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World sheet formulation for lattice staggered fermions

J. M. Aroca
Departament de Matema`tiques, Universitat Polite`cnica de Catalunya, Jordi Girona 1-3, Mod C-3 Campus Nord, 08034 Barcelona, S

Hugo Fort and Rodolfo Gambini
Instituto de Fı´sica, Facultad de Ciencias, Tristan Narvaja 1674, 11200 Montevideo, Uruguay

~Received 12 September 1997; published 2 February 1998!

The world sheet formulation is introduced for lattice gauge theories with dynamical fermions. The partition
function of lattice compact QED with staggered fermions is expressed as a sum over surfaces with a border on
self-avoiding fermionic paths. The surfaces correspond to the world sheets of loop-like pure electric flux
excitations and meson-like configurations~open electric flux tubes carrying matter fields at their ends!. The
proposed formulation does not have the problem of the additional doubling of the fermion species due to the
discretization of time. The gauge non-redundancy and the geometric transparency are two appealing features of
this description. From the computational point of view, the partition function involves fewer degrees of
freedom than the Kogut-Susskind formulation and offers an alternative and more economic framework to
perform numerical computations with dynamical fermions.@S0556-2821~98!00106-4#

PACS number~s!: 11.15.Ha
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I. INTRODUCTION

The problem of handling dynamical fermions is still
major challenge that faces lattice gauge theory at pres
Monte Carlo techniques have provided many important
sults clarifying several points about the dynamic, and rec
computations are achieving 10% or better accuracy in
spectrum both for heavy quark and light quark system@1#.
However, statistical algorithms are very expensive in co
puter time, and the increased computing power of the co
ing generation of machines without further theoretical insi
will probably be insufficient in order to definitely improv
results. Basically, the difficulty posed by the fermions ste
from the fact that they are represented not by ordinary nu
bers but by anti-commuting Grassmann numbers which c
not be directly simulated numerically. Since the fermion fie
appears quadratically in the action, the usual procedure
integrate it out producing the Matthews-Salam determina
So, the problem of including dynamical fermions is reduc
to one of evaluating the determinant of a large matrix. Thi
a costly task.

An alternative to tackle this problem is to resort to t
analytical methods. These could be divided into two cate
ries: strong-coupling expansion and Hamiltonian variation
like methods. The principal limitation of the former is th
difficulty to reach the weak-coupling region. An exponent
the second group is theloop approach@2,3#. The basis of the
loop method can be traced to the idea of describing ga
theories explicitly in terms of Wilson loops or holonomie
@4,5# since Yang@6# noticed their important role for a com
plete description of gauge theories. The loop Hamilton
was given in terms of two fundamental operators: the Wils
Loop operator~the trace of the holonomy! and the electric
field operator~its temporal loop derivative!. The loops re-
place the information furnished by the vector potential~the
connection!. A description in terms of loops or strings, i
addition to the general advantage of only involving the gau
invariant physical excitations, is appealing because all
570556-2821/98/57~6!/3701~10!/$15.00
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gauge invariant operators have a simple geometrical mea
when realized in the loop space. Last but not least, the in
est on loops relies on the fact that it was realized that
formalism goes beyond a simple gauge invariant descrip
and in fact it provides a natural geometrical framework
treat gauge theories and quantum gravity. The introduc
by Ashtekar@7# of a new set of variables that cast gene
relativity in the same language as gauge theories allowed
to apply loop techniques as a natural non-perturbative
scription of Einstein’s theory.

In 1991 theloop representation was extended in such
way to include dynamical staggered@8# fermions: the so-
calledP-representation@9#. Roughly the idea is to add to th
closed pure gauge excitations, open ones correspondin
‘‘electromesons.’’ Afterwards the P-representation was u
to perform analytical Hamiltonian calculations, by means
a cluster approximation, providing qualitatively good resu
for the (211) @10# and the (311) @11# cases when com
pared with the standard Lagrangian numerical simulation
terms of the fields. The Hamiltonian method has the seri
drawback of the explosive proliferation of clusters with t
order of the approximation.

Thus, our goal was to explore another approach: to bu
a classical action in terms of strings and knit together
transparency and non-redundance of the string P-formula
and the power of the Lagrangian simulations. The first s
of this program was the introduction of new lattice action f
pure QED in terms of closed strings of electric flux~loops!
@12#. In the pure case the action is written as a sum of inte
variables attached to the closed world sheets of the loop
citations. The second step was to include matter fields
the string description; with this aim we considered the si
plest gauge theory: the compact scalar electrodynam
~SQED! @13#. In the case of SQED the action is expressed
terms of open and closed surfaces which correspond to w
sheets of loop-like pure electric flux excitations and op
electric flux tubes carrying matter fields at their ends. T
previous two world sheets actions were simulated using
3701 © 1998 The American Physical Society
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Metropolis algorithm, the results being quite encourag
@12,13#.

