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Heat bath particle number spectrum

P. Jizba*

DAMTP, University of Cambridge, Silver Street, Cambridge, CB3 9EW, United Kingdom
~Received 16 June 1997; published 11 February 1998!

We calculate the number spectrum of particles radiated during a scattering into a heat bath using the thermal
largest-time equation and the Dyson-Schwinger equation. We show how one can systematically calculate
d^N(v)&/dv to any order using modified real-time finite-temperature diagrams. Our approach is demonstrated
on a simple model where two scalar particles scatter, within a photon heat bath, into a pair of charged particles
and it is shown how to calculate the resulting changes in the number spectra of the photons.
@S0556-2821~98!05304-1#

PACS number~s!: 11.10.Wx, 12.38.Mh
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I. INTRODUCTION

In recent years much theoretical effort has been inves
in the understanding of relativistic heavy ion collisions
these can create critical energy densities which are la
enough to produce the quark-gluon plasma~the deconfined
phase of quarks and gluons! @1,2#. A natural tool for testing
the quark-gluon plasma properties would be to look for
particle number spectrum formed when a particle dec
within the plasma itself. As the plasma created during he
ion collisions is, to a very good approximation, in thermod
namical equilibrium @1# ~somewhat like a ‘‘microwave
oven’’ or a heat bath!, one can use the whole machinery
statistical physics and quantum field theory~QFT! in order to
predict the final plasma number spectrum. Such calculati
derived from first principles, were carried out by Landsh
and Taylor@3#.

Our aim was to find a sufficiently easy mathematical f
malism allowing us to perform the mentioned calculations
any order. Because unstable particles treated in@3# cannot
naturally appear in asymptotic states, we demonstrate
approach on a mathematically more correct~but from a prac-
tical point of view less relevant! process: namely, on th
scattering of two particles inside of a heat bath. The met
presented here, however, might be applied as well to a de
itself ~provided that the corresponding decay rate is mu
less than any of the characteristic energies of the process!. In
this paper we formulate the basic diagrammatic rules for
methodical perturbative calculus of the plasma particle nu
ber spectrumd^N(v)&/dv and discuss it in the simple cas
of a heat bath comprised of photons and electrons, which
for simplicity treated as scalar particles.

In Sec. II we review the basic concepts and techniq
needed from the theory of the largest-time equation~both for
T50 andTÞ0! and the Dyson-Schwinger equation. Rul
for the cut diagrams at finite temperature are derived
subsequently extended to the case when unheated field
present. It was already pointed out in@4# that the thermal cut
diagrams are virtually the Kobes-Semenoff diagrams@1# in
the Keldysh formalism@5#. This observation will allow us to
identify type-1 vertices in the real-time finite-temperatu
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diagrams with the uncircled vertices used in the~thermal! cut
diagrams, and similarly type-2 vertices will be identifie
with the circled, cut diagram vertices. As we want to restr
our attention to only some particular final particle states, f
ther restrictions on the possible cut diagrams must be
cluded. We shall study these restrictions in the last par
Sec. II.

As we shall show in Sec. III, the heat bath particle nu
ber spectrum can be conveniently expressed as a frac
While it is possible to compute the denominator by means
the thermal cut diagrams developed in Sec. II, the calcula
of the numerator requires more care. Using the Dys
Schwinger equation, we shall see in Sec. IV that it can
calculated through modified thermal cut diagrams. T
modification consists of the substitution in turn of each h
bath particle propagator by an altered one. We also show
there must be only one modification per diagram. From t
we conclude that from each individual cut diagram we gen
modified ones~n stands for the total number of heat ba
particle propagators in the diagram!. Furthermore, in the cas
when more types of heat bath particles are present, one m
be only interested in the number spectrum of some of the
The construction of the modified cut diagrams in such ca
follows the same procedure as in the previous situation.
find that only the propagators affiliated to the desired fie
must be altered.

In Sec. V the presented approach is applied to a toy mo
in which a gluon plasma is simulated by scalar photons,
we calculate the resulting changes in the number spectrum
the ‘‘plasma’’ particles. Section V ends with a qualitativ
discussion of the quark-gluon plasma simulated by sc
photons and electrons.

Finally, in the Appendix we derive, directly from the the
mal Wick’s theorem, the~thermal! Dyson-Schwinger equa
tion as well as other useful functional identities valid at fin
temperature.

II. BASIC TOOLS

A. Mean statistical value

The central idea of thermal QFT is based on the fact t
one cannot take the expectation value of an observablA
with respect to some pure state as generally all states h
nonzero probability to be populated and consequently
3634 © 1998 The American Physical Society
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57 3635HEAT BATH PARTICLE NUMBER SPECTRUM
must consider instead a mixture of states generally descr
by the density matrixr. The mean statistical value ofA is
then

^A&5Tr~rA!, ~2.1!

where the trace has to be taken over a complete set ofphysi-
cal states. For a statistical system in thermodynamical e
librium r is given by the Gibbs canonical distribution

r5
e2b~H2mN!

Tr~e2b~H2mN!!
5

e2bK

Z
; ~2.2!

here,Z is the partition function,H is the Hamiltonian,N is
the conserved charge~e.g., baryon or lepton number!, m is
the chemical potential,K5H2mN, and b is the inverse
temperature:b51/T (kB51).

B. Largest-time equation atT50

An important property inherited from zero-temperatu
QFT is the largest-time equation~LTE! @6–8#. Although the
following sections will mainly hinge on thethermalLTE, it
is instructive to start first with the zero-temperature one. T
LTE at T50 is a generally valid identity which holds for an
individual diagram constructed with propagators satisfy
certain simple properties. For instance, for the scalar the
with a coupling constantg one can define the following
rules:

Here iDF is the Feynman propagator,iD1 ( iD2) is corre-
sponding positive~negative! energy part ofiDF , the asterisk
means complex conjugation, and index 1~2! denotes atype-1
~type-2! vertex; the type-1 vertex has attached a factor2 ig
while the type-2 vertex bears a factorig. Using this prescrip-
tion, we can construct diagrams in configuration space. W
each diagram then can be associated a functionF(x1 ,...xn)
having all the second type vertices underlined. For exam
for the triangle diagram in Fig. 1 we have

FIG. 1. A one-loop triangle diagram.
ed

i-

e
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ry

h

e,

F~x1 ,x2 ,x3!5~2 ig !3iDF~x12x2!iDF

3~x12x3!iDF~x22x3!,

F~x1,x2 ,x3!5~2 ig !2~ ig !iD1~x12x2!iD1

3~x12x3!iDF~x22x3!,

F~x1,x2,x3!5~ ig !2~2 ig !~2 i !DF* ~x12x2!iD1

3~x12x3!iD1~x22x3!,

F~x1,x2,x3!5~ ig !3~2 i !DF* ~x12x2!~2 i !DF*

3~x12x3!~2 i !DF* ~x22x3!,

etc.
The LTE then states that for a functionF(x1 ,...,xn) cor-

responding to some diagram withn vertices

F~ ...,xi ,...!1F~ ...,xi ,...!50, ~2.3!

provided thatxi0 is the largest time and all other underlining
in F are the same. The proof of Eq.~2.3! is based on an
observation that the propagatoriDF(x) can be decompose
into positive and negative energy parts, i.e.,

iDF~x!5u~x0!iD1~x!1u~2x0!iD2~x!, ~2.4!

iD6~x!5E d4k

~2p!3 e2 ikxu~6k0!d~k22m2!. ~2.5!

Incidentally, forxi0 being the largest time this directly im
plies

iDF~xj2xi !5 iD2~xj2xi !,

2 iDF* ~xi2xj !5 iD2~xi2xj !,

iDF~0!52 iDF* ~0!. ~2.6!

As F(...,xi ,...) differs from F(...,xi ,...) only in the propa-
gators directly connected toxi—which are equal@see Eq.
~2.6!#—and in the sign of thexi vertex, they must mutually
cancel.

Summing up Eq.~2.3! for all possible underlinings~ex-
cluding xi!, we get the LTE where the special role of th
largest time is not manifest any more, namely,

(
index

F~x1 ,x2 ,...,xn!50. ~2.7!

The sum( index means summing over all possible distrib
tions of indices 1 and 2~or equivalently over all possible
underlinings!. The zero-temperature LTE can be easily refo
mulated for theT matrices. Let us recall that the Feynma
diagrams for theS matrix (S511 iT) can be obtained by
multiplying the correspondingF(x1 ,...,xn) with the plane
waves for the incoming and outgoing particles, and sub
quently integrate overx1 ,...,xn . Thus, in fixed volume
quantization a typicaln-vertex Feynman diagram is given b
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E )
i 51

n

dxi)
j

e2 ip j xmj

A2vpj
V

)
k

eiqkxmk

A2vqk
V

F~x1 ,...,xn!.

~2.8!

