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Schwinger and Thirring models at finite chemical potential and temperature
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The imaginary time generating functioriafor the massless Schwinger model at nonzero chemical potential
p and temperatur@ is studied in a torus with spatial length The lack of Hermiticity of the Dirac operator
gives rise to a nontrivigk- and T-dependent phasg in the effective action. When the Dirac operator has no
zero modedtrivial secto), we evaluate7, which is a topological contribution, and we find exacfly the
thermodynamical partition function, the boson propagator and the thermally averaged Polyakov loop. The
p-dependent contribution of the free partition function cancels exactly the nonperturbative ong’,fiom
L—oo, yielding a zero charge density for the system, which bosonizes at nonzdite boson mass & |/,
independent off and i, which is also the inverse correlation length between two opposite charges. Both the
boson propagator and the Polyakov loop acquire a fieand w.-dependent term dt—oc. The imaginary time
generating functional for the massless Thirring model at nonZeaod . is obtained exactly in terms of the
above solution of the Schwinger model in the trivial sector. For this modelutidependences of the ther-
modynamical partition function, the total fermion number density and the fermion two-point correlation func-
tion are obtained. The phasgdisplayed here leads to our new results and allows us to complement nontrivi-
ally previous studies on those moddlS0556-282(98)00704-§

PACS numbes): 11.10.Wx, 11.10.Kk, 12.20.Ds

I. INTRODUCTION chanics features. The model was also solved and, in particu-
lar, the two-point correlation functions and the partition
The Schwinger model is QED in11 space-time dimen- function were obtained at finite temperatufe and zero
sions[1]. Although it is a toy model, it shares many inter- chemical potential in [6] when the Dirac operator has no
esting physical properties with more realistic theories such agero modes. Its thermodynamics can be expressed in terms of
QCD or the electroweak theory. It is perhaps the simplesthose of a free boson of maeé\/« and free fermions; i.e.,
example in which gauge invariance does not necessarily imbosonization also takes place at finite temperature. A more
ply a massless gauge boson, analogously to the Higgs pheemplete study of the Schwinger model on a torus, which
nomenon. Other interesting properties of the model are dyraturally incorporates temperature effects, stiluat0, has
namical mass generation, chiral symmetry breaking, antbeen performed ifi7,8]. More specifically, inf7] the model
confinement. The model with massless fermions was showwas treated with an arbitrary number of zero modes and the
to be exactly solvable in a vacuu¢that is, without thermal two-point fermion correlation function was calculated,
effecty a long time agd1,2]. It is equivalent to a theory whereas ir{8] higher correlation functions were obtained. In
describing a free boson with masg/w (bosonizatioh, [9], the correlation functions have also been studied for non-
which is physically a fermion-antifermion bound stdten-  zerou. In a recent worK10], the problem of charge screen-
finemenj. The finite mass implies a finite correlation length, ing at finite temperaturgwith w=0) in the Schwinger
which physically corresponds to charge screening, longnodel was analyzed, in connection with the spontaneous
range forces being absent. On the other hand, chiral symméreaking of the discret& symmetry, which corresponds to
try is broken through the chiral anomdly] rather than spon- the freedom of choosing gauge fields in the Euclidean time
taneously, since Coleman’s theordd] prevents any con- direction with any winding number arour@!. These non-
tinuous symmetry from being spontaneously broken in twarivial gauge transformations will play an essential role in
dimensions. When a mass parameter for the fermions is imur analysis with a nonzero chemical potential.
cluded, the model is no longer solvable but it is still possible On the other hand, we recall that the Thirring model,
to analyze exactly some of the above properties, such aghich describes massless fermions i1l dimensions with
fermion confinemeng5]. a quartic self-interaction, can also be explicitly solved in a
In the last ten years, there has been a renewed interest wacuum = x=0) [11,12. We also recall that the generat-
the study of the Schwinger model including statistical me-ing functional for the Thirring model at finitd and u=0
has been obtained in terms of the fermionic dméth an
external electromagnetic soujctor the Schwinger model
*Email address: ralvarez@eucmax.sim.ucm.es [6]. The Thirring model at nonvanishing and . has been
'On leave of absence from Departamento dgda Téoica, Uni-  analyzed in[13] for real time and if14] in the torus.
versidad Complutense, 28040, Madrid, Spain. Email address: In this paper, we shall study, first, the Schwinger model in
a.gomez@ic.ac.uk a medium at thermodynamical equilibrium, by introducing
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both the temperature and the fermion chemical poteptial Let A=(A*)=(A%A!) be the electromagnetic potential.

By considering a nonzerg, we are able to study the system Then, the generating functional reads

when there is a finite net fermion charge densitythe free

case,u is just the Fermi energy Some of the questions that —= 5

naturally arise aréi) whether one can provide simple solu- 2[.€ §]—N(,8)fperi0dicDAex;{ de X(TTAJ+JA)

tions for the Schwinger model with a nonzewg which ex- o

tend previous studies nontriviallyii) whether bosonization XZi[A & €],

takes place at finite fermion charge density and, if so, which

is the boson massiii ) which is the net fermionic charge of 1

the resulting system, that is, whether the fermions are still I'[A]l=~ §E2— Z(ﬁﬂA”)z. (1)

confined to neutral mesons, afigd) how the chemical po-

tential affects charge screening. We shall try to give answergnare the fermionic generating functional is

to all of these questions. The second aim of this work is to

provide an exact solution for the Thirring modelTa¢ 0 and o . o

u#0 in the imaginary time formalism, in terms of the cor- Zf[A,§,§]=J o ,Dtz//eXF{f d?X(— D (A ) ¥

responding one for the Schwinger model, to compare with antiperiodic T

previous findings by other authors, using different methods, _

as a search for consistency and to get some new results. + &Y+ w&)} 2
The plan of this paper is as follows. In Sec. Il, we shall

deal with the generating functiona& of the Schwinger

model at nonzerol and w, analyzing several important

items: the fermionic generating functiond} with an exter-

nal electromagnetic field, the role of the zero modes, the

determinant of the Dirac operator, etc., by following steps

similar to those if7]. The lack of Hermiticity of the Dirac

operator and a nontrivial phase fact@will be genuine and

crucial features of thgt# 0 case. They both will make nec-

essary an extension of the methods developeldinFrom

and the Dirac operator is given by
D(A;p)=b—ieA-uy’. 3

In the above equationdJ(B) is a temperature-dependent
normalization constan3=1/T, T being the temperaturg;
is the integral over the Euclidean two-dimensional torus
[0,8]X[0,L], ande is the electric charge, which has dimen-
: .. sions of energy. The fermionic and bosonic external sources
Sec. Il onwards, we shall restrict ourselves to the trivial

sector, which is the only relevant one, in order to study the'® ¢ ¢ andJ, resp(_actlvely. The_ electric f'el.d. IE=Foy
thermodynamics of the system. We shall geZ;, and.7 by =0doA1~d1A and & s the covariant gauge-fixing param-
using functional methods, generalizing what was done fofter. It is important to (emark here that the above covariant
©=0 in [6] and deriving the proper extension of the point- gauge fixing does not fix the gauge completely on the torus.
splitting regularization whep # 0. Section IV is devoted to There is still some residual gauge arbitrariness related to glo-
(a) several physical results for the Schwinger model, the ferP2l gauge transformations, which we shall deal with later.

mion charge density, the thermodynamical partition function,T he Faddeev—Popov Qeterminant has b_een absorbed in the
easure in Eq(1), as it plays no dynamical role. Our con-

the boson propagator in the trivial sector, the Polyakov Ioop{n ) . . !
(the order parameter of the confining symmgtrgnd the vent|oons for thle EUCI'deaQ Dlrgcomlatrlcesyg,yy} = Oun)
screening length, ancb) the consistency of our methods. /€Y = Yo, ¥" =71 andy’=—iy’y" are the Pauli matri-
The tasks of obtaining an explicit solution and new resultsces: L .
for the Thirring model at nonzerd andu are undertaken in The _eIegtrqmagngﬂc f'elq and t_he bos_omc external source
are periodic in Euclidean time with perio whereas the

Sec. V. Section VI contains the conclusions and some dis onic field q tineriodic. An alt .
cussions. Several results pertaining to the zero modes in tHgMMioNic fields and sources are antiperiodic. An alternative

Schwinger model at nonzerd and » are collected in the apPProach, which we shall not follow here, would have been
wing z ® ! to take D(A;0) in Eqg. (2), with fermions satisfying the

Appendix.
PP boundary conditiony(x°+ 8,x*) = — exp(Bu) ¥(x°,x}). Con-
cerning the spatial boundary conditions, they cannot be cho-
[l. GENERATING FUNCTIONAL AT FINITE sen as periodic, in generghfter the above choice for the