Here we show how to introduce dynamical fermions in
world sheet or Lagrangian description. This paper is or
nized as follows. Section II is a ‘‘bird’s-eye-view’’ review o
the P-representation on a hypercubic lattice. We show
realization of the lattice QED Hamiltonian in the Hilbe
space of paths$P%. In Sec. III we present the Lagrangia
counterpart of the previous P-representation and we write
partition function in terms of world sheets of the string-lik
excitations. In Sec. IV, by using the transfer matrix proc
dure, we check that we get the Hamiltonian of Sec. II fro
the path integral of Sec. III. Notice that this enabled us to
the Kogut-Susskind formulation via the transfer matrix; th
is an interesting problem which was not properly solve
Finally, Sec. V is devoted to conclusions and some rema

II. THE P-REPRESENTATION ON THE LATTICE

The P-representation offers a gauge invariant descrip
of physical states in terms of ketsuP&, whereP labels a set
of connected pathsPx

y with endsx andy.1 In order to make
the connection on the lattice between the P-representa
and the ordinary representation, in terms of the ferm
fieldsc and the gauge fieldsUm(x)5exp@ieaAm(x)#, we need
a gauge invariant object constructed from them. The m
natural candidate in the continuum is

F~Px
y!5c†~x!U~Px

y!c~y!, ~1!

whereU(Px
y)5exp@iea*PAmdxm#.

The immediate problem we face is thatF is not purely an
object belonging to the ‘‘configuration’’ basis because it
cludes the canonical conjugate momentum ofc, c†. The
lattice offers a solution to this problem consisting in the d
composition of the fermionic degrees of freedom. Let
consider the Hilbert space of ketsucu

† ,cd ,Am&, whereu cor-
responds to theup part of the Dirac spinor andd to thedown
part. Those kets are well defined in terms of ‘‘configuratio
variables~the canonical conjugate momenta ofcd andcu

† are
cd

† andcu respectively!. Then, the internal product of one o
such kets with one of the path dependent representa
~characterized by a lattice pathPx

y with endsx and y) is
given by

F~Px
y![^Px; i

y; j ucu
† ,cd ,Am&5cu; i

† ~x!U~Px
y!cd; j~y!, ~2!

where i and j denote a component of the spinoru and d
respectively. Thus, it seems that the choice of staggered
mions is the natural one in order to build the lattice
representation. Therefore, the lattice pathsPx

y start in sitesx
of a given parity and end in sitesy with opposite parity. The
one spinor component at each site can be described in t

1For a more detailed exposition of the P-representation and
realization of the different operators see Ref.@9#.
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of the x(x) single Grassmann fields@8#. The path creation

operatorF̂Q in the space of kets$uP&% of a path with endsx
andy is defined as

F̂Q5x̂†~x!Û~Qx
y!x̂~y!. ~3!

Its adjoint operatorF̂Q
† acts in two possible ways@9#: annhi-

lating the pathQx
y or joining two existing paths inuP&, one

ending atx and the other starting aty.
Let us show the realization of the QED Hamiltonian in t

Hilbert space of ketsuP&. This Hamiltonian is given by

Ĥ5~g2/2!Ŵ

Ŵ5ŴE1lŴI1l2ŴM

l51/g2

ŴE5(
l

Êl
2

ŴI52(
l

~F̂ l 1F̂ l
† ! ~4!

„F̂ l
† 5hn~x!x̂†~x!Ûn~x!x̂~x1n!…

hei
~x!5~21!x11 . . . 1xi 21,

h2ei
~x1aei !5hei

~x!,

ŴM52(
p

~Ûp1Ûp
†!,

where x labels sites,l [(x,n) the spatial links pointing
along the spatial unit vectorn, p[(x,n,n8) the spatial
plaquettes;Êl is the electric field operator, which is diagon
in the P-representation

Êl uP&5Nl ~P!uP&, ~5!

where the eigenvaluesNl (P) are the number of times tha
the link l appears in the set of pathsP; Ûp5) l PpÛ l . The

F̂ l are ‘‘displacement’’ operators corresponding to t
quantity defined in Eq.~2! for the case of a one-link path, i.e
P[l . The realization of the different Hamiltonian terms
this representation is as follows@9#.