Here the momenta$pj% are attached to incoming particles
the vertices$xmj

%, while momenta$qk% are attached to out

going particles at the vertices$xmk
%. In order to distinguish

among various functionsF(x1 ,...,xn) with the same vari-
ablesx1 ,...,xn , we shall attach a subscriptl n to each func-
tion F. For instance, the functionF14

(x1 ,...,x4) correspond-
ing to the diagram

contributes tô q1q2u iTup1p2& by

E )
i 51

4

dxi

e2 i ~p11p2!x1

VA4vp1
vp2

ei ~q11q2!x4

VA4vq1
vq2

3@ iDF~x12x2!#2@ iDF~x22x3!#2@ iDF~x32x4!#2;

similarly, the functionF24
(x1 ,...,x4) corresponding to the

diagram

contributes tô q1q2u iTup1p2& by

E )
i 51

4

dxi

e2 i ~p11p2!x1

VA4vp1
vp2

ei ~q11q2!x4

VA4vq1
vq2

iDF~x12x2!iDF

3~x12x3!@ iDF~x22x3!#23 iDF~x42x3!iDF~x42x2!,

etc.
This can be summarized as

^$qk%u iTu$pj%&5(
n
E ••• E )

i 51

n

dxi(
l n

)
j

e2 ip j xmj

A2vpj
V

3)
k

eiqkxmk

A2vqk
V

Fl n
~x1 ,...,xn!. ~2.9!

Consider now the caseu$pj%&5u$qk%& ~let us call it ua&!.
From the unitarity conditionT2T†5 iT†T, we get
^auTua&2^auTua&* 5 i ^auT†Tua&. ~2.10!

On the other hand, by constructionF(x1,...,xn)
5F* (x1 ,...,xn), and thus@see Eq.~2.7!#

F~x1 ,...,xn!1F* ~x1 ,...,xn!52 (
index8

F~x1 ,...,xn!.

~2.11!

The prime over ‘‘index’’ in Eq.~2.11! indicates that we sum
neither over diagrams with all type-1 vertices nor diagra
with all type-2 vertices. Using Eq.~2.9! and identifying
u$qk%& with u$pk%& (5ua&) we get

^auTua&2^auTua&* 52 (
index8

^auTua& ~2.12!

or @see Eq.~2.10!#

^auT†Tua&5 i (
index8

^auTua&. ~2.13!

Equation ~2.12! is the special case of the LTE for theT
matrices. The finite-temperature extension of Eq.~2.13! will
prove crucial in Sec. IV.

Owing to theu(6k0) in D6(x) @see Eq.~2.5!#, energy is
forced to flow only towards type-2 vertices. From both t
energy-momentum conservation in each vertex and from
energy flow on the external lines, a sizable class of the d
grams on the right hand sides~RHS’s! of Eqs. ~2.12! and
~2.13! will be automatically zero. Particularly regions of e
ther first or second type vertices which are not connecte
any external line violate the energy conservation and thus
not contribute~no islands of vertices!; see Fig. 2. Conse
quently, the only surviving diagrams are those whose a
first type vertex area is connected to incoming particles
any second type vertex area is connected to outgoing o
From historical reasons the border between two regions w
different type of vertices is called acut and corresponding
diagrams are calledcut diagrams.

We have just proved a typical feature ofT50 QFT;
namely, any cut diagram is divided by the cut into two are
only; see Fig. 3. Equation~2.12!, rewritten in terms of the
cuttings, is the so-calledcutting equation~or Cutkosky’s cut-

FIG. 2. An example of a cut diagram in thew3 theory which
does not contribute to the RHS’s of Eqs.~2.12! and~2.13!. Arrows
indicate the flow of energy.

FIG. 3. Generic form of the cut diagram at theT50. The
shadow is on the second type vertex area.
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57 3637HEAT BATH PARTICLE NUMBER SPECTRUM
ting rules! @6–8#. One point should be added. Inserting t
completeness relation( f u f &^ f u51 into the LHS of Eq.
~2.13!, we get

(
f

^auT†u f &^ f uTua&5 i(
cuts

^auTua&. ~2.14!

It may be shown@4,6# that all the intermediate particles i
u f & correspond to cut lines. This has a natural extension w
^auT†Tua&→^auT†PTua& with P being a projection operato
(P5P†5P2) which eliminates some of the statesu f &. It is
easy to see that in such a case

^auT†PTua&5 i(
cuts

˜

^auTua&, ~2.15!

where tilde over(cuts indicates that one sums over the di
grams which do not have cut lines corresponding to partic
removed byP.

There is no difficulty in applying the previous results
spin-12 @6,7#. The LTE follows as before: The diagram wit
only iSF propagators~and 2 ig per each vertex! plus the
diagram with only (iŜF) propagator1 ~and ig per each ver-
tex! equals minus the sum of all diagrams with one up
n21 type-2 vertices~n being the total number of vertices!.
For gauge fields more care is needed. Using the Ward id
tities one can show@6# that type-1 and type-2 vertices in Eq
~2.12! and~2.13! may be mutually connected only byphysi-
cal particlepropagators@i.e., neither through the propagato
corresponding to particles with nonphysical polarizations
Faddeev-Popov~FP! ghosts and antighosts#.

C. Thermal Wick’s theorem „the Dyson-Schwinger equation…

The key observation at finite temperature is that for s
tems ofnoninteractingparticles in thermodynamical equilib
rium Wick’s theorem is still valid; i.e., one can decompo
the 2n-point ~free! thermal Green function into a product o
two-point ~free! thermal Green functions. This may be d
fined recursively by

^T @c~x1!•••c~x2n!#&b5(
j

j Þ i

«P^T @c~xi !c~xj !#&b

3K T S )
kÞ i ; j

c~xk! D L
b

,

~2.16!

where«P is the signature of the permutation of fermion o
erators~51 for boson operators! andT is the standard time
ordering symbol. We shall use, from now on, the subscripb,
emphasizing that the thermal mean value describes a sy
in thermodynamical equilibrium~at the temperatureb21!.
Note that the choice of ‘‘i ’’ in Eq. ~2.16! is completely ar-
bitrary. The proof can be found, for example, in@1,9,10#.

1The function iŜF(x), similarly as (iDF)* (x), interchanges the

roles ofS1 andS2. Unlike bosons, for fermionsiŜF(x) is not equal
to (iSF)* (x). Despite that, Eq.~2.12! still holds @6#.
n

s

n-

r

-

em

Similarly as atT50, Wick’s theorem can also be written fo
the ~free! thermal Wightman functions@9,11#, i.e.,

^c~x1!•••c~x2n!&b5(
j

j Þ1

«P^c~x1!c~xj !&b

3K )
kÞ1; j

c~xk!L
b

. ~2.17!

A particularly advantageous form of this is the so-call
Dyson-Schwinger equation~see the Appendix! which, at T
Þ0, reads

^G@c#c~x!F@c#&b5E dẑ c~x!c~z!&bK G@c#
dW F@c#

dc~z!
L

b

1E dẑ c~z!c~x!&b

3K G@c#dQ

dc~z!
F@c#L

b

, ~2.18!

where c(x) is an interaction-picture field andG@•••# and
F@•••# are functionals ofc. The arrowed variationsd/dc(z)
are defined as a formal operation satisfying two con
tions: namely,

dW

dcn~z!
@cm~x!cq~y!#5

dcm~x!

dcn~z!
cq~y!

1~21!pcm~x!
dcq~y!

dcn~z!

~2.19!

or

@cm~x!cq~y!#
dQ

dcn~z!
5~21!p

dcm~x!

dcn~z!
cq~y!

1cm~x!
dcq~y!

dcn~z!
, ~2.20!

with

dcm~x!

dcn~y!
5d~x2y!dmn . ~2.21!

The p is 0 for bosons and 1 for fermions; subscriptsm,n
suggest that several types of fields can be generally pres
Note, for bosons,dW F/dc5 FdQ /dc which we shall denote as
dF/dc. For more details see the Appendix.

D. Thermal largest-time equation

The LTE ~2.13! can be extended to the finite-temperatu
case, too. Summing up in Eq.~2.13! over all the eigenstate
of K(5H2mN) with the weight factore2bKi ~i labels the
eigenstates!, we get
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3638 57P. JIZBA
^TT†&b5 i (
index8

^T&b . ~2.22!

Let us consider the RHS of Eq.~2.22! first. The correspond-
ing thermal LTE and diagrammatic rules~Kobes-Semenoff
rules @1#! can be derived precisely the same way as atT50
using the previous, largest-time argumentation@1,12#. It
turns out that these rules have basically an identical form
those in the previous section, with an exception that n
^0u•••u0&→^•••&b . Note that labeling vertices by 1 and 2 w
have naturally got a doubling of the number of degrees
freedom. This is a typical feature of thereal-time formalism
in thermal QFT~here, in the so-calledKeldysh version@1#!.

We should also emphasize that it may happen that s
fields are not thermalized. For example, external partic
entering a heat bath or particles describing nonphysical
grees of freedom@13#. Particularly, if some particles~with
momenta$pj%! enter the heat bath, the mean statistical va
of an observableA is then

(
i

e2bKi

Z
^ i ;$pj%uAu i ;$pj%&5Z21Tr~r$pj %

^ e2bKA!,

r$pj %
5u$pj%&^$pj%u,

which we shall denote aŝA&$pj %,b
. From this easily follows

the generalization of Eq.~2.22!,

^TT†&$pk%,b5 i (
index8

^T&$pk%,b . ~2.23!

