggered fer-
=> > cr(an)exp[——||n||2], (277  mions is a general and interesting problem on which not
no¥ 2B much has been done. Unlike the Wilson fermions which
come out rather nicely from the transfer mafrk6—17, the
where we have used E@4) in order to transformVe,n)  staggered fermions present some troubles. For the spatial
into (#,0n) whose integration produced the Dirac’s delta part of the action the derivation goes in parallel with that for
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4'_ L _i_ ) whereS; are the surfaces given by the spatial plaquettes of
A -7 at sectiont, A; is the number of plaguettes i& and the
- {I" T !‘ T function v gives a sign defined by
| |
P
~ - I
- 1|4 - —:— ,—ﬂf V(p):H (— 1)(|Pa|71)/2H (_1)|Q5|/2*1 (30)
@ B
e or
0" (P={P,,Qg} beingP, andQg, the open and closed com-

ponent paths respectively. See Appendix B for notation and
FIG. 4. The P-pathgthick lines for the different times corre- discussion. Additionally, note that we have eliminated the

sponding to the surfaces enclosed by the configuration of selfSum over the “null” links. The rationale for this is that the

avoiding paths of Fig. 2. “null” links do not play any role in the P-representation. In

the next section we are going to show explicitly tiat

the Wilson theory. The interesting question is how does thdlives rise to the Hamiltoniat¥) via the transfer matrix pro-

temporal part work. This problem was discussed in the workeedure.

of Saratchandrat al. [18]; in this paper was analyzed the

transfer matrix formalism for relating the Kogut-Susskind |\, LAMILTONIAN OBTAINED VIA THE TRANSFER

I—_Iamiltonian and the Eu_clidean action for staggered fermio_n MATRIX METHOD
fields. The authors pointed out that the ordinary case, in
which the one-component fermiog$x) and'(x) both live By means of the transfer matrix method let us show that

on all sites, exhibits a doubling of the fermion species withwe re-obtain the Hamiltoniat¥) from the path integraZp.
respect to the Hamiltonian formalistfour flavors instead of As we wish to consider the continuous time limit of the
two flavorg. Additionally, the corresponding transfer matrix previous lattice Euclidean space-time theory, we introduce a
is Hermitean but not positive definite. They explored thedifferent lattice spacin@, for the time direction. The cou-
alternative of considering and ' on alternate sites; al- plings on timelike and spacelike plaquettes are no longer
though this procedure avoids the excess of flavors and givesqual in the action, i.e. we have two coupling constagts:
a positive transfer matrix it is not free from complications. and 8. The temporal coupling constag, decreases with
Although the partition function27) is not directly con- ay while the spatial coupling constagt; increases witha.
nected with the Hamiltoniaf¥) via the transfer matrix, itis So far we have neglected a faci@(®~1)/2]V in the path
closely related with itas we will show and provides us with integral. Taking into account the fact that the lattice has a
a guide to guess the genuine partition function for the Pdlifferent temporal separatiom,#a we get a relative factor
representatiop . With this aim we consider the restriction of (a,/a)!f/! for each spatial link ofF:
on the set of the surfaces, to the subset of the surfaces such
that they are world sheets of tie paths. This is equivalent _ 1
to require that when intersected with a tinie- constant Zp=>, a'()"”'spgh(s)exp{ B nSJ (32)
plane they give the paths ¢fP)}, i.e. paths with ends of 5 2Bpes
opposite parity and oriented from even sites to odd sites. We
get a link of P, for every plaquette of the surface which where|dn|s, denotes the number of spatial links ém. To
connects the slicewith thet+ag. As an illustration, in Fig.  factorizeZp to fixed time contributions we consider the spa-
4 we show the paths of the P-representation we get from thgal plaquettes ofs that for eacht define the spatial surfaces
minimal surface enclosed by the configuration of self-S; and the temporal plaquettes that define the spatial fjths
avoiding F¢ paths depicted in Fig. 2. and we write
The imposed constraint forbids fermionic loops such that
the one of Fig. &) which gives at the first temporal slice to 1 1 1
a path connecting vertices with the same parity. The first ——In|?=—- =2 [Ind>- 52 P> (32
configuration with negative Boltzmann factor which appears 2p 2p 2P0
in the partition function, i.e. that of lower action, is the spa-
tial square of side 2 depicted in Fig(aB with areaA <=4. and
Thus, we propose the following world sheet partition
function:

ah<s>=ﬂ o' (P-1,Pi,S) (33)

1
Zp= % on(S)expl — (28)

1 nz]
2Bps P’

o'(Pio1,Pi,S)=(—D)Mw(P_10S)v(P).  (34)
where S runs over world sheets of P-paths aag(S) is a

sign defined: To write the operatofl which connects the ketP, )

with the ket|P;) we begin by decomposing the sum over
S)= —DAW(P,_ 9 p 29 world sheetsS ¢ in Eq. (31) into 2 sums: one over the tem-
on(S) 1:[ (= 1"(PadS)v(PyY 29 poral parts, theP;, and one over spatial parg, i.e.
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zo=3 T1 (PuTIPLy) (sl —(smpe(s,)

X \,,L

1p| 1 1
G _ |ﬁS(P P‘s t [{_ 2__ 2 @ @
P'ITIP)=2, & Poex = IIP S50l
(PITIPY=3 2 55 IPIP= 550

(35 FIG. 5. A diagram summarizing the different lattice actions and

Hamiltonians for compact QED and their connections. The horizon-
tal lines denote equivalence. The vertical lines emanating from the
classical actions to the Hamiltonians represent the connection via
the transfer matrix procedure.

Taking into acount the relation which connedtsvith H
whenag is small,

Toe™ aOI:HO(ag), (36)

with the Sp of Eq. (28). This is becaus&; is free from the
known problem ofS¢g of having an unwanted additional
doubling compared with the Hamiltonian formulation. On
the other hand, the equivalence between the Kogut-Susskind

amiltonianHy s and the P-Hamiltoniat, was proved in

9.

In other words, the actiors, should be regarded as a

different lattice action, which produce a Hamiltonian equiva-
lent to the Kogut-Susskind’s one.

we find A considering this limit:
(P’ I?I P)~p p/ _aO<P,||:|| P).

The dominant contributions in this limit are the cases wher
P’ is equal toP or differs from it by one link/ or by one
plaquettep. The power ofa, in Egs.(35) forcesS;=0 in the
first two cases an&,=p in the third:

~ 1 )
<P|T|P>~1~eXp< ZBOHPH ] @7 V. CONCLUSIONS AND FINAL REMARKS
We propose a purely geometric action in terms of the
] (38)  world sheets of P-path configurations. In this formulation,
the connection between the Hamiltonian and Lagrangian of
R . QED with staggered fermions is straigthforward via the
(P-/[T|P)~—ao(P-/|H|P)~aq0". (39 transfer matrix method. The partition function can be written
as a sum over surfaces which border on fermionic self-
avoiding loopsF® . Hence, the fermionic problem has been
reduced to the task of computing quadratic areas enclosed by

(P-pITIP) =~ ao(P-pIFIP) <0 ~ 5

To obtain a proper continuum time limit we should take

Bo= (40) polymer-like configurations. The polymer representation of
g%a, lattice fermiong 19] is often used in a different way to com-
pute the fermionic determinant. It is important to note that
1 1 our formalism is free from the problem of the additional
,3325 I(ZT) (41 doubling of the fermion species due to the discretization of
n(2g a/ag time.

