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Model of supersymmetric quantum field theory with broken parity symmetry
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Recently, it was observed that self-interacting scalar quantum field theories having a non-Hermitian inter-
action term of the formg( if)21d, whered is a real positive parameter, are physically acceptable in the sense
that the energy spectrum is real and bounded below. Such theories possess PT invariance, but they are not
symmetric under parity reflection or time reversal separately. This broken parity symmetry is manifested in a
nonzero value for̂ f&, even if d is an even integer. This paper extends this idea to a two-dimensional
supersymmetric quantum field theory whose superpotential isS(f)52 ig( if)11d. The resulting quantum
field theory exhibits a broken parity symmetry for alld.0. However, supersymmetry remains unbroken, which
is verified by showing that the ground-state energy density vanishes and that the fermion-boson mass ratio is
unity. @S0556-2821~98!02008-6#

PACS number~s!: 11.10.Lm, 02.30.Mv, 11.30.Er, 11.30.Pb
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I. INTRODUCTION

It is extremely difficult to perform conventional perturb
tive calculations in supersymmetric field theory because
pansions in powers of the coupling constant are infrared
vergent. Furthermore, introducing a regulator in the form
a momentum cutoff or a lattice spacing to control this div
gence breaks the supersymmetry invariance. An espec
simple way to solve this problem is to use the delta exp
sion, a perturbative expansion in powers of the degree of
nonlinearity of the interaction term@1#.

The key idea of the delta expansion is to replace a s
interaction term of the formgf4 by g(f2)11d, whered is
regarded as a small parameter. Thus, the parameterd mea-
sures the departure from linearity of the field equation.
graphical procedure for expanding the Green’s functions
quantum field theory in powers ofd is given in Ref.@1#. The
advantage of such an expansion is that it has a nonzero
dius of convergence and that it yields numerically accur
nonperturbative information whend is set equal to 1.

The delta expansion is broadly useful for nonlinear pro
lems. It has been applied to many classical nonlinear o
nary differential equations of mathematical physics and
has given superbly accurate numerical results@2#. The delta
expansion has also been successfully applied to some
linear partial differential equations of mathematical phys
@3#.

In the context of quantum field theory the delta expans
has been used to study renormalization@4#, local gauge in-
variance@5#, stochastic quantization@6#, finite-temperature
field theory@7#, and the Ising limit of quantum field theor
@8#.

The delta expansion is particularly well suited for stud
ing supersymmetric models of quantum field theory beca

*Electronic address: cmb@howdy.wustl.edu
†Electronic address: milton@mail.nhn.ou.edu
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expansions in powers ofd are not infrared divergent and th
delta expansion respects the supersymmetry exactly. Ca
lations to second order in powers ofd have been done for the
ground-state energy@9# and the fermion-boson mass rat
@10#.

Recently, we have examined a new class of scalar qu
tum field theories that are not symmetric under parity refl
tion @11#. The Euclidean-space Lagrangian for this class
theories is

L5
1

2
~]f!21

1

2
m2f22g~ if!21d ~d.22!. ~1.1!

The Hamiltonian for such theories is not Hermitian an
therefore, the theories are not unitary in the conventio
sense. However, there is strong evidence that these the
possess energy spectra that are real and bounded below.1 The
theories in Eq.~1.1! are a natural field theoretic generaliz

1The failure of conventional unitarity is not fatal; the mod
treated here is not supposed to represent field theory fully, bu
only intended to illustrate some aspects of symmetry break
What is crucial is the positivity of the spectrum. Indeed, there
copious numerical evidence that such theories possess pos
spectra whend.0. Furthermore, one can understand positiv
from a theoretical point of view. Consider, for example, the wea
coupling expansion for thed-dimensional Euclidean quantum fiel

theory defined by the LagrangianL5
1
2 (]f)21

1
2 m2f21gif3.

For a conventionalgf3 theory the weak-coupling expansion is rea
and~apart from a possible overall factor ofg! the Green’s functions
are formal power series ing2. These series are not Borel summab
because they do not alternate in sign. Nonsummability reflects
fact that the spectrum of the underlying theory is not bounded
low. However, when we replaceg by ig, the perturbation series
remains real but now alternates in sign. Thus, the perturbation s
is now summable and this suggests that the underlying theory h
real positive spectrum.
3595 © 1998 The American Physical Society
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3596 57CARL M. BENDER AND KIMBALL A. MILTON
tion of a remarkable quantum mechanical Hamiltonian st
ied by Bessis and Zinn-Justin@12#:

H5
1

2
p21 ix3. ~1.2!

The Lagrangian in Eq.~1.1! is intriguing because it is no
parity symmetric. This is manifested by a nonzero value
^f&. It is interesting that this broken symmetry persists ev
whend is an even integer@11#.

That fact that the Lagrangian in Eq.~1.1! has a broken
parity symmetry suggests that if we construct a tw
dimensional supersymmetric quantum field theory by usin
superpotential of the form

S~f!52 ig~ if!11d, ~1.3!

the resulting theory will also have a broken parity symmet
The supersymmetric Lagrangian resulting from the super
tential ~1.3! is

L5
1

2
~]f!21

1

2
i c̄]”c1

1

2
S8~f!c̄c1

1

2
@S~f!#2

5
1

2
~]f!21

1

2
i c̄]”c1

1

2
g~11d!~ if!dc̄c

2
1

2
g2~ if!212d, ~1.4!

wherec is a Majorana spinor.
The Lagrangian~1.4! raises an interesting question. W

the breaking of parity symmetry induce a breaking of sup
symmetry? To answer this question we calculate both
ground-state energyEground stateand the fermion-boson mas
ratio R as series in powers of the parameterd. We find that
through second order ind, Eground state50 andR51, which
strongly suggests that supersymmetry remains unbro
Based on the experience with these calculations we bel
that our results are valid to all orders in powers ofd. It is
quite difficult to break supersymmetry@13#.