Unlike T50, we find that the cut diagrams have disco
nected vertex areas and no kinematic reasonings used in
section can, in general, get rid of them. This is because
thermal part2 of ^w(x)w(y)&b describes the absorption o
on-shell particle from the heat bath or the emission of o
into it. Thus, atTÞ0, there is no definite direction of transfe
of energy from a type-1 vertex to a type-2 one as ene
flows in both directions. Some cut diagrams neverthel
vanish. It is simple to see that only those diagrams surviv
which the nonthermalized external particles ‘‘enter’’ a d
gram via the first type vertices and ‘‘leave’’ it via the seco
type ones. We might deduce this from the definition
^T&$pj %,b

; indeed,

2Note that ^w(x)w(y)&b5^:w(x)w(y):&b1^0uw(x)w(y)u0& and
^:w(x)w(y):&b5* @d4k/(2p)3# f B(k0)d(k22m2)e2 ik(x2y), with
f B(k0)5(ebuk0u21)21.

FIG. 4. An example of nonvanishing cut diagrams at theT
Þ0. The heat bath consists of two different particles. External p
ticles are not thermalized.
s
w

f

e
s
e-

e

-
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e

e

y
s
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-
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(
index8

^T&$pj %,b
5 (

index8
(

i

e2bKi

Z
^ i ;$pj%uTu i ;$pj%&.

~2.24!

Note that we get the same set of thermal cut diagrams in
changing the summation( index8 with ( i . It is useful to start
then with ( index8^ i ;$pj%uTu i ;$pj%&. This is, as usual, de
scribed by the (T50) cutting rules. In the last section w
learned that the general structure of the corresponding
diagrams is depicted in Fig. 3; particularly the external p
ticles enter the cut diagram via type-1 vertices and leav
via type-2 ones. Multiplying each diagram~with the external
particles in the stateu i ;$pj%&! with the prefactore2bKi/Z and
summing subsequently overi , we again retrieve the therma
cut diagrams, though now it becomes evident that the p
ticles $pj% enter such a diagram only via type-1 vertices a
move off only through type-2 ones, since the summation
the (T50) cut diagrams from which it was derived does n
touch lines corresponding to unheated particles. Note tha
latter analysis naturally explains why the unheated partic
obey the (T50) LTE diagrammatic rules even in the therm
diagrams

Another vanishing comes from kinematic reason
Namely, three-leg vertices with all on-shell particles~1–2
lines! cannot conserve energy and momentum and con
quently the whole cut diagram is zero. As an illustration
us consider all the nonvanishing, topologically equivalent
diagrams3 of given type involved in a three-loop contributio
to i ( index8^T&pq,b ~see Fig. 4!.

Let us stress one more point. In contrast withT50, at
finite temperature the cut itself neither is unique nor defin
topologically equivalent areas~see Fig. 5!; only the number
of crossed legs is, by definition, invariant. This ambigu
shows that the concept of the cut is not very useful at fin
temperature and in the following we shall refrain from usi
it.

In Sec. IV it will prove useful to have an analogy of E
~2.23! for ^T†PT&b . HereP is the projection operator de
fined as

P5(
j

ua; j &^a; j u, ~2.25!

wherej denotes the physical states for the heat bath parti
anda labels the physical states for the outgoing, nontherm
ized particles. Let us deal witĥT†PT&b . Using Eq.~2.15!,
we acquire

3Let us emphasize that originally we had 64 possible cut d
grams.

r-

FIG. 5. The cut diagram from Fig. 3~c! demonstrates that the cu
can be defined in many ways but the number of crossed lines is
the same.



to

th
TE
is

er
r

b

a
na

-
a

e
en

n-

:

t

ed

t

final

w-

re

re.

th

in

an

-

m-
,

57 3639HEAT BATH PARTICLE NUMBER SPECTRUM
^T†PT&b5 i(
l

e2bKl

Z (
index8

˜

^ l uTu l &. ~2.26!

Interchanging the summations, we finally arrive at

^T†PT&b5 i (
index8

˜

^T&b , ~2.27!

where tilde over the( index8 means that we are restricted
consider the cut diagrams, with only~1–2!-particle lines cor-
responding to thea and j particles@i.e., ^0uw(x)w(y)u0& and
^c(x)c(y)&b , respectively#. The extension of Eq.~2.27! to
the case where some external, nonthermalized particles$pk%
are present is obvious, and reads

^T†PT&$pk%,b5 i (
index8

˜

^T&$pk%,b . ~2.28!

Finally, let us note that using the LTE, one may extend
previous treatment to various Green’s functions. The L
for Green’s functions is then a useful starting point for d
persion relations; see, e.g.,@1,12#.

III. HEAT BATH PARTICLE NUMBER SPECTRUM:
GENERAL FRAMEWORK

The cutting equation~2.28! can be fruitfully used for both
the partition functionZ and the heat bath particle numb
spectrumd^N(v)&/dv calculations. To see that, let us fo
simplicity assume that two particles~say, F1 ,F2! scatter
inside a heat bath. We are interested in the heat bath num
spectrum after two different particles~say,f1 ,f2! appear in
the final state. Except for the condition that the external p
ticles be different from the heat bath ones, no additio
assumption about their nature is needed at this stage.

The initial density matrixr i @i.e., the density matrix de
scribing the physical situation before we introduce the p
ticles F1(p1),F2(p2) into the oven# can be written as

r i5Zi
21(

j
e2bK j u j ;p1 ,p2&^ j ;p1 ,p2u, ~3.1!

where j denotes the set of occupation numbers for the h
bath particles. A long time after the scattering the final d
sity matrix r f reads

r f5Zf
21(

j
e2bK jPSu j ;p1 ,p2&^ j ;p1 ,p2uS†P†; ~3.2!

here,P is the projection operator projecting out all the no
heat-bath final states except for thef1(q1),f2(q2) ones.
The S matrix in Eq. ~3.2! is defined in a standard way
S511 iT. The Zf in Eq. ~3.2! must be different fromZi as
otherwiser f would not be normalized to unity. In order tha
r f satisfy the normalization conditionTr(r f)51, one finds

Zf5(
j

e2bK j^ j ;p1 ,p2uS†PSu j ;p1 ,p2&5^S†PS&p1p2 ,b Zi

5^T†PT&p1p2 ,b Zi . ~3.3!
e

-

er

r-
l

r-

at
-

The key point is that we have used in Eq.~3.3! theT matrix
because the initial stateuF1(p1),F2(p2)& is, by definition,
different from the final oneuf(q1),f2(q2)& and conse-
quentlyPS can be replaced byiPT. This allows us to cal-
culateZf using directly the diagrammatic technique outlin
in the preceding section.

From Eqs.~2.1! and ~3.2! one can directly read off tha
the number spectrum of the heat bath particles is

d^Nl~v!& f

dv
5E d3k

~2p!3 d1~v22k22ml
2!

3(
f

^ f ual
†~k;v!al~k;v!r f u f &

5E d3k

~2p!3 d1~v22k22ml
2!

3
^T†Pal

†~k;v!al~k;v!T&p1p2 ,b

^T†PT&p1p2 ,b
~3.4!

and, consequently,

^Nl& f5E d4k

~2p!3 d1~k22ml
2!

^T†Pal
†~k!al~k!T&p1p2 ,b

^T†PT&p1p2 ,b
,

~3.5!

where we have used the completeness relation for the
statesu f & and @P;a†a#50. The subscriptl denotes which
type of heat bath particles we are interested in. In the follo
ing the index will be mostly suppressed.

IV. MODIFIED CUT DIAGRAMS

To proceed further with Eqs.~3.4! and ~3.5!, we expand
the T matrix in terms of time-ordered interaction-pictu
fields, i.e.,

T@c#5(
n
E dx1••• E dxnan~x1 ,...,xn!

3T @c~x1!•••c~xn!#. ~4.1!

Herec represents a heat bath field in the interaction pictu
Other fields~i.e., f̄, f, andF! are included in the4 an . An
extension of Eq.~4.1! to the case where different heat ba
fields are present is natural. Employing Eq.~4.1! in
^T†PT&p1p2 ,b , one can readily see that this factorizes out
each term of the expansion apure thermal mean value
^•••&b . The general structure of each such thermal me
value is ^Gm@c#Fn@c#&b , whereFn@•••# and Gm@•••# are
the operators withn chronological andm antichronological-
time-ordered~heat bath! fields, respectively. Analogous fac

4When Fermi fields are involved, we have, for the sake of co
pactness, included in the argument ofc the space-time coordinate
the Dirac index and a discrete index which distinguishesca from

c̄a .
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torization is true in the expansion of^T†P†a†aPT&p1p2 ,b .

The only difference is that the pure thermal mean value
the form ^Gm@c#a†aFn@c#&b instead.5 In the case when
various heat bath fields are present,m5m11m21•••1mn ,
s

with ml denoting the number of the heat bath fields ofl th
type.

