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Asymptotic freedom and bound states in Hamiltonian dynamics
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We study a model of asymptotically free theories with bound states using the similarity renormalization
group for Hamiltonians. We find that the renormalized effective Hamiltonians can be approximated in a large
range of widths by introducing similarity factors and the running coupling constant. This approximation loses
accuracy for the small widths on the order of the bound state energy and it is improved by using the expansion
in powers of the running coupling constant. The coupling constant for small widths is of order 1. The small
width effective Hamiltonian is projected on a small subset of the effective basis states. The resulting small
matrix is diagonalized exactly and the bound state energy of the original theory is obtained with accuracy of
the order of 10% using the first three terms in the perturbative expansion of the effective Hamiltonian. We
briefly describe options for improving the accuracy.@S0556-2821~98!03006-9#

PACS number~s!: 11.10.Gh
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I. INTRODUCTION

So far, we do not have a precise theoretical description
the bound states of quarks and gluons in QCD which co
simultaneously explain the parton model and the constitu
quark model of hadronic structure. In particular, QCD is
ymptotically free and the perturbative running coupli
grows at small momentum transfers beyond limits. This r
invalidates the usual perturbative expansion in the region
scales where the bound states are formed.

Reference@1# suggested a light-front Hamiltonian ap
proach to this problem which is based on the calculation
the effective Hamiltonians using the similarity renormaliz
tion group @2,3#. The effective Hamiltonians can be calc
lated in perturbation theory and their bound state eigenva
can be obtained using a number of methods for diagonaliz
Hamiltonian matrices, not available within the standard L
grangian approach. In addition to the calculation of the h
ronic spectrum, one of our purposes is to obtain the qu
bound state wave functions that can be used in the pa
models of large momentum transfer processes. An alte
tive approach is the lattice gauge theory which is mak
progress, but does not easily yield such wave functions@4#.
Other recent research in the renormalized light-front Ham
tonian approach to QCD is described in Ref.@5#.

Wegner@6# proposed a flow equation for Hamiltonians
solid state physics which is of the same kind as in the si
larity renormalization group. Wegner’s equation is based
an explicit form for the generator of the similarity transfo
mation and corresponds to the Gaussian similarity fac
with a uniform width.

This paper describes a numerical study of the key e
ments of the Hamiltonian approach in a simple matrix mo
which is asymptotically free, contains a bound state and
be diagonalized exactly. We check the accuracy of differ
approximations for effective Hamiltonians, including pertu
bation theory, by comparison with the exact calculation. T
exact solution for the renormalization group flow of the e
570556-2821/98/57~6!/3558~9!/$15.00
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fective Hamiltonians in the matrix model is obtained nume
cally using Wegner’s equation. The bound state eigenva
of the effective Hamiltonians are found by diagonalization
their matrices.

We start from the general assumption that the asympt
cally free theories have many degrees of freedom which
characterized by different scales of energy as measure
certain H0. Then, we define matrix elements of the initi
interaction HamiltonianHI between eigenstates ofH0.

The model we study can be alternatively derived by d
cretization of the two-dimensional Schro¨dinger equation
with a potential of the form of a coupling constant times ad
function @7#. The continuous version of the two-dimension
model has been studied by many authors. The discret
version was analyzed in Ref.@8# using the exact solution to
Wegner’s equation. It was shown there that the Weg
equation has the renormalization group interpretation.

This paper is organized as follows. In Sec. II we descr
the model. The parameters are chosen in a way which
make it clear that the method of solution we use may hav
wide range of other applications. Numerical results for t
effective Hamiltonians are presented in Sec. III. We disc
the approximation based on the similarity factors and
running coupling constant and we describe results obtai
in perturbation theory. In particular, we study bound st
eigenvalues and selected matrix elements of the effec
Hamiltonians which are most relevant to the bound state
namics. Section IV concludes the paper with a discussion
some options for improvements in perturbative calculatio
of the effective Hamiltonians in the range of widths near t
bound state formation scale.

II. MODEL

The HamiltonianH0 is assumed to have a finite discre
set of eigenstates:

H0u i &5Ei u i &. ~2.1!
3558 © 1998 The American Physical Society
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57 3559ASYMPTOTIC FREEDOM AND BOUND STATES IN . . .
The eigenstates are orthogonal and normalized:

^ i u j &5d i j . ~2.2!

The dynamics of states in the space spanned by this s
defined by the interaction Hamiltonian,HI , whose matrix
elements are assumed to be

^ i uHI u j &52gAEiEj , ~2.3!

where g is a dimensionless coupling constant. The wh
Hamiltonian is denoted byH, H5H01HI .