This paper is organized very simply. In Sec. II we expla
our calculational procedure. We derive a set of Feynm
rules for obtaining the Green’s functions to a given order
powers of d for the scalar field theory Lagrangian~1.1!.
Next, in Sec. III we apply the procedures of Sec. II to calc
late the ground-state energy and the fermion-boson mas
tio to first order in d for the supersymmetric Lagrangia
~1.4!. In Sec. IV we perform these calculations to seco
order ind. Finally, in Sec. V we examine some of the form
cancellations that occur in our calculations to see if th
could be anomalous contributions to the ground-state ene

II. DELTA EXPANSION FOR A PARITY-VIOLATING
SCALAR FIELD THEORY

In this section we explain how to calculate the Gree
functions for the scalar quantum field theory described by
LagrangianL in Eq. ~1.1!. Specifically, we follow the pro-
cedures described in Ref.@1# and determine a set of graphic
rules for constructing the delta expansion through sec
order in powers ofd. These rules consist of the amplitud
-
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for the vertices and lines of a related Lagrangian in which
boson fields are raised to integer powers.

We begin by expanding the LagrangianL in Eq. ~1.1! to
second order in powers ofd:

L5
1

2
~]f!21

1

2
m2f21gf21dgf2ln~ if!

1
1

2
d2gf2@ ln~ if!#21O~d3!. ~2.1!

Observe that atd50 the Lagrangian contains the couplin
g:

L05
1

2
~]f!21

1

2
m2f21gf2. ~2.2!

Thus, an expansion in powers ofd is clearly nonperturbative
in g.

In general, the functional integral representation for
n-point correlation function has the form~modulo the usual
normalization factor!

^0uf~x1!f~x2!f~x3!¯f~xn!u0&

5E Dff~x1!f~x2!f~x3!¯f~xn!expS 2E dx LD .

~2.3!

We expand the exponential in the integrand in Eq.~2.3! and
obtain

expS 2E dx LD5expS 2E dx L0DE @f#, ~2.4!

where

E @f#512dgE dx f2 ln~ if!2
1

2
d2gE dx f2@ ln~ if!#2

1
1

2
d2g2F E dx f2 ln~ if!G2

1O~d3!. ~2.5!

Next, we use the identity

ln~ if!5 ln~ ufu!1
1

2
ip

f

ufu
, ~2.6!

wheref/ufu represents the algebraic sign off, to decompose
the expression forE in Eq. ~2.5! into its real and imaginary
parts:

E @f#512dgE dx f2ln~ ufu!2
1

2
ipdgE dxfufu

2
1

2
d2gE dxf2@ ln~ ufu!#2

2
1

2
ipd2gE dxfufu ln~ ufu!1

1

8
p2d2gE dxf2

1
1

2
d2g2F E dxf2 ln~ ufu!G2



th

et
a

s
ee

th
s
u
ss

ua

57 3597MODEL OF SUPERSYMMETRIC QUANTUM FIELD . . .
1
1

2
ipd2g2E dxf2 ln~ ufu!E dxfufu

2
1

8
p2d2g2F E dxfufu G2

1O~d3!. ~2.7!

It is easy to construct an effective LagrangianL̃ having
polynomialinteraction terms that can be used to calculate
Green’s functions Eq.~2.7! to first order ind:

L̃5L01
1

2
dgf2a121

1

2
ipdgaf2a12g11. ~2.8!

To use this Lagrangian we must assume that the param
a andg are integer. We can then read off a set of Feynm
amplitudes:

boson line:
1

p21m212g
,

~2a12! boson vertex: 2
1

2
dg~2a12!!,

~2a12g11! boson vertex: 2
1

2
ipdga~2a12g11!!.

~2.9!

Note that the vertices are of orderd. Thus, if we are
calculating to first order ind, we need only include graph
having one vertex. Once a graphical calculation has b
completed we then apply the derivative operator

D5
]

]a
, ~2.10!

followed by settinga50 andg5 1
2 . The technique of using

a derivative operator to recover the Green’s functions for
Lagrangian~1.1! is like the replica trick used in calculation
in statistical mechanical models. It is a standard proced
used in all papers on the delta expansion and is is discu
in great detail in Refs.@1,9,10#.

To perform calculations to second order ind we seek a
higher-order effective LagrangianL̃ of the form

L̃5L01~dA11d2A2!gf2a121~dB11d2B2!gf2b12

1~dC11d2C2!gf2a12g111~dD11d2D2!gf2b12g11.

~2.11!