Applying the Dyson-Schwinger equation t
^Gm@c#a†aFn@c#&b twice and summing overn andm, we
get easily the following expression@cf. also Eq.~A11!#:
f

as

of

a
ously,

tes.
^T†Pal
†alT&p1p2 ,b5E dxdy$^c l~x!al

†&b^alc l~y!&b1~21!p^c l~x!al&b^al
†c l~y!&b%K T†dQ

dc l~x!
P

dW T

dc l~y!
L

p1p2 ,b

1E dxdy

2
$^c l~x!al&b^c l~y!al

†&b1~21!p^c l~x!al
†&b^c l~y!al&b%K T†dQ 2

dc l~y!dc l~x!
PTL

p1p2 ,b

1E dxdy

2
$^alc l~x!&b^al

†c l~y!&b1~21!p^al
†c l~x!&b^alc l~y!&b%K T†P

dW 2T

dc l~y!dc l~x!
L

p1p2 ,b

1^al
†al&b^T†PT&p1p2 ,b . ~4.2!

A similar decomposition for̂T†PT&p1p2 ,b would not be very useful@cf. Eq.~A18!#; instead we definê(T†PT)8&p1p2 ,b having

the same expansion as^T†PT&p1p2 ,b except for thean(•••)Pam
† (•••) are replaced byan(•••)Pam

† (•••) (nl1ml)/2. In this

formalism ^(T†PT)8&p1p2 ,b is

^~T†PT!8&p1p2 ,b5E dxdŷ c l~x!c l~y!&bK T†dQ

dc l~x!
P

dW T

dc l~y!
L

p1p2 ,b

1E dxdy

2
^T̄@c l~x!c l~y!#&bK T†dQ 2

dc l~y!dc l~x!
PTL

p1p2 ,b

1E dxdy

2
^T@c l~x!c l~y!#&bK T†P

dW 2T

dc l~y!dc l~x!
L

p1p2 ,b

, ~4.3!

with the T̄ being the antichronological ordering symbol. Comparing Eq.~4.3! with Eq. ~A19!, we can interpret the RHS o
Eq. ~4.3! as a sum overall possible distributions of one line~corresponding toc l! inside of each given (TÞ0) cut diagram
constructed out of ^T†PT&p1p2 ,b . As Eq. ~4.3! has precisely the same diagrammatical structure

^T†Pa†aT&p1p2 ,b2^a†a&b^T†PT&p1p2 ,b @cf. Eq. ~4.2!#, it shows that in order to compute the numerator6

dD^N(v)&/dv5d^N(v)& f /dv2 d^N(v)& i /dv one can simply modify the usual^T†PT&p1p2 ,b cut diagrams by the follow-
ing one-line replacements@cf. Eq. ~3.4!#.

~i! For neutral scalar bosons,

^w~x!w~y!&b →E d3k

~2p!3 d1~v22k22m2!$^w~x!a†~k;v!&b^a~k;v!w~y!&b1^w~x!a~k;v!&b^a†~k;v!w~y!&b%

5E d4k

~2p!3 d~k22m2!$ f B~v!@ f B~v!11#@d2~k01v!1d1~k02v!#1d1~k02v!@11 f B~v!#

2d2~k01v! f B~v!%e2 ik~x2y!, ~4.4!

where f B(v) is the Bose-Einstein distribution:f B(v)5 1/(ebuvu21). The termu(2k0) f B(v) describes the absorption of
heat bath particle, and so reduces the number spectrum: that is why the negative sign appears in front of it. Analog

^T @w~x!w~y!#&b →E d3k

~2p!3 d1~v22k22m2!$^a†~k;v!w~x!&b^a~k;v!w~y!&b1^a~k;v!w~x!&b^a†~k;v!w~y!&b%

5Remember thatP5P8^P 95uq1 ,q2&^q1 ,q2u ^ ( j u j &^ j u. HereP 95( j u j &^ j u behaves as an identity in the subspace of heat bath sta
6Hered^N(v)& i /dv5* @d3k/(2p)3# d1(v22k22m2)^a†(v,k)a(v,k)&b @cf. Eq. ~3.4!#.
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5E d4k

~2p!3 d~k22m2!@11 f B~v!# f B~v!e2 ik~x2y!@d1~k02v!1d2~k01v!#. ~4.5!

Similarly, for D^N& one needs the following replacements@cf. Eq. ~3.5!#:

^w~x!w~y!&b →E d4k

~2p!3 d~k22m2!$ f B~vk!@ f B~vk!11#1u~k0!@11 f B~vk!#2u~2k0! f B~vk!%e
2 ik~x2y!,

^T @w~x!w~y!#&b →E d4k

~2p!3 d~k22m2!@11 f B~vk!# f B~vk!e
2 ik~x2y!, ~4.6!

with vk5Ak22m2.
~ii ! For Dirac fermions, the Dirac field is comprised of two different types of excitations~mutually connected via charg

conjugation!, and so the corresponding number operatorN(v)5Nb(v)1Nd(v), with

Nb~v!5 (
a51,2

E d3k

~2p!3 d1~v22k22m2!ba
†~k;v!ba~k;v!,

Nd~v!5 (
a51,2

E d3k

~2p!3 d1~v22k22m2!da
†~k;v!da~k;v!.

Thus, the one-line replacements needed fordD^Nb(v)&/dv are

^cr~x!c̄s~y!&b → (
a51,2

E d3k

~2p!3 d1~v22k22m2!$^cr~x!ba
†~k;v!&b^ba~k;v!c̄s~y!&b

2^cr~x!ba~k;v!&b^ba
†~k;v!c̄s~y!&b%

5E d4k

~2p!3 d1~k22m2!d~k02v!~k”1m!rs$@12 f F~v!#2 f F~v!@12 f F~v!#%e2 ik~x2y!, ~4.7!

where f F(v) is the Fermi-Dirac distribution,f F(v)5 1/eb(uvu2m)11, and

^T @cr~x!c̄s~y!#&b → (
a51,2

E d3k

~2p!3 d1~v22k22m2!$^ba~k;v!cr~x!&b^ba
†~k;v!c̄s~y!&b

2^ba
†~k;v!cr~x!&b^ba~k;v!c̄s~y!&b%

52E d4k

~2p!3 d1~k22m2!d~k02v!~k”1m!rs f F~v!@12 f F~v!#e2 ik~x2y!. ~4.8!

Correspondingly, forD^Nb& we need

^cr~x!c̄s~y!&b →E d4k

~2p!3 d1~k22m2!~k”1m!rs$@12 f F~v!#2 f F~v!@12 f F~v!#%e2 ik~x2y!,

^T @cr~x!c̄s~y!#&b →2E d4k

~2p!3 d1~k22m2!~k”1m!rs f F~v!@12 f F~v!#e2 ik~x2y!. ~4.9!

For thed-type excitations the prescription is very similar. Actually, in order to getdD^Nd(v)&/dv, the following substitutions
must be performed in Eqs.~4.7!–~4.9!: u(k0)→u(2k0), f F→(12 f F), andm→2m.

~iii ! For gauge fields in the axial temporal gauge (A050), the temporal gauge is generally incorporated in the gauge fix
sector of the Lagrangian and particularly

Lfix52
1

2a
~A0!2, a→0. ~4.10!

The principal advantage of the axial gauges arises from the decoupling the FP ghosts in the theory. This statement is
trivial in QED as any linear gauge~both for covariant and noncovariant cases! brings this decoupling automatically@1#. A
particular advantage of the temporal gauge comes from an elimination of nonphysical scalar photons from the very be

Let us decompose a gauge fieldAi , i 51,2,3, into the transverse and longitudial parts, i.e.,Ai5Ai
T1Ai

L , with
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Ai
T5S d i j 2

] i] j

]W2 D Aj and Ai
L5

] i] j

]W2
Aj , ~4.11!

and use the sum over gauge-particle polarizations,

(
l51

2

« i
~l!~k!« j

~l!~k!5d i j 2
kikj

k2 , ~4.12!

with « (l)(k) being polarization vectors; then, fordD^NT(v)&/dv we get the following one-line replacements:

^Ai
T~x!Aj

T~y!&b →(
l51

2 E d3k

~2p!3
d1~v22k22m2!^Ai

T~x!al
†~k;v!&b^al~k;v!Aj

T~y!&b

1^Ai
T~x!al~k;v!&b^al

†~k;v!Aj
T~y!&b%

5S d i j 2
] i] j

]W2 D @Eq. ~4.4!#,

^T @Ai
T~x!Aj

T~y!#&b →(
l51

2 E d3k

~2p!3
d1~v22k22m2!^Ai

T~x!al
†~k;v!&b^Ai

T~y!al~k;v!&b

1^Ai
T~x!al~k;v!&b^Ai

T~x!al
†~k;v!&b

5S d i j 2
] i] j

]W2 D @Eq. ~4.5!#. ~4.13!
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The replacements needed forD^NT& can be concisely ex
pressed as

^•••&b→S d i j 2
] i] j

]W2 D @Eq. ~4.6!#. ~4.14!

As for the longitudial~nonphysical! degrees of freedom, it is
obvious that

^Ai
L~x!Aj

L~y!&b , ^T@Ai
L~x!Aj

L~y!#&b→0. ~4.15!