TEMPERATURE AND DENSITY temporal ones as the Dirac operator may have zero modes
on the torus(to avoid duplications, we refer tp7] for a
justification). Without loss of generality, we shall choosg

so that A, (x°x'+L)—A,(x°x)=4a,(—Px%ep) and
hence

Our starting point will be the generating functional for the
Schwinger model in the imaginary time formalism of ther-
mal field theory[15,16. We shall work in Euclidean two-
dimensional spaceimaginary time. In principle, we shall
keep the length of the systeimfinite, by imposing suitable q)
boundary conditions in the spatial directideee below. y(xO xt+ L)=exp<—i—x0)¢(x°,x1),
Thus, one properly defines the spectrum of the Dirac opera- B
tor and avoids infrared divergencgs,8,14. At the end of ©
the calculations we shall take tHe—« limit. The finite — 0.1 = 01 . 0
density effects will be implemented by including a chemical POCKAHL)=hCX )exp{ ' Ex ) @)
potentialy associated to the conservation of the total electric
charge(or the number of electrons minus that of positnons with ® the total flux of the electric field over the torus,
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@=e dxE00-2m(n, ), © [aam= 3 Gpp 0

wheren.. are the number of zero modes with positive and  Then, the action is diagonal in this basis and, by doing the
negative chirality. The relatiob) follows directly from the integration over the Grassmanian variablgs the contribu-
axial anomaly[7,17]. We shall introduc&k=n,+n_, the  tion of the zero modes can be factorized. A crucial point

total number of zero modes. The gauge sector Witt0 will — 1,41d be noticed here. As the spingrandy are expanded

be refgrred toas th.e trivial sector. For Igter use, we recall thg, yifferent basis, the Jacobian of the change of basis from

following factorization property of the Dirac operator: Dy tO_Hpﬁdadeq is not the inverse of that frory to

D(A; u)=exp(x°u)D(A;0)exp —x°u). 6) I, qdaydB,. This fact was already noted by Fujika:o]

in the context of anomalies with non-Hermitian Dirac opera-

tors. Since both changes of variables are formally unitary,

when doing them simultaneously we are left with some
The contribution of the zero modes to the generatingohase factor eXp7(A;u)]. Notice that 7(A;0)=0 since

functional has to be analyzed carefully, in order to properlyihenH=H= —D?(A;0). Also, in principle, the phase factor

define the functional determinant of the Dirac operator. Fotg different for everyk sector, a feature to be recalled by

that purpose, we shall follow the same steps d¥InHow-  eang of a superscripk). Thus, performing the Gaussian

ever, there is an important distinctive feature of #he0

case, namely, thad[ A; u] is non-Hermitian. Hence, the set

of eigenfunctions ofD is no longer an orthonormal basis in A s (KA

which the spinor fields could be expanded. To avoid this ZilA & El=exdiT T (Ap)]

difficulty we shall expand the spinors in the basis of the ) b =

Hermitian operatordd D and DD'. This will allow us to X ex _'de Xd7YE(X)G(x.y,eA u)éy)

separate the zero mode contribution up to a phase factor. We

A. General structure of Zf[A,g,E] with zero modes

Grassman integrals ovelr;dad,l?d,@ we get

shall discuss below this factor and its relevance to the calcu- k .
lation. First, let us consider the set of eigenfunctions of the X [I | d®xd?yé(x) ¢p(x)¢;(y)§(y)
Hermitian operators, p=1JT

H(A; 1) =D (A; 1) D(A; 1) b= tnchin, X VdetH(A ), (3

_ : where det is the functional determinant when the zero
HA 1) on=[D(A;u)D(Aipw)]en=pnen- (1) modes are omitted(or factored out and G(x,y,eA)
_ _ =2§=k+1(_1/\/ﬂ_q)¢q(x_)goa(y) is the exact fermionic two-
The operatorsH and H have the same eigenvalues noint function, satisfying the differential equation
un=0 (for u,>0, D ¢, is an eigenstate dfl) and the zero

modes ofH (H) are the same as those Bf (D™). In addi- k

tion, since the anomaly5) is u independentfor general D(A; 1)G(X,y,eA u)= 5?2 (x—y)— >, <pp(x)go;r,(y).

results on the independence of anomalies on thermal effects, p=1

see [18]), n,—n_ is the same for bothD(A;u) and (12
D(A;0). As weshall see in Sec. Il C, all zero modes have ] ]

always the same chirality. Therefore, the numkesf zero The second term on the right-hand side of the above equa-
modes is the same fdi, H, andD(A;0). tion is the projector onto thél zero mode subspace. For

simplicity, we have omitted a superscripk)( in both
G(x,y,eA u) and detH(A;u). From Eq.(11) we see that

k % the zero mode contribution can be factorized in this basis, in
Y= apdpt > Badg, which we obtain the contribution ofdet D|= (det H)*2

p=1 q=k+1 However, we have still to clarify which is the role of the
phase factor exp(). This will be carried out in the next

At this point let us expand the spinor fieldsandﬁas

— < t S + sections. Let us now recall how to obtain different quantities
WX)‘Eﬁ ap‘Perq:Ek:H Bq®q: ® of physical interest from Eq11). If we are interested in the
thermodynamics of the Schwinger model, the relevant quan-
with tity is the partition functionz=2(0,0,0), so that, from Eq.
(11), only the trivial sector contributes:
1
oq=——=D¢q, q=k+1,...>, 9 _ J O A
\/M—q Z(0,0,0=N periodic'ODAex i TP(A; )

¢p (@p) being the zero modes dfl (H_). In this basis, +J ExTTA
we have (q,¢q)=(dq¢q)=0¢q, Where (x) JIETA]
=[d’xx"y is the scalar product on the torus. We get, for

the fermionic action, We can obtain thermodynamic observables, such as the free

vdetH (A; u). (13
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energy and the particle charge density, by differentiaing a quantum constraint on physical staf@g], then it would
with respect to the temperature and the chemical potentialmply p=0 with the boundary conditions chosen. As is cus-
respectively, thereby generalizing for finite charge densittomary[21], one may consider that an external compensating
the study carried out if6]. The subscript 0 in the functional (say, ion chargep.y is present to ensure charge neutrality
integral above indicates that only the trivial sector contrib-gnd hence Gauss’ law holds for the total chapgg=p
utes. Then, in the .triv'ial sectQ,’V_can be identified with the pex=0. Alternatively, one may consider an open system
phase of the fermionic determinant. We can also calculatg,ay exchanges particles with a reservoir ensuring charge
the average fermion charge densite L ~f5dx*(47%4) in  neutrality. With this in mind, we shall make no further ref-
terms of the two-point Green function. A remark is in ordererence topex and concentrate only on the fermion charge
here: The equations of motion for tiefield imply 9;E(X)  densityp for the electron-photon system. Therefore, Bd)

= —ieyyy, which is Gauss’ law. If the latter is imposed as yields

1L — 1 0 1L 16 1) — i 1L
=_ L P =— — S 1- 0 N 1 i A0 A-
P Lfo dx <l/,y ¢> ,BL &Mlogz Lfo dx Z 557 532[0’5, 5] gzgzo Z Lfo dx { fperiodic,O,DAeXF{lj( (A,M)
+f d?xI'[A]|VdeH (A; u) tr[yOG(x,x)]+if DA
T periodic,1
xex;n[ij(”(A:M)Jrdezxf[A] vdet’H(A;M)d(X)v%l(X)] (14

and thek>1 contributions vanish. We shall show in Sec. our case,/A?(A;x) should contain onlyC-odd combina-

Il C that the zero modes off and H have all the same tions of the gauge field. AR is a symmetry of the effective

chirality, given by sgn). Hence, ¢, and ¢; are both action,J should beCP odd. In addition, it is not difficult to

eigenstates of° with the same eigenvalue and therefore thecheck that theu term does not generate any anomaly in the

second piece in the above equation vanishes. Then, only tlgwuge current, so that imposing local gauge invarigsee

trivial sector contributes to the fermion number density. ~ comments beloyy the only term which fulfills such symme-
We also remark that the propeftys,G(x,y)}=0, which  try requirements is of the form

is not difficult to prove with the above definitions, implies, as

in the case_of finitel .but vanishingu [7], that the chiral j(o)(A;M):E(T,M,L)f d2xAg(X), (15)

condensatéyP-. i), with P.. = (1= ¥°)/2, does not depend T

on G(x,y). However, from Eq(11) we see that it will con-

tain the phase factor ejig7(M(A; = . . :
ain the phase factor ef™(A;p)] (see the Appendix whereF(T,u,L) is a function, undetermined so f&o be