With regard to the economy and possible advantages from
he numerical computation point of view offered by the P-
description, we want to emphasize two fad¢ts:Concerning
the gauge degrees of freedom, it only involves sums of gauge
invariant variables, i.e. no gauge redundar(tly. It includes
a subset of the configurations which are taken into account in
the path integral(27) equivalent to the one of Kogut-
Susskind. Our formulation involves a sum of configurations

) s with Boltzmann factors of both signs. However, the lower
> (IP-p)+|P-p)) . 1ann actors . .
) action configuration with negative Boltzmann factor which
appears in the partition function is the spatial square of side
3 iz PP/ (42 2 Which has ared\=4. This shows that the positive and
2a<7 negative Boltzmann weights are not balanced and that tech-
niques such as the histogram metH@®] can be applied.
so we recover the Hamiltoniai@), confirming that Eq(28) Equipped with the geometrical insight provided by this
is the expression of the partition function of compact elec-gauge invariant representation, we are working to design a
trodynamics in the P-representation. suitable algorithm for simulating the loop fermionic action.
In Fig. 5 we show a scheme which summarizes the dif-The simplest case is QED in {11) dimensions or the
ferent actions/Hamiltonians for QED with staggered fermi-Schwinger model for which all the Boltzmann factors are
ons, and their connections. The surface acty,; of Eq.  positive, i.e. one does not have to worry about computing the
(27), which was obtained from the Kogut-Susskind actionsign o,(S). In addition, in a two space-time lattice there is a
Sks by integrating over the gauge and fermion fields, doesne to one correspondence between fermionic loops and the
not produce the Hamiltoniak » which in fact is connected surfaces with border on them. So, to evaluate the path inte-

wherea continues to denote the spacelike spacing. The valf
ues ofc' are —1 when adding a plaquett@8) and depend
on the way we do it when adding a lifB9). An analysis of
the possible cases shows tldtcorresponds to the signin
Eq. (7).

Then,

1
2ag?

. g2
a0AIP)=722 NZ(P)[P)+
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(|) AA]_c:]., ALj_c:Z,

() AAgx=1, ALx=0. (A1)

From the above relations it is easy to check

AAz=N, +N, |

)] (In

AL 7=2Np, (A2)
FIG. 6. Two different ways to “append” plaquettes.
whereNpl and NpII denote the number of plaquettes of type
gral, the procedure is to generate surfaces with self-avoiding 3| respectively. It is also easy to see that the number of
frontiers and with the constraint that they produce on eachyner verticed < to a connected loop is equal Ky, . There-
time slice open paths with ends of opposite parity. This wa? . K _ "
done recently{21] by means of a Metropolis Monte Carlo '°"® sinceAz=1+AAz andL =4+ AL se,

algorithm and the results are very encouraging.

Finally, let us mention that in this paper we only consid-
ered the simpler Abelian massless theory. In the non-Abelian
case(see Ref[22] for the loop formulation of the pure gauge
theory), where there are different colors, the Pauli exclusion From Egs.(22) and (A3) we conclude that the contribu-
principle implies that the maximum number of such pairs ation of F{ to or,0ze is —1 if and only if I z is an odd
any site cannot exceed the total number of degrees of fregrumber.
dom of the quarks. Therefore, more complicated diagrams The same procedure extends to higher dimensions. Equa-
arise, for instance, intersecti@ fermionic loops at verticesion (A3) is true if the surface is built through steps of tylpe
where there are more thangm pair. Here the path to be Il andlll wherelll means adding a plaquette making con-
followed is not unique. It is interesting to consider the mas-tact in three links of the border. If the surface intersects
sive case too. In this case, in addition to tieners we itself, inner vertices belonging to the intersection lines are
would havemonomersproduced by the mass term. The con- counted with the corresponding multiplicity.
struction of a lattice path integral in terms of loops fal
QCD is a task that will be considered in a future work. APPENDIX B

L
|ﬁ=1—??+AF. (A3)

1. Structure of surfaces
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O'((?S):(—l)N_L/2+A (Bl)

APPENDIX A where

A general configuratior¥ with o= —1 obviously must
include at least one connected fermionic loop contributing
with a —1 to o . We will prove here that such a connected
fermionic path necessarily encloses an odd number of sites
and thus, inD=2, it is not possible to “fill"” its interior )
region in such a way that all the sites are “visitedthe A=Number of plaquettes irS.
condition required for a non-null contribution ®). ) ) )

Notice that, according to Eq22), the o - associated to a The sign ofS depe.nds only oS since two surfaces with
configuration with a unique connected fermionic loop isthe same border differ by an even number of plaguettes.