First, by Eq.~5! the action of the electric Hamiltonian i
given by

ŴEuP&5(
l

Nl
2 ~P!uP&. ~6!

The interaction termŴI can be written as
e
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FIG. 1. A summary of the different actions of operatorsF l applied over path-statesuP&. The link l is represented by a dashed bond
the pictures on the top and the resulting pathsuP8& are plotted below.
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2ŴI5 (
xe ,n

F̂n~xe!1 (
xo ,n

F̂n~xo!,

where the subscriptse ando denote the parity of the lattice
sites. This term is realized in$uP&% as

2ŴI uP&5 (
xe ,n

e~P,l xe
!uP•l xe

&1 (
xo ,n

e~P,l xo
!uP•l xo

&

~7!

wherel x is the link starting inx and ending inx1na. For
links of even origin,e(P,l ) is zero whenever an end ofl
coincides with an end ofP, it is 21 whenF l ‘‘deletes’’ the
link l PP, dividing one connected component into two, a
it is 11 in any other case. For links of odd origin,e(P,l ) is
zero unless both ends ofl coincide with two ends inP. In
that case, it is21 whenl joins two disconnected pieces an
it is 11 when it closes a connected piece or when it ann

lates a link. The different actions of operatorsF̂ l over path-
statesuP(t)& are schematically summarized in Fig. 1.

Finally ŴM is the sum of the operatorsÛ(p) and Û†(p)
which add plaquettes, and can be written as2
i-

ŴM5(
p

hp~Ûp1Ûp
†!,

where

hp5 )
l Pp

h l 521,

and then

ŴMuP&5(
p

~ uP•p&1uP• p̄&) ~8!

where p and p̄ respectively denote the clockwise and t
counter-clockwise plaquette contour.

III. THE WORLD SHEET OR P-ACTION

In order to cast the preceding path description in the
grangian formalism let us begin by considering the path
tegral for lattice QED with staggered fermions. We w
show that this leads to a surface action which is not poss
to connect directly with the Hamiltonian~4! via the transfer
matrix in the Hilbert space$uP&%. However, this action will
serve as a guide in order to build the genuine P-actionSP .

For simplicity we choose the Villain form of the action
which is given by
r

Z5E @dx†dx#E @du#(
$np%

expH 2
b

2(
p

@up12pnp #21
1

2(l
a~D21!h l ~x r

†U l x r 1am̂1H.c.!J
5E @dx†dx#E @du#(

n
expH 2

b

2
i¹u12pni21

1

2(l
a~D21!h l ~x r

†U l x r 1am̂1H.c.!J , ~9!

2In such a way that a generic pathP is generated out from the 0-path state~strong coupling vacuum! by the application of the operato

string x̂†(x)) l PP
x
yh l Û l x̂(y).
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where we used in the second line the notations of the ca
lus of differential forms on the lattice of@14#. In the above
expression:D is the lattice dimension,b51/e2, u is a real
compact 1-form defined in each link of the lattice,U l

5eiu l andx andx† are Grassmannian variables defined
the sites of the lattice,¹ is the co-boundary operator—whic
mapsk-forms into (k11)-forms,n are integer 2-forms de
fined at the lattice plaquettes andigi25^g,g&5(ck

g2(ck),

whereg is any k-form andck are thek-cells (c0 sites,c1
links, . . .!. The measure in Eq.~9! is

@dx†dx#5)
r

dx r
†dx r , @du#5)

l

du l

2p
. ~10!

Let us forget for the moment the global factora(D21). The
equation~9! can be written as
an

s:

o

u
e

nt
e
a
ric

d

o
d

u-
Z5E @du#exp$2Sgauge~u!%ZF~u!, ~11!

where

ZF5E @dx†dx#expH 1

2(l
h l ~x r

†U l x r 1am̂1H.c.!J ,

~12!

whereSgauge stands for the pure gauge part andZF denotes
the fermionic partition function. Now if we expand the e
ponential inZF we get
ZF5E @dx†dx#)
l

exp$ 1
2 h l x r

†U l x r 1am̂%)
l

exp$ 1
2 h l x r 1am̂

†
U l

† x r%

5E @dx†dx#)
l

~11 1
2 h l x r

†U l x r 1am̂!)
l

~11 1
2 h l x r 1am̂

†
U l

† x r !; ~13!
e

hat

ny
i.e. in the above product we have to consider each link
its opposite.