In the current study, we choose the eigenvalues ofH0 in
the form

Ei5b2i . ~2.4!

In the numerical calculations we useb5A2. The integer
poweri ranges fromM to N. The integerM is considered to
be large and negative. The lower infrared bound on the
energies is 2M. The integerN is considered to be large an
positive. The upper, ultraviolet free energy bound is given
2N. In the numerical study, we useM5221 andN516.

For the purpose of analogy to QCD, we adopt the conv
tion that the energy equal to 1 corresponds to 1 GeV,
though the units of energy are arbitrary. Thus, the ultravio
cutoff corresponds to 65 TeV and the infrared cutoff cor
sponds to 0.5 eV.

With the above choices, the HamiltonianH is a 38338
matrix. For the coupling constantg.1/38, the matrix has
one negative eigenvalue and 37 positive eigenvalues.
coupling constant is adjusted to obtain the negative eig
value equal to21.00000000 or, in our convention,21 GeV.
Namely,g50.06060600631. The many digits are given f
readers interested in the numbers.

The eigenstate with the negative eigenvalue correspo
to the s-wave bound state in the continuum Schro¨dinger
equation with thed potential. The positive eigenvalue eige
states correspond to thes-wave scattering states. We ref
the reader to the work of Jackiw@7# for details. The only new
steps required are the replacement of the continuous en
scale in Ref.@7# by the discrete one in Eq.~2.4! and the
introduction of the infrared and ultraviolet cutoffs. The
steps are described in Ref.@8#.

To verify the ultraviolet renormalizability of the mode
and its infrared convergence, we have studied a set of e
results for different numbersM andN. The same qualitative
results as forM5221 andN516 can be obtained alread
for 2M5N58. We have checked the renormalizability b
varying the ultraviolet limitN from 4 to 16 and we verified
the infrared convergence by varying the limitM from 24 to
221. We have studied in detail the case2M5N512. The
eigenvalues in the latter case are almost the same as
corresponding eigenvalues in the caseM5221 andN516
with the accuracy better than 1% for the extreme eigen
ues. The intermediate eigenvalues match with much hig
accuracy, correspondingly. For example, eigenvalues ord
have the same 5 significant digits in both cases.

We calculate effective Hamiltonians using the similar
renormalization group equations in the differential form. T
effective Hamiltonians are parametrized by their width
energy. The width is denoted byl.
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We use Wegner’s flow equation@6# which provides a very
elegant definition of the similarity transformation with a un
form band width and an explicit expression for the gener
ing matrix. The effective Hamiltonian matrices,H[H(s),
are parametrized by the parameters. s ranges from 0 tò .
Wegner’s original notation for this parameter wasl instead
of s. It will be shown that the Hamiltonian width is given b
l51/As.

The effective Hamiltonian is divided into two parts:

H5D1H2D[D1V. ~2.5!

D is the diagonal part of the effective Hamiltonian matrix

Dmn5Dmdmn , ~2.6!

whereDm5Hmm. V is the effective interaction. It is equal t
the off-diagonal part of the matrixH. The Wegner flow
equation is@6#

dH/ds5@@D,H#,H#, ~2.7!

with the initial condition

H~0!5H. ~2.8!

Equations~2.7! and~2.8! ensure thatH(s) is a unitary trans-
form of the initial HamiltonianH. In terms of the matrix
elements, we have

dHmn /ds52~Dm2Dn!2Vmn1(
i

~Dm1Dn

22Di !VmiVin . ~2.9!

Equation~2.9! can be approximately solved for a sma
coupling constantg by keeping only terms order 1 andg.
Namely,

Hmn~s!5Emdmn2gAEmEnexp@2s~Em2En!2#.
~2.10!

In this approximation,Dm5(12g)Em . It is clear that the
parameters and the widthl of the similarity renormalization
scheme are simply related,s5l22. The similarity factor is a
Gaussian function.

It is well known that the coupling constantg must depend
on the upper energy bound, 2N, in order to eliminate the
logarithmic divergences in higher orders whenN→`. Ref-
erence@8# demonstrated that the Wegner flow equation h
the standard renormalization group interpretation. Lower
the widthl5s21/2 in the discrete model is similar to lower
ing the upper bound on the energies of the interacting sta
Therefore, in the higher-order analysis, we replace the c
pling constantg in Eq. ~2.10! by the running couplingg̃(s)
and use the expansion ing̃(s) to remove the logarithmic
divergences. We will gradually change the notation from
mathematical parameters to the Hamiltonian energy widthl
in our parametrization of the effective Hamiltonians, inclu
ing the running coupling constant.

