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Model of supersymmetric quantum field theory with broken parity symmetry
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Recently, it was observed that self-interacting scalar quantum field theories having a non-Hermitian inter-
action term of the forng(i ¢)2*°, whereé is a real positive parameter, are physically acceptable in the sense
that the energy spectrum is real and bounded below. Such theories possess PT invariance, but they are not
symmetric under parity reflection or time reversal separately. This broken parity symmetry is manifested in a
nonzero value foK¢), even if § is an even integer. This paper extends this idea to a two-dimensional
supersymmetric quantum field theory whose superpotenti&l 5= —ig(i¢)**°. The resulting quantum
field theory exhibits a broken parity symmetry for ai-0. However, supersymmetry remains unbroken, which
is verified by showing that the ground-state energy density vanishes and that the fermion-boson mass ratio is
unity. [S0556-282(98)02008-4

PACS numbs(s): 11.10.Lm, 02.30.Mv, 11.30.Er, 11.30.Pb

[. INTRODUCTION expansions in powers af are not infrared divergent and the
delta expansion respects the supersymmetry exactly. Calcu-

It is extremely difficult to perform conventional perturba- lations to second order in powers &have been done for the
tive calculations in supersymmetric field theory because exground-state energf8] and the fermion-boson mass ratio
pansions in powers of the coupling constant are infrared dit10l.
vergent. Furthermore, introducing a regulator in the form of Recently, we have examined a new class of scalar quan-
a momentum cutoff or a lattice spacing to control this diver-tum field theories that are not symmetric under parity reflec-
gence breaks the supersymmetry invariance. An especialfon [11]. The Euclidean-space Lagrangian for this class of
simple way to solve this problem is to use the delta expantheories is
sion, a perturbative expansion in powers of the degree of the 1 1
nonlinearity of the interaction terir]. _- 20 T 242 i 246 _

The key idea of the delta expansion is to replace a self- £ 2(‘9¢) * 2m ¢°-9(ié) (6>-2). 1.1
interaction term of the forng¢* by g(¢%)'"?, wheredis
regarded as a small parameter. Thus, the parandeteea- The Hamiltonian for such theories is not Hermitian and,
sures the departure from linearity of the field equation. Atherefore, the theories are not unitary in the conventional
graphical procedure for expanding the Green’s functions of #ense. However, there is strong evidence that these theories
quantum field theory in powers dis given in Ref[1]. The  POSsess energy spectra that are real and bounded balov.
advantage of such an expansion is that it has a nonzero rieories in Eq(1.1) are a natural field theoretic generaliza-
dius of convergence and that it yields numerically accurate
nonperturbative information whefiis set equal to 1.

The delta expansion is broadly useful for nonlinear prob- The failure of conventional unitarity is not fatal; the model
lems. It has been applied to many classical nonlinear orditreated here is not supposed to represent field theory fully, but is
nary differential equations of mathematical physics and itonly intended to illustrate some aspects of symmetry breaking.
has given superbly accurate numerical resiffls The delta  What is crucial is the positivity of the spectrum. Indeed, there is
expansion has also been successfully applied to some nopepious numerical evidence that such theories possess positive
linear partial differential equations of mathematical physicsspectra whens>0. Furthermore, one can understand positivity
[3]. from a theoretical point of view. Consider, for example, the weak-

In the context of quantum field theory the delta expansiorcoupling expansion for thd-dimensional Euclidean quantum field
has been used to study renormalizatjdf, local gauge in- theory defined by the Lagrangiaf= 3 (9¢)2+ 3 m2¢p2+gip°.
variance[5], stochastic quantizatiof6], finite-temperature For a conventiona¢* theory the weak-coupling expansion is real,
field theory[7], and the Ising limit of quantum field theory and(apart from a possible overall factor gf the Green’s functions
[8]. are formal power series ig?. These series are not Borel summable

The delta expansion is particularly well suited for study-because they do not alternate in sign. Nonsummability reflects the
ing supersymmetric models of quantum field theory becausgact that the spectrum of the underlying theory is not bounded be-

low. However, when we replacg by ig, the perturbation series

remains real but now alternates in sign. Thus, the perturbation series
*Electronic address: cmb@howdy.wustl.edu is now summable and this suggests that the underlying theory has a
TElectronic address: milton@mail.nhn.ou.edu real positive spectrum.
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tion of a remarkable quantum mechanical Hamiltonian studfor the vertices and lines of a related Lagrangian in which the
ied by Bessis and Zinn-Justji2]: boson fields are raised to integer powers.
We begin by expanding the Lagrangignin Eq. (1.1) to

1 .
H— §p2+ix3. (1.2 second order in powers &

— 1 2 1 242 2 2 H
The Lagrangian in Eq(1.1) is intriguing because it is not £_§(5¢) +§m ¢4+ 6g¢TIn(i¢)
parity symmetric. This is manifested by a nonzero value of 1
(¢). It is interesting that this broken symmetry persists even T2 o 12
when é§ is an even integerl1]. * 2 5°g4In(i$)1°+0(5°).

