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Schwinger and Thirring models at finite chemical potential and temperature
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The imaginary time generating functionalZ for the massless Schwinger model at nonzero chemical potential
m and temperatureT is studied in a torus with spatial lengthL. The lack of Hermiticity of the Dirac operator
gives rise to a nontrivialm- andT-dependent phaseJ in the effective action. When the Dirac operator has no
zero modes~trivial sector!, we evaluateJ, which is a topological contribution, and we find exactlyZ, the
thermodynamical partition function, the boson propagator and the thermally averaged Polyakov loop. The
m-dependent contribution of the free partition function cancels exactly the nonperturbative one fromJ, for
L→`, yielding a zero charge density for the system, which bosonizes at nonzerom. The boson mass ise/Ap,
independent ofT andm, which is also the inverse correlation length between two opposite charges. Both the
boson propagator and the Polyakov loop acquire a newT- andm-dependent term atL→`. The imaginary time
generating functional for the massless Thirring model at nonzeroT andm is obtained exactly in terms of the
above solution of the Schwinger model in the trivial sector. For this model, them dependences of the ther-
modynamical partition function, the total fermion number density and the fermion two-point correlation func-
tion are obtained. The phaseJ displayed here leads to our new results and allows us to complement nontrivi-
ally previous studies on those models.@S0556-2821~98!00704-8#

PACS number~s!: 11.10.Wx, 11.10.Kk, 12.20.Ds
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I. INTRODUCTION

The Schwinger model is QED in 111 space-time dimen
sions @1#. Although it is a toy model, it shares many inte
esting physical properties with more realistic theories such
QCD or the electroweak theory. It is perhaps the simp
example in which gauge invariance does not necessarily
ply a massless gauge boson, analogously to the Higgs
nomenon. Other interesting properties of the model are
namical mass generation, chiral symmetry breaking,
confinement. The model with massless fermions was sh
to be exactly solvable in a vacuum~that is, without thermal
effects! a long time ago@1,2#. It is equivalent to a theory
describing a free boson with masse/Ap ~bosonization!,
which is physically a fermion-antifermion bound state~con-
finement!. The finite mass implies a finite correlation lengt
which physically corresponds to charge screening, lo
range forces being absent. On the other hand, chiral sym
try is broken through the chiral anomaly@3# rather than spon-
taneously, since Coleman’s theorem@4# prevents any con-
tinuous symmetry from being spontaneously broken in t
dimensions. When a mass parameter for the fermions is
cluded, the model is no longer solvable but it is still possi
to analyze exactly some of the above properties, such
fermion confinement@5#.

In the last ten years, there has been a renewed intere
the study of the Schwinger model including statistical m
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chanics features. The model was also solved and, in par
lar, the two-point correlation functions and the partitio
function were obtained at finite temperatureT and zero
chemical potentialm in @6# when the Dirac operator has n
zero modes. Its thermodynamics can be expressed in term
those of a free boson of masse/Ap and free fermions; i.e.,
bosonization also takes place at finite temperature. A m
complete study of the Schwinger model on a torus, wh
naturally incorporates temperature effects, still atm50, has
been performed in@7,8#. More specifically, in@7# the model
was treated with an arbitrary number of zero modes and
two-point fermion correlation function was calculate
whereas in@8# higher correlation functions were obtained.
@9#, the correlation functions have also been studied for n
zerom. In a recent work@10#, the problem of charge screen
ing at finite temperature~with m50) in the Schwinger
model was analyzed, in connection with the spontane
breaking of the discreteZ symmetry, which corresponds t
the freedom of choosing gauge fields in the Euclidean ti
direction with any winding number aroundS1. These non-
trivial gauge transformations will play an essential role
our analysis with a nonzero chemical potential.

On the other hand, we recall that the Thirring mod
which describes massless fermions in 111 dimensions with
a quartic self-interaction, can also be explicitly solved in
vacuum (T5m50) @11,12#. We also recall that the genera
ing functional for the Thirring model at finiteT and m50
has been obtained in terms of the fermionic one~with an
external electromagnetic source! for the Schwinger mode
@6#. The Thirring model at nonvanishingT andm has been
analyzed in@13# for real time and in@14# in the torus.

In this paper, we shall study, first, the Schwinger mode
a medium at thermodynamical equilibrium, by introducin

s:
3618 © 1998 The American Physical Society
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57 3619SCHWINGER AND THIRRING MODELS AT FINITE . . .
both the temperature and the fermion chemical potentiam.
By considering a nonzerom, we are able to study the syste
when there is a finite net fermion charge density~in the free
case,m is just the Fermi energy!. Some of the questions tha
naturally arise are~i! whether one can provide simple sol
tions for the Schwinger model with a nonzerom, which ex-
tend previous studies nontrivially,~ii ! whether bosonization
takes place at finite fermion charge density and, if so, wh
is the boson mass,~iii ! which is the net fermionic charge o
the resulting system, that is, whether the fermions are
confined to neutral mesons, and~iv! how the chemical po-
tential affects charge screening. We shall try to give answ
to all of these questions. The second aim of this work is
provide an exact solution for the Thirring model atTÞ0 and
mÞ0 in the imaginary time formalism, in terms of the co
responding one for the Schwinger model, to compare w
previous findings by other authors, using different metho
as a search for consistency and to get some new results

The plan of this paper is as follows. In Sec. II, we sh
deal with the generating functionalZ of the Schwinger
model at nonzeroT and m, analyzing several importan
items: the fermionic generating functionalZf with an exter-
nal electromagnetic field, the role of the zero modes,
determinant of the Dirac operator, etc., by following ste
similar to those in@7#. The lack of Hermiticity of the Dirac
operator and a nontrivial phase factorJ will be genuine and
crucial features of themÞ0 case. They both will make nec
essary an extension of the methods developed in@7#. From
Sec. III onwards, we shall restrict ourselves to the triv
sector, which is the only relevant one, in order to study
thermodynamics of the system. We shall getZ, Zf , andJ by
using functional methods, generalizing what was done
m50 in @6# and deriving the proper extension of the poin
splitting regularization whenmÞ0. Section IV is devoted to
~a! several physical results for the Schwinger model, the
mion charge density, the thermodynamical partition functi
the boson propagator in the trivial sector, the Polyakov lo
~the order parameter of the confining symmetry!, and the
screening length, and~b! the consistency of our method
The tasks of obtaining an explicit solution and new resu
for the Thirring model at nonzeroT andm are undertaken in
Sec. V. Section VI contains the conclusions and some
cussions. Several results pertaining to the zero modes in
Schwinger model at nonzeroT and m are collected in the
Appendix.

II. GENERATING FUNCTIONAL AT FINITE
TEMPERATURE AND DENSITY

Our starting point will be the generating functional for th
Schwinger model in the imaginary time formalism of the
mal field theory@15,16#. We shall work in Euclidean two-
dimensional space-~imaginary! time. In principle, we shall
keep the length of the systemL finite, by imposing suitable
boundary conditions in the spatial direction~see below!.
Thus, one properly defines the spectrum of the Dirac op
tor and avoids infrared divergences@7,8,14#. At the end of
the calculations we shall take theL→` limit. The finite
density effects will be implemented by including a chemic
potentialm associated to the conservation of the total elec
charge~or the number of electrons minus that of positron!.
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Let A5(Am)5(A0,A1) be the electromagnetic potentia
Then, the generating functional reads

Z@J,j, j̄ #5N~b!E
periodic

DAexpF E
T
d2x~G@A#1JA!G

3Zf@A,j, j̄ #,

G@A#52
1

2
E22

1

2a
~]mAm!2, ~1!

where the fermionic generating functional is

Zf@A,j, j̄ #5E
antiperiodic

Dc̄DcexpF E
T
d2x~2c̄D” ~A;m!c

1 j̄c1c̄j!G ~2!

and the Dirac operator is given by

D” ~A;m!5]”2 ieA” 2mg0. ~3!

In the above equations,N(b) is a temperature-depende
normalization constant,b51/T, T being the temperature,*T
is the integral over the Euclidean two-dimensional tor
@0,b#3@0,L#, ande is the electric charge, which has dime
sions of energy. The fermionic and bosonic external sour
are j̄ , j and J, respectively. The electric field isE5F01
5]0A12]1A0 and a is the covariant gauge-fixing param
eter. It is important to remark here that the above covari
gauge fixing does not fix the gauge completely on the tor
There is still some residual gauge arbitrariness related to
bal gauge transformations, which we shall deal with lat
The Faddeev-Popov determinant has been absorbed in
measure in Eq.~1!, as it plays no dynamical role. Our con
ventions for the Euclidean Dirac matrices ($gm ,gn%5dmn)
are: g05g0, g15g1 and g552 ig0g1 are the Pauli matri-
ces.