N=Number of connected components (&

L =Number of links in C

negative ifL »/2+ A is an even number. We divide S in spatial and temporal plaquetteS
In order to prove that all the fermionic loops &F which ~ ={St.,Pi} where

give a— 1 contribution too r enclose an odd number of sites ) ) ]

we need to express the number of its inner vertices as a S;= Spatial plaquettes oF in the sectiont

function of its length and area. D=2, a generic connected

fermionic loop#° enclosing an arbitrary number of vertices Pt= Spatial links in the sectiort corresponding

can be obtained by a constructive process beginning with a

plaguettep and then generating all the other fermionic loops to temporal plaquettes 06 betweent and t+1.

by “appending” plaquettes to this diagram on each of its

links in the two different ways shown in Fig. 6. Now we have at each spatial section the pa®s Part of
The variations ofN (L ~/2) andA for the two cases these paths propagates ti¢r 1, part comes from—1 and

illustrated in Fig. 6 can be summarized as follows: part does not propagate and belong<to



B,=Part of §S; that does not propagate

R, =Part of 4S; that propagates td+ 1

R, =Part of §S; that comes fromt—1
0S=B{-R/-R; . (B2)

Let us localize now the links o. Its temporal links
correspond todP;. Its spatial links belong to spatial
plaquettes, in which case they belongAp, or to temporal
plaguettes that can move up or down.

Kt+ = Spatial part of C in sectiont that propagates to
t+1
K; =Spatial part of C in sectiont that comes fromt—1.

To keep track of all links inS (those that belong to any
plaguette inS) we consider those joining two spatial

plaquettes or two temporal plaquettes. The first ones are if5qq sites. For these pathB={P
relevant to the sign. The second ones can join two tempor%pen components an@ the ’closead

plaquettes in the same sectiGmrelevan} or in correlative
sections:

IT,=Spatial links of S in sectiont that propagate td+1
and come fromt—1.

To sum up(keys denote the set for dlland parentheses
for a fixedt)

S={S,P¢
9S=B{R/R,
Ci=(B,K{ K{)
Pi=(I1¢.K{ R
C={C,dP}}.

Note that links inB;,K, ,K; are incompatible among
them whilell;,R;" ,R;” can share parts among them and with
the former.
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There is a balance of creation and annihilation

2 (KHIRTD=2 (K I+IRCD. - (B3
And what leaves at—1 is what arrives td,
P1=(—1 K RO =TT K{ R).  (BY)

It also verifies

(_1)A—|_/2:(_1)2t A 1/22t (B +IK1+IKCD. (BS)

2. Localization of the sign

The size of an objecK is |X|= number of links or
plaguettegdepending if it is a path or a surfgceking into
account its multiplicity. A path is fermionic if it consists of
closed single lines and open single lines from even sites to
,Qp} wherea labels the

ones, we define the func-
tion

v(P)=]] (—1)lPel=22[] (—1)lQal2-2 (Be)
a B

The meaning of this sign is that it is the sign we get when we

create a single line of length using only the® , operators.
There are (—1)/2 joining negative actions if the line is
open and./2—1 if the line is closed.

The sign in Eq(28) is defined

on(S) =11 (D w(Py-a8)w(Py (87

and it can be written
on(9=1I1 o'(P1,P..S) (B8)
' (Pi_1,P,S)=(—1)Ap(P_1-9S)v(Py). (B9)
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