That fact that the Lagrangian in E¢L.1) has a broken _ ) )
parity symmetry suggests that if we construct a two-Observe that at=0 the Lagrangian contains the coupling
dimensional supersymmetric quantum field theory by using &:
superpotential of the form

S(¢)=—ig(ig)*"?, 1.3

the resulting theory will also have a broken parity symmetry.Thus, an expansion in powers 8fs clearly nonperturbative
The supersymmetric Lagrangian resulting from the superpoin g.

tential (1.3 is In general, the functional integral representation for an
n-point correlation function has the fortmodulo the usual
normalization factor

(0] p(x1) d(X2) p(X3)" -~ b(X,)|0)

(2.1

1 1
ﬁo=§(f9¢)2+ §m2¢2+g¢2. (2.2

£_1 ) 1_—‘9 18’ — 1 S 2
=509)"+ Sidby+ 5 S ()it 5[S(#)]

“Logrze Sighur So(1 8)(i )
=5(09)"+ S1gbd+ 59(1+ 6)(14) Yy

:f D¢¢<xl>¢<x2>¢<x3>-~~¢<Xn>ex"( ‘f dx £

- % g(i )%, (1.4 23
We expand the exponential in the integrand in E3) and
where s is a Majorana spinor. obtain
The Lagrangian(1.4) raises an interesting question. Will
the breaking of parity symmetry induce a breaking of super- ex% _f dx £ :exp< —f dx Lo|E[¢], (2.9
symmetry? To answer this question we calculate both the

ground-state energround starc@Nd the fermion-boson mass

ratio R as series in powers of the paramefeiVe find that

through second order A, Egroung stai 0 @andR=1, which 1

strongly suggests that supersymmetry remains unbrokené [¢]=1—3g | dx ¢ In(i¢)— 5529J dx ¢?[In(i ¢)]?

Based on the experience with these calculations we believe

that our results are valid to all orders in powersfit is 1 12

quite difficult to break supersymmetfy3]. + 55292“ dx ¢? In(mﬁ)} +0(58%). (2.9
This paper is organized very simply. In Sec. Il we explain

our calculational procedure. We derive a set of Feynman Next, we use the identity

rules for obtaining the Green'’s functions to a given order in

powers of § for the scalar field theory Lagrangiafi.l). ) 1. ¢

Next, in Sec. Il we apply the procedures of Sec. Il to calcu- In(i ¢)=In(|¢]) + 5i Tl (2.6

late the ground-state energy and the fermion-boson mass ra-

tio to first order in & for the supersymmetric Lagrangian whereg/|¢| represents the algebraic sign@fto decompose

(1.4). In Sec. IV we perform these calculations to secondthe expression fo€ in Eq. (2.5) into its real and imaginary

order iné. Finally, in Sec. V we examine some of the formal parts:

cancellations that occur in our calculations to see if there

could be anomalous contributions to the ground-state energy.g [f]=1— 5gf dx $2n(| ) — %iwégf dx| |

where

II. DELTA EXPANSION FOR A PARITY-VIOLATING 1
SCALAR FIELD THEORY — 5529J dx¢2[ln(|¢|)]2

In this section we explain how to calculate the Green’s L L
functions for the scalar quantum field theory described by the L9 129 P
Lagrangiant in Eq. (1.1). Specifically, we follow the pro- 2”75 g dxglalin( e+ 8" g dxé
cedures described in R¢fl] and determine a set of graphical
rules for constructing the delta expansion through second
order in powers of5. These rules consist of the amplitudes

1 2
+ 2o [ g milg)|
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+%iwazng dx¢? |n(|¢|)J dx¢| | D(Alf dx ¢2a+2+|31f dx ¢2B+2)

2522

f dx‘f""ﬁ'} @7 =J dx 42 In(| ¢)),

It is easy to construct an effective Lagrangiérhaving
polynomialinteraction terms that can be used to calculate the et 2 2p+2
Green's functions Eq2.7) to first order ind: D| Az | dx ¢“*"“+B;y | dx ¢

a=B=0
y=1/2

~ 1 1
= — 2a+2 4 ; 2a+2y+1 1 1
L=Lot 5007 "+ gimogad™n (28 =§fdx¢2[ln(|¢>|)]2—§ﬂzjdX¢>2,

To use this Lagrangian we must assume that the parameters
a and vy are integer. We can then read off a set of Feynman

amplitudes: D(Clj dx ¢2a+27+l+DlJ dx ¢2B+2y+1)
. A
boson line: —————, 1
pc+m+2g’ :Eiwfdxd"d’l’

1
(2a+2) boson vertex: —Eﬁg(2a+2)!,

1 D(CZJ dx ¢2a+2'y+l+ DZJ dx ¢2,8+2y+l)
(2a+2y+1) boson vertex: —Eiw5ga(2a+2’y+l)!. y=12

1
(2.9 :-.Wf dx ¢/ lIn(| 8)),

Note that the vertices are of ordé Thus, if we are
calculating to first order in5, we need only include graphs
having one vertex. Once a graphical calculation has been