The electromagnetic field and the bosonic external sou
are periodic in Euclidean time with periodb whereas the
fermionic fields and sources are antiperiodic. An alternat
approach, which we shall not follow here, would have be
to take D” (A;0) in Eq. ~2!, with fermions satisfying the
boundary conditionc(x01b,x1)52exp(bm)c(x0,x1). Con-
cerning the spatial boundary conditions, they cannot be c
sen as periodic, in general~after the above choice for th
temporal ones!, as the Dirac operator may have zero mod
on the torus~to avoid duplications, we refer to@7# for a
justification!. Without loss of generality, we shall chooseAm
so that Am(x0,x11L)2Am(x0,x1)5]m(2Fx0/eb) and
hence

c~x0,x11L !5expS 2 i
F

b
x0Dc~x0,x1!,

c̄~x0,x11L !5c̄~x0,x1!expS i
F

b
x0D , ~4!

with F the total flux of the electric field over the torus,
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F5eE
T
d2xE~x!52p~n12n2!, ~5!

wheren6 are the number of zero modes with positive a
negative chirality. The relation~5! follows directly from the
axial anomaly@7,17#. We shall introducek5n11n2 , the
total number of zero modes. The gauge sector withk50 will
be referred to as the trivial sector. For later use, we recall
following factorization property of the Dirac operator:

D” ~A;m!5exp~x0m!D” ~A;0!exp~2x0m!. ~6!

A. General structure of Zf†A,j,j̄‡ with zero modes

The contribution of the zero modes to the generat
functional has to be analyzed carefully, in order to prope
define the functional determinant of the Dirac operator. F
that purpose, we shall follow the same steps as in@7#. How-
ever, there is an important distinctive feature of themÞ0
case, namely, thatiD” @A;m# is non-Hermitian. Hence, the se
of eigenfunctions ofiD” is no longer an orthonormal basis
which the spinor fields could be expanded. To avoid t
difficulty we shall expand the spinors in the basis of t
Hermitian operatorsD” †D” and D” D” †. This will allow us to
separate the zero mode contribution up to a phase factor
shall discuss below this factor and its relevance to the ca
lation. First, let us consider the set of eigenfunctions of
Hermitian operators,

H~A;m!fn5@D” †~A;m!D” ~A;m!#fn5mnfn ,

H̄~A;m!wn5@D” ~A;m!D” †~A;m!#wn5mnwn . ~7!

The operatorsH and H̄ have the same eigenvalue
mn>0 ~for mn.0, D” fn is an eigenstate ofH̄) and the zero
modes ofH (H̄) are the same as those ofD” (D” †). In addi-
tion, since the anomaly~5! is m independent~for general
results on the independence of anomalies on thermal effe
see @18#!, n12n2 is the same for bothD” (A;m) and
D” (A;0). As weshall see in Sec. II C, all zero modes ha
always the same chirality. Therefore, the numberk of zero
modes is the same forH, H̄, andD” (A;0).

At this point let us expand the spinor fieldsc and c̄ as

c~x!5 (
p51

k

apfp1 (
q5k11

`

bqfq ,

c̄~x!5 (
p51

k

āpwp
†1 (

q5k11

`

b̄qwq
† , ~8!

with

wq5
1

Amq

D” fq , q5k11, . . . ,̀ , ~9!

fp (wp) being the zero modes ofH (H̄). In this basis,
we have (wq ,wq8)5(fq ,fq8)5dqq8, where ~x,c!
5*Td2xx†c is the scalar product on the torus. We get,
the fermionic action,
e

g
y
r

s

e
u-
e

ts,

r

E
T
d2xc̄D” ~A;m!c5 (

q5k11

`

Amqb̄qbq . ~10!

Then, the action is diagonal in this basis and, by doing
integration over the Grassmanian variablesap , the contribu-
tion of the zero modes can be factorized. A crucial po
should be noticed here. As the spinorsc andc̄ are expanded
in different basis, the Jacobian of the change of basis fr
Dc to )p,qdapdbq is not the inverse of that fromDc̄ to
)p,qdāpdb̄q . This fact was already noted by Fujikawa@19#
in the context of anomalies with non-Hermitian Dirac ope
tors. Since both changes of variables are formally unita
when doing them simultaneously we are left with som
phase factor exp@iJ(A;m)#. Notice thatJ(A;0)50 since
thenH5H̄52D” 2(A;0). Also, in principle, the phase facto
is different for everyk sector, a feature to be recalled b
means of a superscript (k). Thus, performing the Gaussia
Grassman integrals overdādadb̄db we get

Zf@A,j, j̄ #5exp@ iJ ~k!~A;m!#

3expF2 i E
T
d2xd2yj̄ ~x!G~x,y,eA;m!j~y!G

3 )
p51

k E
T
d2xd2yj̄ ~x!fp~x!wp

†~y!j~y!

3Adet8H~A;m!, ~11!

where det8 is the functional determinant when the ze
modes are omitted~or factored out! and G(x,y,eA)
5(q5k11

` (1/Amq)fq(x)wq
†(y) is the exact fermionic two-

point function, satisfying the differential equation

D” ~A;m!G~x,y,eA;m!5d~2!~x2y!2 (
p51

k

wp~x!wp
†~y!.

~12!

The second term on the right-hand side of the above eq
tion is the projector onto theH̄ zero mode subspace. Fo
simplicity, we have omitted a superscript (k) in both
G(x,y,eA;m) and det8H(A;m). From Eq.~11! we see that
the zero mode contribution can be factorized in this basis
which we obtain the contribution ofudet8D” u5(det8H)1/2.
However, we have still to clarify which is the role of th
phase factor exp(iJ). This will be carried out in the nex
sections. Let us now recall how to obtain different quantit
of physical interest from Eq.~11!. If we are interested in the
thermodynamics of the Schwinger model, the relevant qu
tity is the partition functionZ5Z(0,0,0), so that, from Eq.
~11!, only the trivial sector contributes:

Z~0,0,0!5NE
periodic,0

DAexpF iJ ~0!~A;m!

1E
T
d2xG@A#GAdetH~A;m!. ~13!

We can obtain thermodynamic observables, such as the
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57 3621SCHWINGER AND THIRRING MODELS AT FINITE . . .
energy and the particle charge density, by differentiatingZ
with respect to the temperature and the chemical poten
respectively, thereby generalizing for finite charge dens
the study carried out in@6#. The subscript 0 in the functiona
integral above indicates that only the trivial sector contr
utes. Then, in the trivial sectorJ can be identified with the
phase of the fermionic determinant. We can also calcu
the average fermion charge densityr[L21*0

Ldx1^ c̄g0c& in
terms of the two-point Green function. A remark is in ord
here: The equations of motion for theA field imply ]1E(x)
52 iec̄g0c, which is Gauss’ law. If the latter is imposed a
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a quantum constraint on physical states@20#, then it would
imply r50 with the boundary conditions chosen. As is cu
tomary@21#, one may consider that an external compensat
~say, ion! chargerex is present to ensure charge neutral
and hence Gauss’ law holds for the total charger tot5r
1rex50. Alternatively, one may consider an open syste
that exchanges particles with a reservoir ensuring cha
neutrality. With this in mind, we shall make no further re
erence torex and concentrate only on the fermion char
densityr for the electron-photon system. Therefore, Eq.~11!
yields
r5
1

LE0

L

dx1^ c̄g0c&5
1

bL

]

]m
logZ52

1

LE0

L

dx1
1

Z

d

dj
g0

d

d j̄
Z@0,j, j̄#U

j5 j̄50

5
i

Z

1

LE0

L

dx1H E
periodic,0

DAexpF iJ ~0!~A;m!

1E
T
d2xG@A#GAdetH~A;m! tr@g0G~x,x!#1 i E

periodic,1
DA

3expF iJ ~1!~A;m!1E
T
d2xG@A#GAdet8H~A;m!w1

†~x!g0f1~x!J ~14!
he

-

e is
he

e
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ing
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and thek.1 contributions vanish. We shall show in Se
II C that the zero modes ofH and H̄ have all the same
chirality, given by sgn(F). Hence,w1 and f1 are both
eigenstates ofg5 with the same eigenvalue and therefore t
second piece in the above equation vanishes. Then, only
trivial sector contributes to the fermion number density.

We also remark that the property$g5 ,G(x,y)%50, which
is not difficult to prove with the above definitions, implies,
in the case of finiteT but vanishingm @7#, that the chiral
condensatêc̄P6c&, with P65(16g5)/2, does not depend
on G(x,y). However, from Eq.~11! we see that it will con-
tain the phase factor exp@iJ (1)(A;m)# ~see the Appendix!.