The small coupling and large width approximation f
g̃(s) can be derived in the following way.Em and En are
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very small numbers form andn close toM . Therefore, Eq.
~2.9! for m andn close toM , g!1 ands close to 0, reduces
to

d g̃

ds
52 g̃ 2

d

ds(i
exp~22Ei

2s!. ~2.11!

Integration of Eq.~2.11! for our choice of the model param
eters gives the approximate running coupling constant

g̃a~l!5
g

12g~N1110.42 lnl2/ln4!
. ~2.12!

l is taken in units of GeV. The number 0.4 results from E
~2.11! because the contributions of terms withi close to
lnl2/ln4 are smaller than 1.

Equation ~2.12! implies that the family of the effective
theories exhibits typical asymptotic freedom behavior:
coupling gets smaller when the effective cutoffl is large.

The effective Hamiltonians can be written now as

Hmn~l!5Emdmn2 g̃a~l!AEmEnexp@2~Em2En!2/l2#

1corrections. ~2.13!

Here,Dm(l)5@12 g̃a(l)#Em1corrections.
Equation ~2.13! demonstrates the utility of Wegner’

equation. However, the uniform width of the effectiv
Hamiltonian distinguishes this solution from the wideni
band structure in the similarity scheme from Refs.@2# and
@3#. The widening of the band is useful in high-order pertu
bation theory. A whole class of generalized Wegner eq
tions for the Hamiltonian matrix elements can be writt
which allow the high-energy widening of the effectiv
Hamiltonian width. Namely,

dHl

dl2
5

21

l4 @F$H%,Hl#. ~2.14!

In the original Wegner case,F$H%5@D,H#. We have
made calculations in the model using different formu
for the operationF. For example, we used@F$H%#mn
5u@ uDmnu2x#(uDmnu2x)kDmnHmn , where Dmn
5(Dm2Dn)/(Dm1Dn) and x is a function ofl such that
1.x(l).x0.0, ~see also Ref.@10#!. Nevertheless, we limit
the present paper discussion to the application of the orig
Wegner equation, for simplicity and because no clear adv
tage of the more general equations over the Wegner equa
has been visible in the numerical studies we performed
far.

The structure of Eq.~2.10! demonstrates that the approx
mate solution including the running coupling cannot be o
tained in the first-order perturbation theory. Equation~2.11!
shows that the running coupling constant approximation
be obtained in perturbation theory if one keeps terms or
g̃2. The approximate running couplingg̃a(l) is given in Eq.
~2.12!.

The question is how large are the corrections indicated
Eq. ~2.13!? The next section describes our numerical stu
of the model.
.
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III. NUMERICAL RESULTS

The goal of our numerical study is to understand t
structure and determine the usefulness of the effec
Hamiltonians for the calculation of the bound state ener
We want to find out if perturbatively calculated effectiv
Hamiltonians of small width~of order 1 GeV! can reproduce
the bound state eigenvalue. We are interested in perturba
theory because it is the tool we can use in the Hamilton
approach to QCD. We aim to make the widthl as small as
possible because the smaller is the width the smaller bas
effective states is required to calculate the bound state ei
value.

The questions how small can be the width of the pert
batively calculated effective Hamiltonians and how well t
Hamiltonians can reproduce the bound state properties,
of principal interest because the perturbative running c
pling constant grows in asymptotically free theories wh
the width gets smaller and at some unknown point pertur
tion theory becomes useless.

The approximate result for the running coupling const
g̃a(l) in Eq. ~2.13! can be compared to the exact value
the running coupling. The exact solution is obtained by
numerical integration of the flow equation, i.e., Eq.~2.7!.
The numerical computations were performed using
Runge-Kutta integration algorithm of rank 4@9#. The results
were obtained using two independent algorithms. T
Hamiltonians were cross checked using various theoret
conditions such as the hermiticity and width-independence
the eigenvalues.

The exact running coupling,g̃(l), is defined as

g̃~l!52HM ,M11~l!/AEMEM11. ~3.1!

This definition is motivated by the requirement that the co
pling constant determines the strength of the interaction
small energies as in the Thomson limit in QED, which is
standard way to define a coupling constant. Therefore,
choose the off-diagonal matrix element of the Hamiltoni
with the smallest possible subscripts. In fact, one could
matrix elements with larger subscriptsi and j as long as the
corresponding energiesEi andEj are negligible in compari-
son to the bound state formation scale and the whole ana
of the bound state dynamics would not be altered since
resulting coupling constant would be the same.