To determine the coefficientsA1 , A2 , B1 , B2 , C1 , C2 , D1 ,
andD2 , we replaceL by L̃ on the left side of Eq.~2.4! and
expand to second order ind. We then apply the derivative
operator@1#

D5
1

2 S ]

]a
2

]

]b D1
1

4 S ]2

]a2 1
]2

]b2D ~2.12!

and seta50, b50, andg5 1
2 . By comparing with the right

side of Eq.~2.7! we obtain a set of seven simultaneous eq
tions for the coefficients:
e

ers
n

n

e

re
ed

-

DS A1E dx f2a121B1E dx f2b12DU
g5 1/2
a5b50

5E dx f2 ln~ ufu!,

DS A2E dx f2a121B2E dx f2b12DU
g5 1/2
a5b50

5
1

2 E dx f2@ ln~ ufu!#22
1

8
p2E dx f2,

DS C1E dx f2a12g111D1E dx f2b12g11DU
g5 1/2
a5b50

5
1

2
ipE dx fufu,

DS C2E dx f2a12g111D2E dx f2b12g11DU
g5 1/2
a5b50

5
1

2
ipE dx fufu ln~ ufu!,

DS A1E dx f2a121B1E dx f2b12D 2U
g5 1/2
a5b50

5F E dx f2 ln~ ufu!G2

,

DS C1E dx f2a12g111D1E dx f2b12g11D 2U
g5 1/2
a5b50

52
1

4
p2S E dx fufu D 2

,

DS A1C1E dx f2a12E dx f2a12g11

1A1D1E dx f2a12E dx f2b12g11

1B1C1E dx f2b12E dx f2a12g11

1B1D1E dx f2b12E dx f2b12g11DU
g5 1/2
a5b50

5
1

2
ipE dx f2ln~ ufu!E dx fufu. ~2.13!

The solution to these equations is
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A15
1

2
,

B152
1

2
,

C15
1

2
ipa,

D152
1

2
ipb,

A25
1

4
2

1

8
p2a2,
g

p

th
a

s
en

o
q
b
an

a
ge
B25
1

4
2

1

8
p2b2,

C25
1

4
ip,

D252
1

4
ip. ~2.14!

We thus read off the Feynman amplitudes for the eff
tive LagrangianL̃ to second order ind :
boson line:
1

p21m212g
,

~2a12! boson vertex: S 2
1

2
d2

1

4
d21

1

8
p2d2a2Dg~2a12!!,

~2b12! boson vertex: S 1

2
d2

1

4
d21

1

8
p2d2b2Dg~2b12!!,

~2a12g11! boson vertex: S 2
1

2
ipda2

1

4
ipd2Dg~2a12g11!!,

~2b12g11! boson vertex: S 1

2
ipdb1

1

4
ipd2Dg~2b12g11!!. ~2.15!
e

ng-

an
an
To second order ind one must include all graphs containin
up to two vertices and treat the parametersa, b, and g as
integers. At the end of the calculation one must then ap
the derivative operatorD in Eq. ~2.12! and seta50, b50,

g5 1
2 .

In the next two sections we generalize this approach to
case of supersymmetric Lagrangians, identify the Feynm
rules for calculating Green’s functions, and use these rule
calculate the ground-state energy, the one-point Gre
function, and the fermion-boson mass ratio.

III. FIRST-ORDER CALCULATIONS
FOR THE SUPERSYMMETRIC LAGRANGIAN

In this section we show how to calculate to first order ind
the ground-state energy and the fermion-boson mass rati
the two-dimensional Euclidean field theory defined by E
~1.4!. We follow the procedure described in Sec. II and o
tain a set of graphical rules for constructing the delta exp
sion to a given order in powers ofd. These rules are the
amplitudes for vertices and lines of a related effective L
grangian in which the boson fields are raised to inte
powers.
ly

e
n
to
’s

for
.
-
-

-
r

Our first objective is to obtain this related Lagrangian. W
begin by expanding Eq.~1.4! to first order ind :

L5
1

2
~]f!21

1

2
g2f21

1

2
i c̄]”c1

1

2
gc̄c1dg2f2 ln~ if!

1
1

2
dgc̄c1

1

2
dgc̄c ln~ if!1O~d2!. ~3.1!

We can display the real and imaginary parts of this Lagra
ian explicitly by using the identity~2.6!.

Unfortunately, the Lagrangian~3.1! is nonpolynomial,
and so we cannot read off a conventional set of Feynm
rules. However, consider the following effective Lagrangi
whose interaction terms are polynomial in form:

L̃5
1

2
~]f!21

1

2
g2f21

1

2
i c̄]”c1

1

2
gc̄c1

1

2
dg2f212a

1
1

4
d~2a11!gc̄cf2a1

1

2
ipdg2af2a12g11

1
1

4
ipdgac̄cf2a12g21, ~3.2!
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wherea andg are to be regarded temporarily as positive integers. Note that we recover the LagrangianL in Eq. ~3.1! if we
apply the derivative operatorD in Eq. ~2.10! to L̃ and seta50 andg5 1

2 .

To calculate the Green’s functions forL we use the same device. That is, we find the Green’s functions forL̃. We then
applyD to these Green’s functions and seta50 andg5 1

2 . To calculate the Green’s functions forL̃ we read off the following
Feynman rules from Eq.~3.2!:

boson line: D̃~p!5
1

p21g2 ,

fermion line: S̃~p!5
1

g2p”
,

~2a12! boson vertex: 2
1

2
dg2~2a12!!,

~2a! boson and 2 fermion vertex: 2
1

2
dg~2a11!!,

~2a12g11! boson vertex: 2
1

2
ipdg2a~2a12g11!!,

~2a12g21! boson and 2 fermion vertex: 2
1

2
ipdga~2a12g21!!. ~3.3!
r

on
2

a
hi
on
f
to

r
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b
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a
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Note that these rules arenonperturbativein the coupling
constantg; the parameterg appears nontrivially in all the
vertex and line amplitudes.