B. Imaginary part of the effective action

As iD” Þ( iD” )†, we have found the extra factorJ(A;m),
which is the source-independent piece of the phase of
generating functional. We shall analyze here its physical
terpretation, at least in the trivial sector. The general form
J(A;m) can be inferred from the symmetry transformati
properties of the phase of the different quantities obtai
from Zf after switching off the external sources. For i
stance, in the trivial sector, the object of interest is the eff
tive actionZf@A,0,0#. Now, recall that them-dependent term
in the Dirac action is odd under the operation of charge c
jugation C, since it is the number of particles minus th
number of antiparticles operator. The rest of the Dirac act
is even underC, so thatC acts onZf by replacingD”→
2D” † or, in other words,Zf@AC,0,0#5Zf* @A,0,0# and, there-
fore, the phase of the effective action is odd underC, while
the modulus is even. This is analogous to the case of
QCD effective chiral Lagrangian, when the symmetry und
consideration is spatial parity (P), the phase of the effective
action being, then, the Wess-Zumino-Witten term@22#. In
he

he
-
f

d

-

-

n

e
r

our case,J(0)(A;m) should contain onlyC-odd combina-
tions of the gauge field. AsP is a symmetry of the effective
action,J should beCP odd. In addition, it is not difficult to
check that them term does not generate any anomaly in t
gauge current, so that imposing local gauge invariance~see
comments below!, the only term which fulfills such symme
try requirements is of the form

J ~0!~A;m!5F̃~T,m,L !E
T
d2xA0~x!, ~15!

where F̃(T,m,L) is a function, undetermined so far~to be
found explicitly later!, such that F̃(T,m,L)52F̃(T,
2m,L) since, by changing simultaneouslym→2m and par-
ticle by antiparticle, the theory remains unchanged. Ther
another point that is worth noticing here. Recall that in t
torus the gauge transformationsg(x0,x1):S13S1→U(1) are
parametrized byZ 3 Z, corresponding to the two winding
numbers (n,m) around the two circles. For anyF, the most
general gauge transformationAm→Am1]ma, which keeps
]mAm fixed ~so that]m]ma50) and leaves unchanged th
boundary conditions~in space and time! for both fermion
and gauge fields isa(x0 ,x1)5(2pnx0)/b1(2pmx1)/L, up
to an additive constant. Different choices of (n,m) corre-
spond to nontrivial, homotopically disconnected, gau
transformations. But then we note that the integral in E
~15! is precisely equal ton when A is a pure gauge field
Hence, Eq.~15! changes bynF̃ when we perform a gauge
transformationg labeled by (n,m) and then it is not gauge
invariant under nontrivial gauge transformations. In th
sense it is a topological term. Therefore, we are impos
local gauge invariance but still allowing a noninvariant top
logical term dependent on the chemical potential. This
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sumption is partially motivated by previous works in whic
m-dependent topological effective actions were obtain
@23,24#. In the next section, we shall getF̃ explicitly,
through another method, thereby justifying our assumptio

C. Instanton decomposition

Following @7#, we shall decompose the gauge field into
instanton partÃm and a local fluctuationf as

Am5Ãm2emn]nf, ~16!

with f(x) periodic in both space-time directions. Note th
Ãm yields a constant electric fieldẼ5F/(eLb) and, hence,
E5Ẽ1Df. By following steps similar to those in@7#, we
separate first the contribution ofÃ andf in Adet8H. Using
that D” (A;0)5exp(eg5f)D” (Ã;0)exp(eg5f) @7# and Eq.~6!, it
follows immediately that

D” ~A;m!5exp~eg5f!D” ~ Ã;m!exp~eg5f!. ~17!

Notice that the operatorH(A;m) in Eq. ~7! can be cast as

H~A;m!52¹n¹n~A,m!2eEg5,

¹n5]n2 ieAn1 img5dn1 , ~18!

and the operatorH̄ is obtained fromH by changingm→
2m. Hence,H(Ã;m)52¹n¹n(Ã;m)2g5F/Lb, so that, as
2¹n¹n in Eq. ~18! is a positive operator, all the zero mod
of H(Ã;m) have the same chirality, equal to the sign ofF
~recall that@g5,H#50). On the other hand, from Eq.~17!,
we get a zero mode ofD” (A;m) by multiplying a zero mode
of D” (Ã;m) by exp(2eg5f)5exp@2e sgn(F)f#, which is in
turn a zero mode ofH(A;m). We can apply exactly the sam
argument toH̄. Then, the zero modes ofH andH̄ in Eq. ~7!
have both the same chirality, which is equal to sgn(F). This
was already used in Sec. II A, in order to omit the one z
mode contribution to the particle density.

It is possible to separate the contribution of det8H(Ã;m)
in det8H(A;m), for arbitraryk. We have sketched the der
vation in the Appendix, the general formula, for anyk, being
given in Eq.~A2!. From that expression, we read the usu
induced mass term for the boson field, with massm5e/Ap,
which is independent of both the temperature and the che
cal potential, thereby generalizing the result form50 previ-
ously derived in@6,7,28#. Let us quote here the result for th
trivial sectork50:

detH~A;m!5detH~ Ã;m!expS e2

p E
T
d2xf~x!Df~x! D .

~19!

D. Determinant of the instanton operator

In order to complete the analysis in the previous secti
one should still study the spectrum ofH(Ã;m), which will
be the purpose of the present section. First, by following@7#,
we shall decompose the fieldÃ as follows:
d

.

t

o

l

i-

,

Ã052
F

eLb
x11

2p

b
h01]0l,

Ã15
2p

L
h11]1l, ~20!

which is the Hodge decomposition of the gauge field in
torus. The contributions proportional toh0 and h1 are the
so-called harmonic parts and are essential to correctly qu
tize the model@7,14#. Notice that under a nontrivial gaug
transformation (n,m) of the type commented on in Sec. II B
theh fields above are the only ones changing and they do
as h0→h01n and h1→h11m, even for F50. The
l-dependent terms in the last two equations are pure ga
contributions withl periodic in x0 and x1, which will not
play any physical role. For instance, with the covaria
choice]mAm50, l is just a constant and that term does n
appear in Eq.~20!. Let us consider first the caseF50,
which is the only relevant one for the partition function.

Sinceg5 commutes withH̃, we choose the eigenfunction
of H(Ã;m) as states of definite chirality, that is,

C15S f1

0 D , C25S 0

f2D , ~21!

with g5C656C6, since g55 diag(1,21). Then, for F

50 we have to solveH6(Ã;m)f65l6f6 with

H6~ Ã;m!52~]02 i h̄0!22~]12 i h̄16 im!2 ~22!

and ~anti! periodic boundary conditions in the~time! space
direction. In the above equation we have introducedh̄0

52peh0 /b and h̄152peh1 /L. The eigenfunctions are
plane waves and the corresponding eigenvalues are

lnk
6 5S 2p

b D 2Fn1
1

2
2eh0G2

1F2p

L
~k2eh1!6m G2

,

~23!

with n,k integers. Notice that the chemical potential brea
the chiral degeneracy which was originally present in
m50 case. Now, by using log detH5Tr logH and Eq.~23!,
we get

log detH~ Ã;m!5
1

2 (
n,k52`

`

(
66

log@~vn!21~vk2 h̄16m

6 i h̄0!2#, ~24!

with vn5(2n11)p/b and vk52pk/L. Now, let us add
and subtract logb2(n,k to the right-hand side of the abov
expression. This procedure will give rise to aT-dependent
infinite constant, which, in turn, will be absorbed, as custo
arily, in the normalization constantN(b) @6,15,16#. We can
perform the summation overn in the above equation with the
help of the two formulas@16,25#
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log@~2n11!2p21b2~vk6a!2#

5E
1

b2~v6a!2 du

u21~2n11!2p2
1 log@11~2n11!2p2#,

(
n52`

`
1

~2n11!21u2
5

1

uS 1

2
2

1

eu11
D . ~25!

In so doing, we obtain, finally,

log detH~ Ã;m!5 (
k52`

` H 2b~vk2h̄1!1(
66

log@11exp

2b~vk2h̄16m6h̄0!#J ~26!

up to an irrelevantT- andm-independent constant. In orde
to obtain the full partition function, we have to multiply th
above expression~which for e50 reproduces the partition
function for free fermions at finite density! by exp(iJ (0)) in
Eq. ~13! and by thef-dependent contribution in Eq.~19!
and, then, integrate over the gauge fields (f,h0 ,h1). As a
consequence of the decomposition of the gauge field cho
here, the phase factor only depends onh0, so that

E
T
d2xA0~x!52

FL

2e
12ph0L, ~27!

sincef is periodic in the space direction. Then, thef con-
tribution to the partition function in Eq.~19! gives the parti-
tion function of a free massive boson@6#. All the dependence
on the chemical potential is included in the (h0 ,h1) part, as
given in Eqs.~26! and~27!. However, we have still to deter
mine the value ofF̃(T,m,L) in Eq. ~15!. Before undertaking
that task, and for completeness, let us analyze the spec
of H(Ã;m) whenFÞ0. In this case, we have

H6~ Ã;m!52S ]02 i h̄01 i
F

Lb
x1D 2

2~]12 i h̄16 im!27eẼ,

~28!

together with the boundary conditions in the spatial direct
given in Eq. ~4!. This eigenvalue problem is solved in th
Appendix. From the result found there, we remark here t
the m dependence, whenFÞ0, appears only in the state
while the determinant in Eq.~A7! depends on the tempera
ture T but not onm. As the norm of the zero modes in E
~A8! is alsom independent, then, if we go to Eqs.~A2! and
~11!, we realize that the dependence of the fermionic gen
ating functional onm, whenFÞ0, is encoded in the deter
minants of the matricesM ,N in Eq. ~A2!, which follow im-
mediately from the spectrum found fora50 in this section.
Besides, there arem dependences in bothG(x,y,eA;m) and
J (k)(A;m).

