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Heat bath particle number spectrum
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We calculate the number spectrum of particles radiated during a scattering into a heat bath using the thermal
largest-time equation and the Dyson-Schwinger equation. We show how one can systematically calculate
d{N(w))/dw to any order using modified real-time finite-temperature diagrams. Our approach is demonstrated
on a simple model where two scalar particles scatter, within a photon heat bath, into a pair of charged particles
and it is shown how to calculate the resulting changes in the number spectra of the photons.
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[. INTRODUCTION diagrams with the uncircled vertices used in (tieerma) cut
diagrams, and similarly type-2 vertices will be identified

In recent years much theoretical effort has been investewith the circled, cut diagram vertices. As we want to restrict
in the understanding of relativistic heavy ion collisions asour attention to only some particular final particle states, fur-
these can create critical energy densities which are largéher restrictions on the possible cut diagrams must be in-
enough to produce the quark-gluon plastttee deconfined cluded. We shall study these restrictions in the last part of
phase of quarks and gluond,2]. A natural tool for testing Sec. Il.
the quark-gluon plasma properties would be to look for the As we shall show in Sec. Ill, the heat bath particle num-
particle number spectrum formed when a particle decay§er spectrum can be conveniently expressed as a fraction.
within the plasma itself. As the plasma created during heavyVhile it is possible to compute the denominator by means of
ion collisions is, to a very good approximation, in thermody-the thermal cut diagrams developed in Sec. Il, the calculation
namical equilibrium[1] (somewhat like a “microwave Of the numerator requires more care. Using the Dyson-
oven” or a heat bath one can use the whole machinery of Schwinger equation, we shall see in Sec. IV that it can be
statistical physics and quantum field the6®FT) in order to ~ calculated through modified thermal cut diagrams. The
predict the final plasma number spectrum. Such calculationgnodification consists of the substitution in turn of each heat
derived from first principles, were carried out by Landshoffbath particle propagator by an altered one. We also show that
and Taylor[3]. there must be only one modification per diagram. From this

Our aim was to find a sufficiently easy mathematical for-we conclude that from each individual cut diagram we get
malism allowing us to perform the mentioned calculations tomodified ones(n stands for the total number of heat bath
any order. Because unstable particles treatefB]ncannot  particle propagators in the diagrarfurthermore, in the case
naturally appear in asymptotic states, we demonstrate owwhen more types of heat bath particles are present, one might
approach on a mathematically more corrgxit from a prac- be only interested in the number spectrum of some of these.
tical point of view less relevahtprocess: namely, on the The construction of the modified cut diagrams in such cases
scattering of two particles inside of a heat bath. The methodiollows the same procedure as in the previous situation. We
presented here, however, might be applied as well to a decdind that only the propagators affiliated to the desired fields
itself (provided that the corresponding decay rate is muchmust be altered.
less than any of the characteristic energies of the process In Sec. V the presented approach is applied to a toy model
this paper we formulate the basic diagrammatic rules for thé which a gluon plasma is simulated by scalar photons, and
methodical perturbative calculus of the plasma particle numwe calculate the resulting changes in the number spectrum of
ber spectrund(N(w))/dw and discuss it in the simple case the “plasma” particles. Section V ends with a qualitative
of a heat bath comprised of photons and electrons, which ar@iscussion of the quark-gluon plasma simulated by scalar
for simplicity treated as scalar patrticles. photons and electrons.

In Sec. Il we review the basic concepts and techniques Finally, in the Appendix we derive, directly from the ther-
needed from the theory of the largest-time equathwth for ~ mal Wick's theorem, thétherma) Dyson-Schwinger equa-
T=0 andT+0) and the Dyson-Schwinger equation. Rulestion as well as other useful functional identities valid at finite
for the cut diagrams at finite temperature are derived anéemperature.
subsequently extended to the case when unheated fields are
present. It was already pointed out[#] that the thermal cut Il. BASIC TOOLS
diagrams are virtually the Kobes-Semenoff diagrdtisin
the Keldysh formalisni5]. This observation will allow us to
identify type-1 vertices in the real-time finite-temperature The central idea of thermal QFT is based on the fact that

one cannot take the expectation value of an observAble
with respect to some pure state as generally all states have
*Email address: pj10006@damtp.cam.ac.uk nonzero probability to be populated and consequently one

A. Mean statistical value
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x, F(X1,%2,X3) = (—1g) %I Ap(x,—Xp)i A

X (X1 = Xg) I Ap(Xo—X3),

F(ﬁ,xz.X3)=(—ig)2(ig)iA+(X1—Xz)iA+

Xy X2 .
X (X =Xz T Ap(Xp—X3),

FIG. 1. A one-loop triangle diagram. . . . .
P iange €59 F (X0, XzX5) = (i9)2(—ig) (—DAE (g —xp)i A *

must consider instead a mixture of states generally described X (X1—X3)i AT (X—X3),

by the density matrixyp. The mean statistical value &f is

then F (X1, Xo.Xa) = (i9) (1) AE (X1~ x2) (—1) A%
(AY=Tr(pA), (2.0 X (X1~ Xg) (— D) AE (Xp—Xa),

where the trace has to be taken over a complete sghysi- etc. .
cal states. For a statistical system in thermodynamical equi- | "€ LTE then states that for a functié(x, ,....x,) cor-
librium p is given by the Gibbs canonical distribution responding to some diagram withvertices

Fooo Xy ) +F(o X .. =0, (2.3
e BH-uN)  o=pK al

P= Tre PH-1NY ~ ~7 2.2

provided thak;, is the largest time and all other underlinings
in F are the same. The proof of EQR.3 is based on an

) - ) ] o ) observation that the propagatiak:(x) can be decomposed
here,Z is the partition functionH is the HamiltonianN is into positive and negative energy parts, i.e.,

the conserved charge.g., baryon or lepton numberu is

the chemical potentialk=H—uN, and B is the inverse IAR(X)=6(X0)i AT (X)+ 6(—Xg)i A (), (2.4)
temperatureB=1/T (kg=1).

4
iAf(x)zf d k)3e‘ikxa(iko)5(k2—m2). (2.5

B. Largest-time equation atT=0 (2

An important property inherited from zero-temperature
QFT isthe largest-time equatiofLTE) [6—8]. Although the
following sections will mainly hinge on ththermalLTE, it
is instructive to start first with the zero-temperature one. The AR —X) =1 A" (X —X))
LTE atT=0 is a generally valid identity which holds for any RA A oo
individual diagram constructed with propagators satisfying
certain simple properties. For instance, for the scalar theory
with a coupling constangy one can define the following
rules:

Incidentally, forx;, being the largest time this directly im-
plies

—IAE (= X)=1A7(X;—X;),
iA(0)=—iAX(0). 2.6

As F(....x;,...) differs fromF(... x;,...) only in the propa-

x1 1 Yy o~ iAL ey gators directly connected te—which are equal[see Eq.
F (2.6 ]—and in the sign of the; vertex, they must mutually
x1 2 e QA (x cancel.
Yy LA (xy) Summing up Eq(2.3 for all possible underlininggex-
) 1 - cluding x;), we get the LTE where the special role of the
X y ~ iAT(xy largest time is not manifest any more, namely,
x 2 2 y ~ A A*F x-y)

2 F(X1,X2,....X,)=0. 2.7

index

HereiAf is the Feynman propagatarA™ (iA~) is corre-  The sumZX ;4 means summing over all possible distribu-
sponding positivénegative energy part of Ag, the asterisk tions of indices 1 and Zor equivalently over all possible
means complex conjugation, and indeg2l denotes d@ype-1  underlining3. The zero-temperature LTE can be easily refor-
(type-2 vertex; the type-1 vertex has attached a factag mulated for theT matrices. Let us recall that the Feynman
while the type-2 vertex bears a factgr. Using this prescrip- diagrams for theS matrix (S=1+iT) can be obtained by
tion, we can construct diagrams in configuration space. Withmultiplying the corresponding(x4,...,X,) with the plane
each diagram then can be associated a fundfipq,...x,) waves for the incoming and outgoing particles, and subse-
having all the second type vertices underlined. For examplejuently integrate ovex,,...X,. Thus, in fixed volume
for the triangle diagram in Fig. 1 we have guantization a typicah-vertex Feynman diagram is given by
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(2.8

) ) ) FIG. 2. An example of a cut diagram in the’ theory which

Here the momentdp,} are attached to incoming particles at does not contribute to the RHS's of Eq8.12) and(2.13. Arrows
the vertices{xmj}, while moment&q,} are attached to out- indicate the flow of energy.