Figure 1 shows the running coupling constantsg̃ and g̃a
as functions of the widthl. It is visible that the approximate
solution blows up in the flow before the effective Ham
tonian width is reduced to the scale where the bound sta
formed.

The bound state formation scale is defined using the
evant effective Hamiltonian matrix elementm̃ which is de-
fined as

m̃~l!5H21,21~l!20.5 GeV. ~3.2!

m̃ becomes equal21.5 GeV when the diagonal matrix ele
mentH21,21 of the effective Hamiltonian becomes equal
the bound state eigenvalue,21 GeV. The widthl where the
bound state eigenvalue appears on the diagonal is equ
about 0.5 GeV.m̃ stays constant for smallerl. This width
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57 3561ASYMPTOTIC FREEDOM AND BOUND STATES IN . . .
scale~order 1 GeV! is called the bound state formation sca
The exact result of integrating Eq.~2.7! gives the function
m̃(l) which is plotted in Fig. 1.

Figure 1 also shows that the exact effective coupling c
stant is close to the one in Eq.~2.13!. This is a hint that the
corrections indicated in Eq.~2.13! are small forl larger than
order 16 GeV. The effective Hamiltonians for smallerl may
still have similar structure, but the running coupling is n
given by Eq.~2.12!.

The most important feature visible in Fig. 1 is that t
exact effective coupling constant does not grow unlimited
This encourages us to use expansion in the running coup
constant in calculations of the effective Hamiltonians.

On the other hand, the diagonal matrix elementsDm

5(12 g̃)Em with small m become negative wheng̃ grows
above 1 @8#. Thus, the absolute energy order of states
reversed. The diagonal matrix elements for states co
sponding to lowestEm become negative, but they are sm
in modulus. At the same time, the diagonal matrix eleme
for states corresponding to largerEm become more negative
Therefore, wheng̃ grows above 1, the states correspond
to some originally intermediate energy range become m
lower on the energy scale than all other states.

This inversion feature reverses the role of the biline
terms inV in Eq. ~2.9!. The coupling stops growing and
begins to drop. At the same time the bound state eigenv
is localized in the diagonal matrix elementH21,21. This ma-
trix element corresponds to the state which appears to b
the bottom of the energy scale. The bound state dynamic
located in matrix elements at the center of the effect
Hamiltonian matrix instead of the lowest indices corner,
one might expect if the lowest momentum scales were
portant in the bound state formation. Further renormalizat
group flow reducesg̃ below 1 and successively establish
small positive eigenvalues on the diagonal. In other wor
the negative bound state eigenvalue is settled before m
low positive eigenvalues are. The bound state eigenvalue
pears almost independently of what happens at the botto
the positive spectrum. This can be verified by changingM .
The Hamiltonian widthl limits couplings of a given state
with other states to a limited number of states whose dia

FIG. 1. The approximate running couplingg̃a(l) from Eq.

~2.12! and the exact running couplingg̃(l) from Eq. ~3.1! plotted
as functions of the effective Hamiltonian widthl. The exact re-

duced matrix elementm̃ from Eq. ~3.2! is also plotted to show the
width range where the bound state eigenvalue appears on the
onal.
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nal matrix elements are within the range orderl around the
given state diagonal matrix element. Forb252 only a small
number of states participate in the interaction of states w
the diagonal matrix elements larger thanl. Therefore, when
l drops below the bound state formation scale, the sm
energy~small diagonal matrix element! states are decouple
from the bound state dynamics.

The rise of the coupling above 1 and the inversion feat
suggest that even in the full Hamiltonian flow the perturb
tive expansion is useless at the bound state formation sc
But the coupling approaches 1 from below rather smooth
We can ask for how smalll the effective Hamiltonian can be
reliably calculated in perturbation theory.

Scaling symmetry in the model and Fig. 1 suggest a la
range of validity of perturbation theory down to at least t
width order 16 GeV where the formula~2.12! begins to fail.
Namely, the Hamiltonians in Eq.~2.13! possess the discret
scaling symmetry: two effective Hamiltonians for two valu
of the widthl differing by the factorb22 have matrix ele-
ments related by the shifti→ i 21 and j→ j 21 and replace-
ment of g̃(l) by g̃(b22l). Thus, the flow of the effective
Hamiltonians is reduced to the change of the width and
coupling constant for as long as one can neglect the bou
ary effects due to finiteN andM . Since the coupling in Eq
~2.12! is obtained keeping terms orderg̃ 2 and it runs cor-
rectly down to about 16 GeV, one can expect that Eq.~2.13!
describes the effective Hamiltonians correctly down to t
scale.