III. GENERATING FUNCTIONAL
IN THE TRIVIAL SECTOR

In this section, we shall use functional methods in orde
calculate the generating functional in the trivial sector.
en

m

n

t

r-

o

employing these methods, we shall also obtain the ph
factorJ (0)(A;m). This will allow us to get the full fermion
charge density and the partition function, as well as to es
lish the consistency with the results of the previous secti
We recall that the covariant gauge fixing is not complete
the torus. We still have the freedom of performing a no
trivial gauge transformation (h0 ,h1)→(h01n,h11m), with
the h fields in Eq.~20! and n,m integers, corresponding to
loops that windn times around the temporal direction andm
times around the spatial one. It is clear thatn andm are not
fixed by]mAm50. Throughout this section, though, we sha
work with the covariant gauge fixing, ignoring this residu
gauge arbitrariness. The latter has also been treated in a
ation related to the one analyzed here, but not quite ident
with it: specifically, for~real time! QED on a spatial circle, a
zero temperature and chemical potential@26#. We have to
bear in mind that in Eq.~1!, we are integrating the gaug
field over all possible values of the fieldshm , that is,hmPR.
Fixing the gauge for those fields would consist in restricti
them to a range@0,1# @7#, since they change by an intege
under a global gauge transformation. Then, if the effect
action is globally gauge invariant, and unaffected by the
sidual gauge arbitrariness, the difference between integra
over allh or restricting them to a@0,1# interval is an infinite
constant independent ofT andm, so that arbitrariness canno
affect physical observables such as the free energy or
particle density. Fore50, the action depends on derivative
of the electromagnetic field, and the covariant gauge fixi
even if not complete, suffices to get a well-defined propa
tor, unaffected by that arbitrariness. In general, whene is
nonvanishing,Z@J,j, j̄ # is also unaffected by the arbitrar
ness, after having integrated over all fields. However, fo
given Am , both detH(Ã;m) and the fermionic generating
functionalZf may be subject to it, even ifm50. In particu-
lar, whenmÞ0, we have seen in Sec. II B thatZf is not
globally gauge invariant, due to the induced topological te
in the phaseJ, which changes whenh0→h01n. Thus, if we
restrict h0 to a @0,1# interval, the result for the observable
would depend on our choice and then it is consistent to
h0P R. We shall come again to this point at the end of S
IV A, where we shall perform the integration over theh
fields explicitly, using the results derived in Sec. II. It is n
difficult to check that all the formal functional manipulation
that we shall carry out in this section, except those relate
L@A#, are also unaffected by the residual gauge arbitrarin

Thus, as a first step, let us rewrite the generating fu
tional in Eq.~1! for the trivial sector, with the aid of standar
functional techniques, as

Z@J,j, j̄ #5ZEMZFexpF2 ieE
T
d2x

d

dj~x!
gn

d

dJn~x!

d

d j̄~x!
G

3expS E
T
d2xd2yF1

2
Jm~x!Dmn~x2y!Jn~y!

2 i j̄ ~x!S~x,y;m!j~y!G D , ~29!

whereZEM and ZF @ZF(T,m,L)5ZF for short# are the free
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boson and fermion partition functions andDmn(x2y) and
S(x,y;m) are the free gauge boson and fermion propagat
respectively:

Dmn~x2y!5
1

bL (
n,k52`

`

eiv~x2y!
1

v2Fdmn1~a21!
vmvn

v2 G ,

S~x,y;m!52
i

bL (
n,k52`

`

eiv~x2y!
1

g0~vn1 im!1g1vk

,

~30!

where v5(vn ,vk), with vk52pk/L, vn52pn/b in the
bosonic propagator andvn5(2n11)p/b in the fermionic
one. Now, we shall make use of some known functio
differentiation formulae@12# and, in particular of

expF2 i E d2xd2y
d

dj~x!
A~x,y!

d

d j̄~y!
G

3expS i E d2xd2y j̄~x!B~x,y!j~y! D
5expF i E d2xd2y j̄~x!B̄~x,y!j~y!1L G . ~31!

Here, A(x,y) and B(x,y) are arbitrary functions, to be re
garded as the kernels of the operatorsA andB, respectively,
B̄5B(11AB)21 andL52Tr log@11AB#21, Tr indicating
the trace over functional and Dirac spaces. Thus, one fin

Z@J,j, j̄#

5ZEMZFexpF1

2ET
d2xd2yJm~x!Dmn~x2y!Jn~y!G

3expF2
1

2ET
d2xd2y

d

dAm~x!
Dmn~x2y!

d

dAm~y!G
3expH 2 i E

T
d2xd2y j̄~x!G~x,y,ieA;m!j~y!

1L@A#J , ~32!

with Am(x)[2 i *Td2yDmn(x2y)Jn(y), after having per-
formed the functional differentiations, which appears
leave no trace of the residual gauge arbitrariness
Z@J,j, j̄#. The so-called closed fermion loop functiona
L@A# can be written formally as

L@A#5 trDE
0

e

de8E
T
d2xA” ~x!G~x,x,ie8A;m!, ~33!

where trD denotes the Dirac trace. We recall th
G(x,y,eA;m) is the two-point function, which, in the trivia
sector, satisfies Eq.~12! with k50, that is, with its second
term on the right-hand side omitted.

In order to get a well-defined expression for the gene
ing functional, we need, first, to regularizeL@A# in Eq. ~33!.
For that purpose, we shall appeal to the point-splitting re
s,

l

s

in

t-

-

larization@12#. Therefore, we should deal with the followin
limit: lim x→yG(x,y,eA;m). In Minkowski space-time, the
limit should be taken by keeping the pointsx andy relatively
space like, in order to maintain causality@12#. As we are
working in Euclidean space-time, we shall not impose,
principle, such a restriction. We shall comment below on
different ways of taking the limit. Before that, and gener
izing @12#, we shall derive the point-splitting regularizatio
prescription in our present case with nonzerom. We start
with the formal definition of the gauge current in the pre
ence of an external background fieldAm :

^ j m~x!& f@eA#5^c̄~x!gmc~x!& f@eA#

5 i lim
x→y

trDgmG~x,y,eA;m!, ~34!

where ^O& f5*Dc̄DcOexp@2*c̄D” c#. We shall obtain the
regularized version of the right-hand side of the above eq
tion as follows: We shall demand that such a regulariz
gauge current be conserved and gauge invariant. Notice
under a gauge transformationAm→Am2]mL, G(x,y,eA;m)
changes as

G~x,y,eA;m!→G~x,y,eA;m!exp$ ie@L~x!2L~y!#%.
~35!

Based upon this, it is easy to show that the product

G~x,y,eA;m!expF2 ieE
x

y

djsAs~j!G ~36!

is gauge invariant. However, if we use Eq.~36! in Eq. ~34!,
calculate the divergence of the currentj m so defined, and use
D” (A;m)G5d (2)(x2y), we find that such a divergence doe
not vanish formÞ0. To ensure that the current is dive
genceless, we have to add an extram-dependent term, which
leads to the regularized gauge current

^ j m~x!& f
reg@eA#

5 i lim
x→y

trDgmG~x,y,eA;m!expF2 ieE
x

y

djsAs~j!G
3exp@2m~x02y0!#, ~37!

which is, indeed, gauge invariant and divergenceless. N
that Euclidean covariance is broken since the system is
thermal bath. We are now ready to define the regulari
fermion closed loop as

Lreg@A#52 i trDE
0

e

de8E
T
d2xAm~x!^ j m~x!& f

reg@ ie8A#

5 trDE
0

e

de8E
T
d2xAm~x! lim

x→y
trDgm

3G~x,y,ie8A;m!expFe8E
x

y

djsAs~j!G
3exp@2m~x02y0!#. ~38!
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The limit x→y has to be taken in a symmetric way, r
garding (x,y) @12#. In order to calculate the fermion close
loop in Eq. ~38!, we shall consider an ansatz for the exa
Green function similar to that in@6#:

G~x,y,eA;m!5exp@2 ie@x~x!2x~y!#S~x,y;m!. ~39!

It is not difficult to check that, with the above ansa
G(x,y) is a solution ofD” G(x,y)5d (2)(x2y), provided that
x(x) is a solution of]” xx(x)52A” (x). In turn, the solution is

x~x!52E
T
d2yD~x2y!]” yA” ~y!,

D~x2y!52
1

bL (
n,k52`

`

eiv~x2y!
1

vn
21vk

2
,

~40!

where v5(vn ,vk) with vn52pn/b, vk52pk/L. So
G(x,y,eA;m) appears to be unaffected by the residual ga
arbitrariness.

Hence, from the above equations, we have to find
behavior ofS(x,y;m) whenx→y. For that purpose, we ap
ply the standard formulas

1

b (
n52`

`

f ~vn1 im!5
1

2pE2`

`

dv f ~v!1 R
C
dv f ~v!

2
1

2p(
6

E
2`7 i e1 im

`7 i e1 im

dv f ~v!
1

e6 ibv11
,

1

b (
k52`

`

f ~vk!5
1

2pE2`

`

dv f ~v!

1
1

2p(
6

E
2`7 i e

`7 i e

dv f ~v!
1

e6 iLv21
,

~41!

wheree→01, vn5(2n11)p i /b, vk52pk/L, andC is the
rectangular contour in the complexv plane running through
the points (1`,2`,2`1 im,1`1 im). We apply Eqs.
~41! to S(x,y;m) in Eqs. ~30! and retain only the dominan
contributions inx→y. The complex plane integrals along th
lines (2`7 i e,1`7 i e) and (2`7 i e1 im,1`7 i e1 im)
are performed by forming a closed contour, by means of
infinite arc above~below!, corresponding to the1 (2) sign
in Eqs.~41!, and applying the residue theorem. We get

lim
x→y

S~x,y;m!5e~x02y0!mF 1

2p

~x2y!mgm

~x2y!2
1 ig0F~T,m,L !