Let us recall the rules of Grassmann variables calculu

$x r ,xs%5$x r
† ,xs

†%5$x r ,xs
†%50, ~14!

E dx r5E dx r
†50, ~15!

E dx rx r5E dx r
†x r

†51. ~16!

Therefore, when we expand the products in Eq.~13! and
the Grassmann variables are integrated out, the only n
vanishing contributions arise from these terms withx r

† and
x r appearing one and only one time for every siter . In other
words, the integration of the Grassmann variables prod
products ofU l ’s along closed paths, i.e. Wilson loops. W
denote byF a generic configuration of multicompone
paths.F is specified by a set of oriented links verifying th
rule that they enter and leave one and only one time e
lattice siter . This self-avoiding character is the geomet
expression of the Pauli exclusion principle.

We distinguish two parts inF: the set of connected close
paths where a link is never run in more than once,Fc and the
set of isolated links traversed in both opposite directions
‘‘null’’ links F̃. ThenF5FcøF̃. The number of connecte
closed components of each kind is calledNFc and NF̃ . In
Fig. 2 we show a two-dimensional sketch on a 23233 lat-
tice of a possible configurationF consisting in one fermionic
loop and two ‘‘null’’ links.
d

n-

ce

ch

r

The Grassmann integration over each element ofFc or F̃
gives a21. Thus, after integrating the fermion fields, th
fermionic path integral becomes

ZF5(
F

~21!NFc~21!NF̃)
l PFc

h l U l , ~17!

whereV is the total number of lattice sites and we used t
the termsh l U l for l in the partF̃ of F cancel out. It is easy
to check that the numberNF̃ of ‘‘null’’ links in a given F is
connected with the numberNFc of fermionic loops as
follows3

NF̃5
V2LFc

2
, ~18!

whereLFc is the number of links inFc ~the length!. Thus, up
to a global sign, we have

~21!NF̃5~21!2LFc/2. ~19!

One can define thehFc for a fermionic loopFc:

hFc5 )
l PFc

h l 5 )
pPSFc

hp5~21!AFc, ~20!

whereAFc is the number of plaquettes which make up a
surfaceSFc enclosed byFc ~different choices ofSFcSFc dif-

3This is true for a lattice with an even number of sites~a lattice
with an odd number of sites cannot be ‘‘filled’’ withF paths!.
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fer by an even number of plaquettes so the sign is well
fined and one can choose theAFc as the minimal area
bounded byFc). Neglecting a global sign we get

ZF5(
F

c

sF)
l PFc

U l , ~21!

where

sF5~21!NFc2LFc/21AFc. ~22!

Let us analyze a little closer the signsF . ForD52 we show
in Appendix A that all the non-vanishing contributions ha
sF511. In more than two space-time dimensions there
non-null contributionsF to ZF with both signs. The reason i
that connected fermionic loops enclosing odd numbers
vertices do not necessarily imply any more a null contrib
tion. Different examples of a simple fermionic loop contri
uting with a21 are shown in Fig. 3. For instance, in case~a!
the enclosed areaAFc is 4, the lengthLFc is 8. Therefore, the
fermionic loop~a! hasNFc2LFc/21AFc51241451, and
thensF521.

Coming back to the total path integral~9! we can write it
as

FIG. 2. A possible configuration of self-avoiding paths in a
3233 lattice. Fermionic loops are represented by filled bold lin
and ‘‘null’’ links by dashed bold lines.
lta
-

e

f
-

Z5E @du#(
n

(
F

sF
c S )

l PFc
U l D expH 2

b

2
i¹u12pni2J .

~23!

We can express the fermionic pathsFc in terms of integer
1-forms—attached to the links—f with three possible values
0 and61 with the constraint that they are non self-crossi
and closed] f 50 where] is the boundary operator adjoint o
¹ which mapsk-forms into (k21)-forms. Both operators
verify the integration by parts rule

^]g,h&5^g,¹h&, ~24!

whereg andh are respectivelyk andk21 arbitrary forms.
The factor) l PFcU l in Eq. ~23! is nothing but the product o
Wilson loops along thef -loops, i.e. exp$i(l PFcu l f l %. The
F̃ can be expressed by means of functions attached to l
f̃ with value 0 or 1 and defined overf 21(0), the‘‘nucleus’’
of f . In terms of thef and f̃ we get

Z5E @du#(
n

(
f

(
f̃

expH 2
b

2
i¹u12pni21 i ^u, f &J .

~25!