_ _ _ found explicitly latey, such that F(T,u,L)=—F(T,
B. Imaginary part of the effective action — u,L) since, by changing simultaneougly— —  and par-

As iD #(iD)", we have found the extra factgf(A; u), ticle by antiparticle, the theory remains unchanged. There is
which is the source-independent piece of the phase of th@nother point that is worth noticing here. Recall that in the
generating functional. We shall analyze here its physical intorus the gauge transformatiogéx®,x!):S'x S'—U(1) are
terpretation, at least in the trivial sector. The general form ofarametrized by, X Z, corresponding to the two winding
J(A; 1) can be inferred from the symmetry transformationnumbers (,m) around the two circles. For anp, the most
properties of the phase of the different quantities obtaineg@eneral gauge transformatioh, —A ,+d,a, which keeps
from Z; after switching off the external sources. For in- J,A* fixed (so thatd,d”«=0) and leaves unchanged the
stance, in the trivial sector, the object of interest is the effechoundary conditiongin space and timefor both fermion
tive actionZ[A,0,0]. Now, recall that the.-dependent term and gauge fields ig(xo,x;) = (2nx%)/ g+ (2rmx})/L, up
in the Dirac action is odd under the operation of charge conto an additive constant. Different choices af,n) corre-
jugation C, since it is the number of particles minus the spond to nontrivial, homotopically disconnected, gauge
number of antiparticles operator. The rest of the Dirac actioriransformations. But then we note that the integral in Eq.
is even undelC, so thatC acts onZ; by replacingD— (15 is precisely equal tm whenA is a pure gauge field.
—D" or, in other wordsZ;{A®,0,0]=Z%[A,0,0] and, there- Hence, Eq.(15) changes bynF when we perform a gauge
fore, the phase of the effective action is odd un@emvhile  transformationg labeled by (,m) and then it is not gauge
the modulus is even. This is analogous to the case of thimvariant under nontrivial gauge transformations. In this
QCD effective chiral Lagrangian, when the symmetry undersense it is a topological term. Therefore, we are imposing
consideration is spatial parityP), the phase of the effective local gauge invariance but still allowing a noninvariant topo-
action being, then, the Wess-Zumino-Witten tef&2]. In logical term dependent on the chemical potential. This as-
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sumption is partially motivated by previous works in which _ d 2
n-dependent topological effective actions were obtained Ao=— @Xﬁ 7“04' doN,

[23,24. In the next section, we shall gt explicitly,
through another method, thereby justifying our assumption.

~ 27
Al:Th1+(7l)\, (20)
C. Instanton decomposition

Following 7], we shall decompose the gauge field into aNwhich is the Hodge decomposition of the gauge field in the

instanton parA, and a local fluctuatior as torus. The contributions proportional tg, and h; are the
~ so-called harmonic parts and are essential to correctly quan-
Au=Au~ €0y, (16 tize the model7,14]. Notice that under a nontrivial gauge

. S . L transformation G, m) of the type commented on in Sec. Il B,
with ¢(x) periodic in both space-time directions. Note thaty,q , fie|ds above are the only ones changing and they do so
A, yields a constant electric field=®/(eLp) and, hence, as hy—hy+n and h;—h;+m, even for ®=0. The
E=E+A¢. By following steps similar to those ifi7], we  \-dependent terms in the last two equations are pure gauge
separate first the contribution & and ¢ in \/det H. Using contributions withx periodic inx°® and x;, which will not

that D (A:0)= D(A:0 7] and Eq.(6), it play any physical role. For instance, with the covariant
foﬁowg im%e;)af\?e(?ftﬁ)at( Jexpey°d) [7] and Eq.(0), | choiced, A*=0, \ is just a constant and that term does not

appear in Eq.(20). Let us consider first the casé=0,
which is the only relevant one for the partition function.

D(A;u)=expey’ ) D(A; p)exper’s).  (17) e o _ _
Sincey®> commutes wittH, we choose the eigenfunctions
Notice that the operatdf (A; u) in Eq. (7) can be castas of H(A;x) as states of definite chirality, that is,

H(A;u) ==V, V(A ) —eEy’, b* 0
T
VV:aV_ieAV+iM755Vl! (18) 0 ¢

and the operatoH is obtained fromH by changingu—  With Y*¥*==W¥=, since y°= diag(1-1). Then, for®
— . Hence H(A; )= —V,V (A; u)— ¥Y*®/LB, so that, as =0 we have to solvéd = (A;u) ¢~ =\" ¢~ with

—V,V,in Eq.(18) is a positive operator, all the zero modes

of H(A;x) have the same chirality, equal to the signdof H(A;p)=—(dg—ihg)2—(d1—ihxiw)?2 (22
(recall that[y°,H]=0). On the other hand, from Eg17),

we get a zero mode db(A;x) by multiplying a zero mode  and (anti) periodic boundary conditions in thigime) space
of D(A; u) by exp(-ey’#)=exf —e sgn@) ¢], whichisin  direction. In the above equation we have introduded
turn a zero mode dfi (A; ). We can apply exactly the same _5 wap /3 and h,=2meh, /L. The eigenfunctions are

argument taH. Then, the zero modes &f andH in Eq. (7) plane waves and the corresponding eigenvalues are
have both the same chirality, which is equal to sBh(This
was already used in Sec. Il A, in order to omit the one zero (277

B

2 2

+

1 2

n+ - —ehy

mode contribution to the particle density. M= 2

It is possible to separate the contribution of tHefA; x)
in det H(A;u), for arbitraryk. We have sketched the deri-
vation in the Appendix, the general formula, for daybeing
given in Eq.(A2). From that expression, we read the usual
induced mass term for the boson field, with mess e/ \/r,
which is independent of both the temperature and the chem

2
T(k_ehl)i,“«

with n,k integers. Notice that the chemical potential breaks
the chiral degeneracy which was originally present in the
{._LZO case. Now, by using log dét=TrlogH and Eq.(23),

cal potential, thereby generalizing the result for0 previ- we get
ously derived in6,7,28. Let us quote here the result for the "
o _n. N 1 o
trivial sectork=0: log deH(A;,u)=§ kz log[ (n)2+ (wr— P+
nK=—ow *=*
~ e?
N . = 2 —
deH(A,,u)—deH(A,,u)exp( Wde qu(x)Aq’)(x)). +ihg)?], (24)

(19
with w,=(2n+1)w/B and w=2wk/L. Now, let us add
D. Determinant of the instanton operator and subtract log°S, to the right-hand side of the above
. i __expression. This procedure will give rise toTadependent
In order to complete the analysis in the previous sectioninsinite constant, which, in turn, will be absorbed, as custom-
one should still study the spectrum BIf(A; 1), which will  arily, in the normalization constam(8) [6,15,16. We can
be the purpose of the present section. First, by folloWiflg  perform the summation overin the above equation with the
we shall decompose the field as follows: help of the two formula$16,25
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log[(2n+1)?72+ B?(w*+ a)?] employing these methods, we shall also obtain the phase
factor 7(9(A: 1). This will allow us to get the full fermion

_ [Flora)? de | > > charge density and the partition function, as well as to estab-

= L W“L ogl1+(2n+1)"m7], lish the consistency with the results of the previous section.
We recall that the covariant gauge fixing is hot complete on

% 1 1/1 1 the torus. We still have the freedom of performing a non-

- - :_( — ) (25) trivial gauge transformationhg,h;)— (hg+n,h;+m), with
n=mw (2n+1)%2+ 62 012 ef+1 the h fields in Eq.(20) and n,m integers, corresponding to

loops that windh times around the temporal direction amd
In so doing, we obtain, finally, times around the spatial one. It is clear thaandm are not
o fixed by 9#A,=0. Throughout this section, though, we shall
Kooy — iy work with the covariant gauge fixing, ignoring this residual
log deH(A”U“)_kE |2’8(wk hl)+§; logl1+exp gauge arbitrariness. The latter has also been treated in a situ-
ation related to the one analyzed here, but not quite identical
—B(wk—h_liﬂih_o)]} (26) with it: specifically, for(real time QED on a spatial circle, at

=—

zero temperature and chemical potenfi2b]. We have to

bear in mind that in Eq(1), we are integrating the gauge
up to an irrelevant- and u-independent constant. In order field over all possible values of the fieltls , that is,h,, e R.
to obtain the full partition function, we have to multiply the Fixing the gauge for those fields would consist in restricting
above expressiofwhich for e=0 reproduces the partition them to a rangg0,1] [7], since they change by an integer
function for free fermions at finite densjtpy exp{.7 (%) in under a global gauge transformation. Then, if the effective
Eg. (13) and by the¢-dependent contribution in Eq19)  action is globally gauge invariant, and unaffected by the re-
and, then, integrate over the gauge fieldshy,h;). As a  sidual gauge arbitrariness, the difference between integrating
consequence of the decomposition of the gauge field chosesver allh or restricting them to 0,1] interval is an infinite

here, the phase factor only dependshgnso that constant independent @fand u, so that arbitrariness cannot
oL affect physical observables such as the free energy or the