1O~x2y!2G , ~42!

where
t

e

e

n

F~T,m,L !5
1

2L (
k52`

1` F 1

eb~vk1m!11
2

1

eb~vk2m!11
G ,

~43!

with vk52pk/L. We recall that Eq.~42! reproduces the
T5m50 result given in @12# and the m50, TÞ0 one
@F(m50)50# in @6#.

Next, we shall replace both Eqs.~40! and the limit
~42! into Eqs.~39! and~38!. We have taken thex→y limit in
two different ways and established that the same resu
arrived at. We have taken, first,x02y0→0, x12y1→0 with
(x12y1)/(x02y0)51 and, second, the Minkowski caus
choice~see@12#! x05y0 and (x12y1)→0. Anyway, what it
is important to note here is that the exponentialm depen-
dence in Eq.~42! is exactly cancelled with that in the regu
lator in Eq. ~38!. Then, no matter how we take thex→y
limit, we always get a term tr*A” (x)g0F in Lreg. The pos-
sible divergence inLreg arising from the first piece in Eq
~42! is absent since we have taken the limit symmetrica
Thus, finally we arrive at

Lreg@A#5
1

2ET
d2xd2yAa~x!Pab~x2y!Ab~y!

12eF~T,m,L !E
T
d2xA0~x!, ~44!

with

Pab~x2y!5
1

bL

e2

p (
n,k52`

1`

eiv~x2y!Fdab2
vavb

v2 G ,

~45!

wherevn52pn/b andvk52pk/L. SoLreg@A# is, in prin-
ciple, affected by the residual gauge arbitrariness. The fu
tional differentiations with respect toA(x) in Eq. ~32! can be
performed by employing the following formula, which i
valid for any linear operatorsP andQ @12#:

expF2
i

2E d

dA
P

d

dAGexpF i

2E AQA1 i E f AG
5expF i

2E AP̄A1 i E A~12QP!21f

1
1

2
tr log~12QP!211

i

2E f Q~12QP!21f G ,
~46!

where P̄5P(12QP)21 and we have omitted, for simplic-
ity, all the space-time dependences. We shall concentrat
the bosonic generating functionalZ@J,0,0#, as we have al-
ready analyzed the dependence on the fermionic source
the previous section, up to the phase factor~to be calculated
below!. Upon applying Eq.~46! in Eq. ~32!, L@A# being
given in Eq.~44!, we get
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Z@J,0,0#5ZEMZFexpF1

2ET
d2xd2y~J2 iG !m~x!Dmn

~0!~x2y!

3~J2 iG !n~y!GexpF1

2
Tr log~11PD !21G , ~47!

whereG052eF(T,m,L), G150. In turn, Dmn
(0) is the exact

boson propagator atm50, which can be expressed, formall
asD(0) 5D(11PD)21, D andP being given in Eqs.~30!
and ~45!, respectively. Its explicit representation is

Dmn
~0!~x2y!5

1

bL (
n,k52`

`

eiv~x2y!F 1

v21m2S dmn2
vmvn

v2 D
1a

vmvn

~v2!2G , ~48!

wherem25e2/p is the induced boson mass squared.
In the following section, we shall obtain, from Eqs.~44!

and ~47!, the complete form of the fermionic generatin
functional in the trivial sector, including the phase factor, t
exact boson propagator atmÞ0, and the partition function
and check the results with the method used in the prev
section.

IV. PHYSICAL RESULTS

A. Charge density and the partition function

By settingJ50 in the expression~47! we get the partition
function

Z~T,m!5
ZF~T,m!

ZF~T,m50!
Z~T,m50!expF2

1

2
@2eF~T,m,L !#2

3E
T
d2xd2yD00

~0!~x2y!G . ~49!

However, the above integrals ofD00
(0) are ambiguous, in

the sense that changes in the order in which such integ
are done yield different results. For instance, let us perfo
first, the spatial integrals: That would force us to setk50 in
Eq. ~48!, which would give rise, after doing the tempor
integral, to an infinite and gauge-dependent result. C
versely, by changing the order of the integrals, let us p
form, first, the one over the~imaginary! time. In so doing, we
arrive at a finite and gauge-independent answer. The la
prescription seems to be a natural and physically reason
choice. In addition, as we shall see, it is consistent with
results obtained in the previous section. If we adopt this p
scription in Eq.~49!, we get

Z~T,m!5
ZF~T,m!

ZF~T,m50!
Z~T,m50!

3exp@22bLpF2~T,m,L !#. ~50!

This is a genuine nonperturbative result, since the ar
ment of the exponential in the term that corrects the f
fermionic partition function is independent of the elect
charge. As we shall see, such a nonperturbative beha
us

ls
,

-
r-

er
le

e
-

u-
e

ior

comes directly from the topological structure discussed
Sec. II, namely, from the phaseJ@A;m# of the fermionic
generating functional. At this point, we recall the result o
tained in @6# for Z(T,m50). The latter partition function
was proved to factorize into the product of that for a fr
fermionic field times that for a free massive boson field w
massm, divided by the one for a free massless field~finite
temperature bosonization!. In our present case, withmÞ0,
we may wonder if such a factorization actually takes place
well and, if so, whether the whole system may have a
fermionic charge or not. Let us consider, first, the free f
mionic partition functionZF(T,m)5ZF(T,m,L):

logZF~T,m,L !5 (
k52`

1`

$ log@11e2b~vk2m!#

1 log@11e2b~vk1m!#%. ~51!

The net free fermion charge density is

1

bL

]

]m
logZF~T,m,L !522F~T,m,L !, ~52!

F being given in Eq.~43!. Thus, from Eqs.~52! and~50! we
have

Z~T,m!5Z~T,m50,L !expH 22bLFpF2~T,m,L !

1E
0

m

dm8F~T,m8,L !G J 5Z~T,m,L !, ~53!

which is our final result for the partition function atmÞ0 for
finite L. Now, let us analyze the behavior of the functionF
in the limit L→`. In such a limit, the sum overk becomes a
trivial integral, which yields

F~T,m,L→`!52
m

2p
. ~54!

Thus, in theL→` limit, the m dependence in Eq.~53!
exactly cancels out. We get, for the full partition function

Z~T,m,L→`!5Z~T,m50,L→`!

5ZEMZF~T,m50,L→`!

3expF1

2
Tr log~11PD !21G , ~55!

which is only T dependent. Its explicit expression can
found in Sec. IV of@6#. That is, in theL→` limit the system
bosonizes as well, and the only effective degrees of freed
are those of a massive boson field, the net fermionic cha
of the system beingr5(bL)21] logZ/]m50. We make the
following remarks.~i! This is a nonperturbative effect~which
has been established due to the fact that the Schwin
model at finite chemical potential and temperature can, s
be solved exactly!. ~ii ! It is characteristic of two dimensions
Recall, for instance, that in perturbative four-dimension
QED in the infinite volume limit, the free energy logZ is m
dependent and hencerÞ0 @21#. ~iii ! The result~55! holds in
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theL→` limit: If we keepL finite, F is no longer given by
Eq. ~54! but it acquires further corrections and the study
the counterpart of Eq.~55! will not be attempted here.

We now turn to the issue of theC-violating phase factor,
addressed previously in Sec. II. Thus, we consider the fer
onic generating functionalZf@A,j, j̄ #, treating nowA as an
external background field. We apply Eq.~31! and we arrive
at an expression analogous to Eq.~32!, but now takingJ
50, omitting the derivatives with respect toA, and replacing
e→2 ie. By recalling the regularized fermion closed loo
functional obtained in Eq.~38!, we get

Zf@A,j, j̄ #

5ZFZEMexpF2 i E
T
d2xd2yj̄ ~x!G~x,y,eA;m!j~y!G

3expF2
1

2ET
d2xd2yAa~x!Pab~x2y!Ab~y!G

3expF22ieF~T,m,L !E
T
d2xA0~x!G . ~56!

The comparison with Eq.~11! in the trivial sector leads to
identify

J ~0!~A,m!522eF~T,m,L !E
T
d2xA0~x!, ~57!

which has the form that we had anticipated in Eq.~15!, based
upon theC symmetry properties of the phase of the ferm
onic determinant, and soF̃522eF.

We shall now provide an interesting check of consisten
On the basis of Eqs.~13!, ~19!, ~26!, and ~27!, we can cal-
culate the partition function through the method developed
Sec. II. We shall do so in theL→` limit. Let us first differ-
entiate with respect tom in Eq. ~26! and then take theL
→` limit by replacing vk by continuousv and (k by
(L/2p)*dv. The resulting integral can be done using

E
2`

1`

dvF 1

11eb~v2a1b!
2

1

11eb~v2a2b!G522b, ~58!

which is convergent when both pieces of the integrand
added together. Then, in theL→` limit we obtain

]

]m
log detH~ Ã;m!5

2bLm

p
~59!

and, hence,

AdetH~ Ã;m,T!5AdetH~ Ã;m50,T!expS Lb
m2

2p D .

~60!