Figure 2 shows the bound state eigenvalue of approxim
effective Hamiltonians in ratio to the exact value21GeV, as
a function of the widthl. Ratios formed this way will be
used as measures of the accuracy of effective Hamilton
throughout this work.

Three approximations are shown in Fig. 2. The one
noted by E results from diagonalization of Hamiltonian
given by Eq.~2.13! with corrections set equal 0 and insertin
the exact value ofg̃(l) for g̃a(l). The curve labeled byD is

ag-

FIG. 2. The bound state eigenvalue of approximate effec
Hamiltonians in ratio to the exact value21 GeV. CurveE results
from Eq. ~2.13! with correctionsset equal 0 and the coupling con

stant set equal to the exact valueg̃ at givenl. CurveD is obtained
in the same way asE except forH0 eigenvaluesE in the Gaussian
similarity factor replaced by the diagonal matrix elements of

approximate effective Hamiltonian, i.e.,D5(12 g̃)E, ~see the
text!. The intermediate curve markedg is obtained by usingD
5(12g)E in the exponent, i.e., the initial coupling instead of th
running one.
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3562 57STANISŁAW D. GŁAZEK AND KENNETH G. WILSON
obtained in the same way except for one modification tha
the exponentEm and En are multiplied by the factor 1
2 g̃(l). This multiplication replacesEm andEn in the expo-
nent byDm andDn , respectively. The intermediate curv
markedg is obtained by usingD5(12g)E in the exponent,
i.e., the initial coupling instead of the running one.

The three curves show strong deviation from the ex
eigenvalue at the beginning of the flow. This is caused by
boundary effect due to the cutoffN. The curves also deviat
from 1 at small width. This deviation shows the limited v
lidity of the approximation. It is also clear that the Gauss
similarity factor with free energies gives a better approxim
tion than the same factor with the diagonal matrix eleme

Figure 2 suggests that a few terms of expansion in
running coupling~e.g., only terms order 1 andg̃ are used in
the case of curveE) may produce effective Hamiltonian
whose bound state eigenvalue accuracy is order 10%
whose width is smaller than 16 GeV. The amazing resul
that by simply introducing the similarity function and var
ing the coupling one can reduce the width of the Hamilton
by a factor order 4000 and make a small error. Other eig
values are more accurate with the exception of eigenva
order or larger thanl for which the approximation is no
expected to work. However, the width is still quite far fro
the bound state formation scale. The key question now
how far down in the width one can get using an expansion
the running coupling constant.

The first comment we wish to make concerning pertur
tion theory is that the direct expansion in powers of the i
tial couplingg is not useful for calculating effective Hamil
tonians with small width. This is illustrated in Fig. 3 by th
plot of the ratio of the effective Hamiltonian bound sta
eigenvalue to the exact result for Hamiltonians of widthl
calculated using expansion in Eq.~2.7! into a series of pow-
ers ofg up to 1, 2, 3, and 4. Note that the analogy betwe
the model and QCD is such thatg in the model correspond
to the strength of the two-particle interaction which is of t
second order in QCD. Therefore, terms orderg here corre-
spond to terms ordergQCD

2 , terms orderg2 correspond to
terms ordergQCD

4 , etc. Figure 3 clearly demonstrates th
perturbative expansions in terms of the canonical coup
constant in the initial Hamiltonian are not suitable for app

FIG. 3. The ratio of the effective Hamiltonian bound state
genvalue to the exact result, for the Hamiltonians of widthl cal-
culated using expansion in powers of the initial coupling constang
up to 1, 2, 3, and 4, respectively. It is visible, that the expansio
not useful in the calculation of the bound state eigenvalue.
n
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cations in the bound state dynamics.
The reason we stress this fact here despite that such r

might be expected in the Lagrangian approach, is that
study a Hamiltonian approach. The Hamiltonian approac
different in many respects from the familiar perturbative L
grangian approaches@1#. In the light-front Hamiltonian ap-
proaches, it is often silently assumed that one can ana
nonperturbative aspects of the light-front QCD Hamiltoni
dynamics using canonical Hamiltonian terms and neglec
the running coupling effects. Figure 3 warns us not to do