2 __ =t particle density. Foe=0, the action depends on derivatives
JTd XAo(X) 2e 2mhol, 27) of the electromagnetic field, and the covariant gauge fixing,

even if not complete, suffices to get a well-defined propaga-
since ¢ is periodic in the space direction. Then, tthecon-  tor, unaffected by that arbitrariness. In general, wieeis
tribution to the partition function in qug) gives the parti- nonvanishingz[‘]yg,a is also unaffected by the arbitrari-
tion function of a free massive bos@y. All the dependence ness, after having integrated over all fields. However, for a
on the_ chemical potential is included in thleo(hl) part, as given A, both deH(A: ) and the fermionic generating
given in Eqs.(26)3nd(27). However, we have still to deter- functionalZ; may be subject to it, even ji=0. In particu-
mine the value of(T,u,L) in Eq. (15). Before undertaking |ar, when x+0, we have seen in Sec. Il B th@ is not
that task, and for completeness, let us analyze the spectruglobally gauge invariant, due to the induced topological term
of H(A; ) when®#0. In this case, we have in the phase7, which changes whehnyg— hy+n. Thus, if we
restricthgy to a[0,1] interval, the result for the observables
would depend on our choice and then it is consistent to let
hoe R. We shall come again to this point at the end of Sec.
(28 IV A, where we shall perform the integration over tihe
. N ) ~_ fields explicitly, using the results derived in Sec. Il. It is not
together with the boundary conditions in the spatial directiorjfficult to check that all the formal functional manipulations
given in Eq.(4). This eigenvalue problem is solved in the that we shall carry out in this section, except those related to
Appendix. From the result found there, we remark here thaf [ A] are also unaffected by the residual gauge arbitrariness.
the u dependence, whed® #0, appears only in the states,  Thus, as a first step, let us rewrite the generating func-

while the determinant in EA7) depends on the tempera- tional in Eq.(1) for the trivial sector, with the aid of standard
ture T but not onu. As the norm of the zero modes in Eq. functional techniques, as

(A8) is alsou independent, then, if we go to Eq#2) and

(11), we realize that the dependence of the fermionic gener-

ating functional onw, when®#0, is encoded in the deter- — . ,, 6 0 o

minants of the matriced!,N in Eq. (A2), which follow im- Z[J’g'g]_ZEMZFeXF{ |ede Xsex) Y 537(x) SE(X)

mediately from the spectrum found far=0 in this section.

Besides, there arg dependences in bof&(x,y,eA; x) and 1
. hre ara deperdences i boB(ry oA con| |

T

~ — D 2 — ~
H+(A,M):_<ao_|ho+|mxl) —(&1—Ih1il,u)ZIeE,

IIl. GENERATING FUNCTIONAL —
—1 X X,Y,
IN THE TRIVIAL SECTOR E)S(X,y; ) é(Y)

) ) (29

In this section, we shall use functional methods in order to
calculate the generating functional in the trivial sector. BywhereZg\, andZg [Zg(T,u,L)=2Z¢ for shorf are the free
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boson and fermion partition functions amt“’(x—y) and larization[12]. Therefore, we should deal with the following
S(x,y;u) are the free gauge boson and fermion propagatordimit: lim,_,,G(x,y,eA u). In Minkowski space-time, the
respectively: limit should be taken by keeping the pointsindy relatively
space like, in order to maintain causalit{2]. As we are

©

B fo(—y) 1 0,0, working in Euclidean space-time, we shall not impose, in
Duv(x_y)_,ﬁn K=o € 5| Surt(a— 1) 2 | principle, such a restriction. We shall comment below on the
' @ @ different ways of taking the limit. Before that, and general-
.= izing [12], we shall derive the point-splitting regularization
S(X,y; )= — '_ gl 0(x=y) 1 ' prescription in our present case with nonzero We start
BLn k== Y wat+in)+ yloy with the formal definition of the gauge current in the pres-
(30 ence of an external background fiedq, :
where w=(w,,w,), With w,=27k/L, w,=2mn/B in the ; —
bosonic propagator anad,=(2n+1)=/g in the fermionic {uOON[eAI= (X)) €A]
one. Now, we shall make use of some known functional =ilim trpy,G(X,y,eAu), (39
differentiation formulad12] and, in particular of x—y

N where (O);= [DyDyOexd — [¢Dy]. We shall obtain the
ex _'J dxd Ysex) A(X,y) SEy) regularized version of the right-hand side of the above equa-
tion as follows: We shall demand that such a regularized

] o o= gauge current be conserved and gauge invariant. Notice that,
X ex IJ dxdy &(x)B(X,y)&(y) under a gauge transformatién,—A,—d,A, G(X,y,eA; 1)
changes as

. (31

:exp{if d?xd?y &x)B(x,y) é(y) +L G(x,y,eA;,u)—>G(x,y,eA;,u)exp{ie[A(x)—A(y)]}&%

Here, A(x,y) and B(x,y) are arbitrary functions, to be re-

garded as the kernels of the operatarandB, respectively, Based upon this, it is easy to show that the product

B=B(1+AB) ! andL=—Tr log[1+AB] ™%, Tr indicating

the trace over functional and Dirac spaces. Thus, one finds G(x,y,eA;,u)exp{ —iefdeUAa(és)} (36)
X

Z[J,¢, €]

is gauge invariant. However, if we use E6) in Eq. (34),
_ 10, 5 v calculate the divergence of the curre¢ptso defined, and use
=ZemZreX §Ld xd%y J,(x)D*"(x=y)J,(y) D(A; 1)G=8?(x—y), we find that such a divergence does
not vanish foru+#0. To ensure that the current is diver-
genceless, we have to add an exiralependent term, which
leads to the regularized gauge current

X L f Pxdy—2 D#¥(x—y) o
expg — = X X— -
2 )XY 5AL00 Y s .(y)

: reg
Xexp{ B f XY NG (XY, ieAwEY) 00N eAl

=ilim trDy’uG(X,y,EA;,u)eX;{—iefydgoAg(f)}
+L[A]J, (32 X—y X

, _ _ xexp — u(x°=y9)], (37
with AM(X)E—|de2yDW(x—y)JV(y), after having per-
formed the functional differentiations, which appears towhich is, indeed, gauge invariant and divergenceless. Note
leave no trace of the residual gauge arbitrariness inhat Euclidean covariance is broken since the system is in a
Z[J,&,€]. The so-called closed fermion loop functional thermal bath. We are now ready to define the regularized
L[A] can be written formally as fermion closed loop as

L[A]= trDJ:de’ deZXA(X)G(X,X,ie/A;/L). (33 LY A]=—i ter:de’ dezxAM(xxjM(x))?‘fg[ie’A]

where tp denotes the Dirac trace. We recall that - fedelf XA (x)lim tr
G(x,y,eA; u) is the two-point function, which, in the trivial P/, T w Xy DYu
sector, satisfies Eqd12) with k=0, that is, with its second
term on the right-hand side omitted. ., (Y
In order to get a well-defined expression for the generat- XG(xy,ie A;,u)ex;{e fx d¢ A(,(g)}
ing functional, we need, first, to regulariz¢A] in Eq. (33).
For that purpose, we shall appeal to the point-splitting regu- xexg — u(x°—y9)]. (38
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The limit x—y has to be taken in a symmetric way, re- +oo 1 1
garding &,y) [12]. In order to calculate the fermion closed F(T,u,L)= - — ,
loop in Eq.(38), we shall consider an ansatz for the exact 2L | flcti 4l el it
Green function similar to that if6]: (43

G(x,y,eA p)=exd —ie[ x(X)— x(Y)1S(x,y;x). (39  With w,=2mk/L. We recall that Eq.(42) reproduces the
T=u=0 result given in[12] and the u=0, T#0 one
It is not difficult to check that, with the above ansatz, [F(«=0)=0]in [6]. N
G(x,y) is a solution ofdG(x,y) = 53 (x—y), provided that Next, we shall replace both Eq$40) and the limit
x(x) is a solution of, x(x) = — A(x). In turn, the solution is ~ (42) into Eqs.(39) and(38). We have taken the—y limitin
two different ways and established that the same result is
arrived at. We have taken, first®—y°—0, x1—y'—0 with
X(x)=—f d2yA(x—y)b,A(y), (x*=yH/(x°-y% =1 and, second, the Minkowski causal
T choice(see[12]) x°=y° and x!—y')—0. Anyway, what it
is important to note here is that the exponengialdepen-
_ 1 dence in Eq(42) is exactly cancelled with that in the regu-
A(x—y)———L 2 gy ——— lator in Eq.(38). Then, no matter how we take the-y
Plni== wnt wi limit, we always get a term frA(x)y°F in L™9. The pos-
(40 sible divergence irL"9 arising from the first piece in Eq.