We now insert the above result in Eq.~19! and, then, in
Eq. ~11!, for the trivial sector, and we compare to Eq.~56!.
We see that, before integrating out the photon field, the
sults obtained with both methods are consistent with e
other if L→`, since we get the samem dependence, namely
the one coming from the phase factor~the explicit form of
f

i-

.

n

re

-
h

which has been obtained with the second method! times that
of the free fermionic partition function, as it appears in E
~53! whenF→2m/2p. To complete the check, we shall se
that the integration over the gauge boson fields also gives
same result with both methods in theL→` limit, namely,
that in Eq.~55!. From our previous discussion, it follows tha
the only part that depends onm in the full partition function
is the integral over the (h0 ,h1) fields, the integrand of which
is the exponential of Eq.~27! for F50 times (22ieF),

multiplied by AdetH(Ã). From Eq.~60!, it follows that all
the h dependence of detH is contained in them50 part. In
order to extract the dependence onh0, we differentiate again
in Eq. ~26!. Using again Eq.~58! we get, in theL→` limit,

]

]h0
log detH~ Ã;m50;h0 ,h1!

52ie (
s56

E
2`

1`

dv
s

11eb~v2h̄12 ish̄0!
52

8pLe2h0

b

~61!

which turns out to be independent ofh1. Thus, from Eqs.
~60! and ~61!, we derive

AdetH~ Ã;m,T;h0 ,h1!5AdetH~ Ã;m50,T;0,h1!

3expS Lb
m2

2p
2

2pLe2h0
2

b D .

~62!

At this stage, we have to integrate over the fields (h0 ,h1).
As commented at the beginning of Sec. III, it is necessary
integrate overh0PR, to achieve consistency. This is rein
forced by the topological term~57! in the phase of the fer-
mionic generating functional. Thus, from Eqs.~27! and~62!,
it follows that the relevant factor carrying them dependence
is

eE
2`

1`

dh0expS 22imh0L2
2pLh0

2

b D
5eA b

2L
expS 2

m2Lb

2p D . ~63!

It turns out that the exponentialm dependence in Eq.~63!
cancels that in Eq.~62!, and, hence, we arrive, again at th
result ~55!, obtained with our previous method.

B. Boson propagator, the screening length,
and the Polyakov loop

The exact boson propagator, which results after the in
gration of both fermion and gauge fields, can be obtained
the trivial sector, just by differentiating Eq.~47! twice with
respect to the external sources and settingJ50. We find
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Dab
~m!~x2y!5Dab

~0!~x2y!2~2eF!2E
T
d2ud2zDa0

~0!~x2u!

3Db0
~0!~y2z!, ~64!

Dab
(0)(x2y) being given in Eq.~48!. The above expression is

again, formal, in the sense that we have to specify the o
in which the spatial and temporal integrals should be don
the second piece on the right-hand side. If we adopt the s
prescription as that in Sec. IV A~that is, by doing the inte-
grals in the order that gives a finite answer!, we arrive in
momentum space at

D00
~m!~vn ,vk!5D00

~0!~vn ,vk!2dn0dk0bL
4p4F2~T,m,L !

e2
,

D0i
~m!~vn ,vk!5Di0

~m!~vn ,vk!5D0i
~0!~vn ,vk!,

Di j
~m!~vn ,vk!5Di j

~0!~vn ,vk!, ~65!

D00
(0)(vn ,vk) being given by the expression between squ

brackets in Eq.~48!. In theL→` limit, vk is replaced by a
continuous variablev andLdk0F2 goes to (m2/4p2)d(v), in
Eqs. ~65!. As a check of consistency, we notice that t
propagator~65! ~which is m dependent! satisfies the gauge
invariance conditionvmvn Dmn5a, with a the gauge-fixing
parameter. For finiteL, the only Euclidean pole of the propa
gator~65! remains atv252m252e2/p, which defines the
mass of the boson and is independent ofm. However, in the
L→` limit, a new pole appears atv250 due to the contri-
bution ofd(v) in the second (m-dependent! term. To clarify
what this pole means physically, let us calculate first
inverse correlation length squaredM2 in the L→` limit,
through the usual definition

M25D00~vn50,v→0!, ~66!

whereDab(vn ,v) is the boson self-energy, which is define
in momentum space through

Dab~vn ,v!5@D21#ab
~m!~vn ,v!2@D21#ab~vn ,v!.

~67!

Accordingly, from Eq.~66! and the propagators in Eqs.~30!
and ~65!, we obtain

M2~T,m!50. ~68!

That is, the massM2 vanishes in theL→` limit. This is
indeed a consistent result if we recall the connection betw
the screening length and the equation of state of the sys
given in @16#:

M2~T,m!5e2
]

]m
r~T,m!, ~69!

r being the total fermion charge density. Hence Eqs.~68!
and~69! are consistent in theL→` limit: We got a total zero
charge density, whileM2 tends to zero. However, wereM2

to be interpreted as a vanishing screening mass, then
system would be in a confined phase and theZ sym-
metry would be restored, which does not occur form50 and
er
in

e

e

e

en
m

he

TÞ0 in theL→` limit @10#. We shall outline below a cor-
rect understanding of the screening mass. The order pa
eter of this symmetry is the thermal average of the Polya
loop

Pẽ~x1![expF i ẽE
0

b

dtA0~t,x1!G ~70!

for an arbitrary chargeẽ and a spatial pointx1. In addition,
the correlator of two Polyakov loops with chargesẽ and
2 ẽ and spatial pointsx1 and u1 measures, at large spatia
separation, the effective potential between both charg
Thus, in order to clarify the role of the two different mass
m and M , let us calculate the Polyakov loop and the co
relator for mÞ0 in the L→` limit. First, we shall use the
functional methods developed in Sec. III. After the obvio
relabelling of variables, the insertion ofPẽ(x1) in the func-
tional integral ~1! amounts formally to replacingJ(y)
→ iP(y) with P0(y)5ẽd(y12x1) and P1(y)50. Then, re-
calling our result~47!, we get

^Pẽ~x1!&5expF2
1

2E d2yd2zD00
~0!~y2z!P0~y!@P0~z!

22G0~z!#G5expF2
b ẽ2

2m
2bm

ẽ

e
G , ~71!

where in the last step we have first followed our convent
of performing the time integration before the spatial one a
then we have taken the limitL→`, so as to transform spatia
sums into integrals. The result~71! can also be obtained
using the decomposition~16! and~20! for the gauge field. As
we saw in previous sections, all them dependence is in-
cluded in theh0-dependent part. Then, since

E
0

b

dtA0~t,x1!52ph02]x
1E

0

b

dtf~t,x1!, ~72!

all we have to do is to insert a piece exp(2pih0ẽ/e) in the
integrand in Eq.~63!, in theL→` limit. It is straightforward
to get again them dependence of the Polyakov loop in E
~71! consistently, once we integrate overh0PR.

We see that̂ Pẽ(x1)& never vanishes for any value ofT
andm, so that theZ symmetry is never restored forL→`.
Our result extends that obtained in@10# for m50. Then,
there should exist a nonvanishing screening mass, wh
consistent with our result for the propagator, should bem
5e/Ap, independent ofm. This is confirmed by calculating
the correlator of two Polyakov loops. Following the sam
steps as for ^P& we obtain with both methods tha
^Pẽ(x1)P2 ẽ(u1)& is independent ofm and

lim
x12u1→`

^Pẽ~x1!P2 ẽ~u1!&5expF2
b ẽ2

2m
G ; ~73!

that is, m is the screening mass between the two oppo
charges. It seems clear that the definition~66!, leading to Eq.
~68!, does not give the right answer for the screening m
between two opposite charges and cannot be used to
any conclusion about the breaking of the confinement oZ
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symmetry. However, it is the consistent equation to use if
want to get the equation of state of the system through
~69!.

Notice that we have restricted ourselves to the trivial s
tor. The boson propagator could receive additional contri
tions from sectors withk>1, apart from that in Eq.~64!.
However, we have seen thatr only receives contributions
from the trivial sector, so that, Eq.~68! is valid for any sector
if Eq. ~69! holds. In addition, it is enough to restrict ou
selves to the trivial sector to calculate correlators of Pol
kov loops @10#. Hence, we expect the above results for t
screening mass to remain valid forFÞ0.

If the length of the systemL is kept finite, the definition
~66! for M2 is no longer valid. Using Eq.~69! instead would
give rise to a nonzero andm-dependentM2, directly from
Eq. ~53!. Remember that for finiteL there is no pole of the
propagator atv250. However, it is not clear whether Eq
~69! remains valid for finiteL. On the other hand, for finiteL
andm50, the screening mass is only different from zero
ẽ/ePZ @10#. A more rigorous analysis of the finite lengt
corrections formÞ0 is beyond the scope of this work.

V. THIRRING MODEL AT FINITE T AND µ

A. Generating functional

We shall consider a system of many massless ferm
~and antifermions! in one dimension~inside a finite interval
of length L) at equilibrium at absolute temperatureT and
chemical potentialm. By assumption, their dynamics is de
scribed by the Thirring quartic Lagrangian. Letj,j̄ be fer-
mionic external sources. Then, in the imaginary time form
ism, the generating functional of the system reads now

Z@j, j̄ #5N~b,m!E
antiperiodic

Dc̄DcexpF E
T
d2xF2c̄~]”

2mg0!c1 j̄c1c̄j2
g2

2
~ c̄gnc!~c̄gnc!G G ,

~74!

whereg is the coupling constant. The partition function
Z@0,0#. One can also castZ@j, j̄ # as follows:

Z@j, j̄ #5expF2gE
T
d2x

d

dj~x!
gn

d

dJn~x!

d

d j̄~x!
G

3Z1@j, j̄ ;J#uJ50 , ~75!