If we use the Poisson summation formula(ng(n)
5(n8*2`

` dBg(B)e2p iBn8—where n and n8 are integer 2-
forms andB is a real 2-form—we get

s

FIG. 3. Different examples of fermionic loops contributing wi
a 21.
Z5E @du#(
n

(
f

(
f̃

s~ f !E
2`

`

@dB#expH 2
b

2
i¹u12pBi21 i ^u, f &12p i ^B,n&J . ~26!
e
ms

rld
P-

re,

er-
not
ich

atial
for
Performing the displacementB→B2¹u/2p and integrating
in B,

Z5E @du#(
n

(
f

(
f̃

s~ f !expH 2
1

2b
ini21 i ^u, f 2]n&J

5(
n

(
f

(
f̃

s~ f !expH 2
1

2b
ini2J d~ f 2]n!

5(
n

(
f̃

s~]n!expH 2
1

2b
ini2J , ~27!

where we have used Eq.~24! in order to transform̂ ¹u,n&
into ^u,]n& whose integration produced the Dirac’s de
d( f 2]n). Equation~27! is a geometrical expression of th
path integral of lattice QED with staggered fermions in ter
of surfaces with self-avoiding boundaries.

Now, let us return to our goal, namely to set up the wo
sheet Lagrangian formulation corresponding to the
representation of Sec. II. The path integral~27! includes
world sheets of paths with ends of any parity. Therefo
obviously, it does not produce the Hamiltonian~4! by the
transfer matrix method.

As a matter of fact, the transfer matrix for staggered f
mions is a general and interesting problem on which
much has been done. Unlike the Wilson fermions wh
come out rather nicely from the transfer matrix@15–17#, the
staggered fermions present some troubles. For the sp
part of the action the derivation goes in parallel with that
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the Wilson theory. The interesting question is how does
temporal part work. This problem was discussed in the w
of Saratchandraet al. @18#; in this paper was analyzed th
transfer matrix formalism for relating the Kogut-Susski
Hamiltonian and the Euclidean action for staggered ferm
fields. The authors pointed out that the ordinary case
which the one-component fermionsx(x) andx†(x) both live
on all sites, exhibits a doubling of the fermion species w
respect to the Hamiltonian formalism~four flavors instead of
two flavors!. Additionally, the corresponding transfer matr
is Hermitean but not positive definite. They explored t
alternative of consideringx and x† on alternate sites; al
though this procedure avoids the excess of flavors and g
a positive transfer matrix it is not free from complications

Although the partition function~27! is not directly con-
nected with the Hamiltonian~4! via the transfer matrix, it is
closely related with it~as we will show! and provides us with
a guide to guess the genuine partition function for the
representationZP . With this aim we consider the restrictio
on the set of the surfaces, to the subset of the surfaces
that they are world sheets of theP paths. This is equivalen
to require that when intersected with a timet5constant
plane they give the paths of$uP&%, i.e. paths with ends o
opposite parity and oriented from even sites to odd sites.
get a link of Pt for every plaquette of the surface whic
connects the slicet with the t1a0. As an illustration, in Fig.
4 we show the paths of the P-representation we get from
minimal surface enclosed by the configuration of se
avoidingFc paths depicted in Fig. 2.

The imposed constraint forbids fermionic loops such t
the one of Fig. 3~c! which gives at the first temporal slice t
a path connecting vertices with the same parity. The fi
configuration with negative Boltzmann factor which appe
in the partition function, i.e. that of lower action, is the sp
tial square of side 2 depicted in Fig. 3~a! with areaAFc54.

Thus, we propose the following world sheet partitio
function:

ZP5(
S

sh~S!expH 2
1

2b (
pPS

np
2J , ~28!

whereS runs over world sheets of P-paths andsh(S) is a
sign defined:

sh~S!5)
t

~21!Atn~Pt21]St!n~Pt! ~29!

FIG. 4. The P-paths~thick lines! for the different times corre-
sponding to the surfaces enclosed by the configuration of s
avoiding paths of Fig. 2.
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whereSt are the surfaces given by the spatial plaquettes oS
at sectiont, At is the number of plaquettes inSt and the
function n gives a sign defined by

n~P!5)
a

~21!~ uPau21!/2)
b

~21! uQbu/221 ~30!

(P5$Pa ,Qb% being Pa andQb, the open and closed com
ponent paths respectively. See Appendix B for notation a
discussion.! Additionally, note that we have eliminated th
sum over the ‘‘null’’ links. The rationale for this is that th
‘‘null’’ links do not play any role in the P-representation. I
the next section we are going to show explicitly thatZP
gives rise to the Hamiltonian~4! via the transfer matrix pro-
cedure.