_ (42) is absent since we have taken the limit symmetrically.
where w=(wn,wy) With wn=27n/B, w=2mkIL. So  Thys, finally we arrive at

G(x,y,eA; u) appears to be unaffected by the residual gauge
arbitrariness.

Hence, from the above equations, we have to find the
behavior ofS(x,y; u) whenx—y. For that purpose, we ap-
ply the standard formulas

1
Lo AT= 5 [ dxdPyALOTH -y AKY)

+2eF(T,M,L)f d?xAg(X), (44)
1< , 1 (= T
- f(wn+|ﬂ):—J dof(w)+ 3[>dwf(w
o 27) s c
with
1 oFietip 1
S dof(0)————, o
77; fw?iﬁiﬂ ¢ (w)eilﬂw+1 11 L e +2 iw(x=y)| § Lap
aﬁ(X—y)—ﬁ; 2 " 3 |
(45)

1 1 (=
Eka f(wk)=ﬁjiwdwf(w)

wherew,=2mn/B andw,=27k/L. SOL"YA] is, in prin-
1 wFie 1 ciple, affected by the residual gauge arbitrariness. The func-
o f dof(o)—r—"r, tional differentiations with respect #(x) in Eq.(32) can be
performed by employing the following formula, which is

(41)  valid for any linear operator® andQ [12]:
rectangular contour in the complex plane running through exr{ J AQA+|f fA}
the points (oo, —o0, —co+iu,+o+iu). We apply Egs.

(41) to S(x,y; ) in Egs.(30) and retain only the dominant

contributions ink—Yy. The complex plane integrals along the —ex;{zf APA+|J A(1-QP) f
lines (—xxie,+oxie) and (—oFietiu,+toFxietiu)

are performed by forming a closed contour, by means of an

1
infinite arc abovebelow), corresponding to the- (—) sign +5rlog(1-QP)~ T+ fo(l QP)~ lf}
in Egs.(41), and applying the residue theorem. We get

—P—

wheree—0", w,=(2n+1)7i/B, wy=2wk/L, andC is the
F{ f SA" SA

(46)

1 (X=y).v*

lim S(x, e*=yY)u
(X,Yi )= 27 (x—y)?

X—Yy

+iyF(T,mL) whereP=P(1—-QP) ! and we have omitted, for simplic-

ity, all the space-time dependences. We shall concentrate on

the bosonic generating functionz[ J,0,0], as we have al-
(42)  ready analyzed the dependence on the fermionic sources in

the previous section, up to the phase fadgtorbe calculated

below). Upon applying Eq.(46) in Eq. (32), L[A] being
where given in Eq.(44), we get

+O(x—y)?
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1 comes directly from the topological structure discussed in
Z[J,O-O]:ZEMZFEXF{EJ’ d?>xd?y(3=iG) () D)(x—y) Sec. I, namely, from the phaséA;u] of the fermionic
T generating functional. At this point, we recall the result ob-
1 tained in[6] for Z(T,u=0). The latter partition function
eXF{E Tr |09(1+HD)1}, (47)  was proved to factorize into the product of that for a free
fermionic field times that for a free massive boson field with
massm, divided by the one for a free massless fi€iidite
temperature bosonizatiinin our present case, with#0,
we may wonder if such a factorization actually takes place as
well and, if so, whether the whole system may have a net
fermionic charge or not. Let us consider, first, the free fer-

X(J=iG),(y)

where Go=2eF(T,u,L), G;=0. In turn, DY) is the exact
boson propagator at= 0, which can be expressed, formally,
asD© =D(1+1ID) %, D andII being given in Eqs(30)
and (45), respectively. Its explicit representation is

* mionic partition functionZg(T,u) =Zg(T,u,L):
0) = 1 iw(X—y) 1 / W, 0,
D( V(X_Y)—_ E e y wr ™ o
” BLn,k=7OC w2+m2\ w2 ) )
logZ(T,;,L)= >, {log[1+e Alex—r)]
+ w/—LwV 48 k=—
a(wz) ’ “9 +log[ 1+ e Alext T, (51)

wherem?=e?/ 7 is the induced boson mass squared. The net free fermion charge density is

In the following section, we shall obtain, from Eqg4)
and (47), the complete form of the fermionic generating
functional in the trivial sector, including the phase factor, the BL du
exact boson propagator gt 0, and the partition function,
and check the results with the method used in the previou

2 gz (Toul)=—2F(Toul), (52

E being given in Eq(43). Thus, from Eqs(52) and(50) we
ave

section.
IV. PHYSICAL RESULTS Z(T,u) :Z(T,,U«ZO,L)GXD{ —2pBL| mF(T,u,L)
A. Charge density and the partition function
o
By settingJ=0 in the expressiofd7) we get the partition + JO du'F(T,u’ ,L)“ =Z(T,u,L), (53
function

Ze(T, 1) 1 which is our final result for the partition function at+ 0 for

Z(T,pu)= ﬂZ(T,,u=O)ex;{ - E[ZeF(T,M,L)]Z finite L. Now, let us analyze the behavior of the functién

FUL M in the limit L—o0. In such a limit, the sum ovée becomes a
trivial integral, which yields

. (49

X f d?xd?y DG (x—y)
T M

F(T,ILL,L—>OO):—2—. (54

However, the above integrals &%% are ambiguous, in m

the sense that changes in the order in which such integrals T,s in thel — limit. the « dependence in Eq53)

are done yield different results. For instance, let us perform‘,axc,ic“y cancels out. We get, for the full partition function,

first, the spatial integrals: That would force us to lset0 in

Eq. (48), which would give rise, after doing the temporal Z(T,pu,L—0)=Z(T,u=0L—x)

integral, to an infinite and gauge-dependent result. Con-

versely, by changing the order of the integrals, let us per- =ZemZe(T,u=0L—)

form, first, the one over th@maginary time. In so doing, we 1

arrive at a finite and gauge-independent answer. The latter Xex;{—Tr log(1+IID)"1|, (55
prescription seems to be a natural and physically reasonable 2

choice. In addition, as we shall see, it is consistent with the

results obtained in the previous section. If we adopt this pre\-’vhiCh _is only T dependent.. It's explicit e?<p.ression can be
scription in Eq.(49), we get found in Sec. IV off6]. That is, in theL — o« limit the system

bosonizes as well, and the only effective degrees of freedom

Ze(T,w) are those of a massive boson field, the net fermionic charge
Z(T,pu)= mZ(T,;FO) of the system being=(BL) 1dlogZ/du=0. We make the
FUL A following remarks (i) This is a nonperturbative effe@hich
X exd —2BLawF3(T,u,L)]. (50) has been established due to the fact that the Schwinger

model at finite chemical potential and temperature can, still,
This is a genuine nonperturbative result, since the argube solved exactly (i) It is characteristic of two dimensions.
ment of the exponential in the term that corrects the freeRecall, for instance, that in perturbative four-dimensional
fermionic partition function is independent of the electric QED in the infinite volume limit, the free energy l6ds
charge. As we shall see, such a nonperturbative behaviagtependent and henge# 0 [21]. (iii ) The result(55) holds in
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the L— oo limit; If we keep L finite, F is no longer given by which has been obtained with the second melhiodes that

Eq. (54) but it acquires further corrections and the study ofof the free fermionic partition function, as it appears in Eq.
the counterpart of Eq55) will not be attempted here. (53) whenF— — w/27. To complete the check, we shall see

We now turn to the issue of th@-violating phase factor, that the integration over the gauge boson fields also gives the

addressed previously in Sec. Il. Thus, we consider the fermisame result with both methods in the—oco limit, namely,

ohic generating functionﬂf[A7§,a, treating nowA as an that in Eq(55) From our preViOUS discussion, it follows that
external background field. We apply E@®1) and we arrive  the only part that depends qnin the full partition function

at an expression ana|ogous to EQZ), but now takng is the integral over the}“(o,hl) fields, the integrand of which
=0, omitting the derivatives with respect£g and replacing IS the exponential of Eq(27) for ®=0 times (-2ieF),
e——ie. By recalling the regularized fermion closed loop multiplied by VdetH (A). From Eq.(60), it follows that all

functional obtained in Eq(38), we get the h dependence of ddtis contained in thex.=0 part. In
— order to extract the dependencefgy; we differentiate again
Zi[A§, €] in Eq. (26). Using again Eq(58) we get, in theL. — limit,

:ZFZEMeX[{—iJTdZXdZyE(X)G(x,y,eA;,u)g(y)} J log deti(& 0:ho )
—R_10g de yu=0:Ng, Ny
ahg

; A s 8mLe?hg
:Zlesgi Jfoc dw1+eﬂ(w*hlfisho)__ B

. (56) (61

1
X ex% - EdezxdzyAa(X)HaB(X_Y)Aﬂ(Y)

X ex;{ - 2ieF(T,,u,L)f d?xAg(X)
T

The comparison with Eq11) in the trivial sector leads t0  \ynich turns out to be independent bf. Thus, from Egs.
identify (60) and(61), we derive

(0) - 2
T AR ZeF(T’“’L)de KA D e (R, T hy) = VAR (K k= 0T,0y)
which has the form that we had anticipated in Ep), based u?  2mLe’h]
upon theC symmetry properties of the phase of the fermi- xex Lﬁﬂ_ T
onic determinant, and so= — 2eF.