2
completed we then apply the derivative operator D(Alf dx p2e+24 Blf dx ¢2/3+2)
P 7=’
D= —, (2.10 2
Je =“dx¢2 In(|¢|>},

followed by settinge=0 andy=3. The technique of using
a derivative operator to recover the Green'’s functions for the 9
Lagrangian(1.1) is like the replica trick used in calculations D( le dx p2et2rriy le dx ¢2B+2r+ 1)

in statistical mechanical models. It is a standard procedure azf0
used in all papers on the delta expansion and is is discussed 7
in great detail in Refs[1,9,10. 1, g 2
To perform calculations to second order dnwe seek a a7 xplel]
higher-order effective Lagrangiafi of the form
L= Lo+ (A1 + 5°A)gg?™ 2+ (8B + 5°Bo) g +2 D( AC, J dx g2o+2 f dx g2t 2ret
+(8C1+ 6°C,) g 27 1+ (8D + 8°Dy)gp?P 2L
(21:D +A1 fdx ¢2a+2] dx ¢2B+2'y+1
To determine the coefficienss;, A,, B1, B,, C;, C,, Dy,
andD,, we replaceC by Z on the left side of Eq(2.4) and +Blclf dx ¢2/3+2J' dx gat2r+t
expand to second order ifi We then apply the derivative
Operator[l] +BlD1f dx ¢2,3+2f dx ¢2ﬁ+27+1)
a=B=0

/a9 a9\ 1] ¢ & =112
o olia gl sl aw] 22 1
~Sim [ dcatndah [ dxalol. @19
and sete=0, =0, andy= 3. By comparing with the right
side of Eq.(2.7) we obtain a set of seven simultaneous equa-
tions for the coefficients: The solution to these equations is
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1 11 ,,
A]_:E, BZZZ——TT ﬂ y
1
2—Z|7T,
1
C §|’7Ta’
1
1 D2:_Z|7T. (214)
Dl _§|7TB,
A 11, We thus read off the Feynman amplitudes for the effec-
VI tive LagrangianC to second order ir:

1

boson line: m

1 1 2 1 2¢2 2
(2a+2) boson vertex: —55—Zé+§w6a g(2a+2)!,

(28+2) boson vertex: 5——52+ wzaz/az)g(zmz)l

1
(2a+2vy+1) boson vertex: (_5 775a——|7752) (2a+2y+1)!,
(2B+2y+1) boson vertex: (

1
5 775,8+—|7752) (2B+2y+1)!. (2.15

To second order i one must include all graphs containing  Our first objective is to obtain this related Lagrangian. We
up to two vertices and treat the parametarsg, andy as  begin by expanding Ed1.4) to first order iné:
integers. At the end of the calculation one must then apply

the derivative operatdP in Eq. (2.12 and seta=0, =0, 1 b, 1. — 1 — 5 o
s L£=5(9¢)*+ 29 ¢+ SibY+ S guy+ 5977 In(i ¢)
Y=2-
In the next two sections we generalize this approach to the 1 1
case of supersymmetric Lagrangians, identify the Feynman + > Sgyp+ Egggw In(i )+ O( 2. (3.1

rules for calculating Green'’s functions, and use these rules to
calculate the ground-state energy, the one-point Green’'s
function, and the fermion-boson mass ratio. We can display the real and imaginary parts of this Lagrang-
ian explicitly by using the identity2.6).
Unfortunately, the Lagrangiaf3.1) is nonpolynomial,
Ill. FIRST-ORDER CALCULATIONS and so we cannot read off a conventional set of Feynman
FOR THE SUPERSYMMETRIC LAGRANGIAN rules. However_, consider the foIIowing e_ffective Lagrangian
whose interaction terms are polynomial in form:
In this section we show how to calculate to first ordesin
the ground-state energy and the fermion-boson mass ratio for
the two-dimensional Euclidean field theory defined by Eq. (‘M’)Z 29 2+ —'WW‘*‘ zglﬂlﬂ‘*‘ 59 2P ree
(1.4). We follow the procedure described in Sec. Il and ob-
tain a set of graphical rules for constructing the delta expan-
sion to a given order in powers af. These rules are the
amplitudes for vertices and lines of a related effective La-
grangian in which the boson fields are raised to integer
powers.

1 — 1
+702a+ 1) g+ 5 w89°ag?etrrl

1 _
+Zimogaypdt I, 3.2
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wherea and y are to be regarded temporarily as positive integers. Note that we recover the Lagrérigi&u. (3.1) if we
apply the derivative operatd? in Eq. (2.10 to £ and seta=0 andy=3.

To calculate the Green's functions fdrwe use the same device. That is, we find the Green’s functiong.faNe then
apply D to these Green’s functions and set 0 andy= 1. To calculate the Green’s functions f6rwe read off the following
Feynman rules from Eq3.2):

— 1
boson line: A(p)=———,
(p) p2+gz

— 1
fermion line: S(p)=——,
(p) 9—p
1
(2a+2) boson vertex: —§5g2(2a+2)!,

1
(2a) boson and 2 fermion vertex: —Eﬁg(2a+ 1!,

1
(2a+2vy+1) boson vertex: —Eiwﬁgza(2a+2'y+1)!,

1
(2a+2y—1) boson and 2 fermion vertex:—Eiw@ga(2a+2y—1)!. (3.3

lines, only the vertices in E¢3.3) having an even number of

boson lines contribute to the ground-state energy. Our results

can be expressed in terms of a single dimensionless diver-
ent integralA, which represents the amplitude of a boson
elf-loop (a loop formed from one boson propagator

Note that these rules aneonperturbativein the coupling
constantg; the parameteg appears nontrivially in all the
vertex and line amplitudes.