In contrast to Fig. 3, Fig. 4 shows results obtained fro
effective Hamiltonians calculated in the second-order exp
sion in terms of the effective coupling constantg̃(l0), for a
set of choices ofl0. The curves are marked by the value
l0 in GeV. For comparison, we include the second-ord
result of the expansion in terms ofg which is marked by the
sign` and equals to the curve marked 2 in Fig. 3. The act
value of g̃ which is used to evaluate the HamiltoniansH(l)
is equal to the exact value ofg̃(l0) in the model. In a theory
where an exact solution is not known, the exact coupl
constantg̃(l0) is not known and its value must be fitted
H(l) at a useful value ofl. Varying of l should not cause
significant changes if the approximation and the fit are nea
exact.

The expansion of the renormalization group flow in po
ers of an effective couplingg̃(l0) is done in the following
way. One expands the flow in powers of the initialg and
computesg̃(l0) as a series ing using Eq.~3.1!. The latter
series is inverted andg is calculated as a series ing̃(l0).
Then, the whole family of effective Hamiltonians param
etrized byl is calculated in expansion of powers ofg̃(l0)
by substituting the inverted series into the known expans
in powers ofg.

Thus, the effective Hamiltonians are calculated using
pansion in powers ofg̃(l0). They are diagonalized and the
bound state eigenvalues are plotted as functions ofl, for

-

is

FIG. 4. The accuracy of the bound state eigenvalues obta
from effective Hamiltonians whose renormalization group flo
with the widthl is calculated expanding in powers of the effecti

coupling constantg̃(l0) and including terms order 1,g̃(l0) and

g̃ 2(l0). The accuracy is given as ratio of the bound state eig
value obtained by diagonalization of the effective Hamiltonian
width l to the exact value,21 GeV. The curves correspond to th
indicated values ofl0 ~in units of GeV!. The result of expansion in
the initial couplingg is denoted bỳ . The arrows show points
wherel5l0.
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57 3563ASYMPTOTIC FREEDOM AND BOUND STATES IN . . .
every single value ofl0 we choose. It is expected that a
expansion in powers ofg̃(l0) works only for effective
Hamiltonians with widthsl in the vicinity of l0. This fea-
ture is clearly visible in Fig. 4 forl05`, 512, 32, 8, 2, and
1 GeV. The arrows in Fig. 4 show points wherel5l0.

The next question is what happens in the higher order
perturbation theory. This question can be only partially a
swered on the basis of the limited numerical studies we h
performed. Therefore, we limit the discussion here to
analysis of the lowest orders in the perturbative expans
for the key matrix element of Eq.~3.2! and the bound state
eigenvalue.

Firstly, note that Eq.~2.12! can be viewed as a result o
summing a geometric series. It is clear that whenl ap-
proaches 2 GeV, the coefficients in the expansion ofg̃a in
powers ofg grow as powers ofN. Therefore, one should
expect that wheng.1/N the series will not converge. Th
value of g we are using in the model is only a little b
smaller than 1

16, as required by the condition for the boun
state energy to be21 GeV. Forl@2 GeV the coefficients
are powers of much smaller numbers thanN and one can
expect a small number of terms to reproduce the runn
coupling value, but when the width gets small, the numbe
terms in the expansion must become very large to reach
approximate result. When one switches to the expansio
the exact running coupling constant, the number of nee
terms is unknown. We will discuss the lowest 6 terms on

Secondly, it follows from Fig. 1 that the exact solution f
g̃(l) is limited and always stays below 1.1, in a drama
distinction from the approximate running coupling res
which diverges below 4 GeV. This suggests that the per
bative expansion for the full Hamiltonian may be extendib
beyond the barrier around 4 GeV. We show below it do
happen so for the first three terms in the expansion.

The difficulty we encounter with terms of higher ord
than g̃ 2 can be seen still using Eq.~2.12!. Supposel
516 GeV. We see in Fig. 1 that the second-order pertur
tive result for g̃a(16 GeV) is quite close to the exact co
pling constantg̃(16 GeV). So, let us approximate the fun
tion g̃(l) by the function g̃a(l) for l>16 GeV. Then,
using Eq.~2.12! at l516 GeV, one obtains the inverse seri

g5 g̃2~13.4g̃ !21~13.4g̃ !32~13.4g̃ !41•••, ~3.3!

with the alternating sign. The first 6 actual coefficients wh
replace the successive powers of 13.4 in the full perturba
expansion are 1.0, 213.42, 177.3, 22309, 29752,
and 2379277. For example, the approximation in Eq.~3.3!
deviates from the actual coefficients by about 5% for
coefficient of g̃4 and about 20% forg̃ 6.