IV. HAMILTONIAN OBTAINED VIA THE TRANSFER
MATRIX METHOD

By means of the transfer matrix method let us show t
we re-obtain the Hamiltonian~4! from the path integralZP .
As we wish to consider the continuous time limit of th
previous lattice Euclidean space-time theory, we introduc
different lattice spacinga0 for the time direction. The cou-
plings on timelike and spacelike plaquettes are no lon
equal in the action, i.e. we have two coupling constants:b0
and bs . The temporal coupling constantb0 decreases with
a0 while the spatial coupling constantbs increases witha0.
So far we have neglected a factor@a(D21)/2#V in the path
integral. Taking into account the fact that the lattice ha
different temporal separationa0Þa we get a relative factor
of (a0 /a) u f l u for each spatial link ofFc:

ZP5(
S

a0
u]nuspsh~S!expH 2

1

2b (
pPS

np
2J , ~31!

where u]nusp denotes the number of spatial links in]n. To
factorizeZP to fixed time contributions we consider the sp
tial plaquettes ofS that for eacht define the spatial surface
St and the temporal plaquettes that define the spatial pathPt
and we write

2
1

2b
ini252

1

2bs
(

t
inti22

1

2b0
(

t
iPti2 ~32!

and

sh~S!5)
t

s t~Pt21 ,Pt ,St! ~33!

s t~Pt21 ,Pt ,St!5~21!Atn~Pt21]St!n~Pt!. ~34!

To write the operatorT̂ which connects the ketuPt21&
with the ket uPt& we begin by decomposing the sum ov
world sheets(S in Eq. ~31! into 2 sums: one over the tem
poral parts, thePt , and one over spatial partsSt , i.e.

lf-
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ZP5(
$Pt%

)
t

^PtuT̂uPt21&

^P8uT̂uP&5(
St

a0
u]StP8P̄usps texpH 2

1

2b0
iPi22

1

2bs
inti2J .

~35!

Taking into acount the relation which connectsT̂ with Ĥ
whena0 is small,

T̂}e2a0Ĥ1O~a0
2
!, ~36!

we find Ĥ considering this limit:

^P8uT̂uP&'dP,P82a0^P8uĤuP&.

The dominant contributions in this limit are the cases wh
P8 is equal toP or differs from it by one linkl or by one
plaquettep. The power ofa0 in Eqs.~35! forcesSt50 in the
first two cases andSt[p in the third:

^PuT̂uP&'1'expH 2
1

2b0
iPi2J ~37!

^P•puT̂uP&'2a0^P•puĤuP&'2expH 2
1

2bs
J ~38!

^P•l uT̂uP&'2a0^P•l uĤuP&'a0s t. ~39!

To obtain a proper continuum time limit we should take

b05
a

g2a0

~40!

bs5
1

2

1

ln~2g2a/a0!
, ~41!

wherea continues to denote the spacelike spacing. The
ues ofs t are21 when adding a plaquette~38! and depend
on the way we do it when adding a link~39!. An analysis of
the possible cases shows thats t corresponds to the signe in
Eq. ~7!.

Then,

a0ĤuP&5
g2

2a(l
Nl

2 ~P!uP&1
1

2ag2(p
~ uP•p&1uP• p̄&)

2
1

2a(l
e~P,l !uP•l & ~42!

so we recover the Hamiltonian~4!, confirming that Eq.~28!
is the expression of the partition function of compact el
trodynamics in the P-representation.

In Fig. 5 we show a scheme which summarizes the
ferent actions/Hamiltonians for QED with staggered ferm
ons, and their connections. The surface actionSsurf of Eq.
~27!, which was obtained from the Kogut-Susskind acti
SKS by integrating over the gauge and fermion fields, do
not produce the HamiltonianHP which in fact is connected
e

l-

-

f-
-

s

with the SP of Eq. ~28!. This is becauseSP is free from the
known problem ofSKS of having an unwanted additiona
doubling compared with the Hamiltonian formulation. O
the other hand, the equivalence between the Kogut-Suss
HamiltonianHKS and the P-HamiltonianHP was proved in
@9#.

In other words, the actionSP should be regarded as
different lattice action, which produce a Hamiltonian equiv
lent to the Kogut-Susskind’s one.