In addition to these Feynman rules one must remember t
associate a factor of 1 with every fermion loop, and that in
two-dimensional space gamma matrices are two dimensional 1 1
so that the trace of the unit matrix introduces a factor of 2. A=A(0)= (2m)? f d?p 02 g2’
Moreover, one must be careful to associate with each graph

the appropriate symmetry number. The fermions for thiSyhereA (x) is the boson propagator in coordinate spgbe
guantum field theory are Majorana fermions, which are NONE . rier transform on(p)] The amplitude for a fermion
directional. Thus, for example, the symmetry number of elf-loop can also be expréssed in terms\of

ferlmion self-loop consisting of a single fermion propagator
IS 5. 1 1 1

Using these graphical rules, we calculate below the zero- W f d?p Tr(ﬂ) = W f d?p Tr
point, one-point, and two-point Green'’s functions to order

Because we are calculating to first orderdiand all vertices =2gA. (3.5

in Eq. (3.3 are of orders, we need only consider single-

vertex graphs. We will show that to ordétthe ground-state Two graphs of ordes contribute to the ground-state en-
energy vanishes and that the renormalized fermion and bargy density. These graphs are shown in Fig. 1. The ampli-
son masses are equal. This indicates that the theory is supéudes for these graphs are the product of the vertex and line
symmetric to this order. We also see that the one-poinamplitudes multiplied by the appropriate symmetry numbers.
Green’s function is nonvanishing, which shows that parity isThe first graph is a pure boson graph consisting of one vertex
broken to ordefs. These results are obtained using a formalwith «+ 1 boson self-loops attached. The amplitude for the

manipulation of divergent quantities in the form of logarith- vertex is — % g?(2a+2)!, the symmetry number for this

mically dive(gent.integrals. In Sec. V we re-examine theseyraph is 2 *~1/(a+1)!, theFeynman integral for the graph
formal man|pu|at|0ns more Cal’efu”y to see whether anis Aa+l’ and we include a factor of1 because we are

(3.9

g+p
pZ+g?

anomalous structure could be present. calculating the ground-state energy density. The second
graph is a mixed boson-fermion graph consisting of one ver-
A. Calculation of the ground-state energy tex with a boson self-loops and one fermion self-loop at-

The ground-state energy of a quantum field theory is théached. The amplitude for the vertex-is; 5g(2a+1)!, the
negative sum of the connected graphs having no externalymmetry number for the graph is 2~/ «!, the Feynman
lines. Because we are considering graphs with no externahtegral for the graph is@A“*!, and there are two factors
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/o boson loops

(b)

FIG. 1. The two graphs contributing to the ground-state energy
to first order iné. These graphs are constructed from vertices hav-

MBALL A. MILTON

“““ 2% (o+y)!

(@)

2%Y(o+y-1)!

o+Y-1 boson loops

(b)

FIG. 2. The two graphs contributing to the one-point Green'’s

ing an even number of boson lines. The symmetry numbers arfinction to first order in5. These graphs are constructed from ver-
tices having an odd number of boson lines. The symmetry numbers

shown beside each graph. _
are shown beside each graph.

of —1, the first because there is a fermion loop and the ) ) o )
second because we are calculating the ground-state energglding these amplitudes, differentiating with respectato
density. In summary, our results are and settinge=0 andy= 3, we obtain a nonzero result for

the vacuum expectation value of the scalar field:
,(2a+1)1A+L P

Fig. la: &g TES )
2" al ($y=Gy= —i 5\JmAl2+O(2). 3.9
+ | a+1l i )
Fig. 1b: - 592% (3.6) We conclude that this supersymmetric theory has a broken

parity symmetry.
On the basis of calculations performed in Rgf1], we

Observe that the wo amplitudes above are equal in Ma% elieve that{¢) remains nonzero even whehis a positive
nitude but opposite in sign. Thus, the final result for the. ¢ P

ground-state energy to ordérappears to be 0. This explicit |nt(:i?er. ?nr:ﬁ ?i'gm;h'r%ki thart1 th\? haigr]];anglr@;lzjls r?urriliy ht
cancellation holds foall values ofa; although we expected parity Symmetric wherp 1S an eve €ger and one mig

to differentiate with respect ta and setw =0, there seems to worry the theory do_es 2n§o+t2eX|st whenis an odd integer
be no need to do so in this case and we obtain directly [because the term (i ¢) appears to be unbounded be-

low]. However, neither of these concerns is realized. The
Eground stag= 0+ O( 52)- (3.7

reason is that ag$ increases from (free field theory the

entire theory must be analytically continued as a function of
Of course, the cancellation that leads to this result comes. The boundary conditions on the functional integral
from subtracting two logarithmically divergent integrals. Z= D ¢ exp(—fdx() representing the vacuum persistence
One may ask whether this cancellation persists if these intfunction rotate into the comple-plane and yield a broken-

grals are properly regulated. We examine this question igparity theory that exists for alb. This analytic continuation
Sec. V. of boundary conditions is discussed in great detail in Ref.

[11]. These arguments are based on analysis given in Ref.