In addition to these Feynman rules one must remembe
associate a factor of21 with every fermion loop, and that in
two-dimensional space gamma matrices are two dimensi
so that the trace of the unit matrix introduces a factor of
Moreover, one must be careful to associate with each gr
the appropriate symmetry number. The fermions for t
quantum field theory are Majorana fermions, which are n
directional. Thus, for example, the symmetry number o
fermion self-loop consisting of a single fermion propaga
is 1

2 .
Using these graphical rules, we calculate below the ze

point, one-point, and two-point Green’s functions to orderd.
Because we are calculating to first order ind and all vertices
in Eq. ~3.3! are of orderd, we need only consider single
vertex graphs. We will show that to orderd the ground-state
energy vanishes and that the renormalized fermion and
son masses are equal. This indicates that the theory is su
symmetric to this order. We also see that the one-po
Green’s function is nonvanishing, which shows that parity
broken to orderd. These results are obtained using a form
manipulation of divergent quantities in the form of logarit
mically divergent integrals. In Sec. V we re-examine the
formal manipulations more carefully to see whether
anomalous structure could be present.

A. Calculation of the ground-state energy

The ground-state energy of a quantum field theory is
negative sum of the connected graphs having no exte
lines. Because we are considering graphs with no exte
to

al
.

ph
s
-

a
r

o-

o-
er-
t

s
l

e
n

e
al
al

lines, only the vertices in Eq.~3.3! having an even number o
boson lines contribute to the ground-state energy. Our res
can be expressed in terms of a single dimensionless di
gent integralL, which represents the amplitude of a bos
self-loop ~a loop formed from one boson propagator!:

L5D~0!5
1

~2p!2 E d2p
1

p21g2 , ~3.4!

whereD(x) is the boson propagator in coordinate space@the
Fourier transform ofD̃(p)#. The amplitude for a fermion
self-loop can also be expressed in terms ofL:

1

~2p!2 E d2p TrS 1

g2p” D5
1

~2p!2 E d2p TrS g1p”

p21g2D
52gL. ~3.5!

Two graphs of orderd contribute to the ground-state en
ergy density. These graphs are shown in Fig. 1. The am
tudes for these graphs are the product of the vertex and
amplitudes multiplied by the appropriate symmetry numbe
The first graph is a pure boson graph consisting of one ve
with a11 boson self-loops attached. The amplitude for t

vertex is2 1
2 dg2(2a12)!, the symmetry number for this

graph is 22a21/(a11)!, theFeynman integral for the grap
is La11, and we include a factor of21 because we are
calculating the ground-state energy density. The sec
graph is a mixed boson-fermion graph consisting of one v
tex with a boson self-loops and one fermion self-loop a

tached. The amplitude for the vertex is2 1
2 dg(2a11)!, the

symmetry number for the graph is 22a21/a!, the Feynman
integral for the graph is 2gLa11, and there are two factor
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of 21, the first because there is a fermion loop and
second because we are calculating the ground-state en
density. In summary, our results are

Fig. 1a: dg2
~2a11!!La11

2a11a!
,

Fig. 1b: 2dg2
~2a11!!La11

2a11a!
. ~3.6!

Observe that the two amplitudes above are equal in m
nitude but opposite in sign. Thus, the final result for t
ground-state energy to orderd appears to be 0. This explic
cancellation holds forall values ofa; although we expected
to differentiate with respect toa and seta50, there seems to
be no need to do so in this case and we obtain directly

Eground state501O~d2!. ~3.7!

Of course, the cancellation that leads to this result com
from subtracting two logarithmically divergent integral
One may ask whether this cancellation persists if these i
grals are properly regulated. We examine this question
Sec. V.

B. Calculation of Šf‹

In contrast, the one-point Green’s function arises o
from vertices in Eq.~3.3! having an odd number of boso
lines. The two contributing graphs are shown in Fig. 2. T
amplitudes are

Fig. 2a: 2 ipda
~2a12g11!!La1g

2a1g11~a1g!!
,

Fig. 2b: ipda
~2a12g21!!La1g

2a1g~a1g21!!
.

~3.8!

FIG. 1. The two graphs contributing to the ground-state ene
to first order ind. These graphs are constructed from vertices h
ing an even number of boson lines. The symmetry numbers
shown beside each graph.
e
rgy

g-

s

e-
in

y

e

Adding these amplitudes, differentiating with respect toa,

and settinga50 andg5 1
2 , we obtain a nonzero result fo

the vacuum expectation value of the scalar field:

^f&5G152 idApL/21O~d2!. ~3.9!

We conclude that this supersymmetric theory has a bro
parity symmetry.

On the basis of calculations performed in Ref.@11#, we
believe that̂ f& remains nonzero even whend is a positive
integer. One might think that the Lagrangian~1.4! is surely
parity symmetric whend is an even integer and one migh
worry the theory does not exist whend is an odd integer
@because the term2( if)2d12 appears to be unbounded b
low#. However, neither of these concerns is realized. T
reason is that asd increases from 0~free field theory! the
entire theory must be analytically continued as a function
d. The boundary conditions on the functional integr
Z5*Df exp(2*dxL) representing the vacuum persisten
function rotate into the complex-f plane and yield a broken
parity theory that exists for alld. This analytic continuation
of boundary conditions is discussed in great detail in R
@11#. These arguments are based on analysis given in
@14#.