Now, let us calculate the matrix elementm̃(16 GeV) of
Eq. ~3.2! as a power series ing. The actual coefficients
are20.50,26.71,288.6,21153,214832, and2188759.
Inserting the expansion from Eq.~3.3! one obtains the coef
ficients inm̃(16 GeV) in front of the powers ofg̃(16 GeV),
from the 1st to 6th, equal20.5, 0.0008, 0.04,
20.14, 1.2, and217.3, correspondingly. One can eas
of
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test the series and see that it provides a good conver
approximation to them̃( g̃) for very small values ofg̃ , such
as 0.001 or even 0.01.

The exact value of the running coupling consta
g̃(16 GeV), is of the order 0.27. For this value ofg̃ one
obtains the result m̃(16 GeV)5(20.1350010.000057
10.0007920.0007410.0017420.00671) GeV. This sum
does not include terms order 1. The first term comes from
order g̃ , second fromg̃ 2, etc.

It is clear now that for the first three terms orderg̃k with
k50, 1, and 2 we can expect convergence of the effec
Hamiltonian calculation while the higher orders may destr
it if one keeps only a few terms.

The need for many orders in the expansion to reach c
vergencebeyond the first three termsin the expansion can be
suggested already on the basis of Fig. 1. Namely, we see
the perturbative switching ofga(l) from 1` to 2` is
smoothed out in the full renormalization group flow ofg̃(l).
However, the turn of the curveg̃ below 1 GeV is sharp and
a large number of terms is required to reproduce the wh
curve.

It is also visible, that the successive terms may cancel
For example, the fourth-order term may remove a large c
tribution of the third-order term. If the numerical cancell
tion appears for many digits, the round off errors require
close examination.

We have not performed extended studies of the mo
beyond the lowest-order terms. Therefore, we limit oursel
to the presentation of Figs. 5 and 6 which illustrate wh
happens up to terms orderg̃4. The effective Hamiltonian
H(l) is expanded in a series of powers ofg̃(l) ~i.e., the
running coupling at the same value ofl).

Figure 5 shows the accuracy of the perturbatively cal
lated effective Hamiltonians as measured by the matrix e
ment m̃(l) from Eq. ~3.2! in ratio to the exact value. The
expansion including terms order 1 andg̃ works with 10% or
even better accuracy down to the width 1 GeV. It is a
visible, that the expansion including terms orderg̃ 2 pro-

FIG. 5. The accuracy of the perturbatively calculated effect

Hamiltonians as measured by the matrix elementm̃(l) from Eq.
~3.2! in ratio to its exact value. The numbers label results obtain

by expanding in powers of the running coupling constantg̃(l)
including powers up to 1, 2, 3, and 4, respectively. The ratio wo
be indistinguishable from 1 for widths larger than 64 GeV if it we
plotted in the scale of this figure.
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duces accuracy on the order of 3% or better down to
width order 2 GeV, but the accuracy drops down sign
cantly near 1 GeV. The third power term produces a con
erable drop in the accuracy which is then partially count
balanced by the inclusion of the fourth power term. T
oscillation pattern needs further studies to explain. We h
not performed such studies.

Figure 6 shows the accuracy of the bound state eigenv
obtained from diagonalization of the effective Hamiltonia
H(l) expanded in powers of the running couplingg̃(l)
including powers up to 1, 2, 3, and 4, respectively. The cu
1 for the first-order calculation matches curveE in Fig. 2
away from the ultraviolet~left! boundary region. This featur
confirms the expectation based on Figs. 1 and 2 that a l
order perturbative expansion in the running coupling c
stant can accurately reproduce the effective Hamiltonian
small width. The curve 2 represents the result of the seco
order expansion and shows a considerable improvement.
accuracy is about 10% or better down to the width 1 G
which is at the edge of the bound state formation scale.
second power ofg̃ in the model is analogous to the four
power of the coupling constant in QCD. Thus, the analog
calculation in QCD requires the fourth-order expansion
the effective Hamiltonians in powers of the strong intera
tion coupling constant.

It is visible in Fig. 6 that for the small values ofg̃ the
perturbative expansion is convergent. However, as expec
at small widths the powers 3 and 4 of the coupling const
appear with large coefficients. The curve including terms
to the third power ofg̃(l) falls down quite low when we
substitute the exact value of the coupling.