going patrticles at the vertice{xmk}. In order to distinguish
among various function§(x,,...,x,) with the same vari- (a|Tlay—(a|T|a)* =i(a|T'T[a). (2.10
ablesxy,....X,, we shall attach a subscript to each func-
tion F. For instance, the functiofiy (xy,... X,) correspond-  On the other hand, by constructionF(xy,... Xn)

ing to the diagram =F*(x1,....xp), and thugsee Eq(2.7)] -
p q F(Xg,eo X)) FE*(Xg,eo X)) =— Dy F(Xq,.a Xp).
1 4 index'
(2.1
X % X %% The prime over “index” in Eq.(2.11) indicates that we sum

neither over diagrams with all type-1 vertices nor diagrams

_ _ with all type-2 vertices. Using Eq(2.9 and identifying
contributes to(d,0,|iT[p1p2) by {ae}) with [{p}) (=|a)) we get

[ Lo

e i(P1tp)xy  gi(artaz)xg

(alTlay—(a|Tla)*=— X (a|Tlay  (2.12

V\/4wp1wp2 V\/4wq1wq2 index’
X[ AR(Xy—X2) 1[I AR (X —X3) 1[I Ap(X3—X4) 1% or [see Eq(2.10]
similarly, the functionF24(xl,...,x4) corresponding to the
diagram (a|T'T[a)=i 2)( (alTla). (2.13
inde!

Equation (2.12 is the special case of the LTE for the
matrices. The finite-temperature extension of 913 will
prove crucial in Sec. IV.

Owing to thed(*kg) in A*(x) [see Eq(2.5)], energy is
forced to flow only towards type-2 vertices. From both the

grams on the right hand sidéRHS'’s) of Egs. (2.12 and
(2.13 will be automatically zero. Particularly regions of ei-

contributes ta(q40,|iT|p1p,) by

—i(p1+p2)xy  @i(dr+a)x not contribute(no islands of vertices see Fig. 2. Conse-
e 1 1 e'ld1 4

ff[dxi

TAE(X1—Xp)iAp
=1 V4w 0y, V\f4wg,0q,

X (Xg— Xg)[IAp(Xo—X3) I2X T Ap(Xg— Xg)i Ap(X4— X5), From historical reasons the border between two regions with
different type of vertices is called eut and corresponding
etc. diagrams are calledut diagrams
This can be summarized as We have just proved a typical feature @f=0 QFT;

energy-momentum conservation in each vertex and from the
energy flow on the external lines, a sizable class of the dia-

ther first or second type vertices which are not connected to
any external line violate the energy conservation and thus do

quently, the only surviving diagrams are those whose any
first type vertex area is connected to incoming particles and
any second type vertex area is connected to outgoing ones.

namely, any cut diagram is divided by the cut into two areas

H e 1PjXm, only; see Fig. 3. Equatiof2.12), rewritten in terms of the
. cuttings, is the so-callecutting equation(or Cutkosky’s cut-
j \/prjV

dadlimon=2 [ - [T ax3

n

eiqumk

X ———F, (Xq,....Xp). (2.9
1_k[ 2quV 7t "
Consider now the casfp;})=|{ax}) (let us call it|a)). FIG. 3. Generic form of the cut diagram at tAe=0. The

From the unitarity conditiom—T'=iT'T, we get shadow is on the second type vertex area.
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ting rules [6—8]. One point should be added. Inserting the Similarly as atT =0, Wick’s theorem can also be written for
completeness relatiolx¢|f)(f|=1 into the LHS of Eqg. the (free) thermal Wightman functionf9,11], i.e.,

(2.13, we get

X1)© - (X =2, & Xq) (X
S @O T=iS, aTl. (214 (Uxs) o)) = 20 (WX ¥(x,))g
f cuts j#1
It may be showr{4,6] that all the intermediate particles in ><< 11 lﬂ(Xk)> . (2.1
|f) correspond to cut lines. This has a natural extension when k=1 B
(a|]T'T|a)—(a|TTPT|a) with P being a projection operator
(P="P"'="P?) which eliminates some of the statdf$. Itis A particularly advantageous form of this is the so-called

easy to see that in such a case Dyson-Schwinger equatio(see the Appendixwhich, atT
5 #0, reads
(a|TTPTla)=i>, (a|T|a), (2.15 -
cuts
<G[¢]¢(X)F[¢]>,3=J dZ(lﬂ(X)¢(Z)>ﬁ< G[¢] W>
where tilde overz s indicates that one sums over the dia- B
grams which do not have cut lines corresponding to particles
removed byP. +J dZ((2) (X)) g
There is no difficulty in applying the previous results to
spin+ [6,7]. The LTE follows as before: The diagram with G[¥]5
only iSg propagators(and —ig per each vertexplus the X WFW] , (2.18
diagram with only {S¢) propagator (andig per each ver- B

tex) equals minus the sum of all diagrams with one up to . ) _ ) i
n—1 type-2 verticesn being the total number of vertices Where ¢(x) is an interaction-picture field anG[---] and
For gauge fields more care is needed. Using the Ward iderfL "] @re functionals of). The arrowed variationd/ 5y(z)
tities one can show] that type-1 and type-2 vertices in Eqs. &€ defined as a formal operation satisfying two condi-
(2.12 and(2.13 may be mutually connected only lphysi-  1ONS:  namely,

cal particle propagatorsi.e., neither through the propagators

>

corresponding to particles with nonphysical polarizations nor 6 _ OPm(X)
Faddeev-Popo(FP) ghosts and antighogts Sun(2) [#m(X) do(y)]1= Sra(2) Po(y)

ick -Schwi i Othg(Y)
C. Thermal Wick’s theorem (the Dyson-Schwinger equatioh +(=1)P(X) q

The key observation at finite temperature is that for sys- OYn(2)
tems ofnoninteractingparticles in thermodynamical equilib- (2.19
rium Wick’s theorem is still valid; i.e., one can decompose
the 2n-point (free) thermal Green function into a product of or
two-point (free) thermal Green functions. This may be de-

fined recursively by 5 Othm
() (0] 557 = (— P 5‘5/8 V()
(TLh(x0) X)) g= 2 ep(TLHONP(X))]) g S(y)
i F n(X) 5?(’2’), (220
X<T i ‘/’(Xk)>>ﬁ’ with
2.1
(249 D0 _ 5(x=Y) . (220

whereep is the signature of the permutation of fermion op- Sn(y)
erators(=1 for boson operatoysand 7 is the standard time . . .
ordering symbol. We shall use, from now on, the subsggjpt 1€ P is 0 for bosons and 1 for fermions; subscriptsn
emphasizing that the thermal mean value describes a systetH99€st that several types of fields can be generally present.
in thermodynamical equilibriunfat the temperaturgg=—%).  Note, for bosonsgF/syy= F &/ 54 which we shall denote as
Note that the choice of i” in Eq. (2.16) is completely ar- 6F/&y. For more details see the Appendix.
bitrary. The proof can be found, for example, [ih,9,10.

D. Thermal largest-time equation

The LTE (2.13 can be extended to the finite-temperature
The functioniSg(x), similarly as {Ag)*(x), interchanges the case, too. Summing up in E(.13 over all the eigenstates
roles ofS* andS™. Unlike bosons, for fermioniSe(x) is notequal ~ of K(=H— uN) with the weight factore™#Xi (i labels the
to (iSg)* (x). Despite that, Eq2.12) still holds[6]. eigenstates we get
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1 1 2 2 1 2, 2
’ Vo N -
) b) o @ ’
! 1 2 1 2 2 2 FIG. 5. The cut diagram from Fig(& demonstrates that the cut
>n@z< >@2< >1@< >@§< can be defined in many ways but the number of crossed lines is still
o o ) ) the same.