Z1@j, j̄ ;J#5NZFexpF1

2ET
d2x8d2y8Ja~x8!

3Kab~x82y8!Jb~y8!G
3expF E

T
d2x9d2y9 j̄ ~x9!S~x9,y9;m!j~y9!G ,

~76!
e
q.

-
-

-

f

s

l-

Kab~x82y8!5
1

bL (
n,k52`

1`

eiv~x82y8!Fdab2 f ~v2!
vavb

v2 G ,

~77!

with S in Eqs.~30!, ZF the free fermionic partition function
andJ5(J0 ,J1) a boson source, to be set equal to zero a
all functional differentiations with respect to it have be
performed in Eq.~75! andv in Eq. ~77! is the same as in the
gauge boson free propagator in Eqs.~30!. We have intro-
duced an arbitrary functionf (v2), by virtue of the fact that
the currentc̄gnc in the actual Thirring model is conserved
A proof of Eqs.~75! and ~76! follows readily through steps
similar to those in@6,12#. At this stage, using standard tec
niques@12#, one can rewrite Eqs.~75! and ~76! as

Z@j, j̄ #5expF2
1

2ET
d2x8d2y8

d

dAa* ~x8!
Kab~x82y8!

3
d

dAb* ~y8!
GZf@An* ,j, j̄ #uA* 50 , ~78!

Zf@An* ,j, j̄ #5NZF

3expF2 igE
T
d2x

d

dj~x!
An* ~x!

d

d j̄~x!
G

3expF E
T
d2x9d2y9 j̄ ~x9!S~x9,y9;m!j~y9!G ,

~79!

An* ~x!52 i E
T
d2zKnb~x2z!Jb~z!. ~80!

Again, one setsA* 50 in the above equations, after ha
ing carried out all functional differentiations. Standard fun
tional techniques allow us now to establish thatZf@An* ,j, j̄ #,
as given in Eq.~79!, also coincides with the right-hand sid
of Eq. ~2! @when due care is taken of the normalization fac
N(b,m)# provided that, in the latter, one replacese by g and
A by A* . Let us concentrate onA* belonging to the trivial
sector~see comments below!. Then, by recalling the devel
opments in Sec. III, one finds, immediately,

Zf@An* ,j, j̄ #

5ZFexpF2 i E
T
d2xE

T
d2yj̄ ~x!G~x,y,gA* ;m!j~y!

1L@A* #G , ~81!

where G(x,y,gA* ;m) and L@A* # are now given by the
right-hand sides of Eqs.~39!, ~40!, and ~44! ~with the same
S, D, P, andF), when one replacese,A by g,A* , respec-
tively. Thus, we have provided the solution for the Thirrin
model at finiteT,m in terms of the fermionic generatin
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functional for the Schwinger model, without zero mod
(F50). The formal use of Eqs.~75!–~77! and ~78!–~80!
~which can be checked upon comparing the correspond
expansions into powers ofg) is justified if we restrict
Zf@An* ,j, j̄# to the trivial sector of the Schwinger model, a
implemented through Eq.~81!. In this regard, it is interesting
to note that, upon using Eq.~80! in Eq. ~5! and taking into
account that the propagatorKab in Eq. ~77! satisfies periodic
boundary conditions in bothx0 andx1 directions, one imme-
diately findsF@A* #50, which confirms thatZf@A* ,j, j̄#
should be restricted to the trivial sector when use is mad
Eqs. ~78!–~80! and, hence, the consistency of Eq.~81!. On
the other hand, this appears also to be consistent with
idea that, in the end, we are going to setA* 50 and then we
can take the vector fieldAn* as a configuration in the trivia
sector, that is, topologically connected withA* 50. It is un-
known to us whether the Thirring model may have oth
solutions@besides that given in Eqs.~78! and ~81!#.

B. Thermodynamical partition function and fermion
correlation function

The thermodynamical partition function becomes, up
applying Eq.~46! to Eqs.~78! and ~81!,

Z@0,0#5ZFexpH 1

2
Tr log~11PK !212

1

2
[2gF~T,m,L !] 2

3E
T
d2xd2y@K~11PK !21#00~x2y!J , ~82!

where in momentum space we have

@~11PK !21#ab~x2y!5
1

bL (
n,k52`

1`

eiv~x2y!Fdab

2
g2/p

11g2/p
S dab2

vavb

v2 D G ,

@K~11PK !21#ab~x2y!5
1

bL (
n,k52`

1`

eiv~x2y!F dab

11g2/p

2
vavb

v2 S f ~v2!2
g2/p

11g2/p
D G .

~83!

Using Eq.~54!, Eq. ~82! yields readily, forL→`,

Z@0,0#5ZF~T,m!expH Lalog
1

11g2/p
J expH 2bL

g2m2

2p2

3F 1

11g2/p
2bS f ~0!2

g2/p

11g2/p
D G J , ~84!

where
g

of

he

r

n

a5
1

2 (
n52`

1` E
2`

1` dk

2p
,

b5 lim
L→`

1

~bL !2ET
d2xd2y (

n,k52`

1`

eiv~x2y!
v0v0

v2
. ~85!

Notice that the first exponential on the right-hand side
Eq. ~84! is independent ofb, m and then it is irrelevant as fa
as the thermodynamics of the model is concerned. On
other hand, the constantb ~which is independent of bothT
andm) could in principle give rise to a dependence onf (0).
Again, the very definition ofb is ambiguous. If we agree to
evaluate the~imaginary time! integrals overx0 and y0 in
Eqs.~85! before the spatial ones, thenb50 and, hence, the
independence of the partition function off (v2) follows,
which is a welcome result. Another independent reason
favor this prescription is that it is the same as that lead
from Eq. ~49! to Eq. ~50!. Now, by recalling the expressio
for the free charge density in Eq.~52!, we have from Eq.~84!
that the total fermion number density of the system reads
the L→` limit,

r5
m

p1g2
. ~86!

Hence we obtain that the Thirring model at finiteT andm
is no longer a free fermion gas, but the fermion density
quires a correction ing2, as it stands in Eq.~86!. It differs
from the result in@13# in which only the free contribution to
the fermion density remains. It is clear from our analy
starting from the Schwinger model that the correction to
free gas comes entirely from the topological contribution d
pending on theF function. This contribution only depend
on the harmonic fieldh0 in the decomposition of the gaug
field. The calculation in@13# was done in real time formal
ism, in which this term is not present, whereas in@14# the
model is solved in the torus. As it is emphasized in@7,8,14#,
the toroidal compactification is very useful to deal with i
frared divergences and the harmonic parts of the gauge
are essential to correctly quantize the model. It is the m
natural choice when using the imaginary time formalism,
we have done in this work. On the other hand, if we evalu
the pressure of the system, which follows directly by taki
the logarithm of the partition function in Eq.~84!, our result
~not quoted for brevity! agrees with@14#, which provides a
check of consistency between our methods and those us
that work.

Finally, we shall give the exact fermion correlation fun
tion for the Thirring model at nonzeroT andm,

G~x,y!5
d2logZ@j, j̄#

d j̄~x!dj~y!
U

j5 j̄50

5Q~x,y!S~x,y!,

Q~x,y!5expH 2g2
1

bL (
n,k52`

1`
1

v2
@12eiv~x2y!#

3F f ~v2!2
g2/p

11g2/p
G12gF~T,m,L !cJ ,

~87!
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where we have used again Eq.~46! into Eqs.~78! and ~81!
and performed the functional differentiation. In turn,c is
given by the formal expression

c5 (
n,k52`

1`

@e2 ivx2e2 ivy#
d0,nd0,k

v2 F2
v” g0

11g2/p

1v0S f ~v2!2
g2/p

11g2/p
D G , ~88!

which, again, turns out to be ambiguous. Like we did w
the same ambiguities before, let us evaluate the summa
over n in Eq. ~88! ~which is reminiscent of imaginary time
integrations! before the spatial summation and letL→`.
Then one gets

c5
i

11g2/p
~x12y1!g1g0. ~89!

VI. CONCLUSIONS AND DISCUSSION

The main new results obtained in this work are the f
lowing.

~1! In the imaginary time formalism, the fermionic gene
ating functionalZf with an external electromagnetic field an
the full generating functionalZ for the Schwinger mode
have been explicitly obtained for any spatial lengthL in the
trivial sector ~in which the Dirac operator has no ze
modes!.

~2! The work previously done in@7# at finite T but m
50, in which the model was formulated in a two
dimensional torus for an arbitrary number of zero modes,
be extended when bothT andm are nonzero. Such an exten
sion has to be worked out carefully due to some nontriv
peculiarities of themÞ0 case. Technically, the main distinc
tive feature is the lack of Hermiticity of the Dirac operato
This implies a nonvanishing phase factorJ (k) for the fer-
mion determinant in the sector withk zero modes. Using
functional methods we have evaluated this term fork50 ~the
trivial sector!, which plays a crucial role in the solutions fo
the Schwinger and Thirring models presented here and in
physical features thereof. That phase depends onT andm, is
linear in the zeroth component of the electromagnetic po
tial A0 ~in agreement with charge conjugation symmetry
guments!, and vanishes ifm50 for anyT,A0. Furthermore,
this term is topological, in the sense that it changes o
under nontrivial gauge transformations, with nonzero win
ing number around theS1 parametrizing the Euclidean time
In terms of the Hodge decomposition of the gauge field
the torus, it only depends on the harmonic part. The e
tence of topologicalm-induced effective actions seems to
a common feature of different models@23,24#.