Equations~4.4!–~4.14! can be most easily derived in th
finite-volume limit; e.g., for a scalar field we reformula
w(x) as

w~x!5(
r

Ar

A2ErV
e2 iEr t1 ikrx1

Ar
†

A2ErV
eiEr t2 ikrx,

rescaling the annihilation and creation operators by defin
a(k)5A2EkVAk in such a way that@Ak ;Ak8

†
#5dkk8 @so that

^Ak
†Ak8&b5dkk8 f B(k0)#, while *d3k/(2p)3→(1/V) (k .
The replacements~4.4!–~4.15! are meant in the following

sense: First, one constructs all theTÞ0 diagrams for
^T†PT&p1p2 ,b , using the LTE~2.28! and the rules mentione
therein. In order to calculate the numerator of Eqs.~3.4! or
g

~3.5! we simply replace~using corresponding prescriptions!
one heat bath particle line in each cut diagram and this
placement must sum for all the possible heat bath part
lines in the diagram. If more types of heat bath particles
present, we replace only those lines which correspond
particles whose number spectrum we want to compute~see
Fig. 6!.

The terms in the replacements~4.4!–~4.14! have a direct
physical interpretation. Thef (vk) and @11(21)pf (vk)#
can be viewied as the absorption and emission of the h
bath particles, respectively@3#. The term f (vk)@1
1(21)pf (vk)# describes the fluctuations of the heat ba
particles. This is because for the noninteracting heat b
particles ^(nk2^nk&b)2&b5 f (vk)@11(21)pf (vk)#. The
substituted propagators can be therefore schematically
picted as

FIG. 6. The numerator of Eqs.~3.4! and~3.5! can be calculated
using the modified cut diagrams for^T†PT&p1p2 ,b . As an example
we depict all the possible contributions to the numerator deri
from the cut diagram on Fig. 4~c!. The wavy lines and thin lines
describe the heat bath particles. The crossed lines denote the
stituted propagators; in this case we wish to calculate the thin-
particle number spectrum.
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Collecting all the contributions from emissions, abso
tions, and fluctuations separately, one can schematic
write

d^N~v!& f

dv
5

d^N~v!& i

dv
1Femission~v!1Fabsorption~v!

1Ffluc~v!, ~4.16!

where, for instance, for neutral scalar bosons,

Femission~v!5Zf
21E d4k

~2p!3 d1~k22m2!d~k02v!

3@11 f B~v!#K T†dQ

dc~x!
P

dW T

dc~y!
L

p1p2 ,b

.

Using Eq.~4.5!, it is easy to write down analogous expre
sions forFabsorptionand Ffluc. To the lowest perturbative or
der, the form~4.16! was obtained by Landshoff and Taylo
@3#.

V. MODEL PROCESS

A. Basic assumptions

To illustrate the modified cut diagram technique, we sh
restrict ourselves to a toy model, namely, to a scattering
two neutral scalar particlesF ~pions! within a photon heat

FIG. 7. The modified cut diagrams involved in an order-e2 con-
tribution to the photon number spectrum. Dashed lines: phot
Solid lines:f, f† particles. Bold lines:F particles.
-
lly

ll
f

bath, with a pair of scalar charged particlesf,f̄ ~‘‘muon’’
and ‘‘antimuon’’! left as a final product. Both initial and fina
particles are supposed to be unheated. We further ass
that the heat bath photonsA are scalars; i.e., the heat ba
Hamiltonian has the form

Hhb5
1

2
~]nA!22

mg
2

2
A2.

In order to mimic the scalar electrodynamic, we have cho
the interacting Hamiltonian entering in theT matrix as

H in5
l

2
F2ff†1S eA1

e2

2
A2Dff†.

B. Calculations

We can now compute an order-e2 contribution to the
dD^Ng(v)&/dv. The evaluation of thedD^Ng(v)&/dv is
straightforward. In Fig. 7 we list all the modified cut dia
grams contributing to an ordere2.

Note that diagrams~b! and~c! are topologically identical.
Similarly, diagrams~e!, ~f!, ~h!, ~i!, and ~j! should be taken
with combinatorial factor of 2~corresponding diagrams with
a heat bath particle line on the bottom solid line are n
shown!. Of course, diagram~g! vanishes for kinematic rea
sons. For instance, in order to calculate the contribution fr
diagram~a! ~see also Fig. 8! we go back to Eq.~2.9! and to
prescriptions~4.4! and ~4.5!, so we get

s.
FIG. 8. The diagram~a! with a corresponding kinematics.
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~a!5
2l2e2

V24vp1
vp2

E d4x1d4x2d4y1d4y2e2 i ~p11p2!x1ei ~p11p2!x2iDF~y12x1!iDF~y22x1!

3 iD2~y12x2!iD2~y22x2! E d4k

~2p!3 d~k22m2!@11 f B~v!# f B~v!@d1~k02v!1d2~k01v!#e2 ik~y12y2!

5
l2e2t

V4vp1
vp2

~2p!5 f B~v!@11 f B~v!# E d4kd4q3d4q4d1~q3
22mm

2 !d1~q4
22mm

2 !

3d~k02v!H 1

22q3k1mg
2

1

2q4k1mg
2 1

1

2q3k1mg
2

1

22q4k1mg
2J d~k22mg

2!d4~2p12p21q11q2!. ~5.1!
e

in

ns
i

a
o

sin

a

o
n-
We have dropped thei« prescription in the propagators sinc
adding~subtracting! an on-shell momentaq1;2 to ~from! an
on-shell momenta k we cannot fulfill the condition
(k6q1;2)

25mm
2 . As is usual, we have assumed that our

teraction is enclosed in a ‘‘time’’ and volume box~t andV,
respectively!. Analogously one can calculate contributio
from other diagrams in Fig. 7. Let us emphasize that it
necessary to give sense to graphs~e!, ~h!, ~i!, and~j! as these
suffer with the pinch singularity; the muon-particle propag
tor (p1;2

2 2m2)21 has to be evaluated at its pole because
the presence of an on-shell line~1–2 line! with the same
momenta. Some regularization is obviously necessary. U
the formal identity@1#
-

s

-
f

g

1

x6 i«
d~x!52

1

2
d8~x!7 ip@d~x!#2, ~5.2!

we discover that the unwantedd2 mutually cancel between
~e! and ~h! diagrams@similarly for ~i! and ~j! diagrams#. An
alternative ~but lengthier! way of dealing with the latter
pinch singularity, i.e., switching off the interaction with
heat bath in the remote past and future, is discussed in@14#.
Evaluating all the diagrams~note that we should attach t
each diagram the factor of 1/2! coming from a Taylor expa
sion of theT matrix!, we are left with@c.f. Eq. ~4.16!#
Femission~v!1Fabsorption~v!5
tl2e2

^TPT†&p1p2 ,bV8vp1
vp2

~2p!5 E d4kd~k22mg
2!d~k02v!E d4q1d4q2d1~q1

22mm
2 !

3d1~q2
22mm

2 !$K1@11 f B~v!#d4~2Q1q11q21k!2K2f B~v!d4~2Q1q11q22k!%

~5.3!

and

Ffluct~v!5
tl2e2f B~v!@11 f B~v!#

^TPT†&p1p2 ,bV8vp1
vp2

~2p!5 E d4kd~k22mg
2!d~k02v!E d4q1d4q2d1~q1

22mm
2 !d1~q2

22mm
2 !

3$d4~2Q1q11q21k!K11d4~2Q1q11q22k!K222d4~2Q1q11q2!K3%

1
tl2e2f B~v!@11 f B~v!#

^TPT†&p1p2 ,bV8vp1
vp2

~2p!5 E d4kd~k22mg
2!d~k02v!E d4q1d4q2d4~2Q1q11q2!

3H S 12
1

2q1k2mg
2 1

1

2q1k1mg
2D d1~q2

22mm
2 !

]

]mm
2 d1~q1

22mm
2 !1~q1↔q2!J ~5.4!

with K15(1/2q1k1mg
211/2q2k1mg

2)2, K25(1/2q1k2mg
21 1/2q2k2mg

2)2, K35 2/(2q1k2mg
2)(2q2k1mg

2), and

Q5p11p2 . The relevant@i.e., order-e0 ~see Fig. 9!# term for ^TPT†&p1p2 ,b reads

^TPT†&p1p2 ,b5
l2t

16Vvp1
vp2

~2p!2 E d4q1d4q2d1~q1
22mm

2 !d1~q2
22mm

2 !d4~2Q1q11q2!

5
l2t

64Vvp1
vp2

uQu~2p!
AQ224mm

2 . ~5.5!
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Equations~5.3! and~5.4! are analogous to the result obtain
in @3# for the decay. In order to understand their structure,
us deal with the number spectrum for small7 v’s. To do this,
we change the integration variables

q1→q17
1

2
k,

q2→q27
1

2
k. ~5.6!

These changes lead to

~2qik6mg
2!d1~q1

22mm
2 !d1~q22mm

2 !d4~2Q1q11q26k!

→2qikd1~q1
22M27X!d1~q2

22M27Y!