FIG. 4. An example of nonvanishing cut diagrams at fhe

. ) . - BK;
#0. The heat bath consists of two different particles. External par- _ e~ .
ticles are not thermalized. 2 <T>{pj}'ﬁ__z E 7 (i '{pi}|T|"{pJ}>'
index’ index !
(2.29
(TTNp=1 2 (T)g. (2.22 _ _
index’ Note that we get the same set of thermal cut diagrams inter-

, i changing the summatioB;qew With ;. It is useful to start
Let us consider the RHS of E.22) first. The correspond-  han with Eindexr<i;{Pj}|T|i:{pj}>- This is, as usual, de-

ing thermal LTE and diagrammatic rul¢kobes-Semenoff  .iiheq by the T=0) cutting rules. In the last section we
rules[1]) can be derived precisely the same way a8al  |o51neq that the general structure of the corresponding cut
using the previous, largest-time grgument_aukjn_lz]. It diagrams is depicted in Fig. 3; particularly the external par-
tums out that these rules have basically an identical form agg|eq enter the cut diagram via type-1 vertices and leave it
those in the previous section, with an exception that noW;, yype-2 ones. Multiplying each diagrawith the external
(0f-++[0)—(:-+) 5. Note that labeling vertices by 1 and 2 we garticles in the statf;{p;})) with the prefactoe#¥i/Z and
have natura!ly.got a QOubllng of the ””mt.’er of degrees O5umming subsequently ovier we again retrieve the thermal
freedom. This is a typical feature of theal-time formalism ¢+ giagrams, though now it becomes evident that the par-
n t\?\/ermsl QI(Ij:T(Ihere, m;he_ so-c;]alle_b(eldys:: versmr{hl]). ticles{p;} enter such a diagram only via type-1 vertices and

_ We should also emphasize that it may happen that SOmg,,\e off only through type-2 ones, since the summation of
fields are not thermalized. For example, external particleg, | (T=0) cut diagrams from which it was derived does not
enterlngf? heglt b?tSh oFr; part'?lels discnbmg ”Oﬂﬁ’hys.'%a' de['ouch lines corresponding to unheated particles. Note that the
grees of freedonil3]. Particularly, if some particleéwit latter analysis naturally explains why the unheated particles

momenta(p;}) enter the heat bath, the mean statistical Valu%bey the =0) LTE diagrammatic rules even in the thermal
of an observablé\ is then

diagrams
o BKi Another vanishing comes from kinematic reasons.
Ei T(i;{pj}|A|i;{pj}>=Z‘lTr(p{pj}®e‘5KA), Namely, three-leg vertices with all on-shell particlgis-2

lines) cannot conserve energy and momentum and conse-
quently the whole cut diagram is zero. As an illustration let
Pip)} = {piH{pi}l, us consider all the nonvanishing, topologically equivalent cut
diagrams of given type involved in a three-loop contribution
which we shall denote ), 5. From this easily follows  t0 i Zindex (T)pa,p (s€€ Fig. 4
the generalization of Eq2.22), _ _Let us stress one more pomt._ln cqntrast Witk 0, at_
finite temperature the cut itself neither is unique nor defines
topologically equivalent areasee Fig. %; only the number
(TTT>{pk},B=i > (Mipg.5- (2.23  of crossed legs is, by definition, invariant. This ambiguity
index shows that the concept of the cut is not very useful at finite

temperature and in the following we shall refrain from usin
Unlike T=0, we find that the cut diagrams have discon-; P g g

nectgd vertex areas and no k_inematic reasqni_ngs used in last In Sec. IV it will prove useful to have an analogy of Eq.
section can, in general, get rid of them. This is because th?z.zg) for <-|—T7;-|—>B_ Here P is the projection operator de-
thermal paﬁ_of (e(X)@(y))s describes the ab_sorptlon of fined as
on-shell particle from the heat bath or the emission of one
into it. Thus, afT #0, there is no definite direction of transfer
of energy from a type-1 vertex to a type-2 one as energy . .
flows in both directions. Some cut diagrams nevertheless PZ; lasi)&il, (2.2
vanish. It is simple to see that only those diagrams survive in
which the nonthermalized external particles “enter” a dia-
gram via the first type vertices and “leave” it via the secondwherej denotes the physical states for the heat bath particles
type ones. We might deduce this from the definition ofanda labels the physical states for the outgoing, nonthermal-
<T>{pj},ﬁ; indeed, ized particles. Let us deal withTTPT>ﬁ. Using Eq.(2.15),

we acquire

“Note that(e(X)e(y))s={:@(X)(y):) s+ (0]e(x)¢(y)|0) and
(te(X) @(y):) = [d*ki (27)3] f5(ko) S(k?—m?)e =¥ with SLet us emphasize that originally we had 64 possible cut dia-
fa(ko) = (eflkol— 1)1, grams.



57 HEAT BATH PARTICLE NUMBER SPECTRUM 3639

; _ e BKI ~ The key point is that we have used in E§.3) the T matrix
(T PT>ﬁ:|E| Z Z ([T (226 because the initial stateb,(p;),®,(p,)) is, by definition,
Index’ different from the final one|¢(q,),#,(d,)) and conse-

qguently PS can be replaced byPT. This allows us to cal-
culateZ; using directly the diagrammatic technique outlined
in the preceding section.

Interchanging the summations, we finally arrive at

(TTPT>/3=i > (Mg, (2.27 From Egs.(2.1) and (3.2 one can directly read off that
index’ the number spectrum of the heat bath particles is
where tilde over the2j 4.« Means that we are restricted to d(N(w))s a3

consider the cut diagrams, with onl¥—2)-particle lines cor-
responding to the andj particles{i.e.,{(0]¢(X) ¢(y)|0) and
(Y(X)¥(y)) s, respectively. The extension of Eq2.27) to ;
the case where some external, nonthermalized partipigs X Z (fla/(k;w)ay(k;w)pslf)
are present is obvious, and reads

k
+ 2_1,2_m2

-~ — d3k 5+((02_ k2_ mZ)
(TTPT) pg =1 Z% (T pg.s- (2.28 (2m)° '

ind

" (T'Paj(k;@)ay(k;) Thpp, 5
Finally, let us note that using the LTE, one may extend the X TR (3.9
previous treatment to various Green's functions. The LTE P1P2.8
for Green’s functions is then a useful starting point for dis—and conseauentl
persion relations; see, e.§1,17. » consequently,

4 T'Pa/(k)a (k)T
lll. HEAT BATH PARTICLE NUMBER SPECTRUM: <N'>f:f d_|(35+(k2_m|2) (T7a, ] ! >p1p2'ﬁ,
GENERAL FRAMEWORK (27) (T"PTop, .8

The cutting equatio2.28 can be fruitfully used for both 3.9
the partition functionZ and the heat bath particle number where we have used the completeness relation for the final
spectrumd(N(w))/dw calculations. To see that, let us for states|f) and[P;a’a]=0. The subscript denotes which
simplicity assume that two particlesay, ®,,®,) scatter type of heat bath particles we are interested in. In the follow-
inside a heat bath. We are interested in the heat bath numbgrg the index will be mostly suppressed.
spectrum after two different particlésay, ¢4, ¢,) appear in

the final state. Except for the condition that the externgl. par- IV. MODIFIED CUT DIAGRAMS
ticles be different from the heat bath ones, no additional _
assumption about their nature is needed at this stage. To proceed further with Eq$3.4) and (3.5), we expand

The initial density matrixp; [i.e., the density matrix de- the T matrix in terms of time-ordered interaction-picture
scribing the physical situation before we introduce the parfields, i.e.,
ticles®4(p1),P,(p,) into the over can be written as

Pi:Zfl; e AXij;p1.p2){i;P1.Pal, (3.1 T[‘ﬁ]zzn: fdxl“' fdxna'n(xlv---axn)

wherej denotes the set of occupation numbers for the heat XT[h(Xg) - h(Xn)]. (4.9

bath particles. A long time after the scattering the final den-H heat bath field in the i . .
sity matrix p; reads ere ¢ represents a heat bath field in the interaction picture.