B. Calculation of (¢) [14].

In contrast, the one-point Green’s function arises only
from vertices in Eq.3.3 having an odd number of boson
lines. The two contributing graphs are shown in Fig. 2. The Next, we calculate the mass renormalization of the fer-

C. Calculation of the fermion-boson mass ratio

amplitudes are

(2a+2y+ 1)1 AT
2a+y+1(a+ y)'

Fig. 2a: —inwda ,

(2a+2y—1)IA*TY
2" Y@+ y—1)!

iTéa

Fig. 2b:
(3.8

mion and the boson. These mass shifts are obtained by evalu-
ating the negative amputated one-particle-irreducible graphs
representing to the two-point Green'’s functions. One graph

contributes to the mass shift of the fermion to ordeand

two graphs contribute to the mass shift of the boson to order

6. These graphs are shown in Fig. 3. The symmetry number
for each graph is indicated in the figure. The negative ampli-

tude for the fermion graph is
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/77 o boson loops Based on our calculational procedure, the next step would
Vo be to differentiate each of these amplitudes with respeat to
and sete=0. However, this is in fact not even necessary.

.
27/ For arbitrary« the fermion mass is
(2a+1)IA~ )
Mtemion=9+ 09 —gvr_;—+0(59)  (3.12
and the boson mass squared is
7>, o boson loops
(. ) 5 (2a+1)IA“ )
Mboson:g +5QT+O(5 ). (313
~~~~~ 2%
Thus, to orderd the fermion-boson mass rati® is unity:
by ;\ ,»“’) M fermion
- R= =14+0(8%). (3.1
Mboson
. ol boson We conclude from these calculations that while parity
(7 o osonToows symmetry is clearly broken, the supersymmetry remains to
order 8. In the next section we pursue these calculations to
2% (0-1)! second order irp.

IV. SECOND-ORDER CALCULATIONS

© L0 FOR THE SUPERSYMMETRIC LAGRANGIAN

FIG. 3. One-particle-irreducible graphs contributing to the mass  In this section we extend the calculations of the previous
renormalization of the fermion and the boson to ordefhere is ~ Section to second order iA. We begin by expanding the
one graph for the fermion mass shift and two graphs for the bosohagrangian(1.4) to order 5%
mass shift. All graphs are constructed from vertices having an even

number of boson lines. The symmetry numbers for the graphs are , 1 B 1 — 1 —
shown beside each graph. L= E((M’) +t59 Pt 5! bbyp+ Egl/ll)[,—’_ 5591!/1/1

2a+1)1A” : 1 — :
Fig. 32 00 mrrr. (3.10 + 69747 In(i )+ 5 597 In(i ¢) + G2 ¢LIn(i )2
.
i | 1, — 1, —
The negative amplitudes for the boson graphs are + Zﬁzglﬁiﬂ['n(l )2+ 5529101# In(i ) + O( 6%).
_ (2a+2)1A
. 2
Fig. 3b: &g W, (4.7)
Next we substitute the identit§2.6) and identify a polyno-
Fig. 3¢ — 592(2&+ 1)IA mial Lagrangian that in combination with the derivative op-

2% a—1)! - erator (2.12) gives the Green's functions of the theory de-
(3.11 fined by the Lagrangiaf.1) to order 52

~ 1 1 1 1 1 1
L=5(0¢)°+ 3G+ Sigpbyt S gyt 7(26+28°— m*5%a®)g* ¢ 20— 2(26—- 28+ m*5° %) g*p* ¢
1 — 1 _
+ 1540+ 8a+282+48%a— w5 a?) Q> — T(40+858~ 28°—48°B+ w*5°BA gy p*P
1 1 1 _
+ Sim(Sat 87)gP P2V = Sim( 5B+ )G IV Mt Sim(26a+ ot 2870 gy AT

- %i m(26B— 8°B—28°B7)gup?F 2L, (4.2)

To find this effective Lagrangian requires considerable algebra; one must solve a system of 18 simultaneous equations similar
in form to those in Eq(2.13.
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In this effective Lagrangian we treat the parameterg, andy as positive integers so that we can derive a set of Feynman
rules for calculating the Green’s functions. After these Green’s functions have been calculated to seconddondeapply

the derivative operatoP in Eq. (2.12 and sete=0, 8=0, andy= 3.
The Feynman rules for the Lagrangi&h?2) are the generalization of the rules in E§.3) to second order id:

1
boson line: ——,
p°+g
1
fermion line: ——,
g-—p
1
(2a+2) boson vertex:vlzz(—25—252+w252a2)92(2a+2)!,
1 2 2 o2 02\ N2
(2B+2) boson vertex:v2=Z(25—25 + 76 B9)g°(2B+2)!,
, 1
(2a) boson and 2 fermion Vertexv3=§[—(4+8a)5—(2+4a—wzaz)éz]g(Za)!,
H 1 2 22\ 2
(2B) boson and 2 fermion vertexv4=§[(4+8,8)5—(2+4,8—7-r B7)6°19(28)!,
i
(2a+2y+1) boson vertex:vs=—- (—Sa—86%)g%(2a+2y+ 1)1,
i
(28+2y+1) boson vertex:vﬁ=g (88+ D) G2(2B+2y+1)!,

iTa
(2a+2y—1) boson and 2 fermion vertexv7=T[—26—(1+2a)52]g(2a+27—1)!,

i
(2B+2y—1) boson and 2 fermion vertexvg=wTﬁ[25—(1+2,8)52]g(2,8+27—1)!. 4.3

A. Calculation of the ground-state energy to second order ind Next, we consider the two-vertex graphs constructed from

There are 30 graphs that contribute to the ground-staté1 @ndvs, which are shown in Fig. @). Let 2| be the
energy density. These graphs are organized into sevdpmber of boson lines connecting th.ese two vertices. Then,