We shall now provide an interesting check of consistency.
On the basis of Eqq13), (19), (26), and (27), we can cal-
culate the partition function through the method developed in At this stage, we have to integrate over the fieldg,b,).
Sec. Il. We shall do so in the— limit. Let us first differ- ~ As commented at the beginning of Sec. lll, it is necessary to
entiate with respect tqe in Eq. (26) and then take thé integrate overhge R, to achieve consistency. This is rein-
—o |imit by replacing wy by continuousw and =y by  forced by the topological terrfb7) in the phase of the fer-

(62

(L/27) fdw. The resulting integral can be done using mionic generating functional. Thus, from Eq27) and(62),
it follows that the relevant factor carrying the dependence
+oo 1 1 is
f—w de 1+efw-ath) | ghlaab| 2. (58)
C . . +oo . 27Lh3
which is convergent when both pieces of the integrand are ef dhgexp —2i whol —
added together. Then, in the—oo limit we obtain -
2
J ~ . 2BLpu _ B | HLB
5,100 deH(Aipn) == (59 N2t~ 2x | 63
and, hence, . :
It turns out that the exponential dependence in Eq63)
_ _ wu? cancels that in Eq62), and, hence, we arrive, again at the
VdeH (A u,T)= \/deH(A;MZO,T)eXF< LBE)- result(55), obtained with our previous method.
(60)

B. Boson propagator, the screening length,

We now insert the above result in EQ.9) and, then, in and the Polyakov loop

Eq. (11), for the trivial sector, and we compare to E§6).
We see that, before integrating out the photon field, the re- The exact boson propagator, which results after the inte-
sults obtained with both methods are consistent with eachration of both fermion and gauge fields, can be obtained, in
other if L— 0, since we get the same dependence, namely, the trivial sector, just by differentiating E¢47) twice with

the one coming from the phase facttine explicit form of respect to the external sources and setiind. We find
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) © A T+#0 in theL—< limit [10]. We shall outline below a cor-
Dig (X=y)=Dyp(x—y) —(2eF) Ld ud*zDyo(x—u) rect understanding of the screening mass. The order param-
eter of this symmetry is the thermal average of the Polyakov

xDig(y—2), (64)  loop

D&O[g_(x_y) bein_g given in Eq(48). The above expr_ession is, P=(x})=ex iEJBdTAO( X (70)

again, formal, in the sense that we have to specify the order 0

in which the spatial and temporal integrals should be done in _

the second piece on the right-hand side. If we adopt the sarfer an arbitrary charge and a spatial point®. In addition,

prescription as that in Sec. IV &hat is, by doing the inte- the correlator of two Polyakov loops with chargesand

grals |ntthe order tr:at gives a finite ansyyarve arrive in —'g and spatial pointx! and u® measures, at large spatial

momentum space & separation, the effective potential between both charges.

Thus, in order to clarify the role of the two different masses

m and M, let us calculate the Polyakov loop and the cor-

474F%(T,m,L)

D5 (@n @1 =Dy (@n,@i) — SnoSoBL > ,

e relator for u#0 in the L—o limit. First, we shall use the
functional methods developed in Sec. lll. After the obvious
DY (@, 0) = DiE (0n, 0) =D (0, ), relabelling of variables, the insertion &;(x) in the func-
tional integral (1) amounts formally to replacingl(y)
D (wn, 0) =D (wn, 0)), 65  —iP(y) with Po(y)=88(y'—x1) andP,(y)=0. Then, re-

calling our result(47), we get
D) (wn, ) being given by the expression between square

brackets in Eq(48). In the L— o limit, w, is replaced by a 5 1 0

continuous variable andL 8,,F? goes to ?/47%) 8(w), in (Pe(xl)):exp{ _Ef d?y dzDfig/(y —2) Po(y)[ Po(2)
Egs. (65. As a check of consistency, we notice that the _ _
propagator(65) (which is u dependentsatisfies the gauge pe? e
invariance conditionn“w” D,,,= @, with « the gauge-fixing —2Go(2)]|=exp — 55—~ Bug
parameter. For finite, the only Euclidean pole of the propa-

gator (65) remains aw?= —m?= —e?/ 7, which defines the where in the last step we have first followed our convention
mass of the boson and is independenuofHowever, in the  of performing the time integration before the spatial one and
L—o limit, a new pole appears ai’=0 due to the contri- then we have taken the limit— o, so as to transform spatial
bution of 5(w) in the second g-dependentterm. To clarify  sums into integrals. The resu7l) can also be obtained
what this pole means physically, let us calculate first theusing the decompositiof16) and(20) for the gauge field. As
inverse correlation length squardd? in the L—o limit, we saw in previous sections, all the dependence is in-
through the usual definition cluded in thehy-dependent part. Then, since

, (71

M2=D =0,0—0), 66 B B
ool @n=0.0=0) (66) f d7A( T,Xl)=277h0—&if drop(7,xb), (72
whereD,s5(w,, ) is the boson self-energy, which is defined 0 0

in momentum through . . . ~
omentum space throug all we have to do is to insert a piece exp{lye/e) in the

Dys(0n ,w)Z[D_l](fg)(wn !w)_[D_l]aB(wn ). integrand in Eq(693), in theL—oo limit. It is stralghtforw_ard
(67) o getagain thew dependence of the Polyakov loop in Eq.
(71) consistently, once we integrate ougye R.

Accordingly, from Eq.(66) and the propagators in EGR0) We see that P3(x!)) never vanishes for any value ®f
and (65), we obtain and w, so that thez symmetry is never restored four— oo.
5 Our result extends that obtained [t0] for w=0. Then,

M“(T,u)=0. (68)  there should exist a nonvanishing screening mass, which,

consistent with our result for the propagator, shouldnie

That is, the masM? vanishes in thé.— o limit. This is _ . . . .
. . . . =e/\/m, independent of. This is confirmed by calculating
indeed a consistent result if we recall the connection betwee .
he correlator of two Polyakov loops. Following the same

the screening length and the equation of state of the SyStersT{eps as for(P) we obtain with both methods that
given in[16]. (Pz(x)P_z(ul)) is independent of. and

MZ(Ty,U«):eziP(T,,U«)a (69
Ip : (73

=2
lim (Pg(xl)Pg(ul))zex;{ _Re
eyl 2m
p being the total fermion charge density. Hence HGS)

and(69) are consistent in the— o limit: We got a total zero that is, m is the screening mass between the two opposite
charge density, whilé&1? tends to zero. However, wetd?  charges. It seems clear that the definiti66), leading to Eq.

to be interpreted as a vanishing screening mass, then tH68), does not give the right answer for the screening mass
system would be in a confined phase and fhesym- between two opposite charges and cannot be used to infer

metry would be restored, which does not occurficr0 and  any conclusion about the breaking of the confinemenZ or
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symmetry. However, it is the consistent equation to use if we e 0P

want to get the equation of state of the system through Eq.K*A(x’ —y’)= AL g o' Y| §9B_f(?) ,

(69). nk=—e ®
Notice that we have restricted ourselves to the trivial sec- (77

tpr. The boson propagator could receive addltllonal ContrlbuWlth Sin Egs.(30), Z¢ the free fermionic partition function,
tions from sectors wittk=1, apart from that in Eq(64). .