Other fields(i.e., ¢, ¢, and®) are included in thta,. An
. RS N o extension of Eq(4.1) to the case where different heat bath
pr=Z ' € PPYjipy,p2)(iip1.P2SP"; (32 fields are present is natural. Employing E64.1) in
: (TT73T>plp2'B, one can readily see that this factorizes out in

here, P is the projection operator projecting out all the non-each term of the expansion pure thermal mean value
heat-bath final states except for tifg(q;),#,(q,) ones. (:--)g. The general structure of each such thermal mean
The S matrix in Eq. (3.2 is defined in a standard way: value is(Gn[#]F.[#])z, whereF [---] andG,[--] are
S=1+iT. TheZ; in Eq. (3.2 must be different fronZ; as  the operators witm chronological andn antichronological-
otherwisep; would not be normalized to unity. In order that time-orderedheat bath fields, respectively. Analogous fac-
p; satisfy the normalization conditiofr(p¢) =1, one finds

Zi= e AXi(j:py,p,|STPSlj Dy, p,) =(SPS 7 “When Fermi fields are involved, we have, for the sake of com-
f 2 (Jipe p2| |J P1:P2)=( >p1p2’3 ' pactness, included in the argumentyothe space-time coordinate,

the Dirac index and a discrete index which distinguisigsfrom
T
:<T PT>p1p2vﬁ Zi ' (33) %1'
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torization is true in the expansion «éﬂ'TPTaTaPUp 0y 6 with m; denoting the number of the heat bath fields| thf

The only difference is that the pure thermal mean value hag Applylng the Dyson-Schwinger equation  to

various heat bath fields are presemt= ml+ My+---+my,  get easily the following expressiduf. also Eq.(A11)]:

T'PaaT —fd d 1)P ! T's o
(T"PajaiT)p p,.s= | dX V(i (x)af Yelan(y)) g+ (= D)P(()ay) gla) ¢i(Y)) g} WPW o

J dxdy ) T8
+ T{<'/f|(x)al>ﬁ<‘/’|(Y)a|>ﬁ+( 1) <‘//|(X)a|>ﬁ<¢|(Y)a|>ﬁ} WPT s

f dxdy ; Lecal - 2T
+ T{<a|¢|(x)>ﬁ<a| h(Y)) g+ (=)@ (X)) gl (y)) g} PW o

+(aa) (TP 5, - 4.2

A similar decomposition fo(TTPT>p1p2,B would not be very usefykf. Eq.(A18)]; instead we defing(TTPT) ’)plpZ,B having
the same expansion ﬁTPﬂplpz,B except for thean(---)Pa;rn(---) are replaced byxn(---)Pa;(---) (n;+m,)/2. In this
formalism((T"PT) "), o, 5 IS

. ) TS 5T
(TTPT) >Plpz'/3_f dxd (X)) (Y)) s S (X) P Sun(y) oo

+f w _ <L§2 PT>
> (MTp )y (V)] g O (y) S (x) P1P2.B

+ [ Tamoonm <T*PL> @3
2 O TP 5o ., '

with the?being the antichronological ordering symbol. Comparing @3 with Eqg. (A19), we can interpret the RHS of
Eq. (4.3) as a sum oveall possible distributions of one lingorresponding tal) inside of each givenT#0) cut diagram
constructed out of <TTPT>p1p2,B- As Eq. (4.3 has precisely the same diagrammatical structure as

(T'Pa'aT)y p, s~ (2')(T"PT)pp, s [cf. Eq. (4.2], it shows that in order to compute the numerator® of
dA(N(w))/dw=d{N(w));/do— d{N(w));/dw one can simply modify the usuaTTPT>plp2,ﬁ cut diagrams by the follow-

ing one-line replacementsf. Eq. (3.4)].
(i) For neutral scalar bosons

d3k + 2 2 2 1 t
(e(X)e(Y))g —>J Wﬁ (0 —k*—m*){(e(x)a'(k;w)) g(a(k;w) e(y)) g+ (e(X)a(k; w))ga’(k;0) o(y)) g}

4k
= J W5(k2—m2){fs(w)[fs(w)+ 1106 (ko+ @)+ 8" (ko= w)]+ 8" (ko— w)[ 1+ fp(w)]

=6 (kot w)fp(w)te ), 4.4

wherefg(w) is the Bose-Einstein distributiorfz(w)= 1/(e®!*!—1). The terméd(—ko)fg(w) describes the absorption of a
heat bath particle, and so reduces the number spectrum: that is why the negative sign appears in front of it. Analogously,

d°k
(TTe()e(Y)])g —>f 2m)? st (w?=k2—md){(a'(k;0) (X)) ga(k; ) o(y)) g+ (alk;w) (X)) g(a’(k;w) o(y)) g

SRemember thaP=P' @ P"= 191,92)(01,92|®Zj]j)(j|. HereP"=X;|j)(j| behaves as an identity in the subspace of heat bath states.
SHere d(N()); /dw=f [d*k/(2m)%] 8" (0?—k2—m?)(a'(w,k)a(w,k))4 [cf. Eq. (3.4)].
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d'k 2 2 —ik(x— + -
:f By S ML+ fo(@) Ife(@)e™ V07 (Ko~ @) +67 (Kot )] 4.5

Similarly, for A(N) one needs the following replacemefit$. Eq. (3.5]:

d*k ‘
(e(X)e(¥)) g HJ Wé(kz_mz){fB(wk)[fB(wk)+1]+ 0(ko)[1+ fa(wi) 1= 0(— ko) fa(w) e 7Y,

d4k 2 2 —ik(x—
(TLo00e0 )5 — [ gms A= MPIL+ o (e, @6
with o= kZ—m?Z.

(ii) For Dirac fermions the Dirac field is comprised of two different types of excitatigmaitually connected via charge
conjugation, and so the corresponding number oper&t¢on) = N,(w) +Ng(w), with

d3k -+ 2 2 2wt
Nb(w)=a§12 f W@ (02— k2=m?)b!(k; w)b(K;w),

d3k + 2 2 23T
No(@)= 2 f 8 (WP K=MK w)d, (k).

Thus, the one-line replacements neededdidfNy(w))/dw are

— d3k —
GV} — 3 || oy (k=ML ) b i) )

= (W ()ba(k; ) (DLK; ) Ye(Y)) g}
d*k .
ZJ W5+(k2_mz)é(ko_w)(k+m)pa{[l_fF(w)]_fF(w)[l_fF(w)]}eilk(X7y)a 4.7
wheref(w) is the Fermi-Dirac distributionfg(w)= 1/ef(l-#+ 1, and

— d3k —
<T[lpp(x)l//0(y)]>ﬂ —>a=21,2 j (277)35+(w2_k2_mz){<ba(k;w)l//p(x)>ﬂ<bz(k;w)l;[/o(y)>ﬁ

—(bl(k; @) #,(x)) g(ba(K; ) ¥, (¥)) g}

4
= — f (377';3 5+(k2_m2)5(k0_ a))(lk-l— m)po_fF(a))[_‘]_—fF(w)]e—ik(x—y). (48)

Correspondingly, fo(N,) we need

— d*k .
(0 Pa(y))g — f 2 8T (K2 =m?)(k+m) ,{[ 1~ fe(w)]~ fr(w)[1-fr(w)]}e kXY,

- dk L2 2 —ik(x—y)
(TTY,(X) (V) ]) g —>—J’ 27 8*(K2=m?)(k+m),,fe(w)[1-fr(w)]e ., 4.9

For thed-type excitations the prescription is very similar. Actually, in order todye{N(w))/dw, the following substitutions
must be performed in Eq$4.7)—(4.9): 6(ky)— 6(—kg), fr—(1—fg), andpu— — u.

(iii ) For gauge fields in the axial temporal gauge’&0), the temporal gauge is generally incorporated in the gauge fixing
sector of the Lagrangian and particularly

1
Lix=— 5(A0)2, a—0. (4.10

The principal advantage of the axial gauges arises from the decoupling the FP ghosts in the theory. This statement is of course

trivial in QED as any linear gaugéoth for covariant and noncovariant casbesings this decoupling automaticalfyt]. A

particular advantage of the temporal gauge comes from an elimination of nonphysical scalar photons from the very beginning.
Let us decompose a gauge figdg, i =1,2,3, into the transverse and longitudial parts, ke= AiT+AiL, with
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T_ %9 L_ %9
Al=| &j——|A; and Af=—-A;, (4.11
2 192
and use the sum over gauge-particle polarizations,
2
k;ki
> sM0eN(k=8- 7" (4.12

with e™ (k) being polarization vectors; then, fdA(NT(w))/dw we get the following one-line replacements:

2 d3k
<AF(x>AI<y>>wA§1 f W)g5+<w2—k2—m2><AF(x>aI<k;w>>,g<ax<k;w>A,-T(y>>,;

(2

+(AT(x)ay (k) g(a) (K w)AT(Y)) g}

3;0;
=( 6”—5—2‘) [Eq. (4.49)],

3
d:)s5+<w2—k2—m2><AI<x>aI<k;w>>B<AT<y>ax<k;w>>B

2
T T
(TIAT (A (V)]s _’21 f (2

+(AT(X)ay (k) g AT(X)a) (K )

9;0;
:( 5”_5_21) [Eq. (4.5]. (4.13

The replacements needed fA{NT) can be concisely ex- (3.5 we simply replacgusing corresponding prescriptions

pressed as one heat bath particle line in each cut diagram and this re-
placement must sum for all the possible heat bath particle
lines in the diagram. If more types of heat bath particles are

i present, we replace only those lines which correspond to
()= 8~ ? [EQ. (4.6)] (4.14 particles whose number spectrum we want to comsee
Fig. 6).