classes for which the amplitudes combine in a natural way/r €ach value of the sum of the amplitudes for these graphs

First, we examine the four single-vertex graphs that are con®
structed from vertices, v,, vz, andv,. These graphs are

shown in Fig. 4a). The sum of the amplitudes for these B v2ZA2et2=2 1 dx A% (x)
graphs is Ax(l)=— [(at 1=NIT222 322D
A= v ATt v AP N vagAeTt v103gA22 272 fdx A% (x)
T2 (a1l 2PTI(gT D) 2%l @t =D (a—D12Z 2 2])]
Aﬁ+1 227 2a+2-2l 2|
N v4gB — (4.4 _v3g A fdi( IA (X)
28! [(a—1)1]722271=21(2])!

When these amplitudes are combined we find that the con- v2A202 1 dx A2(x)Tr S(x)S(X)
tribution of orderd is identically 0. Only terms of ordes? 3 DI22207 22 5]
survive. Simplifying the expression in E(#.4) gives [(a=D1]"2 (2!

(4.6

Note that we must sum over all possible values.dh all of

_ 2.2

[4at2=m a2 (4at1)]+(a—p). the above terms except the lalstanges from 1 toe, but in
(4.5  the second? term | ranges from O toe. To simplify the

5292Aa+1(2a)!
1= 2a+3a,!
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FIG. 4. The 30 graphs contributing to the ground-state energy to second orfieFhiese graphs are constructed from the eight vertices
in Eq. (4.3). We have organized the graphs into sets for which the amplitudes combine in a natural way. These sets afe)lalgeled
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Feynman integral in this term representing the boson- and 5 o Pmi1 20
fermion-exchange graph, we use the following identity stated A2=2| Ax(l)=—g°6"A= " [(2a+1)I]27°
in [9]:
*° 2l
| _ 29%(1+2) o x> 2 (4.9
f dx A'(x)Tr S(x)S(x)=deX[A(X)] = =D (a+1-D1]* '

2

—mAl+l, =0, (47)

Third, we consider the two-vertex graphs constructed
from v, andv,, which are shown in Fig. ). The sum of
whereS(x) andA(x) are the fermion and boson propagatorsthe amplitudes for these graphs is identicahtoin Eq. (4.9)
in coordinate space: with the replacement— f3:

S(X)=(g—id)A(x),
1 A=A, .p- (4.10
A(X):ZKO(9|X|)- (4.8

When we simplify the expressioh, (1) there is a remarkable Fourth, we examine the two-vertex graphs constructed
cancellation that occurs; all integrals ovkf'(x) cancel in-  from one ofv, andvs and one ofv, andv,. These graphs
dependently of the value af and we obtain the following are shown in Fig. @). For each value of the sum of the

simple sum; amplitudes for these graphs is
|
N Ulvaa+ﬁ+272IJ‘dx AZI(X) Ulv4gAa+B+272IJ‘dX A2|(X)
4= (a+1-DI(B+1-1)12¢7B+272(2]) * (a+1-DI(B—112¢TFT1=21 )
vzvagAa+B+272l‘de AZI(X) U3U492Aa+ﬁ+272lfdx AZI(X)

(a—D1(B+1-D12°TAF =T (a—N)I(B—1)12¢7 B~ (2)

030 A" A2 dx AZ () Tr S(x)S(x)
(a—D)1(B=D12¢7FF =21 - (4.11

Again, we must sum over all possible valued oiin all of the above terms except the ldstanges from 1 tee, but in thevsv 4
term representing boson and fermion exchahganges from 0 tee. Also, we again use the integral identity in £4.7). As
before, when we simplify the expressidn(l) there is a remarkable cancellation of thé(x) integrals for all values of and
B. We obtain the following simple sum:

«© 22|—a—,8—4

<1 2I-Dl(a+1-DI(B+1-1)1" (4.12

A4=§|) A1) =g282AT B 120+ 1)1 (28+1)!

Next, we consider the two-vertex graphs constructed fsgrandv;, which are shown in Fig.(4). For each value df the
sum of the amplitudes for these graphs is

Al U§A2a+2y72|fdx A2I+1(X) USU7gA2a+2y72IJ‘dX A2I+1(X)
()= [ar =P 22+ 1 | (at =D (at y— 1-D1227 27 122 £ 1)1

v592A2a+2'y*2|de A2|+1(X) U§A2a+2y7272|fdx A2|+1(X)Tr §(X)S(X)
- [(a,_l_,y_1_|)!]222a+2y—1—2l(2| +1)! + [(a,_l_y_1_|)!]222a+2y—2l(2|+l)! . (4.13)

Again, we must sum over all possible valueslpin all of the above terms ranges from 0 toe. Also, in the boson- and
fermion-exchange graph in the last term, we again use the integral identity (4.BqWhen we simplify the expressighs(I)
there is no longer any cancellation for arbitrary values:oThus, the final result still contains an integral ot *1(x). We
obtain the following sum:
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o

N o 22|
A= Aq(l)= 2\ 2 P 20+ 2y~ 1)1 P2 22 3{20 @[(at =D

i 9222 (2a+2y)2—1][(2a+2y)2+ 41 +1]fdx A2 *+1(x)
& 21+ D!(at y=DIPAZ :

(4.19

Sixth, we consider the two-vertex graphs constructed figmand vg, which are shown in Fig. @). The sum of the
amplitudes for these graphs is identicalAg in Eq. (4.14 with the replacement— B:

A6:A5|a—>,3' (413

The seventh and last class of graphs is constructed from ong @fidv; and one ofvg andvg. These graphs are shown
in Fig. 4(g). It is easy to see that the amplitudes for all such graphs are proportiongl t6hus, anticipating that at the end
of the calculation we will set both=0 andB=0, we need not calculate the amplitulle because it will not contribute to the