~3! For the Schwinger model we have calculated the th
modynamical partition function. The topological phase fac
in the effective action gives rise to a nonperturbative con
bution that in theL→` limit exactly cancels them depen-
dence contained in the free fermionic partition functio
Then, atL→`, the partition function is independent ofm
and hence the total charge density of the system is zero
other words, the system bosonizes even though it could h
on
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n

l

he
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n
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r-
r
i-
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a net fermionic charge density at nonzerom. The partition
function factorizes, as in@6# ~into that of free fermions at
m50 times a factor, which is the ratio of that of massi
bosons, divided by that of free massless bosons!, the mass of
the boson beingm5e/Ap, independent ofT and m. The
exact boson propagator has an additionalm-dependent piece
for any L. At L→` this new piece gives rise to a vanishin
inverse correlation length squaredM2, which is interpreted
through the relationship betweenM2 and the first derivative
of the charge density given in@16#. However, by calculating
for mÞ0 the thermal average of the Polyakov loop~which is
m dependent! and its correlator (m independent!, we have
shown that theZ symmetry is broken for anyT andm ~de-
confinement! and that the screening mass between two
posite charges is the massm of the boson. A study of wha
happens regarding the above-mentioned cancellation in
thermodynamical partition function, whenL is kept finite,
lies outside the scope of this work. Our computations of
thermodynamical partition function through two differe
methods yielding the same result establish the consistenc
our approach.

~4! Several important features of the solution of t
Schwinger model formÞ0 in the sectors with zero mode
are summarized, as they are closely related to the analys
the trivial sector. Namely, we have given the general str
ture of the fermion determinant, solving the spectrum of
Dirac operator for an instanton configuration whenmÞ0.
The chemical potential breaks the chiral degeneracy of
spectrum. We remark that the correlation functions formÞ0
have been analyzed in@9#, although in that paper a differen
approach based on bosonization is used and the harm
part of the gauge field~and hence the contribution of th
phase factors! is not considered. The analysis of the pha
factors and the fermionic two-point function when there a
zero modes lies beyond the scope of this work.

~5! In the imaginary time formalism as well, the genera
ing functional for the massless Thirring model at finiteT,m
is constructed in terms of the fermionic generating functio
Zf for the Schwinger model, previously found in this wor
We have justified that it is enough to restrict ourselves to
trivial sector for Zf . The thermodynamical partition func
tion, the total fermion number density, and the fermion c
relation function have been computed for nonvanishingm
andT. A distinctive feature is that all of them depend no
trivially on m, as a consequence of the nontrivial phaseJ (0)

of the Schwinger model. Our result for the pressure agr
with @14#, which shows that our different approach is cons
tent. Our total fermion density differs from@13#, where it
was obtained, using real time formalism, that the mode
equivalent to that of free fermions. The origin of that di
crepancy is that in@13# the harmonic pieces of the vecto
field are not considered.
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APPENDIX: THE FERMION FUNCTIONAL
DETERMINANT FOR FÞ0

We shall outline here the calculation of det8H(A;m) in
Sec. II C, following steps similar to those in@7#, with suit-
able generalizations for our present case. First, we shal
late det8H(A;m) with det8H(Ã;m). For that purpose, we de
fine D” a replacing e→ea in the arguments of the two
exponentials in Eq.~17!. Then, the correspondingHa

5D” a
†D” a interpolates betweenH(A) andH(Ã) whena var-

ies from 0 to 1, and so on forH̄a5D” aD” a
† . The operatorHa

can be cast as in Eqs.~18!, but now with Am5Ãm

2aemn]nf, and the operatorH̄a is obtained fromHa by
changingm→2m. By usingz regularization@27#, we have

log det8Ha52
d

ds
zH~s;a!U

s50

,

zH~s;a!5 (
q5k11

`

mq
2s~a!, ~A1!

mq(a) denoting, generically, the nonvanishing eigenvalu
of Ha . As in Sec. II A, we choose the eigenstates ofH̄a as
wq

(a)5(D” afq
(a))/Amq(a), wherefq

(a) are the eigenstates o
Ha for mq(a)Þ0. Now we use the Feynman-Hellmann fo
mula ṁq(a)5(fq

(a) ,Ḣafq
(a)), where the overdot indicate

derivation with respect toa, and the Seeley–de Witt expan
sion @27# for Ha . Then, following similar steps as in@7# we
can write the derivative of log det8Ha in Eqs. ~A1! with
respect toa, in terms ofEa5Ẽ1aDf, f(x), and the zero
modesfp

(a) andwp
(a) of Ha andH̄a . The latter are related to

the zero modes ofH and H̄ simply by multiplying by
exp~2eag5). Then, the integral ina can be done and we
obtain

det8H~A;m!5det8H~ Ã;m!det$N~1!@N~0!#21%

3det$M ~1!@M ~0!#21%expS 2e2

p E
T
d2xf~x!

3F Ẽ1
1

2
Df~x!G D , ~A2!

where the elements of the matricesN(a) and M (a) areNpp8
(a)

5*Td2xfp
(a)†fp8

(a) andM pp8
(a)

5*Td2xwp
(a)†wp8

(a) .
Second, we are going to calculate the spectrum

H(Ã;m) in Eq. ~28!, with the boundary conditions discusse
in the text. Like in them50 case@7#, we shall try eigenfunc-
tions bearing the form
-
.

r
s.

e-

s

f

fn,m
6 5e~2n11!p i /be~ i h̄17 im!x1jn,m

6 ~x1!. ~A3!

By plugging Eq.~A3! into the eigenvalue equation, w
arrive at an harmonic oscillator eigenvalue problem, wh
can be solved in the standard fashion. However, the fu
tions f6 in Eq. ~A3! do not satisfy the right boundary con
ditions. It is not difficult to see that

f̂n,m
6 ~x0,x1!5 (

j 52`

`

e~2p ieh17 imL ! jfn1 jk8,m
6

~x0,x1!,

~A4!

with k8[n12n25F/2p, are the correct eigenfunctions
which do satisfy the right boundary conditions in Eqs.~4!.
We have used that thej(x1) functions in Eq.~A3! depend on
x1 and n only through the combinationy5x112pL(n
11/22eh0)/F.

The usual harmonic oscillator quantization condition f
the jn,m

6 states reads, in this case,

l6Lb

uFu
6 sgnF52m11, ~A5!

m being an integer, withm>0. Then, the eigenvalues fo
FÞ0 are independent ofm, and they arel50 with degen-
eracyk, andlm52muFu/Lb with degeneracy 2k. As we had
anticipated, the zero modes appear with only one chira
equal to the sign ofF. The eigenfunctions are those in Eq
~A4! and ~A3! with

jn,m
6 5HmFAuFu

Lb
yGexpF2

uFu
2Lb

y2G , ~A6!

whereHm are the Hermite polynomials. Once we know th
eigenvalues, we can calculate the determinant using a
z-function regularization and we get

det8H~ Ã;m!5expF2
d

ds
zH~s!Us50G5S pLb

uFu D k

, ~A7!

independent ofm. If we concentrate only on the zero mode
that is, the (n,m) eigenstates in Eq.~A4! with m50, it turns
out that they are already orthogonal and that their norms
independent ofm:

uufn,0uu25S pLb3

uFu D 1/2

. ~A8!

As was commented in the text, once we know the sp
trum of the Dirac operator forFÞ0 we could calculate the
chiral condensates, which do not depend on the Green fu
tion G(x,y,eA;m), up to the phase factor. In particular, w
have

^c̄~x!P6c~x!& f5exp@ iJ ~1!~A;m!#Adet8H~A;m!w1
†~x!

3P6f1~x!, ~A9!

where the superscript 1 indicates the sector with only o
zero mode.
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1378~1992!; A. Gómez Nicola and R. F. Alvarez-Estrada, In
J. Mod. Phys. A9, 1423~1994!.

@19# K. Fujikawa, Phys. Rev. D29, 285 ~1984!.
@20# R. Jackiw, Rev. Mod. Phys.52, 661 ~1980!.
@21# P. D. Morley, Phys. Rev. D17, 598 ~1978!.
@22# J. Bijnens, Nucl. Phys.B367, 709 ~1991!.
@23# A. N. Redlich and L. C. R. Wijewardhana, Phys. Rev. Lett.54,

970 ~1985!.
@24# V. A. Rubakov and A. N. Tavkhelidze, Phys. Lett.165B, 109

~1985!; E. Alvarez, J. L. F. Barbon, and A. Nieto, Phys. Re
D 42, 1215 ~1990!; R. F. Alvarez-Estrada and A. Go´mez
Nicola, Phys. Lett. B355, 288 ~1995!; 380, 491~E! ~1996!.

@25# I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series
and Products~Academic Press, New York, 1980!.

@26# J. E. Hetrick and Y. Hosotani, Phys. Rev. D38, 2621~1988!.
@27# R. D. Ball, Phys. Rep.182, 1 ~1989!.
@28# L. Dolan and R. Jackiw, Phys. Rev. D9, 3320~1974!.