The terms in the replacement.4)—(4.14) have a direct

physical interpretation. Thé(w,) and [1+(—1)Pf(w,)]

can be viewied as the absorption and emission of the heat

bath particles, respectively[3]. The term f(w,)[1
AL(x)AL , AL(x)AL 0. (41 +(—1)Pf(wy)] describes the fluctuations of the heat bath
(ATCOAT) g, (TTATOAT ) D)g (4.19 particles. This is because for the noninteracting heat bath

Equations(4.4—(4.14 can be most easily derived in the Particles ((nc—(n)p)?)z=f(w)[1+(=1)f(w)]. The

finite-volume limit; e.g., for a scalar field we reformulate Substituted propagators can be therefore schematically de-

o(x) as picted as

()= Ar e 1Btk Ar elErt—ikex l
1 2, 1
rescaling the annihilation and creation operators by defining

™ J2E,V 2E,V
— PEA i AT 1= 500, FIG. 6. The numerator of Eq$3.4) and(3.5) can be calculated
a(l?) 2EVAcin sueh a way TaﬁAk ’A;,k/] i [s0 that using the modified cut diagrams fT"PT), , ;. As an example
<AkAk’>B:5kk’fB(kO)]7 Wh||e fd k/(27T) —>(1N) Ek' 72

: . e depict all the possible contributions to the numerator derived
The replacementst.4)—(4.15 are meant in the following ..« . POss| foutl u v

] . . from the cut diagram on Fig.(d). The wavy lines and thin lines
sense: First, one constructs all the+0 diagrams for describe the heat bath particles. The crossed lines denote the sub-

: : .
(T"PT)p,p, 5 Using the LTE2.28 and the rules mentioned  gitted propagators; in this case we wish to calculate the thin-line
therein. In order to calculate the numerator of E@s4) or  particle number spectrum.

As for the longitudial(nonphysical degrees of freedom, it is
obvious that
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X Yy =~ fluctuations
1 1

X Yy =~ fluctuations + emissions + absorptions
2 1

X Yy ~ fluctuations
2 2

Collecting all the contributions from emissions, absorp-path, with a pair of scalar charged partickése (“muon”
tions, and fluctuations separately, one can schematicallynd “antimuon”) left as a final product. Both initial and final
write particles are supposed to be unheated. We further assume
that the heat bath photos are scalars; i.e., the heat bath
Hamiltonian has the form

d(N(w)); d(N(w)),
do B dow

+ Femissior(w) + Fabsorptior(w) 5
1 m

hb_— 2_ _Yp2

H 2(a,,A) > A“.

+F(w), (4.16 o _
In order to mimic the scalar electrodynamic, we have chosen

the interacting Hamiltonian entering in tAematrix as
where, for instance, for neutral scalar bosons,

emissio _—--1 d4k + 12 2 A 2 t ez 2 +
F Tw)=Z; W‘S (k*=m%) 8(ko— ) Hin=5®2p0"+| eA+ A% 44",

TS oT
X[1+fg(w)] v .
P1py.B B. Calculations

We can now compute an ordef- contribution to the
Using Eq.(4.9), it is easy to write down analogous expres- dA(N,(w))/dw. The evaluation of thelA(N (w))/dw is
sions forFarsertiongng FC To the lowest perturbative or-  straightforward. In Fig. 7 we list all the modified cut dia-
der, the form(4.16) was obtained by Landshoff and Taylor grams contributing to an order.
[3]. Note that diagraméb) and(c) are topologically identical.
Similarly, diagramge), (f), (h), (i), and(j) should be taken
V. MODEL PROCESS with combinatorial factor of Zcorresponding diagrams with
a heat bath particle line on the bottom solid line are not
shown. Of course, diagranfg) vanishes for kinematic rea-
To illustrate the modified cut diagram technigue, we shallsons. For instance, in order to calculate the contribution from
restrict ourselves to a toy model, namely, to a scattering ofliagram(a) (see also Fig. Bwe go back to Eq(2.9) and to
two neutral scalar particle® (pions within a photon heat prescriptiong4.4) and(4.5), so we get

A. Basic assumptions

1 2
Y,
2 12 12 b 9 S % &
?

FIG. 7. The modified cut diagrams involved in an orééreon-
tribution to the photon number spectrum. Dashed lines: photons.
Solid lines: ¢, ¢' particles. Bold lines® particles. FIG. 8. The diagrana) with a corresponding kinematics.
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_ 7\262

G v P j d*%,d*x,d%y, d%y e~ 1(P1FP2X1gi (P P2)%ej A (v, — X1 )i Ap(Y,—X,)
et )

A PA- d*k 2_ 2 + - —ik(y,—
XIAT(Y1= %) IA7 (2= X)) J Wﬁ(k —m?)[1+fg(@)]fa(@)[ 6" (ko= w)+ 6™ (ko + w)]e~17Y2)

A%t
= 4 d4 4 N2 2N ot 2 2
V4wplwp2(271-)5fB(w)[1+fB(w)] jd kd*gsd®q40™ (a3 mﬂ)ﬁ h mM)

1 1 1
+
— 203k +m?, 20,k+m5  203k+mS —2g,k+m

><5(ko_0))( 2 5(k2_m§)54(_p1_p2+Q1+qZ)- (5.9

Y

We have dropped thie prescription in the propagators since
adding (subtracting an on-shell momentg; ., to (from) an
on-shell momentak we cannot fulfill the condition
(k= ql;z)zzmi. As is usual, we have assumed that our in-

teraction Is enclosed in a “time” and volume b((rkan_dv,_ we discover that the unwantetf mutually cancel between
respectively. Analogously one can calculate contributions (&) and (h) diagramgsimilarly for (i) and (j) diagrama. An

gggsgggtgiggsr;?nisne It:ggér;ﬂp:)setht)js(i()arg%ré%%iz\i Eﬂggg iSalternative (but lengthiey way of dealing with the latter
suffer with the pinch singularity; the muon-particle propaga—pgl;hbZlﬂgiléli‘;';y}e'gateswgg?'gr? doffljttzrr]ee zztﬁir?gﬂg:@nﬂﬁ a
tor (p2.,—m?) ! has to be evaluated at its pole because of! ) ote p ; '

the presence of an on-shell lif@—2 line® with the same Evaluating all the diagraménote that we should attach to
momenta. Some regularization is obviously necessary. Usin?_ach diagram the_factor of 1/2! coming from a Taylor expan-
the formal identity[1] ion of theT matrix), we are left with[c.f. Eq.(4.16)]

5(x)=—%5’(x)1i7r[6(x)]2, (5.2

X*ie

. . ta\2e?
emissio absorptiol — 4 2_ A2 _ 4 4 + N2 n2
F Tw)+F Tw) <T7)TT>plp2’BVS(Uplwpz(Z,n_)S f d*ka(k=—m?) 8(ko w)f d*g,04q,8" (g2 —m2)

X 87 (q5—mo){K[1+fg(@)]8%(—Q+0qs+0p+ k) —Kofg(w) 8*(—Q+0ay+0p—k)}

(5.3
and
t\2e?fg(w)[1+fg(w)]
Fﬂuct — f d4k5 k2_m2 S(Kn— f d4 d4 6+ 2_m2 5+ 2_m2
(w) <TPTT>plp2,BVSwplwpz(Zw)s ( y) ( 0 (1)) ql q2 (QJ_ M) (QZ p,)
X{H(—Q+a;+qu+k)Ky+ 8 —Q+ay+ 0~ KK, — 28— Q+q; +q) K3}
th%e?fg(w)[1+ fg(w)]
a4 2_ 2 _ 4. 44 _
<TPTT>p1p2,Bvswplwpz(zw)s fd ké(k my)5(ko w)f d qld QZ54( Q+Q1+Q2)
o] R 5 (G3—M2) —2p 5" (02— M2) + (G ) (5.4
20.k—m3  2q;k+m’ z2 0w gme Lk 12

with  Ky=(1/20,k+m+1/20,k+m2)2, K= (1/20:k—m’+ 1/20,k—m2)2, K= 2/(2q:;k—m?)(2q,k+m?),  and
Q=p;+p,. The relevanfi.e., ordere® (see Fig. 9] term for(TPTT)plpz,B reads

A%t
(TPT ) p1p,.6= T6Vay oy (277 fd4q1d4q25+(q§—mi)6+(q§—mi)6“(—Q+q1+q2)

Nt
= 2_4m?. 5.
64V, 0, |Ql(27) Q f (5.9
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Equationg5.3) and(5.4) are analogous to the result obtained p, % P,
in [3] for the decay. In order to understand their structure, let
us deal with the number spectrum for smalls. To do this,

we change the integration variables X £
1 B 4 B
ql_>ql+§k' FIG. 9. The lowest-order cut diagram f6FPT"), . 5.
Q2_’Q2I%k- (5.6) Femissior(w) + Fabsorptiorcw)
These changes lead to Q%fg(w)e?