C. Calculation of the fermion-boson mass ratio

Next, we calculate the mass renormalization of the f
mion and the boson. These mass shifts are obtained by ev
ating the negative amputated one-particle-irreducible gra
representing to the two-point Green’s functions. One gra
contributes to the mass shift of the fermion to orderd and
two graphs contribute to the mass shift of the boson to or
d. These graphs are shown in Fig. 3. The symmetry num
for each graph is indicated in the figure. The negative am
tude for the fermion graph is

y
-
re

FIG. 2. The two graphs contributing to the one-point Gree
function to first order ind. These graphs are constructed from ve
tices having an odd number of boson lines. The symmetry num
are shown beside each graph.
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Fig. 3a: dg
~2a11!!La

2a11a!
. ~3.10!

The negative amplitudes for the boson graphs are

Fig. 3b: dg2
~2a12!!La

2a11a!
,

Fig. 3c: 2dg2
~2a11!!La

2a~a21!!
.

~3.11!

FIG. 3. One-particle-irreducible graphs contributing to the m
renormalization of the fermion and the boson to orderd. There is
one graph for the fermion mass shift and two graphs for the bo
mass shift. All graphs are constructed from vertices having an e
number of boson lines. The symmetry numbers for the graphs
shown beside each graph.
Based on our calculational procedure, the next step wo
be to differentiate each of these amplitudes with respect ta
and seta50. However, this is in fact not even necessa
For arbitrarya the fermion mass is

M fermion5g1dg
~2a11!!La

2a11a!
1O~d2! ~3.12!

and the boson mass squared is

Mboson
2 5g21dg

~2a11!!La

2aa!
1O~d2!. ~3.13!

Thus, to orderd the fermion-boson mass ratioR is unity:

R5
M fermion

Mboson
511O~d2!. ~3.14!

We conclude from these calculations that while par
symmetry is clearly broken, the supersymmetry remains
order d. In the next section we pursue these calculations
second order ind.

IV. SECOND-ORDER CALCULATIONS
FOR THE SUPERSYMMETRIC LAGRANGIAN

In this section we extend the calculations of the previo
section to second order ind. We begin by expanding the
Lagrangian~1.4! to orderd2:

L5
1

2
~]f!21

1

2
g2f21

1

2
i c̄]”c1

1

2
gc̄c1

1

2
dgc̄c

1dg2f2 ln~ if!1
1

2
dgc̄c ln~ if!1d2g2f2@ ln~ if!#2

1
1

4
d2gc̄c@ ln~ if!#21

1

2
d2gc̄c ln~ if!1O~d3!.

~4.1!

Next we substitute the identity~2.6! and identify a polyno-
mial Lagrangian that in combination with the derivative o
erator ~2.12! gives the Green’s functions of the theory d
fined by the Lagrangian~4.1! to orderd2:

s

n
n

re
ns similar
L̃5
1

2
~]f!21

1

2
g2f21

1

2
i c̄]”c1

1

2
gc̄c1

1

4
~2d12d22p2d2a2!g2f212a2

1

4
~2d22d21p2d2b2!g2f212b

1
1

16
~4d18da12d214d2a2p2d2a2!gc̄cf2a2

1

16
~4d18db22d224d2b1p2d2b2!gc̄cf2b

1
1

2
ip~da1d2!g2f2a12g112

1

2
ip~db1d2!g2f2b12g111

1

8
ip~2da1d2a12d2a2!gc̄cf2a12g21

2
1

8
ip~2db2d2b22d2b2!gc̄cf2b12g21. ~4.2!

To find this effective Lagrangian requires considerable algebra; one must solve a system of 18 simultaneous equatio
in form to those in Eq.~2.13!.
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In this effective Lagrangian we treat the parametersa, b, andg as positive integers so that we can derive a set of Feyn
rules for calculating the Green’s functions. After these Green’s functions have been calculated to second order ind we apply

the derivative operatorD in Eq. ~2.12! and seta50, b50, andg5 1
2 .

The Feynman rules for the Lagrangian~4.2! are the generalization of the rules in Eq.~3.3! to second order ind:

boson line:
1

p21g2 ,

fermion line:
1

g2p”
,

~2a12! boson vertex:v15
1

4
~22d22d21p2d2a2!g2~2a12!!,

~2b12! boson vertex:v25
1

4
~2d22d21p2d2b2!g2~2b12!!,

~2a! boson and 2 fermion vertex:v35
1

8
@2~418a!d2~214a2p2a2!d2#g~2a!!,

~2b! boson and 2 fermion vertex:v45
1

8
@~418b!d2~214b2p2b2!d2#g~2b!!,

~2a12g11! boson vertex:v55
ip

2
~2da2d2!g2~2a12g11!!,

~2b12g11! boson vertex:v65
ip

2
~db1d2!g2~2b12g11!!,

~2a12g21! boson and 2 fermion vertex:v75
ipa

4
@22d2~112a!d2#g~2a12g21!!,

~2b12g21! boson and 2 fermion vertex:v85
ipb

4
@2d2~112b!d2#g~2b12g21!!. ~4.3!
ta
v
a
o

e

o

om

en,
hs
A. Calculation of the ground-state energy to second order ind

There are 30 graphs that contribute to the ground-s
energy density. These graphs are organized into se
classes for which the amplitudes combine in a natural w
First, we examine the four single-vertex graphs that are c
structed from verticesv1 , v2 , v3 , andv4 . These graphs are
shown in Fig. 4~a!. The sum of the amplitudes for thes
graphs is

A152
v1La11

2a11~a11!!
2

v2Lb11

2b11~b11!!
1

v3gLa11

2aa!

1
v4gLb11

2bb!
. ~4.4!

When these amplitudes are combined we find that the c
tribution of orderd is identically 0. Only terms of orderd2

survive. Simplifying the expression in Eq.~4.4! gives

A15
d2g2La11~2a!!