3d4~2Q1q11q2!, ~5.7!

where M25mm
2 2 1

4 mg
2 , X5q1k, and Y5q2k. In addition,

transformations~5.6! have unite Jacobian. If one Taylor ex
pands Eq.~5.7! in terms ofX andY, then one gets succes
sively higherv contributions to Eqs.~5.3! and~5.4!. Expand-
ing Eq. ~5.3! to the first order inX andY, and keeping only
temperature-dependent pieces, we have

^TPT†&p1p2 ,b

8Vvp1
vp2

t
@Femission~v!1Fabsorption~v!#

;
l2e2

~2p!5 f B~v!E d4q1d4q2d~k22mg
2!d~k02v!A,

~5.8!

with

A5
]

]M
1
2
E d4q1d4q2d1~q1

22M1
2!d1~q2

22M2
2!~4KX!

3d4~Q2q12q2!uM15M25M .

Here K5(1/2q1k11/2q2k)2 @we have performed transfor
mationq1↔q2 in order to express Eq.~5.8! solely in terms
of X#. As A is a Lorentz scalar, it must depend onk only via
product (kQ). One can thus evaluateA in the frame where
Q5(Q0 ,0) and then replacevQ0 by (kQ) ~see also@3#!.
Straightforward calculations show that

A5
2~2p!~kQ!3

uQuAQ2

4
2M2F M

uQu
~kQ!21mg

2S uQu3

4
2MQ2D G2

.

~5.9!

Recalling Eq.~5.5!, we get

7So we implicitly assume that the photon massmg is sufficiently
small.
t

Femission~v!1Fabsorption~v!

;
Q2f B~v!e2

p2M2AQ0
22Q2AQ224M2AQ224mm

2

3H lnS ~vQ01ukuuQu!21mg
2 Q2

M2 S Q2

4
2M2D

~vQ02ukuuQu!21mg
2 Q2

M2 S Q2

4
2M2D D

1

mg
2S Q2

4
2M2D

M2

Q2 ~vQ02ukuuQu!21mg
2S Q2

4
2M2D

2

mg
2S Q2

4
2M2D

M2

Q2 ~vQ01ukuuQu!21mg
2S Q2

4
2M2D J ~5.10!

with uku5Av22mg
2 and uQu5AQ0

22Q2. Equation ~5.10!
takes a particularly simple form ifmg is negligibly small
~i.e., if mg!v!; then,

Femission~v!1Fabsorption~v!

;
2 f B~v!e2

p2

Q2

mm
2AQ0

22Q2~Q224mm
2 !

3 lnS Q01AQ0
22Q2

Q02AQ0
22Q2D . ~5.11!

For smallv one may replacef B(v) by bv. As a result, the
leading behavior ofFemission1Fabsorptionfor smallv goes like
v21, provided mg!v. Let us mention that parts propor
tional tov22 have mutually canceled in the zeroth order o
Taylor expansion.

Similarly as in the previous case we can evaluateFfluct.
Performing transformation~5.6!, and expanding Eq.~5.4! to
the first order inX andY, we get

FIG. 9. The lowest-order cut diagram for^TPT†&p1p2 ,b .
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^TPT†&p1p2 ,b

8Vvp1
vp2

t
Ffluct~v!

;
l2e2

~2p!5 f B~v!@11 f B~v!#

3E d4q1d4q2d~k22mg
2!d~k02v!B, ~5.12!

with
e

a

d
b

B5E d4q1d4q2d4~Q2q12q2!S ]

]mm
2 D d1~q1

22mm
2 !

3d1~q2
22mm

2 !1E d4q1d4q2d4~Q2q12q2!

3H S ]

]M D 2

22S Qk

q1kD ]2

]M1]M2
J

3d1~q1
22M1

2!d1~q2
22M2

2!u
M15M25M

.

Direct calculations lead to
B5
2p~kQ!2

Q2~Q224M2!3/2H M2

FM2

Q2 ~kQ!21mg
2S Q2

4
2M2D G 2

S Q2

4
2M2D ~2M22Q2!mg

2

FM2

Q2 ~kQ!21mg
2S Q2

4
2M2D G2J

2
p

uQuAQ224M2
2

2p

uQu~Q224M2!3/2.

After some analysis we finally get

Ffluct~v!;
f B~v!@11 f B~v!#mge2

4p2M2AQ0
22Q2AQ224mm

2 5 uQu

M F arctgS M

uQu
~vQ01ukuuQu!

mgAQ2

4
2M2

D 2arctgS M

uQu
~vQ02ukuuQu!

mgAQ2

4
2M2

D G
1

~2M22Q2!mg

2AQ224M2 F vQ01ukuuQu

M2

Q2 ~vQ01ukuuQu!21mg
2S Q2

4
2M2D 2

vQ02ukuuQu

M2

Q2 ~vQ02ukuuQu!21mg
2S Q2

4
2M2D G 6

2
f B~v!@11 f B~v!#ukue2

p2~Q224mm
2 !

. ~5.13!
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Expression~5.13! considerably simplifies in the limitmg→0.
In the latter case

Ffluct;2
f B~v!@11 f B~v!#ve2

p2~Q224mm
2 !

, ~5.14!

and so the leading behavior forFfluct at smallv andmg!v
is dominated byv21. Note that separate contributions to th
zeroth order of a Taylor expansion ofFfluc behave asv22

but they cancel between themselves, leaving behind p
proportional at worst tov21. The minus sign in Eq.~5.14!
reflects the fact that the fluctuations tend to suppress an
crease in the particle number spectrum whenv is small. On
the other hand, from Eq.~5.11! we see that the emissions an
absorptions stimulate an increase in the particle num
spectrum for smallv.
rts

in-

er

A result similar to Eqs.~5.11! and~5.14! has been derived
by Landshoff and Taylor@3# for a decay using proper scala
electrodynamics, though in their case a contribution from
emission and absorption dominated over fluctuations
small v. Note that in our model both contributions are
comparable size atv;0. The former feature is inherentl
connected with the fact that our ‘‘photons’’ are scalar p
ticles. If photons were vector particles, an additional pho
momentumkm would go with each three-line photon-muo
vertex and so one might expect that the contributions~5.11!
and ~5.14! would ‘‘soften’’ at small v. We have checked
explicitly that for zero-mass photons in the axial tempo
gauge~i.e., A050! this is indeed the case, and it was foun
that Femission1Fabsorption}v21 while Ffluct}v.

Until now we have supposed that our heat bath conta
only ~scalar! photons in thermal equilibrium. However, on
could similarly treat a heat bath which is comprised of ph
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tons and charged particles, let us say electrons, mutually
existing in thermal equilibrium. To be more specific, let
assume that the heat bath photonsA and electronsC are both
scalars so the heat bath Hamiltonian takes the form

Hhb5Hg1He1eACC†1
e2

2
A2CC†,

He5]nC]nC†2me
2CC†, ~5.15!

Hg5
1

2
~]nA!22

mg
2

2
A2,

and theT-matrix interacting HamiltonianH in reads

H in5
l

2
F2ff†1S eA1

e2

2
A2DCC†1S eA1

e2

2
A2Dff†.

It is usually argued@15,16# that the interacting pieces i
Hhb can be dropped provided thatt i→2` andt f→`. Since
we assume that ‘‘pions’’ are prepared in the remote past
‘‘muons’’ are measured in the remote future, we shall acc
in the following this omission. Among others, the form
allows us to use safely Wick’s theorem~2.16! and Dyson-
Schwinger equation~2.18!.

We can now approach calculating both the photon a
electron number spectrum, i.e.,dD^Ng(v)&/dv and
dD^Ne(v)&/dv, respectively. As fordD^Ng(v)&/dv, an
order-e2 contribution is clearly done only by diagrams
Fig. 7 as there are no relevant graphs with electron vert
contributing to this order, and so Eqs.~5.10! and ~5.13! still
remain true. On the other hand, there is no order-e2 contri-
bution todD^Ne(v)&/dv. The lowest order ine ~keepingl2

fixed! is e4. This brings richer diagrammatic structure th
in the photon case. In Fig. 10 we list all the generating th
mal diagrams contributing to an ordere4.

It is easy to see that out of these 6 generating ther
diagrams we get 43 nonvanishing and topologically
equivalent modified cut diagrams; for example, from F
10~c! we have only those diagrams which are depicted
Fig. 11. Note that the graphs of Fig. 11 must be multiplied
a factor of four as there are two equivalent insertions of

FIG. 10. The generating thermal diagrams involved in an ord
e4 contribution to the electron number spectrum. Dashed lines: p
tons. Thin lines:f, f† particles. Bold lines:F particles. Half-bold
lines: electrons.

FIG. 11. The nonvanishing modified cut diagrams from F
10~c!.
o-

d
t

d

es
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-
.
n
y
e

modified electron line and two equivalent distributions of t
photon-muon vertex~so together with 1/2! from a Taylo
expansion of theT matrix we get the symmetry factor 2!.
Analogously we get ten inequivalent modified cut diagra
from Fig. 10~a!; seven from~b!; eight from~d!; six from ~e!,
and eight from~f!. The actual electron number spectrum c
culations are thus rather involved.

Nevertheless, one might evaluate fairly quick
Femission(ve)1Fabsorption(ve) as there are only three dia
grams which contribute, namely,

Let us recall that in the final state we must have, apart fr
the heat bath particles, only two ‘‘muons,’’ and so the d
gram

cannot contribute to dD^Ne(v)&/dv. Subtracting a
temperature-independent part, we are left with

Femission~ve!1Fabsorption~ve!