- wM2QE- Q7 QP - aMZ QP — A
(2qik=m?) 8" (g2 —m2) 8" (g~ m2) 8%(— Q+ s+ 0y + k)
Q2 2
(0Qo [KI|QD2+ (——W)

—2qik8t (2~ M2FX) 8" (g2— M2TY) TMZ | 4

X9 In
Q* (Q°
_ 2 2= [ X _Mm2
X 6%~ Q+ 0y + ), 5.7 (©QoIklIQh*+m) g | 7~ M
QZ
where M?=m’ —im?, X=q;k, and Y=gq,k. In addition, mi(T—Mz)
transformationg5.6) have unite Jacobian. If one Taylor ex- +

pands Eq(5.7) in terms of X andY, then one gets succes-
sively higherw contributions to Eq95.3) and(5.4). Expand-
ing Eq. (5.3 to the first order inX andY, and keeping only

MZ 2
g7 (0Qu- I & -

temperature-dependent pieces, we have Q2
2 2
mi| ——M
8prlwp2 o _ y( 4 )
<TPTT>plp2,ﬁ t [ Femission ) Fabsorptlorcw)] M2 5 Q2 (5.10
o7 (0Qo Qe+ me 3wz

\2€?
~ asTele) | diandiaua(e =) (ko A,

(5.8 with |k|=\/w2—m2y and |Q|= Q22— Q2. Equation (5.10
with takes a particularly simple form if, is negligibly small
(i.e., if m,<w); then,

J
A=— | d*g,d*q,8" (gi—M%) 8" (g5—M3)(4KX)

2
X 6%(Q= a1~ 02)lmy=mp=m - [Femissiof ) 4. Fabsorptio )
Here K = (1/2q,k+ 1/2q,k)? [we have performed transfor-
mationq,«< (s in order to express Ed5.8) solely in terms 2 fg(w)e? Q?
of X]. As A is a Lorentz scalar, it must depend bmonly via T2 mi\/QS_ QZ(Q2—4mi)

product Q). One can thus evaluat in the frame where
Q=(Qy,0) and then replac&Q, by (kQ) (see alsd3]).

Straightforward calculations show that Qo+ VQ5—Q?
—(ZW)(kQ)3 QO_ QO_Q
A= .
Q? M IQ° 2
Q| \/ — —M? —(kQ)?+ m2| — —MQ?
4 Q| "\ 4 For smallw one may replacég(w) by Bw. As a result, the

(5.9 leading behavior of emission pabsomiiontgr sma|| » goes like
™!, provided m,<w. Let us mention that parts propor-
tional to w2 have mutually canceled in the zeroth order of a
Taylor expansion.
Similarly as in the previous case we can evaluate.
’So we implicitly assume that the photon massis sufficiently ~ Performing transformatioc6.6), and expanding Eq5.4) to
small. the first order inX andY, we get

Recalling Eq.(5.5), we get
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8Vv
<Tﬂ*>plp2,3&ﬁ'““(w) jd4Q1d4QZ54(Q 1= q2)( )5+(q1 m?)
,u,
262 ><5+(q§—mi)+f d*q,d*0,8*(Q—a1—ay)
(2 )SfB(w)[1+fB(w)]
d\? Qk 32
X{(W) _z(ﬂ) aMlaMz]
4. A4 2_ 2 _
x| e ag-we >4 X6 (GE-MDS" (@F-MI, .
with Direct calculations lead to
2
2m(kQ)? M2 (T‘MZ (2M*=QHm,
T A2 02_ 2\32 2 - 2 2 2
O [l [qrocorem] o
B T B 27
1Q[VQZ—4am2  [QI(Q*—4M?)¥
After some analysis we finally get
. K[IQ| K[IQl -
JR— + —
g,y (@ fs@Ime? ol | QI o |Q|(‘°Q° <
w)~ _ _
47M2\QE-Q?Q? - 4m’ Q? ?
my I—M my T—M
(2M?=Q?*m, ®Qo+k[|Q| Qo—IK/IQ| ]
27Q2—am? | M? Q? M? Q?
Q ?(on+|kllQ|)2+m§ T—MZ) ?(on—lkllQl)Zeri T—MZ)_
fo(w)[1+fa(w)]|k|e?

72(Q?-4m?)

Expressior(5.13 considerably simplifies in the limin,— 0.

In the latter case

f(w)[1+fp(w)]we

Ffluctw _
m(Q?—4m;)

(5.19

and so the leading behavior f&"*' at smallo andm, <o

(5.13

A result similar to Eqs(5.11) and(5.14) has been derived
by Landshoff and Taylof3] for a decay using proper scalar
electrodynamics, though in their case a contribution from the
emission and absorption dominated over fluctuations for
small o. Note that in our model both contributions are of
comparable size ab~0. The former feature is inherently
connected with the fact that our “photons” are scalar par-
ticles. If photons were vector particles, an additional photon

is dominated byw 1. Note that separate contrlbutlons to the momentumk,, would go with each three-line photon-muon

zeroth order of a Taylor expansion Bf'"® behave asv»~?

vertex and so one might expect that the contributithsl)

but they cancel between themselves, leaving behind partnd (5.14 would “soften” at small . We have checked
proportional at worst tas 1. The minus sign in Eq(5.14 explicitly that for zero-mass photons in the axial temporal
reflects the fact that the fluctuations tend to suppress an irgauge(i.e., A°=0) this is indeed the case, and it was found
crease in the particle number spectrum wheis small. On  that Femission pabsorption. =1 \yhjle Ffluctec ),

the other hand, from E¢5.11) we see that the emissions and  Until now we have supposed that our heat bath contains
absorptions stimulate an increase in the particle numbewnly (scalay photons in thermal equilibrium. However, one
spectrum for smallo. could similarly treat a heat bath which is comprised of pho-
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modified electron line and two equivalent distributions of the
photon-muon vertexso together with 1/2! from a Taylor
5 5 S expansion of thel matrix we get the symmetry factor).2
Analogously we get ten inequivalent modified cut diagrams
from Fig. 1Qa); seven from(b); eight from(d); six from (e),
O o ) and eight from(f). The actual electron number spectrum cal-
culations are thus rather involved.
FIG. 10. The generating thermal diagrams involved in an order- Nevertheless, one might evaluate fairly quickly
e* contribution to the electron number spectrum. Dashed lines: phofemissio ) y 4 Fabsorptiog, ) as there are only three dia-
tons. Thin lines:p, ¢" particles. Bold lines® particles. Half-bold grams which contribute, namely,
lines: electrons.

tons and charged particles, let us say electrons, mutually cc
existing in thermal equilibrium. To be more specific, let us 4
assume that the heat bath phot@nand electron®” are both
scalars so the heat bath Hamiltonian takes the form

Let us recall that in the final state we must have, apart from
a2 the heat bath particles, only two “muons,” and so the dia-
HMP=H7+ He+eA\If\IfT+EA2\P‘I'T, gram

He=09,¥ "W —m2u¥T, (5.19

1 m?
y=_ 2_ _Yp2
HY=2(3,A)2~ =2 AZ,

and theT-matrix interacting Hamiltoniatd;, reads cannot contribute  to dA(Ng(w))/dw. Subtracting a
temperature-independent part, we are left with

A e’ e?
Hm=§<1>2¢>¢‘f+ eA+ 7A2 VUt eA+ EAZ oA

emissio absorptio

It is usually argued15,16 that the interacting pieces in F (we)+F (we)
H"® can be dropped provided that- — < andt;— . Since ta%e*fg(we)
we assume that “pions” are prepared in the remote past and (TPTNyp o, sV @y wp (27)°
“muons” are measured in the remote future, we shall accept e 1T
in the following this omission. Among others, the former
allows us to use safely Wick’s theore(d.16) and Dyson- Xf d*q,d*qed™ (07— m2) 8(g2—mZ) 8(de— we)
Schwinger equatiofi2.18).