2a13a!
@4a122p2a2~4a11!#1~a→b!.

~4.5!
te
en
y.
n-

n-

Next, we consider the two-vertex graphs constructed fr
v1 and v3 , which are shown in Fig. 4~b!. Let 2l be the
number of boson lines connecting these two vertices. Th
for each value ofl the sum of the amplitudes for these grap
is

A2~ l !52
v1

2L2a1222l*dx D2l~x!

@~a112 l !! #222a1322l~2l !!

1
v1v3gL2a1222l*dx D2l~x!

~a112 l !! ~a2 l !!22a1122l~2l !!

2
v3

2g2L2a1222l*dx D2l~x!

@~a2 l !! #222a1122l~2l !!

1
v3

2L2a22l*dx D2l~x!Tr S̄~x!S~x!

@~a2 l !! #222a1222l~2l !!
. ~4.6!

Note that we must sum over all possible values ofl . In all of
the above terms except the last,l ranges from 1 tò , but in
the secondv3

2 term l ranges from 0 tò . To simplify the
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FIG. 4. The 30 graphs contributing to the ground-state energy to second order ind. These graphs are constructed from the eight vertice
in Eq. ~4.3!. We have organized the graphs into sets for which the amplitudes combine in a natural way. These sets are labeled~a!–~g!.
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Feynman integral in this term representing the boson-
fermion-exchange graph, we use the following identity sta
in @9#:

E dx D l~x!Tr S̄~x!S~x!5
2g2~ l 12!

l 11 E dx@D~x!# l 12

2
2

l 11
L l 11, l>0, ~4.7!

whereS(x) andD(x) are the fermion and boson propagato
in coordinate space:

S~x!5~g2 i ]” !D~x!,

D~x!5
1

2p
K0~guxu!. ~4.8!

When we simplify the expressionA2( l ) there is a remarkable
cancellation that occurs; all integrals overD2l(x) cancel in-
dependently of the value ofa and we obtain the following
simple sum:
d
d A25(

l
A2~ l !52g2d2L2a11@~2a11!! #2222a25

3(
l 51

`
22l

~2l 21!! @~a112 l !! #2 . ~4.9!

Third, we consider the two-vertex graphs construc
from v2 andv4 , which are shown in Fig. 4~c!. The sum of
the amplitudes for these graphs is identical toA2 in Eq. ~4.9!
with the replacementa→b:

A35A2ua→b . ~4.10!

Fourth, we examine the two-vertex graphs construc
from one ofv1 andv3 and one ofv2 andv4 . These graphs
are shown in Fig. 4~d!. For each value ofl the sum of the
amplitudes for these graphs is
A4~ l !52
v1v2La1b1222l*dx D2l~x!

~a112 l !! ~b112 l !!2a1b1222l~2l !!
1

v1v4gLa1b1222l*dx D2l~x!

~a112 l !! ~b2 l !!2a1b1122l~2l !!

1
v2v3gLa1b1222l*dx D2l~x!

~a2 l !! ~b112 l !!2a1b1122l~2l !!
2

v3v4g2La1b1222l*dx D2l~x!

~a2 l !! ~b2 l !!2a1b22l~2l !!

1
v3v4La1b22l*dx D2l~x!Tr S̄~x!S~x!

~a2 l !! ~b2 l !!2a1b1122l~2l !!
. ~4.11!

Again, we must sum over all possible values ofl ; in all of the above terms except the last,l ranges from 1 tò , but in thev3v4
term representing boson and fermion exchange,l ranges from 0 tò . Also, we again use the integral identity in Eq.~4.7!. As
before, when we simplify the expressionA4( l ) there is a remarkable cancellation of theD2l(x) integrals for all values ofa and
b. We obtain the following simple sum:

A45(
l

A4~ l !5g2d2La1b11~2a11!! ~2b11!!(
l 51

`
22l 2a2b24

~2l 21!! ~a112 l !! ~b112 l !!
. ~4.12!

Next, we consider the two-vertex graphs constructed fromv5 andv7 , which are shown in Fig. 4~e!. For each value ofl the
sum of the amplitudes for these graphs is

A5~ l !52
v5

2L2a12g22l*dx D2l 11~x!

@~a1g2 l !! #222a12g1122l~2l 11!!
1

v5v7gL2a12g22l*dx D2l 11~x!

~a1g2 l !! ~a1g212 l !!22a12g2122l~2l 11!!

2
v7

2g2L2a12g22l*dx D2l 11~x!

@~a1g212 l !! #222a12g2122l~2l 11!!
1

v7
2L2a12g2222l*dx D2l 11~x!Tr S̄~x!S~x!

@~a1g212 l !! #222a12g22l~2l 11!!
. ~4.13!

Again, we must sum over all possible values ofl ; in all of the above termsl ranges from 0 tò . Also, in the boson- and
fermion-exchange graph in the last term, we again use the integral identity in Eq.~4.7!. When we simplify the expressionA5( l )
there is no longer any cancellation for arbitrary values ofa. Thus, the final result still contains an integral overD2l 11(x). We
obtain the following sum:
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A55(
l

A5~ l !5p2g2d2a2L2a12g@~2a12g21!! #2222a22g23H (
l 50

`
22l

~2l !! @~a1g2 l !! #2

1(
l 50

`
g222l@~2a12g!221#@~2a12g!214l 11#*dx D2l 11~x!

~2l 11!! @~a1g2 l !! #2L2l J . ~4.14!