5
tl2e4f B~ve!

^TPT†&p1p2 ,bVvp1
vp2

~2p!8

3E d4q7d4qed
1~q7

22me
2!d~qe

22me
2!d~qe

02ve!

3E d4q2d4q3d1~q2
22mm

2 !d1~q3
22mm

2 !

3$K1d4~2Q1q21q31q72qe!

2K2d4~2Q1q21q31q71qe!%, ~5.16!

with

K15
1

~2q2Q1Q21 i e!

1

~2q3Q1Q22 i e!

3
1

~22q7qe12me
22mg

2!2 ,

K25K1~qe→2qe!.

If we are interested in the qualitative behavior of E
~5.16! at smallv’s, one needs to perform an integration ov
pe only. In order to keep our calculations as simple as p
sible, let us assume thatme5mg50. Equation~5.16! can
now be handled in a similar way as in the photon heat b
case. We first perform a transformation

r-
o-

.
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q7→q77qe ,

qe→qe .

So Eq.~5.16! now reads

Eq. ~5.16!5
tl2e4f B~ve!

^TPT†&p1p2 ,bVvp1
vp2

~2p!8

3E d4q2d4q3d1~q2
22mm

2 !d1~q3
22mm

2 !

3
1

~2q2Q1Q21 i e!

1

~2q3Q1Q22 i e!
B,

~5.17!

where

B5E d4q7d4qe

~2q7qe!
2 $d1~q7

21X!2d1~q7
22X!%d~qe

2!

3d~q7
02ve!d

4~2Q1q21q31q7!,

with X52q7qe . As before we might expandB in terms of
X. The first surviving term reads

B;E d4q7d4qe@]q
7
2d~q7

2!#d4

3~2Q1q21q31q7!
2X

~2q7qe!
2

52ve
0]m2E d4q7d~q7

22m2!d4~2Q1q21q31q7!

3
1

uq7u
lnS q7

02uq7u
q7

01uq7u D U
m50

, ~5.18!

and so B}ve
0 , and consequently Femission(ve)

1Fabsorption(ve)}ve
21 . Straightforward application of the

previous mathematical operations toFfluct(ve) reveals that
Ffluct(ve)}ve

21 as well. Let us mention that the separa
contributions present inFemission(ve), Fabsorption(ve), and
Ffluct(ve), behave asve

22 but they mutually cancel, leaving
behind terms proportional at worst tove

21 .
Surprisingly enough, we have found that, for smallv, our

heat bath~5.15! changes due to scatteringFF→ff̄ in such
a way that the rate of change in the electron number sp
trum has qualitatively similar behavior~i.e., v21! as the rate
of change in the photon number spectrum. This is so p
vided one assumes that both electrons and photons are m
less particles. Clearly,v22 behavior would be disastrous a
it would suggest that the energy densityv dN/dv of the heat
bath particles behaves asv21 which would, if integrated,
produce an infinite contribution to the total energy carried
by the heat-bath particles.

VI. CONCLUSIONS

In this paper we have formulated a systematic method
studying the heat bath particle number spectrum using m
c-

-
ss-

f

r
i-

fied cut diagrams. In particular, for the quark-gluon plas
in thermodynamical equilibrium our approach should be u
ful as an effective alternative to the Landshoff-Taylor@3#
approach. The method used in@3# ~i.e., to start from first
principles! suffers from the lack of a systematic comput
tional approach for higher orders in coupling constants. O
of the cornerstones of our formalism is the largest-time eq
tion ~LTE!. We have shown how the zero-temperature LT
can be extended to finite temperature. During the cours
this analysis, we have emphasized some important prope
of the finite-temperature extension which are worth menti
ing. First, many of the kinematic rules valid for zero
temperature diagrams cannot be directly used in the fin
temperature ones. This is because the emission or absor
of heat bath particles make it impossible to fix some parti
lar direction to a diagrammatic line. It turns out that o
finds more diagrams than one used to have at zero temp
ture. The most important reductions of the diagrams h
been proved. The rather complicated structure of the fin
temperature diagrams brings into play another complicat
uncuttable diagrams. It is well known that at zero tempe
ture one can always make only one cut in each cut diag
~this can be viewed as a consequence of the unitarity co
tion!. This is not true, however, at finite temperature. W
have found it as useful to start fully with the LTE analys
which is in terms of type-1 and type-2 vertices. This la
guage allows us to construct systematically all the cut d
grams. We have refrained from an explicit use of the cuts
finite-temperature diagrams as those are ambiguous
therefore rather obscure the analysis.

The second, rather technical, corner stone is the ther
Dyson-Schwinger equation. We have developed a formal
of the arrowed variations acting directly on field operator
This provides an elegant technique for dealing in a pract
fashion with expectation values~both thermal and vacuum!
whenever functions or functionals of fields admit the deco
position~A1!. The merit of the Dyson-Schwinger equation
that it allows us to rewrite an expectation value of som
functional of the field in terms of expectation values of le
complicated functionals. Some illustrations of this and fu
ther thermal functional identities are derived in the Appe
dix.

When we have studied the heat bath particle number s
trum, we applied the Dyson-Schwinger equation both to
numerator and denominator of the corresponding express
The results were almost the same. A simple modification
one propagator rendered both equal. We could reflect this
a diagrammatical level very easily as the denominator w
fully expressible in terms of thermal cut diagrams. Our fin
rule for the heat bath particle spectrum is

dD^N~v!&
dv

5
^T†PT&p1p2 ,b

M

^T†PT&p1p2 ,b
, ~6.1!

with T being theT matrix, P being the projection operato
onto final states,p1 ,p2 being the momenta of particles in th
initial state,b being the inverse temperature, andM being an
abbreviation for the modified diagrams. Modification of th
cut diagrams consists of the substitution in turn of each h
bath particle line by an altered one. This substitution must
done in each cut diagram. Replacement must be only one
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modified diagram. Our approach is demonstrated on a sim
model where two scalar particles~‘‘pions’’ ! scatter, within a
photon heat bath, into a pair of charged particles~‘‘muon’’
and ‘‘antimuon’’! and we explicitly calculate the resultin
changes in the number spectra of the photons. It is also
cussed how the results will change if the photon heat bat
replaced with a photon-electron one.
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APPENDIX: FUNCTIONAL FORMALISM
AND GENERAL BACKGROUND

Equation ~2.18! gives us an alternative definition o
Wick’s theorem in terms of the ‘‘functional derivation’
d/dc(x). We refer to Eq.~2.18! as the Dyson-Schwinge
equation because the classicalT50 Dyson-Schwinger equa
tions are implied by it. Let us first show that Eq.~2.18! is
consistent with Wick’s theorem~2.16! and~2.17!. To be spe-
cific, let us consider an ensemble of noninteracting partic
le

is-
is

-
d

s

in thermodynamical equilibrium. In order to keep the wo
transparent, we shall suppress all the internal indices. Th
is no difficulty whatsoever in reintroducing the necessa
details. Let us first realize that for any~well-behaved! func-
tional the following Taylor’s expansion holds@17#:

X@c#5(
n
E dx1•••E dxnan~x1 ,...,xn!c~x1!•••c~xn!.

~A1!

The same is true ifc is an operator instead. In the latter ca
the an(•••) are not generally symmetric8 in the x’s. When
Fermi fields are involved, we might, for the sake of compa
ness, include in the argument ofc the space-time coordinate
the Dirac index, and a discrete index which distinguishesca

from c̄a . In the latter case*dx→(*dx, where the summa-
tion runs over the discrete indices. With this convention,
expansion~A1! holds even for the Fermi fields. An extensio
of Eq. ~A1! to the case where different fields are presen
natural. Particularly important is the case whenc is a field in
the interaction picture; using Wick’s theorem and decom
sition ~A1! one can then write
al

q.
ads to
^G@c#c~x!F@c#&b5(
m,n

S E dxD nS E dyD m

an~x1 ,...,xn!bm~y1 ,...,ym!K S )
k

n

c~xk!Dc~x!)
k8

m

c~yk8!L
b

5(
n

S E dxD n

an~x1 ,...,xn!(
l

n

~61!n2 l^c~xl !c~x!&bK)
kÞ l

n

c~xk!F@c#L
b

1(
m

S E dyD m

bm~y1 ,...,ym!(
l

m

~61! l 21^c~x!c~xl !&bK G@c# )
k8Þ l

m

c~yk8!L
b

, ~A2!

with (*dx)n5*dx1•••*dxn . The ‘‘2’’ stands for fermions and ‘‘1’’ for bosons. On the other hand, using the form
prescriptions~2.19! and ~2.21! for dW /dc(x) one can read

E dẑ c~x!c~z!&bK G@c#
dW F@c#

dc~z!
L

b

5(
m

S E dyD m

bm~y1 ,...,ym!E dẑ c~x!c~z!&b(
l

m

~61! l 21d~z2yl !K G@c# )
k8Þ l

m

c~yk8!L
b

5(
m

S E dyD m

bm~y1 ,...,ym!(
l

m

~61! l 21^c~x!c~yl !&bK G@c# )
k8Þ l

m

c~yk8!L
b

. ~A3!