We can now approach calculating both the photon and b h b2 2 b2 2
electron number spectrum, i.e.dA(N(w))/dw and X | d02d™a3é™ (gz—my,) 67 (az—my,)
dA(N¢(w))/dw, respectively. As fordA(N,(w))/dw, an
ordere? contribution is clearly done only by diagrams in X{K18%(=Q+0p+da+ A7~ 0e)

Fig. 7 as there are no relevant graphs with electron vertices — K8~ Q+ o+ Qs+ 07+ o)}, (5.16

contributing to this order, and so Eq%.10 and (5.13 still
remain true. On the other hand, there is no omfecontri- with
bution todA(N(w))/dw. The lowest order i (keeping\ 2
fixed) is e*. This brings richer diagrammatic structure than
in the photon case. In Fig. 10 we list all the generating ther- 1 1
mal diagrams contributing to an ordet. K= —

It is easy to see that out of these 6 generating thermal (—,Q+Q%*+ie) (—U3Q+Q"—ie)
diagrams we get 43 nonvanishing and topologically in-

equivalent modified cut diagrams; for example, from Fig. % 1

10(c) we have only those diagrams which are depicted in (—2079.+ 2m§—m§)2’
Fig. 11. Note that the graphs of Fig. 11 must be multiplied by

a factor of four as there are two equivalent insertions of the Ky=K1(ge— —Qe)-

| . ) , If we are interested in the qualitative behavior of Eq.

(5.16 at smallw’s, one needs to perform an integration over

pe only. In order to keep our calculations as simple as pos-
sible, let us assume tham.=m,=0. Equation(5.16 can

FIG. 11. The nonvanishing modified cut diagrams from Fig. now be handled in a similar way as in the photon heat bath
10(c). case. We first perform a transformation



3648

g7—07+0e,
Je—0e-
So Eq.(5.16) now reads

E (5 16) t7\264f5(a)e)
g. (5.1=
(TPTT>plp2,3valwp2(2w)8
X f d*q,d*qs87 (g5—m2) 8 (g5—m?)
X 1 ! B
(—0,Q+Q%+ie) (—g3Q+Q%—ie)
(5.17
where
d*qg,d*ge
B=| ——={87(g2+X)— 8" (g3—X)}8(q?
2q,q02 10 (@7+X) =07 (a7=X)}(qe)

X 8(09— we) 8*(— Q+ 0o+ ds+dy7),

with X=2qg9.. As before we might expanB in terms of
X. The first surviving term reads

8~ [ dasa‘adogaia)s’

2X

X(=Q+d,+0gs+ay) 207002
e

=—wg&mzf d*q;8(q3—m?) 6*(—Q+d,+ds+0y)

1 9
X —In qg—"“' , (5.18
a7l "N az+ladl /|, _,
and so Bxwl, and consequently FeMssof, )

i -1
+ Fa.bsorpnor(we) *w, 5 .
previous mathematical operations Fd"“(w,) reveals that

Straightforward application of the
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fied cut diagrams. In particular, for the quark-gluon plasma
in thermodynamical equilibrium our approach should be use-
ful as an effective alternative to the Landshoff-Tay[Gi
approach. The method used [i8] (i.e., to start from first
principleg suffers from the lack of a systematic computa-
tional approach for higher orders in coupling constants. One
of the cornerstones of our formalism is the largest-time equa-
tion (LTE). We have shown how the zero-temperature LTE
can be extended to finite temperature. During the course of
this analysis, we have emphasized some important properties
of the finite-temperature extension which are worth mention-
ing. First, many of the kinematic rules valid for zero-
temperature diagrams cannot be directly used in the finite-
temperature ones. This is because the emission or absorption
of heat bath particles make it impossible to fix some particu-
lar direction to a diagrammatic line. It turns out that one
finds more diagrams than one used to have at zero tempera-
ture. The most important reductions of the diagrams have
been proved. The rather complicated structure of the finite-
temperature diagrams brings into play another complication:
uncuttable diagrams. It is well known that at zero tempera-
ture one can always make only one cut in each cut diagram
(this can be viewed as a consequence of the unitarity condi-
tion). This is not true, however, at finite temperature. We
have found it as useful to start fully with the LTE analysis
which is in terms of type-1 and type-2 vertices. This lan-
guage allows us to construct systematically all the cut dia-
grams. We have refrained from an explicit use of the cuts in
finite-temperature diagrams as those are ambiguous and
therefore rather obscure the analysis.

The second, rather technical, corner stone is the thermal
Dyson-Schwinger equation. We have developed a formalism
of the arrowed variations acting directly on field operators.
This provides an elegant technique for dealing in a practical
fashion with expectation valugdoth thermal and vacuum
whenever functions or functionals of fields admit the decom-
position(Al). The merit of the Dyson-Schwinger equation is
that it allows us to rewrite an expectation value of some
functional of the field in terms of expectation values of less
complicated functionals. Some illustrations of this and fur-
ther thermal functional identities are derived in the Appen-

Fl'{ wg)xw,* as well. Let us mention that the separatedix.

contributions present irFeMsSioY ) FabsoPioR, 3 - and

When we have studied the heat bath particle number spec-

Fl(w,), behave as, 2 but they mutually cancel, leaving trum, we applied the Dyson-Schwinger equation both to the

behind terms proportional at worst tmgl.
Surprisingly enough, we have found that, for smallour

heat bath5.15 changes due to scatteriﬂgcb—>¢$in such

a way that the rate of change in the electron number spe

trum has qualitatively similar behavidie., w ') as the rate

of change in the photon number spectrum. This is so pro-
vided one assumes that both electrons and photons are mass-
less particles. Clearlyy 2 behavior would be disastrous as

it would suggest that the energy densitgiN/dw of the heat
bath particles behaves as ! which would, if integrated,

numerator and denominator of the corresponding expression.
The results were almost the same. A simple modification of
one propagator rendered both equal. We could reflect this on
a diagrammatical level very easily as the denominator was

?Ully expressible in terms of thermal cut diagrams. Our final

rule for the heat bath particle spectrum is

dA(N(w))  (TPT)5p, 6
da) N <TT,PT>p1p2'B’

6.

produce an infinite contribution to the total energy carried offWith T being theT matrix, P being the projection operator

by the heat-bath particles.

VI. CONCLUSIONS

onto final statesp,,p, being the momenta of particles in the
initial state,B being the inverse temperature, avidbeing an
abbreviation for the modified diagrams. Modification of the
cut diagrams consists of the substitution in turn of each heat

In this paper we have formulated a systematic method fobath particle line by an altered one. This substitution must be
studying the heat bath particle number spectrum using modidone in each cut diagram. Replacement must be only one per
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modified diagram. Our approach is demonstrated on a simpli& thermodynamical equilibrium. In order to keep the work
model where two scalar particl€$pions” ) scatter, within a  transparent, we shall suppress all the internal indices. There
photon heat bath, into a pair of charged partigtéauon” is no difficulty whatsoever in reintroducing the necessary
and “antimuon”) and we explicitly calculate the resulting details. Let us first realize that for ariywell-behaved func-
changes in the number spectra of the photons. It is also digional the following Taylor's expansion hold&7]:

cussed how the results will change if the photon heat bath is
replaced with a photon-electron one.

x['ﬁ]:; J'dxl"'fdxnan(xlv---:xn)df(xl)'"‘r//(xn)-
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the «"(-+-) are not generally symmetfidn the x’s. When
Fermi fields are involved, we might, for the sake of compact-
ness, include in the argument gtthe space-time coordinate,
the Dirac index, and a discrete index which distinguisligs

Equation (2.18 gives us an alternative definition of from i, . In the latter cas¢ dx— X [dx, where the summa-
Wick's theorem in terms of the “functional derivation” tion runs over the discrete indices. With this convention, the
S8l 8y(x). We refer to Eq.(2.18 as the Dyson-Schwinger expansior{Al) holds even for the Fermi fields. An extension
equation because the classita 0 Dyson-Schwinger equa- of Eq. (Al) to the case where different fields are present is
tions are implied by it. Let us first show that E@®.18 is  natural. Particularly important is the case whkrs a field in
consistent with Wick’s theorerf2.16) and(2.17). To be spe- the interaction picture; using Wick’s theorem and decompo-
cific, let us consider an ensemble of noninteracting patrticlesition (A1) one can then write

APPENDIX: FUNCTIONAL FORMALISM
AND GENERAL BACKGROUND

f ) ”(xl,...,xn>ﬁm<y1,...,ym><(1;[ w<xk>>w<x>H w(ykr>>
k!

dx

(GLYIPOOFL¢]) =2 (

J
-3 ([ o
()