ground-state energy densif{Note that before we set and 8 to 0, we must apply the differential operatbrin Eq. (2.12).
This operator does not have a mixed derivative term and thus it cannot eliminate both facicasdp. |

The final part of this calculation consists of applying the oper@tan Eq. (2.12 to A, +A,+Az+A,+As+Ag+A; and

settinga=0, 8=0, andy= 3. After a rather lengthy calculation, we obtain the result

7

: ﬁr('_;) N

1 3
Eground staté” D_Zl Aj :1_66292A 2(//(§> _2W2+|:0 1 _Izl +O( b\g)
' a=p=0, y=112 |- Z|T(1+1) I T| 1+ =
2 2
(4.1
The sums in this expression may be evaluated easily and we obtain the result
Eground staig= 0+ O( 53)- (4.17

B. Calculation of (¢) to second order in &

The graphs that contribute to the vacuum expectation value of the scalar field arise either from one-vertex graphs con-
structed from the odd verticesg—vg, or from two vertex graphs with one odd vertex and one even vertex. Some of these
graphs are shown in Fig. 5. Again, they fall into natural classes. We first consider the five two-vertex graphs in which an even
number of bosons are exchanged between the pairs\@drtices ¢1,v3) and @©s5,v7). For a givenl the sum of the five
amplitudes is

leSA2a+27+172|de AZI vlv7gA2a+27+172IJ‘dX A2| UsvsgA2a+2y+172l‘de AZI
(a+1—D1(a+y—N1(2)122e7 12 (g 1— ) (a+y—1-D1(20)122¢F 72T (g—|)I(a+ y—1)1(2])122aF 772

030792A2a+2'y+172lj‘dx AZI U307A2a+277172lfdx AZI Tr §(X)S(X) i1
(a—DV(a+y—1-11(20)122F7" 120 (a—)I(at+y—1-1)!(20)122¢T =2 (4.18

There are five more graphs in which an odd number ofcalculation simplifies dramatically because only one- and
bosons are exchanged. The sum of the amplitudes of theseo-particle exchange graphs survive when we apply the de-
graphs is similar to the result in E¢4.18 and we do not rivative operator in Eq(2.12 and seta= =0 andy=1/2.
give it here. Furthermore, there are ten corresponding graphs Last, we include the four single-vertex graphs constructed
in which « is replaced byg and these are constructed from rom the verticess, ve, v7, andvg. _ ,
the verticesu, v4, vg, andvg. When these 20 amplitudes When we combine all of these calculations we obtain the

are combined and summed oveno dramatic cancellation following result:

like that in the calculation of the ground-state energy density
occurs. Thus, we are left with an infinite sum over integrals (py=iNmAI2— 5+ 6°(1—In2+ ng dx A(x)
of the coordinate space propagatofx).
Next, we consider the contributions of the 20 graphs, AX)[ (A A(x)
analogous to those above, that are constructed fromaone [j In 2 (1) |+ 1+ T}
vertex and ong3 vertex. That is, we construct all possible A
multi-boson exchange graphs from the verticesg,( ;) con- X
nected to {g,vg), and @»,v4) connected t01(5,v7§. This Xxinf 1+ == )+O(é€) ' (4.19
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which is consistent with the theory being supersymmetric.
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~

Vi~ o Vs
; V. CONCLUSIONS

I,—\\ ’/'—\‘ /// ) ) )

N v In the Schwinger model of two-dimensional electrody-
RV e ,”C) namics with massless fermions there is an anomaly. If the
e NI N one-fermion-loop contribution to the photon propagator is

v 20 Ay calculated naively, one obtains a product of two factors; the

! B 7 first factor vanishes in two-dimensional space, and the sec-

N - ond factor is a divergent integral. If one is not careful, one

gets a quantity that is formally 0. However, because the in-
tegral is divergent, one must evaluate this product by intro-
N— ducing a regulator; dimensional regulation is an acceptable
procedure. As the regulator is removed one obtains a finite,
nonvanishing result for the anomaly, namely, the famous
numbere?/a. In general, one looks for an anomaly when
there is a naive cancellation involving divergent quantities
that must be regulated. The question that is raised in this
paper is, do we have an anomaly in theexpansion that
breaks supersymmetry? Specifically, is there an anomaly as-
sociated with the cancellation that gives a vanishing ground-
state energy density in E¢3.7)?
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A. Dimensional regularization
of the ground-state eneregy density

In the derivation of Eq(3.7) we combine two numbers
that are divergent to obtain 0. There are several ways to
FIG. 5. Five of the graphs contributing {@) to second order in  regulate the integral representing For example, if we use

6. These graphs are constructed from the eight vertices it4sg). ~ dimensional regulation and evaluatein 2— e dimensions,
then for small positives

Note that any positive integer power of the propagat¢x)