Sixth, we consider the two-vertex graphs constructed fromv6 and v8 , which are shown in Fig. 4~f!. The sum of the
amplitudes for these graphs is identical toA5 in Eq. ~4.14! with the replacementa→b:

A65A5ua→b . ~4.15!

The seventh and last class of graphs is constructed from one ofv5 andv7 and one ofv6 andv8 . These graphs are show
in Fig. 4~g!. It is easy to see that the amplitudes for all such graphs are proportional toab. Thus, anticipating that at the en
of the calculation we will set botha50 andb50, we need not calculate the amplitudeA7 because it will not contribute to the
ground-state energy density.@Note that before we seta andb to 0, we must apply the differential operatorD in Eq. ~2.12!.
This operator does not have a mixed derivative term and thus it cannot eliminate both factors ofa andb.#

The final part of this calculation consists of applying the operatorD in Eq. ~2.12! to A11A21A31A41A51A61A7 and

settinga50, b50, andg5 1
2 . After a rather lengthy calculation, we obtain the result

Eground state5D(
j 51

7

AjU
a5b50, g51/2

5
1

16
d2g2LF 2c8S 3

2D22p21(
l 50

` Ap GS l 2
1

2D
S l 2

1

2DG~ l 11!

2(
l 51

` Ap G~ l !

l GS l 1
3

2D G1O~d3!.

~4.16!

The sums in this expression may be evaluated easily and we obtain the result

Eground state501O~d3!. ~4.17!

B. Calculation of Šf‹ to second order ind

The graphs that contribute to the vacuum expectation value of the scalar field arise either from one-vertex grap
structed from the odd vertices,v5–v8 , or from two vertex graphs with one odd vertex and one even vertex. Some of
graphs are shown in Fig. 5. Again, they fall into natural classes. We first consider the five two-vertex graphs in which
number of bosons are exchanged between the pairs ofa vertices (v1 ,v3) and (v5 ,v7). For a givenl the sum of the five
amplitudes is

v1v5L2a12g1122l*dx D2l

~a112 l !! ~a1g2 l !! ~2l !!22a1g1122l 2
v1v7gL2a12g1122l*dx D2l

~a112 l !! ~a1g212 l !! ~2l !!22a1g22l 2
v3v5gL2a12g1122l*dx D2l

~a2 l !! ~a1g2 l !! ~2l !!22a1g22l

1
v3v7g2L2a12g1122l*dx D2l

~a2 l !! ~a1g212 l !! ~2l !!22a1g2122l 2
v3v7L2a12g2122l*dx D2l Tr S̄~x!S~x!

~a2 l !! ~a1g212 l !! ~2l !!22a1g22l . ~4.18!
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There are five more graphs in which an odd number
bosons are exchanged. The sum of the amplitudes of t
graphs is similar to the result in Eq.~4.18! and we do not
give it here. Furthermore, there are ten corresponding gra
in which a is replaced byb and these are constructed fro
the verticesv2 , v4 , v6 , andv8 . When these 20 amplitude
are combined and summed overl no dramatic cancellation
like that in the calculation of the ground-state energy den
occurs. Thus, we are left with an infinite sum over integr
of the coordinate space propagatorD(x).

Next, we consider the contributions of the 20 grap
analogous to those above, that are constructed from ona
vertex and oneb vertex. That is, we construct all possib
multi-boson exchange graphs from the vertices (v1 ,v3) con-
nected to (v6 ,v8), and (v2 ,v4) connected to (v5 ,v7). This
f
se

hs

y
s

,

calculation simplifies dramatically because only one- a
two-particle exchange graphs survive when we apply the
rivative operator in Eq.~2.12! and seta5b50 andg51/2.

Last, we include the four single-vertex graphs construc
from the verticesv5 , v6 , v7 , andv8 .

When we combine all of these calculations we obtain
following result:

^f&5 iApL/2F2d1d2X12 ln 21g2E dx D~x!

3H D~x!

2L F lnS L

2 D1c~1!G1F11
D~x!

L G
3 lnF11

D~x!

L G J C1O~d3!G. ~4.19!
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Note that any positive integer power of the propagatorD(x)
in Eq. ~4.8! is integrable. However, the value of the prop
gator at the originL5D(0) is a divergent quantity. There
fore, the functionD(x)/L vanishes everywhere except
x50, where it is unity. Hence, the integral involving th
ratio in Eq.~4.19! exists and vanishes. Thus, our final res
for the one-point function, which measures the parity sy
metry breaking in this theory, is

^f&5 iApL/2@2d1d2~12 ln 2!1O~d3!#. ~4.20!

The fact that the theory is supersymmetric reduces
degree of divergence of this result. At intermediate stage
the calculation, the coefficient ofd2 is proportional to
L1/2 ln L. However, when the boson and fermion contrib
tions are combined, all terms containing lnL cancel exactly.
Thus, the higher-order result is no more divergent than
leading-order result.