B

"(Xq,-. n)ZI (il)”_'<¢(x|)¢(x)>g< ILII ¢(Xk)F[¢]>

B
+2 f ) BT (Y10 Ym) 20 (i1>'—1<¢<x>w<x|>>ﬁ<Gw]H w<ykr>> : (A2)
k" #I
B8
with (fdx)"=fdx;---fdx,. The “—" stands for fermions and %" for bosons. On the other hand, using the formal

prescriptionsg2.19 and (2.21) for Slézp(x) one can read

f dz<¢(x)¢(2)>ﬁ<GW] 5¢Ef3>

-2 Udy) Bm(yll---’ynvfd2<¢<X>¢<Z>>ﬁE| <t1>'16<z—y|)<e[¢]ﬂ w(yk/>>
B

k' #1

k' #1

=§ Udy) ﬂ’“(yl,---,ynoEl <i1>'1<¢<x>¢(y.>>ﬁ<e[w]ﬂ w(ykf>> : (A3)
B

A similar expression holds fofdz( (x) ¥(2)) 5({G[ ¢] 51 54(2)} F[ 1)z . Putting the latter two together we get precisely Eq.
(A2). This confirms the validity of Eq(2.18). It is easy to persuade oneself that exactly the same sort of arguments leads to

5F
(WOoF L= [ dz<¢<x>w<z>>ﬁ< 5¢[("Z”)]> , (%)
B

81f X=X[4,dy], the " may also contain derivations working on the various fields.
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rturti- [ axrtuuon 7| 2] a5)
VOOFLUTN) sl 7 )
(LT (WOFLYI,= [ dT w0002 ]>B<Gw]f( e > - dz<¢z>w<x>>ﬁ< oo T(F[¢]>> ,
B
(n6)

etc., with7 being either the chronological or antichronological time ordering symbol. At this stage it is important to realize

that from the definition ofd/ Sy(x) directly follows that[ &/ Sy(x) ; 8/ 5y(y)]==0 (“ =" holds for bosons and “" for
fermions. Indeed,

Xi X

FFLY) e o TTo T Ry
S Sy :nzz IZ<J (J dx [a"(X1..X..y..Xp) Ea"(Xq...y.. . X..Xp) [ (£ 1) Jml;li‘j Y(Xm) = +5z,//(y)5z,//(x)'
(A7)
Similarly [Sléw(x) ; 5/61//(y)];=0. Analogously we might prove
Fly152  5°Fly]
SUX) SUYIK  0X) 34Y) (A8)
and
S(FLYIGLy])  F[y]5° FL¥15 3G[y]  Fl415 3G[y] 5°G[y]
su)ouy)  suxauty) LT Y 500 Buty) T saty) deo T sucosutyys A9

The p is 0 for bosons and 1 for fermions. With Eq®.18 and (A4)—(A6) one can easily construct more complicated
expectation values. For example, using E@s18 and (A4) we get

SFy] >
RV EAET A
+ () YY) (L) 5. (A10)

W(25)) g+ (— D)P(P(X) h(25)) s(h(y) ¢(21)>ﬁ]<

(P YYIF[ 1) g=

Similarly, using Eq.(2.18 and (antjcommutativity of the arrowed/ sy(x), we get

(GLY1p(X) (V) F[ 1) = —DP((X) (22)) g(b(Y) ¥(21) ) ]

R[] dzdz,
X G[w]m B+J’ T[(¢(21)¢(X)>3<¢(22)¢(Y)>3

G[ /]8>
[¢] Flu]

— 1)P(g(2) (X)) 4 ¢(21)¢(Y)>ﬁ]<m
B

+ [ dzmazipzpo0) iy we),
—DP((X) 4(22)) g{h(20) YY) ]

G[y]6 SF[y]
><<_5¢,(zl) 5—¢,(22)>ﬁ+<¢(x)¢(y)>g<e[¢]F[¢])ﬁ. (A11)

We could proceed further having still higher powers of fields and variations. However, there is a quite interesting generali-
zation in the case when we hat@nti-)time-ordered operators. Let us havgy]=7(F[ ¢]); in this case,
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n . n ”an(-~~)
<Fw1>ﬁ=; ( dx) a (---><T i[[l P(Xi) > =21(de ZJ ep(TTY(x) P(x)1)
= 8 n= I,
< H (X > +a%(-+)
m#1,j
B
fdzdzm (21)¥(2)]) LG +<F[O]> (A12)
1dZz(T [ 4(21) P(2, B\ Sy(zp) 0(zy) B

where F[ ¢] differs from F[¢] in the replacement"(---)
—a"(---)/n (n starts from 1. In comparison with Egs.
(A4)—(A11), the a°(---) (i.e., the pureT=0 contribution
does matter here. Note thaf(---) generally involves non-
heat-bath fields with corresponding space-time integrations.
A similar extension is true iF[ ]=7c(F[ #]), whereZc is

the time path ordering symbol. In that case

Particularly important is the Keldysh-Schwinger path
[1,19,20; see Fig. 12.
In the latter case

(FLyDp= fc dzdzX(T[(21) ¥(Z2) 1) g

" " SFLy]
(FLYD) =2 (de) a( .. -)<TC<le :/;(xp))>ﬁ X<5¢/J(22)5¢(21)>B
S°FLy] =
fd21d22<7[<//(21)llf(22)]>ﬁ<m> +fczdzld22<7['//(Zl)lﬁ(zz)]);;
+{FLODs. (A13 ><< PFLY > f dzlf dzy((2,)
with® [cdx=[cdtfydx and Sy(x)/Si(y)=Sc(x—Y). o(25) 69(21)

Wick’s theorem for theZ.-oriented product of fields has an
obvious form

<Tc[w<x1>---w<x2n>]>ﬁ=§ ep( T (X)) ¥

j#i

X)) g

Application to
X T¢ .
< C(kl#_i[;j ¢(Xk))>ﬁ reads
(A14)
This can be directly derived from Wick's theore(@.17), (GLyIF[¥])p=

realizing that

L)+ )= 2 2p0c(tp,, - tp, ) (Xp,).

Xh(Xp, ), (A15)

where P refers to the permutation of the indices and

0c(t1,....ty) being a contour step functidri9] defined as
1 (t4,...t, are7Z; oriented alongC)
t1,..., t
Oc(ty, - tm) 0 (otherwise
(A16)
°A  contour & function &c(x—y) is defined as

fcdzé:(z—2")f(2)=1(2'); see[9,18].

v

the product G[¢]F[¢] with F[ ]

52FT 4] >
_ F[O .
S(25) Si(2y) +(FLoD,

(A17)

zTcl(F[z/f]) and G[z/;]zTCZ(G[w]) is straightforward and

f 2,0 2,(T[(22) ¥(22) )

Gl 432 >
><< Sz oz LV

f dz,dz(T[¥(z1) ¥(22) 1)

5F [y] >

x<G”’] FTCSETEA

Lo J d2,02,((20) ¥(22)) 5

GLy1d SF[¥]
<m M>;<G[°JF[°M’

(A18)
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Imt x (number of lines) =
hibed Ret c, - t-teo ;
—< < )
t-ie c, G -ie FIG. 13. Diagrammatic equivalent of EGA19). The cut sepa-
rates areas constructed outkfy] and G[ #].
e <G[ PR >
X e
FIG. 12. The Keldysh-Schwinger time path. 0Y(z3) 6(21) 8
where the overbar indicates that we work with

a"(---)B™(---)/(n+m) instead of a"(---)BM(--:); we
have also abbreviatefic dz to [dz[c dz We should also
emphasize thaby(x)/ Sy(y) used in Eq(A18) is 5(x—Y)
rather thandc(x—vy).

In Eqg. (4.3 the inverted version of EqA18) has been
used, namely,

dz,dz,

(GLYIFLI Y= | 52Ttz pz Dy
Fer
X ————F
gl

dzdz
2

(T2 ¥(22) 1)

N f d2:02,((2) (22)) 5
X<Gw]3 3F[¢]>
SY(21) O(zy) ,3'

Here G[ ]F[#])’ has the coefficients"(---)8™(--+) (n
+m)/2 instead of a"(---)B™(---). Note, that the
a%(---)B°(--+) does not contribute and thus we do not have
any pureT=0 contributions. EquatiotA19) has a natural
interpretation. While the LHS tells us that from each thermal
diagram[constructed out of G[ #]F[]),z with (n+m)/2
internal heat bath particle linga/e must taken+ m identical
copies, the RHS says that this is virtually because we sum
over all possible distributions of one heat bath particle line
inside of the given diagram. The pictorial expression of Eq.
(Al19) is depicted in Fig. 13.
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