A similar expression holds for*dẑ c(x)c(z)&b^$G@c#dQ /dc(z)% F@c#&b . Putting the latter two together we get precisely E
~A2!. This confirms the validity of Eq.~2.18!. It is easy to persuade oneself that exactly the same sort of arguments le

^c~x!F@c#&b5E dẑ c~x!c~z!&bK dW F@c#

dc~z!
L

b

, ~A4!

8If X5X@c,]c#, thean may also contain derivations working on the various fields.
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^T $c~x!F@c#%&b5E dẑ T @c~x!c~z!#&bK T S dW F@c#

dc~z!
D L

b

, ~A5!

^G@c#T $c~x!F@c#%&b5E dẑ T @c~x!c~z!#&bK G@c#T S dW F@c#

dc~z!
D L

b

1E dẑ c~z!c~x!&bK G@c#dQ

dc~z!
T ~F@c#!L

b

,

~A6!

etc., withT being either the chronological or antichronological time ordering symbol. At this stage it is important to r
that from the definition ofdW /dc(x) directly follows that@dW /dc(x) ;dW /dc(y)#750 ~‘‘ 2’’ holds for bosons and ‘‘1’’ for
fermions!. Indeed,

dW 2F@c#

dc~x!dc~y!
5 (

n52
(
i , j

S E dxD n22

@an~x1 ...x
↓
xi

..y
↓
xj

...xn!6an~x1 ...y
↓
xi

...x
↓
xj

...xn!#~61! i 1 j )
mÞ i , j

n

c~xm!57
dW 2F@c#

dc~y!dc~x!
.

~A7!

Similarly @dW /dc(x) ; dW /dc(y)#750. Analogously we might prove

F@c#dQ 2

dc~x!dc~y!k
5

dW 2F@c#

dc~x!dc~y!
~A8!

and

dW 2~F@c#G@c#!

dc~x!dc~y!
5

F@c#dQ 2

dc~x!dc~y!
G@c#1~21!p

F@c#dQ

dc~x!

dW G@c#

dc~y!
1

F@c#dQ

dc~y!

dW G@c#

dc~x!
1F@c#

dW 2G@c#

dc~x!dc~y!
. ~A9!

The p is 0 for bosons and 1 for fermions. With Eqs.~2.18! and ~A4!–~A6! one can easily construct more complicat
expectation values. For example, using Eqs.~2.18! and ~A4! we get

^c~x!c~y!F@c#&b5E dz1dz2

2
@^c~x!c~z1!&b^c~y!c~z2!&b1~21!p^c~x!c~z2!&b^c~y!c~z1!&b#K dW 2F@c#

dc~z1!dc~z2!
L

b

1^c~x!c~y!&b^F@c#&b . ~A10!

Similarly, using Eq.~2.18! and ~anti!commutativity of the arrowedd/dc(x), we get

^G@c#c~x!c~y!F@c#&b5E dz1dz2

2
@^c~x!c~z1!&b^c~y!c~z2!&b1~21!p^c~x!c~z2!&b^c~y!c~z1!&b#

3K G@c#
dW 2F@c#

dc~z1!dc~z2!
L

b

1E dz1dz2

2
@^c~z1!c~x!&b^c~z2!c~y!&b

1~21!p^c~z2!c~x!&b^c~z1!c~y!&b#K G@c#dQ 2

dc~z1!dc~z2!
F@c#L

b

1E dz1dz2@^c~z1!c~x!&b^c~y!c~z2!&b

1~21!p^c~x!c~z2!&b^c~z1!c~y!&b#

3K G@c#dQ

dc~z1!

dW F@c#

dc~z2!
L

b

1^c~x!c~y!&b^G@c#F@c#&b . ~A11!

We could proceed further having still higher powers of fields and variations. However, there is a quite interesting g
zation in the case when we have~anti-!time-ordered operators. Let us haveF@c#5T(F@c#); in this case,
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^F@c#&b5(
n

S E dxD n

an~••• !K T S )
i 51

n

c~xi !D L
b

5 (
n51

S E dxD n an~••• !

n (
i , j

«P^T @c~xi !c~xj !#&b

3K T S )
mÞ i , j

n

c~xm!D L
b

1a0~••• !

5E dz1dz2^T @c~z1!c~z2!#&bK dW 2F̄@c#

dc~z2!dc~z1!
L

b

1^F@0#&b , ~A12!
.

n

n

nd

th
where F̄@c# differs from F@c# in the replacementan(•••)
→an(•••)/n ~n starts from 1!. In comparison with Eqs
~A4!–~A11!, the a0(•••) ~i.e., the pureT50 contribution!
does matter here. Note thata0(•••) generally involves non-
heat-bath fields with corresponding space-time integratio
A similar extension is true ifF@c#5TC(F@c#), whereTC is
the time path ordering symbol. In that case

^F@c#&b5(
n

S E
C
dxD n

an~ . . . !K TCS )
p51

n

c~xp!D L
b

5E
C
dz1dz2^Tc@c~z1!c~z2!#&bK dW 2F̄@c#

dc~z2!dc~z1!
L

b

1^F@0#&b , ~A13!

with9 *Cdx5*Cdt*Vdx and dc(x)/dc(y)5dC(x2y).
Wick’s theorem for theTC-oriented product of fields has a
obvious form

^TC@c~x1!•••c~x2n!#&b5(
j

j Þ i

«P^TC@c~xi !c~xj !#&b

3K TCS )
kÞ i ; j

c~xk! D L
b

.

~A14!

This can be directly derived from Wick’s theorem~2.17!,
realizing that

TC@c~x1!•••c~xm!#5(
P

«PuC~ tP1
,...,tPm

!c~xP1
!...

3c~xPm
!, ~A15!

where P refers to the permutation of the indices a
uC(t1 ,...,tm) being a contour step function@19# defined as

uC~ t1 ,...,tm!5H 1 ~ t1 ,...,tm areTC oriented alongC!,

0 ~otherwise!.
~A16!

9A contour d function dC(x2y) is defined as
*CdzdC(z2z8) f (z)5 f (z8); see@9,18#.
s.

Particularly important is the Keldysh-Schwinger pa
@1,19,20#; see Fig. 12.

In the latter case

^F@c#&b5E
C1

dz1dz2^T @c~z1!c~z2!#&b

3K dW 2F̄@c#

dc~z2!dc~z1!
L

b

1E
C2

dz1dz2^T̄ @c~z1!c~z2!#&b

3K dW 2F̄@c#

dc~z2!dc~z1!
L

b

12E
C2

dz1E
C1

dz2^c~z1!

3c~z2!&bK dW 2F̄@c#

dc~z2!dc~z1!
L

b

1^F@0#&b .

~A17!

Application to the product G@c#F@c# with F@c#
5TC1

(F@c#) andG@c#5TC2
(G@c#) is straightforward and

reads

^G@c#F@c#&b5E dz1dz2^T̄ @c~z1!c~z2!#&b

3K G@c#dQ 2

dc~z2!dc~z1!
F@c#L

b

1E dz1dz2^T @c~z1!c~z2!#&b

3K G@c#
dW 2F @c#

dc~z2!dc~z1!
L

b

12E dz1dz2^c~z1!c~z2!&b

3K G@c#dQ

dc~z1!

dW F@c#

dc~z2!
L

b

1^G@0#F@0#&b ,

~A18!
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where the overbar indicates that we work wit
an(•••)bm(•••)/(n1m) instead of an(•••)bm(•••); we
have also abbreviated*C1

dz to *dz*C1
dz. We should also

emphasize thatdc(x)/dc(y) used in Eq.~A18! is d(x2y)
rather thandC(x2y).

In Eq. ~4.3! the inverted version of Eq.~A18! has been
used, namely,

^~G@c#F@c#!8&b5E dz1dz2

2
^T̄ @c~z1!c~z2!#&b

3K G@c#dQ 2

dc~z2!dc~z1!
F@c#L

b

1E dz1dz2

2
^T @c~z1!c~z2!#&b

FIG. 12. The Keldysh-Schwinger time path.
d
,

-
d

-

3K G@c#
dW 2F@c#

dc~z2!dc~z1!
L

b

1E dz1dz2^c~z1!c~z2!&b

3K G@c#dQ

dc~z1!

dW F@c#

dc~z2!
L

b

. ~A19!

Here (G@c#F@c#)8 has the coefficientsan(•••)bm(•••) (n
1m)/2 instead of an(•••)bm(•••). Note, that the
a0(•••)b0(•••) does not contribute and thus we do not ha
any pureT50 contributions. Equation~A19! has a natural
interpretation. While the LHS tells us that from each therm
diagram @constructed out of̂ G@c#F@c#&b with (n1m)/2
internal heat bath particle lines# we must taken1m identical
copies, the RHS says that this is virtually because we s
over all possible distributions of one heat bath particle l
inside of the given diagram. The pictorial expression of E
~A19! is depicted in Fig. 13.

FIG. 13. Diagrammatic equivalent of Eq.~A19!. The cut sepa-
rates areas constructed out ofF@c# andG@c#.
.
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