V. CONCLUSIONS AND FINAL REMARKS

We propose a purely geometric action in terms of t
world sheets of P-path configurations. In this formulatio
the connection between the Hamiltonian and Lagrangian
QED with staggered fermions is straigthforward via t
transfer matrix method. The partition function can be writt
as a sum over surfaces which border on fermionic s
avoiding loopsFc . Hence, the fermionic problem has bee
reduced to the task of computing quadratic areas enclose
polymer-like configurations. The polymer representation
lattice fermions@19# is often used in a different way to com
pute the fermionic determinant. It is important to note th
our formalism is free from the problem of the addition
doubling of the fermion species due to the discretization
time.

With regard to the economy and possible advantages f
the numerical computation point of view offered by the
description, we want to emphasize two facts:~I! Concerning
the gauge degrees of freedom, it only involves sums of ga
invariant variables, i.e. no gauge redundancy.~II ! It includes
a subset of the configurations which are taken into accoun
the path integral~27! equivalent to the one of Kogut
Susskind. Our formulation involves a sum of configuratio
with Boltzmann factors of both signs. However, the low
action configuration with negative Boltzmann factor whi
appears in the partition function is the spatial square of s
2 which has areaAFc54. This shows that the positive an
negative Boltzmann weights are not balanced and that te
niques such as the histogram method@20# can be applied.
Equipped with the geometrical insight provided by th
gauge invariant representation, we are working to desig
suitable algorithm for simulating the loop fermionic actio
The simplest case is QED in (111) dimensions or the
Schwinger model for which all the Boltzmann factors a
positive, i.e. one does not have to worry about computing
signsh(S). In addition, in a two space-time lattice there is
one to one correspondence between fermionic loops and
surfaces with border on them. So, to evaluate the path i

FIG. 5. A diagram summarizing the different lattice actions a
Hamiltonians for compact QED and their connections. The horiz
tal lines denote equivalence. The vertical lines emanating from
classical actions to the Hamiltonians represent the connection
the transfer matrix procedure.



in
ac
a

o

id
lia
e
io
a

re
m

ce

s

n-

m
by

in
d
it

is

s
s

d
s

th
ps
its

e

r of

-

qua-

n-
cts
re

.

3708 57J. M. AROCA, HUGO FORT, AND RODOLFO GAMBINI
gral, the procedure is to generate surfaces with self-avoid
frontiers and with the constraint that they produce on e
time slice open paths with ends of opposite parity. This w
done recently@21# by means of a Metropolis Monte Carl
algorithm and the results are very encouraging.

Finally, let us mention that in this paper we only cons
ered the simpler Abelian massless theory. In the non-Abe
case~see Ref.@22# for the loop formulation of the pure gaug
theory!, where there are different colors, the Pauli exclus
principle implies that the maximum number of such pairs
any site cannot exceed the total number of degrees of f
dom of the quarks. Therefore, more complicated diagra
arise, for instance, intersecting fermionic loops at verti
where there are more than aqq̄ pair. Here the path to be
followed is not unique. It is interesting to consider the ma
sive case too. In this case, in addition to thedimers, we
would havemonomersproduced by the mass term. The co
struction of a lattice path integral in terms of loops forfull
QCD is a task that will be considered in a future work.
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APPENDIX A

A general configurationF with sF521 obviously must
include at least one connected fermionic loop contribut
with a 21 to sF . We will prove here that such a connecte
fermionic path necessarily encloses an odd number of s
and thus, inD52, it is not possible to ‘‘fill’’ its interior
region in such a way that all the sites are ‘‘visited’’~the
condition required for a non-null contribution toZF).

Notice that, according to Eq.~22!, thesF associated to a
configuration with a unique connected fermionic loop
negative ifLFc/21AFc is an even number.

In order to prove that all the fermionic loops ofFc which
give a21 contribution tosF enclose an odd number of site
we need to express the number of its inner vertices a
function of its length and area. InD52, a generic connecte
fermionic loopFc enclosing an arbitrary number of vertice
can be obtained by a constructive process beginning wi
plaquettep and then generating all the other fermionic loo
by ‘‘appending’’ plaquettes to this diagram on each of
links in the two different ways shown in Fig. 6.

The variations ofNFc(LFc/2) andAFc for the two cases
illustrated in Fig. 6 can be summarized as follows:

FIG. 6. Two different ways to ‘‘append’’ plaquettes.
g
h
s

-
n

n
t
e-
s
s

-

g

es

a

a

~ I! DAFc51, DLFc52,

~ II ! DAFc51, DLFc50. ~A1!