C. Calculation of the fermion-boson mass ratio
to second order ind

We do not discuss this calculation in detail here becau
similar one is explained in Ref.@10#. The calculation done
here is more elaborate because there are twice as many
tices but the necessary calculations are routine. Our resu

FIG. 5. Five of the graphs contributing to^f& to second order in
d. These graphs are constructed from the eight vertices in Eq.~4.3!.
t
-

e
of

-

e

a

er-
is

R5
M fermion

Mboson
511O~d3!, ~4.21!

which is consistent with the theory being supersymmetric

V. CONCLUSIONS

In the Schwinger model of two-dimensional electrod
namics with massless fermions there is an anomaly. If
one-fermion-loop contribution to the photon propagator
calculated naively, one obtains a product of two factors;
first factor vanishes in two-dimensional space, and the s
ond factor is a divergent integral. If one is not careful, o
gets a quantity that is formally 0. However, because the
tegral is divergent, one must evaluate this product by int
ducing a regulator; dimensional regulation is an accepta
procedure. As the regulator is removed one obtains a fin
nonvanishing result for the anomaly, namely, the famo
numbere2/p. In general, one looks for an anomaly whe
there is a naive cancellation involving divergent quantit
that must be regulated. The question that is raised in
paper is, do we have an anomaly in thed expansion that
breaks supersymmetry? Specifically, is there an anomaly
sociated with the cancellation that gives a vanishing grou
state energy density in Eq.~3.7!?

A. Dimensional regularization
of the ground-state eneregy density

In the derivation of Eq.~3.7! we combine two numbers
that are divergent to obtain 0. There are several ways
regulate the integral representingL. For example, if we use
dimensional regulation and evaluateL in 22e dimensions,
then for small positivee

L;
1

2p E
0

`

dp
p12e

p21g2 ~e→01 !

5
1

4p
g2eE

0

1

du u211e/2~12u!2e/2

5
1

4p
g2eGS e

2DGS 12
e

2D
5

1

4
g2e

1

sin~pe/2!
;

1

2pe
g2e ~e→01 !.

~5.1!

Furthermore, ind-dimensional space, the representation
the Dirac matrices has rank 2d/2. Thus, the trace of a uni
matrix in 22e dimensions is

Tr 152~22e!/2;22e ln 2 ~e→01 !. ~5.2!

Thus, the coefficient of the second graph amplitude in

~3.6! should be multiplied by 12 1
2 e ln 2.

We now see that the two graphs do not exactly can
rather, the difference in the numerical coefficients is of ord
e. Combining the two graphs in Eq.~3.6! now gives



y

e
q

on

se
ish
g

e
in

el
h
m
e
to
id

pe
o

e
ri-

nd
ra-
the

ral
in

ust
e-

at it
nor-
al.
sity
no

-
art-

57 3607MODEL OF SUPERSYMMETRIC QUANTUM FIELD . . .
e~ ln 2!dg2
~2a11!!La11

2a12a!
5

e ln 2

2Ap
dg22aGS a1

3

2DLa11

;
ln 2

4p3/2dg2GS a1
3

2D
3~2L!a ~e→01 !. ~5.3!

If we now differentiate with respect toa and seta50, we
obtain, for the ground-state energy density,

Eground state5
ln 2

8p
dg2FcS 3

2D1 ln~2L!G1O~d2!

;
ln 2

8p
dg2FcS 3

2D2 ln~pe!G
1O~d2! ~e→01 !. ~5.4!

Because this is a positive number, it suggests that supers
metry may be broken.

Of course, dimensional regulation violates supersymm
try. Thus, it is not clear whether the nonzero result in E
~5.4! is correct or is merely an artifact of the regularizati
scheme being used.

B. Proper-time regularization

If a supersymmetric regulation exists, then, of cour
there will be no anomaly. Conversely, if we could establ
rigorously that there does not exist any supersymmetric re
lation of the delta expansion, then there really would b
breaking of supersymmetry. We do not know for certa
whether a supersymmetric regulation of thed expansion ex-
ists. However, we believe that we have found a relativ
simple way to regulate thed expansion that is consistent wit
supersymmetry and thus we believe that there is no ano
lous structure and that the ground-state energy is truly id
tically zero. This suggests that while it is relatively easy
break parity symmetry, supersymmetry is extremely rig
and is very difficult to break.

Our regulation scheme, which we believe respects su
symmetry invariance, is a variant of the proper-time meth
due to Schwinger@15#. ~It is well known that the proper-time
method correctly yields the anomaly in the Schwing
model.! Here, we will use this method to define, in an inva
ant way, the divergent integralL. To make contact with the
dimensionally regulated result above, let us work ind di-
mensions:
.

.

s,

s.
R.
m-

-
.

,

u-
a

y

a-
n-

r-
d

r

L5E ddp

~2p!d

1

p21g2 5E ddp

~2p!2 E
s0

`

ds e2s~p21g2!.

~5.5!

Here,s0 is a proper-time regulator to be taken to 0 at the e
of the calculation. We now interchange the order of integ
tion in Eq. ~5.5!, and express the momentum integral as
product ofd one-dimensional integrals:

E
2`

` dp

2p
e2sp2

5
1

2Aps
. ~5.6!

Then, the integral representingL is immediately expressed
in terms of a single regulated integral:

L5E
s0

`

ds e2sg2S 1

2Aps
D d

5
gd22

2dpd/2 E
g2s0

`

dx x2d/2e2x.

~5.7!

If we setd522e as in the previous subsection, the integ
converges whens050, and we obtain the same result as
Eq. ~5.1!,

L;
1

4p
GS e

2D . ~5.8!

However, if we want to preserve supersymmetry, we m
remain in two dimensions, in which case the integral d
pends logarithmically upons0 :

d52: L5
1

4p E
gs0

` dx

x
e2x;2

1

4p
@g1 ln~gs0!#,

~5.9!

whereg is Euler’s constant.
The obvious advantage of this regulation scheme is th

treats bosons and fermions on an equal footing; the re
malization of the boson and fermion masses is identic
With this regulation scheme, the ground-state energy den
is zero, as expected. Thus, we believe that there is
anomaly in thed expansion.
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