. 1-€
in Eq. (4.9 is integrable. However, the value of the propa- A~ i dp _ﬁp (e—0+)
gator at the originA=A(0) is a divergent quantity. There- 27 Jo p°+9

fore, the functionA(x)/A vanishes everywhere except at

x=0, where it is unity. Hence, the integral involving this 1 [t ke o
ratio in Eq.(4.19 exists and vanishes. Thus, our final result = Eg fo du u (1-u

for the one-point function, which measures the parity sym-

metry breaking in this theory, is

1 € €
“ao TlIr(-3
(p)=iJTAI — 6+ 64(1—-In2)+0O(5%]. (4.20 m
The fact that the th i tric red th s ! e (e—~0+)
e fact that the theory is supersymmetric reduces the =0 ‘o——5r~5—-0 ¢ (e~ .
degree of divergence of this result. At intermediate stages of 47 sin(mel2)  2me (5.1)

the calculation, the coefficient o2 is proportional to
AY21n A. However, when the boson and fermion contribu-
tions are combined, all terms containingAncancel exactly.
Thus, the higher-order result is no more divergent than th
leading-order result.

Furthermore, ind-dimensional space, the representation of
the Dirac matrices has rank’2. Thus, the trace of a unit
?natrix in 2— e dimensions is

Tr1=22"92-2—¢In2 (e—0+). (5.2
C. Calculation of the fermion-boson mass ratio
to second order iné Thus, the coefficient of the second graph amplitude in Eq.

We do not discuss this calculation in detail here because €.6) should be multiplied by * 3 € In 2.
similar one is explained in Ref10]. The calculation done We now see that the two graphs do not exactly cancel;
here is more elaborate because there are twice as many veather, the difference in the numerical coefficients is of order
tices but the necessary calculations are routine. Our result is Combining the two graphs in E¢3.6) now gives
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d d
(2a+1)IA**Y eIn2 3 dp 1 dp F (24 g?
2 — 25« — a+tl A= = ds e StP"+g )_
E(ln 2)59 2a+2a’! 2\/; 59 2°T'| a+ 2 A (27T)d p2+92 (271_)2 %
(5.9
In2 5 3
~ mb‘g I'l e+ > Here,s, is a proper-time regulator to be taken to O at the end

of the calculation. We now interchange the order of integra-
X(2A)* (e—0+). (5.3 tion in Eq. (5.5), and express the momentum integral as the

product ofd one-dimensional integrals:
If we now differentiate with respect ta and setae=0, we

obtain, for the ground-state energy density, = dp 1
P esP=
f e . (5.6)
n2 , — 27 2\ws
Eground statezggg ¥ 2 +In(2A) |+0O(57)

Then, the integral representiny is immediately expressed
in terms of a single regulated integral:

n2 | (3
~55g l,/lz)—m(’TTE) 42 )

1 d_ g
> Jms 24 -ar s

—di2

e—X

Because this is a positive number, it suggests that supersym- .7

metry may be b.roken: , i If we setd=2— € as in the previous subsection, the integral
Of course, dimensional regulation violates SUPErsymmegnyerges whess,=0, and we obtain the same result as in
try. Thus, it is not clear whether the nonzero result in Eq'Eq. (5.1)
(5.4) is correct or is merely an artifact of the regularization ’
scheme being used. 1 €
- rlg)

dx X

+O(8)  (e—0+). (5.4 A:JSOO'S S

(5.8
B. Proper-time regularization
If a supersymmetric regulation exists, then, of courseHowever, if we want to preserve supersymmetry, we must
there will be no anomaly. Conversely, if we could establishremain in two dimensions, in which case the integral de-

rigorously that there does not exist any supersymmetric regysends logarithmically uposy:
lation of the delta expansion, then there really would be a

breaking of supersymmetry. We do not know for certain d=2: A= 1 (= dx x 1 H
whether a supersymmetric regulation of thexpansion ex- e T 4 9% > E[Y n(9s) .
ists. However, we believe that we have found a relatively (5.9

simple way to regulate thé expansion that is consistent with

supersymmetry and thus we believe that there is no anomavherey is Euler’'s constant.

lous structure and that the ground-state energy is truly iden- The obvious advantage of this regulation scheme is that it

tically zero. This suggests that while it is relatively easy totreats bosons and fermions on an equal footing; the renor-

break parity symmetry, supersymmetry is extremely rigidmalization of the boson and fermion masses is identical.

and is very difficult to break. With this regulation scheme, the ground-state energy density
Our regulation scheme, which we believe respects supeis zero, as expected. Thus, we believe that there is no

symmetry invariance, is a variant of the proper-time methodanomaly in thes expansion.

due to Schwingel15]. (It is well known that the proper-time

method correctly yields the anomaly in the Schwinger ACKNOWLEDGMENTS
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