) N andJ=(Jy,J;) a boson source, to be set equal to zero after
However, we have seen thatonly receives contributions

from the trivial sector, so that, E68) is valid for any sector all functional differentiations with respect to it have been
if Eq. (69) holds. In addition, it is enough to restrict our- performed in Eq(75) andw in Eq. (77) s the same as in the

selves to the trivial sector to calculate correlators of Pona—gauge boson free propagator in E¢80). We have intro-

kov loops[10]. Hence, we expect the above results for theduced an arbitrary functiof(w?), by virtue of the fact that

screening mass to remain valid fér=0. the currentyy” ¢ in the actual Thirring quel is conserved.
If the length of the systerh is kept finite, the definition A proof of Eqs.(75) and (76) f,OHOWS read.lly through steps

(66) for M2 is no longer valid. Using Eq69) instead would s!m|lar to those i 6,12]. At this stage, using standard tech-

give rise to a nonzero angd-dependentM?, directly from  Niques[12], one can rewrite Eq$75) and(76) as

Eq. (53). Remember that for finite there is no pole of the

propagator aw?=0. However, it is not clear whether Eq. _ 1 S

(69) remains valid for finite_. On the other hand, for finite Z[§,§]=exr{ - §f d*x'd?y’ ————K*¥(x'~y’)

and =0, the screening mass is only different from zero if T oA (X')

‘e/lee? [10]. A more rigorous analysis of the finite length

corrections foru# 0 is beyond the scope of this work.

X—————|ZA* £,E]| A —0, (78)
5A2(y/)l il &llax=o

V. THIRRING MODEL AT FINITE T AND p

Z{[A% £, E]=NZ
A. Generating functional LAy &€ F

We shall consider a system of many massless fermions % r f 42 ) AF
(and antifermiongin one dimensior(inside a finite interval ex g T X5g(x) v (%) 53()()
of length L) at equilibrium at absolute temperatufeand
chemical potentiaj.. By assumption, their dynamics is de-

scribed by the Thirring quartic Lagrangian. Lagbe fer-
mionic external sources. Then, in the imaginary time formal-

X eXF{ deZX//dZy//E(XH)S(X//,y//;M)g(y/l)} ,

ism, the generating functional of the system reads now (79
_ — — * )= i 2 — 238
Z[£E=NB.w) | __DWDwm%fd&-—wﬂ A= [ dizk 2@ @0
antiperiodic T
2
PR s - Again, one set®\* =0 in the above equations, after hav-
— 0 4+ + = v 9 ] q [}

RYIPTEd+gé 2 by l!/)(llf%l/f)H, ing carried out all functional differentiations. Standard func-

(74) tional techniques allow us now to establish tAgtA% , ¢, £],

as given in Eq(79), also coincides with the right-hand side
of Eq. (2) [when due care is taken of the normalization factor
N(B,w)] provided that, in the latter, one replaeeby g and

A by A*. Let us concentrate oA* belonging to the trivial
sector(see comments belgwThen, by recalling the devel-
opments in Sec. lll, one finds, immediately,

whereg is the coupling constant. The partition function is
Z[0,0]. One can also cagt] &,¢] as follows:

Z[¢,€]= fdz 5 @
[£€]l=exg —g 4 XS5Ex) Yv53,(%) SE(X)

XZ3[£,63]]5-0, (75)

Z{ A% &€

= zFexp[ —i deZXLdZyE(X)G(X.y,gA* ) ECY)

_ 1
Zl[§,§;J]=NZFeXF{§f d?x"d?y’ 3, (x")
T +L[A*]}, (81)

XK“"(X’—y’)JB(y’)}
where G(x,y,gA*;u) and L[A*] are now given by the
_ right-hand sides of Eq$39), (40), and(44) (with the same
XeXF{f dzx”dzy”g(x”)S(x”,y”;M)g(y”)}, S, A, I, andF), when one replaces,A by g,A*, respec-
T tively. Thus, we have provided the solution for the Thirring
(76) model at finiteT,u in terms of the fermionic generating
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functional for the Schwinger model, without zero modes

(d=0). The formal use of Eq975—(77) and (78)—(80)

(which can be checked upon comparing the corresponding
expansions into powers of) is justified if we restrict
Z[ A% €, €] to the trivial sector of the Schwinger model, as
implemented through E81). In this regard, it is interesting
to note that, upon using E@80) in Eq. (5) and taking into
account that the propagati, ; in Eq. (77) satisfies periodic
boundary conditions in botk® andx® directions, one imme-

diately finds®[A*]=0, which confirms thazf[A*,g,E]
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12 (+=dk
a3 3 [ o
2,2

— — 277’

0,0

+ o
fdzxdzy 2 eiw(xfy)w @
-

nyk:—oc w

1
b= lim
L—x(BL)?

Notice that the first exponential on the right-hand side of
Eq. (84) is independent 0B, u and then it is irrelevant as far
as the thermodynamics of the model is concerned. On the

(85

should be restricted to the trivial sector when use is made dfther hand, the constabt (which is independent of botf

Egs. (78)—(80) and, hence, the consistency of E§1). On

andu) could in principle give rise to a dependencef@).

the other hand, this appears also to be consistent with th&dain, the very definition ob is ambiguous. If we agree to

idea that, in the end, we are going to #8ét=0 and then we
can take the vector field’ as a configuration in the trivial
sector, that is, topologically connected witfi =0. It is un-

evaluate the(imaginary time integrals overx® andy® in
Egs.(85) before the spatial ones, thér=0 and, hence, the
independence of the partition function 6{w?) follows,

known to us whether the Thirring model may have otherwhich is a welcome result. Another independent reason to

solutions[besides that given in Eq§78) and (81)].

B. Thermodynamical partition function and fermion
correlation function

favor this prescription is that it is the same as that leading
from Eq. (49) to Eqg.(50). Now, by recalling the expression
for the free charge density in E2), we have from Eq(84)

that the total fermion number density of the system reads, in
the L—oo limit,

The thermodynamical partition function becomes, upon

applying Eq.(46) to Egs.(78) and (81),
1 1
Z[0,0]=ZFexp{§Tr log(1+1IK) 1— E[ZgF(T,,u,L)]Z
xf d2xd2y[K(1+HK)—l]OO(x—y)), (82
T

where in momentum space we have

1 &
(AT ™ x—y)= g 2 ey o
n,k=—o
B g?lm 5aﬁ_w“wﬁ ,
1+g% w?
1 3 5F
K(1+1IK) 1*A(x—y)= — gle(x=y)
[KA+IK) 2 0y) =5 3 T
_w“w'8 N 9%/
w? 1+g%/ .
(83

Using Eq.(54), Eq. (82) yields readily, forL— o,

1 gZMZ
Z[0,0]=Zg(T,u)ex Lalog—2 exp) — BL
1+g/w 2
“l—1 bl 0 g/ 84)
1+9?% 7 1+9?% '

where

M
7T+gzl

p= (86)

Hence we obtain that the Thirring model at finiteand
is no longer a free fermion gas, but the fermion density ac-
quires a correction ig?, as it stands in Eq(86). It differs
from the result if13] in which only the free contribution to
the fermion density remains. It is clear from our analysis
starting from the Schwinger model that the correction to the
free gas comes entirely from the topological contribution de-
pending on the~ function. This contribution only depends
on the harmonic fieldh, in the decomposition of the gauge
field. The calculation irf13] was done in real time formal-
ism, in which this term is not present, wheread 1d] the
model is solved in the torus. As it is emphasized 78,14,
the toroidal compactification is very useful to deal with in-
frared divergences and the harmonic parts of the gauge field
are essential to correctly quantize the model. It is the most
natural choice when using the imaginary time formalism, as
we have done in this work. On the other hand, if we evaluate
the pressure of the system, which follows directly by taking
the logarithm of the partition function in E¢84), our result
(not quoted for brevity agrees with[14], which provides a
check of consistency between our methods and those used in
that work.