From the above relations it is easy to check

DAFc5NpI
1NpII

,

DLFc52NpI
~A2!

whereNpI
andNpII

denote the number of plaquettes of typ

I andII respectively. It is also easy to see that the numbe
inner verticesIF

k
c to a connected loop is equal toNpII

. There-

fore, sinceAFc511DAFc andLFc541DLFc,

IF
k
c512

LFc

2
1AFc. ~A3!

From Eqs.~22! and ~A3! we conclude that the contribu
tion of Fk

c to sF ,sF
k
c is 21 if and only if IF

k
c is an odd

number.
The same procedure extends to higher dimensions. E

tion ~A3! is true if the surface is built through steps of typeI ,
II and III whereIII means adding a plaquette making co
tact in three links of the border. If the surface interse
itself, inner vertices belonging to the intersection lines a
counted with the corresponding multiplicity.

APPENDIX B

1. Structure of surfaces

Consider a surfaceS contributing to the partition function
Its border isC5]S, a simple loop without intersections~not
necessarily connected!. This surface carries a sign:

s~]S!5~21!N2L/21A ~B1!

where

N5Number of connected components inC

L5Number of links in C

A5Number of plaquettes inS.

The sign ofS depends only on]S since two surfaces with
the same border differ by an even number of plaquettes.

We divide S in spatial and temporal plaquettes:S
5$St ,Pt% where

St5Spatial plaquettes ofS in the sectiont

Pt5Spatial links in the sectiont corresponding

to temporal plaquettes ofS between t and t11.

Now we have at each spatial section the paths]St . Part of
these paths propagates tot11, part comes fromt21 and
part does not propagate and belongs toC:
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Bt5Part of ]St that does not propagate

Rt
15Part of ]St that propagates tot11

Rt
25Part of ]St that comes fromt21

]St5Bt•Rt
1

•Rt
2 . ~B2!

Let us localize now the links ofC. Its temporal links
correspond to]Pt . Its spatial links belong to spatia
plaquettes, in which case they belong toAt , or to temporal
plaquettes that can move up or down.

Kt
15Spatial part ofC in section t that propagates to

t11

Kt
25Spatial part ofC in section t that comes fromt21.

To keep track of all links inS ~those that belong to an
plaquette in S) we consider those joining two spatia
plaquettes or two temporal plaquettes. The first ones ar
relevant to the sign. The second ones can join two temp
plaquettes in the same section~irrelevant! or in correlative
sections:

P t5Spatial links of S in section t that propagate tot11

and come fromt21.

To sum up~keys denote the set for allt and parenthese
for a fixed t)

S5$St ,Pt%

]St5BtRt
1Rt

2

Ct5~Bt ,Kt
1 ,Kt

2!

Pt5~P t ,Kt
1 ,R̄t

1!

C5$Ct ,]Pt%.

Note that links inBt ,Kt
1 ,Kt

2 are incompatible among
them whileP t ,Rt

1 ,Rt
2 can share parts among them and w

the former.
C

-
D

,
In-
ir-
al

There is a balance of creation and annihilation

(
t

~ uKt
1u1uRt

1u!5(
t

~ uKt
2u1uRt

2u!. ~B3!

And what leaves att21 is what arrives tot,

Pt215~P t21 ,Kt21
1 ,R̄t21

1 !5~P t ,K̄ t
2 ,Rt

2!. ~B4!

It also verifies

~21!A2L/25~21!(
t

At2 1/2(
t

~ uBtu1uKt
1u1uKt

2u!. ~B5!

2. Localization of the sign

The size of an objectX is uXu5 number of links or
plaquettes~depending if it is a path or a surface! taking into
account its multiplicity. A path is fermionic if it consists o
closed single lines and open single lines from even site
odd sites. For these paths,P5$Pa ,Qb% wherea labels the
open components andb the closed ones, we define the fun
tion

n~P!5)
a

~21! uPau21/2)
b

~21! uQbu/2 21. ~B6!

The meaning of this sign is that it is the sign we get when

create a single line of lengthL using only theF̂ l operators.
There are (L21)/2 joining negative actions if the line i
open andL/221 if the line is closed.

The sign in Eq.~28! is defined

sh~S!5)
t

~21!Atn~Pt21•]St!n~Pt! ~B7!

and it can be written

sh~S!5)
t

s t~Pt21 ,Pt ,St! ~B8!

s t~Pt21 ,Pt ,St!5~21!Atn~Pt21•]St!n~Pt!. ~B9!
and
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