Finally, we shall give the exact fermion correlation func-
tion for the Thirring model at nonzerd and w,

_ logZ[ ¢, €]

G(X,y)=—
Y= S0 se(y)

=0(X,y)S(X,y),
g=¢=0

—+ oo

1 1 .
@(x,y):exp{ —gzﬁn kziw ;[1_elw(x7y)]

2

gl
+g%l

X

+29F(T,M,L)c],

2y _
f(w?) 1 87
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where we have used again E¢6) into Egs.(78) and (81) a net fermionic charge density at nonzero The partition
and performed the functional differentiation. In tum,is  function factorizes, as ifi6] (into that of free fermions at

given by the formal expression pn=0 times a factor, which is the ratio of that of massive
. . bosons, dividgd by that of free massless bogahs mass of
o= [efiwx_efiwy]ﬁo,nﬁo,k[_ by the boson beingn=e/\/, independent off and . The
el ? [ 1+ g2 exact boson propagator has an additignadependent piece

for anyL. At L—oe this new piece gives rise to a vanishing

g%l inverse correlation length squard?, which is interpreted
+ | f(w?)— m , (88)  through the relationship betwedh? and the first derivative
a

of the charge density given [i6]. However, by calculating

for w# 0 the thermal average of the Polyakov ldeghich is
dependentand its correlator & independent we have
own that thez symmetry is broken for an§ and u (de-
confinement and that the screening mass between two op-
posite charges is the massof the boson. A study of what
happens regarding the above-mentioned cancellation in the
thermodynamical partition function, when is kept finite,

which, again, turns out to be ambiguous. Like we did with
the same ambiguities before, let us evaluate the summatidl‘]1
overn in Eq. (88) (which is reminiscent of imaginary time S
integration$ before the spatial summation and let-o.
Then one gets

= ——— (X~ Y1) Y’ (89 lies outside the scope of this work. Our computations of the
1+9% thermodynamical partition function through two different
methods yielding the same result establish the consistency of
VI. CONCLUSIONS AND DISCUSSION our approach.

(4) Several important features of the solution of the

The main new results obtained in this work are the fol-Schwinger model for#0 in the sectors with zero modes
lowing. are summarized, as they are closely related to the analysis in

(1) In the imaginary time formalism, the fermionic gener- the trivial sector. Namely, we have given the general struc-
ating functionalZ; with an external electromagnetic field and ture of the fermion determinant, solving the spectrum of the
the full generating functionaZ for the Schwinger model Dirac operator for an instanton configuration wher:0.
have been explicitly obtained for any spatial lengtin the ~ The chemical potential breaks the chiral degeneracy of the
trivial sector (in which the Dirac operator has no zero spectrum. We remark that the correlation functionsder0
modes. have been analyzed [9], although in that paper a different

(2) The work previously done 7] at finite T but u approach based on bosonization is used and the harmonic
=0, in which the model was formulated in a two- part of the gauge fieldand hence the contribution of the
dimensional torus for an arbitrary number of zero modes, caphase factopsis not considered. The analysis of the phase
be extended when bothand x are nonzero. Such an exten- factors and the fermionic two-point function when there are
sion has to be worked out carefully due to some nontrivialzero modes lies beyond the scope of this work.
peculiarities of thew# 0 case. Technically, the main distinc-  (5) In the imaginary time formalism as well, the generat-
tive feature is the lack of Hermiticity of the Dirac operator. ing functional for the massless Thirring model at firiftge
This implies a nonvanishing phase fact@r¥ for the fer- s constructed in terms of the fermionic generating functional
mion determinant in the sector witk zero modes. Using Z; for the Schwinger model, previously found in this work.
functional methods we have evaluated this termkfelO (the ~ We have justified that it is enough to restrict ourselves to the
trivial sectop, which plays a crucial role in the solutions for trivial sector forZ;. The thermodynamical partition func-
the Schwinger and Thirring models presented here and in thigon, the total fermion number density, and the fermion cor-
physical features thereof. That phase depend§ andu, is  relation function have been computed for nonvanishing
linear in the zeroth component of the electromagnetic potenand T. A distinctive feature is that all of them depend non-
tial Ay (in agreement with charge conjugation symmetry ar-trivially on u, as a consequence of the nontrivial phas@
gument$, and vanishes ix=0 for anyT,A,. Furthermore, of the Schwinger model. Our result for the pressure agrees
this term is topological, in the sense that it changes onlywith [14], which shows that our different approach is consis-
under nontrivial gauge transformations, with nonzero wind-tent. Our total fermion density differs frofil3], where it
ing number around th&' parametrizing the Euclidean time. was obtained, using real time formalism, that the model is
In terms of the Hodge decomposition of the gauge field inequivalent to that of free fermions. The origin of that dis-
the torus, it only depends on the harmonic part. The exiserepancy is that if13] the harmonic pieces of the vector
tence of topologicak-induced effective actions seems to be field are not considered.

a common feature of different modd23,24.

(3) For the Schwinger model we have calculated the ther-
modynamical partition function. The topological phase factor
in the effective action gives rise to a nonperturbative contri- This work was supported in part by the European Com-
bution that in theL — limit exactly cancels the. depen- mission under the Human Capital and Mobility program,
dence contained in the free fermionic partition function.contract number ERB-CHRX-CT94-0423. The financial sup-
Then, atL—oo, the partition function is independent @f  port of CICYT, projects AEN96-1634 and AEN97-1693, is
and hence the total charge density of the system is zero. lalso acknowledged. One of A.G.N.) has received finan-
other words, the system bosonizes even though it could haveal support from Spanish Ministry of Education and Culture,
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APPENDIX: THE FERMION FUNCTIONAL %
DETERMINANT FOR ®+#0 &ﬁm(xo,xl): 2 e(Zwiehlii,uL)j(ﬁrijk, m(XO,Xl),
. : . ’ j=—= ’
We shall outline here the calculation of td{A;u) in (A4)

Sec. Il C, following steps similar to those jii], with suit-

able generalizations for our present case. First, we shall resith K'=n,—n_=®/2m, are the correct eigenfunctions,

late detH(A; ) with det H(A; w). For that purpose, we de- \hich do satisfy the right boundary conditions in E¢).
fine D, replaqng e—ea in the arguments of the WO \We have used that th&Xx;) functions in Eq(A3) depend on
exponentials in Eq.(17). Then, the correspondingd, 4! and n only through the combinatiory=x'+2=L(n
= IZ)ZIDa interpolates betweeH(A) andH(A) whena var-  + 1/2—ehy)/d.

ies from 0 to 1, and so on fdi ,=D D' . The operatoH, The usual harmonic oscillator quantization condition for
can be cast as in Eqs1®), but now with A=A, [he&y states reads, in this case,
—ae,,d,¢, and the operatoH , is obtained fromH, by NELB
changingu— — u. By using{ regularization27], we have Wt sgrb=2m+1, (A5)
d : . : .
log detH,=— —{y(s;a) , m being an integer, wittm=0. Then, the eigenvalues for
ds s=0 ®+#0 are independent qgf, and they are. =0 with degen-

eracyk, and\ ,=2m|®|/L 8 with degeneracyR As we had
= s anticipated, the zero modes appear with only one chirality,
gH(S;a):q;k:ﬂ Hq (@), (A1) equal to the sign ofo. The eigenfunctions are those in Egs.
(A4) and (A3) with
iq(a) denoting, generically, the nonvanishing eigenvalues
of H,. As in Sec. Il A, we choose the eigenstatesof as & =Hn

o{=(D ) pnq(a), where p(® are the eigenstates of
H, for uq(a)#0. Now we use the Feynman-Hellmann for-

|®|

exp — Lol
W 2LgY

whereH,, are the Hermite polynomials. Once we know the

mula uq(a@)= (457 H,4{), where the overdot indicates ejgenvalues, we can calculate the determinant using again
derivation with respect ta, and the Seeley—de Witt expan- ;_function regularization and we get

sion[27] for H,. Then, following similar steps as i7] we
_( LA A7
s=0|" W ’ ( )

can write the derivative of log détl, in Egs. (A1) with ~ d
respect tox, in terms ofE,=E+ aA ¢, ¢(x), and the zero detH(A; p)=exp = g5 lu(s)

independent ofx. If we concentrate only on the zero modes,
that is, the (,m) eigenstates in EqA4) with m=0, it turns

modess!” ande{? of H, andH,,. The latter are related to
the zero modes oH and H simply by multiplying by

out that they are already orthogonal and that their norms are
independent ofu:

: (AB)

exp(—eays). Then, the integral itx can be done and we
obtain

det H(A; u)=det H(A; u)def N[N ]~} wL g3

1/2
||¢n,o||2:(w) | (A8)

1 0)1—-1 282 2
X defMY[M @] Nexp — | d?xe(x) _
T JT As was commented in the text, once we know the spec-

trum of the Dirac operator fo® #0 we could calculate the
chiral condensates, which do not depend on the Green func-

' (A2)  tion G(x,y,eA; u), up to the phase factor. In particular, we
have

X

_ 1
E+546(x)

where the elements of the matricié andM(® are N —
pp’ F)+ = 1 (l) A H A T
:dezX(bga)f(bég) andMgC;’,szdszog“”qoé‘f). (P)PLp(x))s=exdiT V(A p) ]Vdet H(A; 1) @1(X)
Second, we are going to calculate the spectrum of X P . pq(X) (A9)
H(A; 1) in Eq. (28), with the boundary conditions discussed B

in the text. Like in thew=0 casd 7], we shall try eigenfunc- where the superscript 1 indicates the sector with only one
tions bearing the form zero mode.
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