The fourth-order curve labeled 4 is ended at the bott
edge of the figure to avoid overlap with curves 1 and 2.
fact, the curve 4 continues down to about 0.53 atl
516 GeV, shoots back up to 0.94 at about 12 GeV, de
down again to about 0.5 at 8 GeV and skyrockets right a
8 GeV crossing 1 and reaching about 100 at 1 GeV. T
erratic behavior is clearly correlated with the pattern visi
in Fig. 5.

Despite the slow convergence problem which requi
further study, Figs. 1 to 6 illustrate the striking feature of t

FIG. 6. Accuracy of the bound state eigenvalue obtained fr
diagonalization of the effective HamiltoniansH(l) expanded in

powers of the running couplingg̃(l) including powers up to 1, 2
3, and 4, respectively. The curve 1 matches curveE in Fig. 2 away
from the left boundary region. The curve order 2 shows 10% ac
racy down to the width 1 GeV. The lack of convergence for high
order curves at small widths is discussed in the text.
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model that the bound state eigenvalue can be obtained f
diagonalization of an effective Hamiltonian with the wid
order 1 GeV with 10% accuracy.

The remaining question is how small the space of sta
can be on which one can project the narrow effective Ham
tonian and reproduce the bound state eigenvalue by dia
nalization of the projected matrix. The wave function is e
pected to be reproduced with a similar accuracy.

The answer is provided in Table I. The table contains
ratio of the bound state eigenvalue obtained by the diago
ization of a small window matrixH̃(l) whose matrix ele-
ments are the same as the matrix elements ofH(l) in the
small window, but they equal 0 everywhere outside the w
dow. The indices of the window range fromm̃ to ñ includ-
ing the limiting values. The bound state eigenvalue of
window is divided by the bound state eigenvalue of t
whole effective Hamiltonian. Table I gives the results o
tained fromH̃(1 GeV) which is calculated in second-ord
expansion in the running coupling constantg̃(1 GeV). The
bound state eigenvalue of the whole effective Hamilton
H(1 GeV) is equal 20.8902 GeV ~the exact value is
21 GeV!. The entries in Table I show that the small windo
matrix easily reproduces this result with a relatively hi
accuracy. This is a spectacular feature of the method and
model. For the coupling constantg̃(1 GeV) is equal 1.05
and still the bound state eigenvalue accuracy one obt
from the small window Hamiltonians calculated in secon
order perturbation theory is on the order of 10%.

Table I demonstrates that our Hamiltonian approach
be used to calculate a 10310 or even 535 matrix whose
lowest eigenvalue reproduces the full theory bound state
genvalue with accuracy order 10 to 20%. This model res
can be viewed as encouraging to pursue a similar strateg
case of QCD. However, the slow down or absence of c
vergence beyond the second-order expansion near the b
state formation scale, require improvements.

IV. CONCLUSION

We have studied two basic approximations which may
of help in the Hamiltonian calculations of bound state pro
erties in asymptotically free theories. The first one can
briefly described as constructing effective Hamiltonians
introducing the similarity factors and adjusting coupling co
stants. We provide the definition of the asymptotically fr
running coupling constant in the Hamiltonian approach. T
second approximation is an expansion into a series of pow

u-
-

TABLE I. Ratio of the bound state eigenvalue of the sm

window Hamiltonian with indices limited bym̃ and ñ , to the eigen-
value of the whole effective Hamiltonian atl51 GeV calculated
using expansion up to second power in the running coup

g̃(1 GeV). 0.993 corresponds to the absolute accuracy of
bound state eigenvalue equal 12% and 0.908 to 19%~see the text!.

window/whole ñ52 ñ51 ñ50

m̃528 0.993 0.993 0.961

m̃525 0.940 0.940 0.908
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of the running coupling constant. In both cases, the bo
state eigenvalues and eigenstates of the full theory are fo
by diagonalizing the effective Hamiltonians.

Our model study suggests that one may hope to calcu
effective Hamiltonians down to the similarity width which
close to the bound state formation scale. The coupling c
stant growth is limited. Moreover, the effective Hamiltonia
can be diagonalized in a limited subspace of states wh
dominate the bound state dynamics, instead of using the
basis. The small window Hamiltonian reproduces the wh
effective Hamiltonian bound state eigenvalue with accur
order 10% or better.

The model exhibits an inversion of the energy hierarc
of states when the coupling constant becomes slightly la
than 1. On the one hand, this feature is welcomed becau
decouples the small momentum scales from the bound s
dynamics. On the other hand, this feature appears at the
pling larger than 1 and it is beyond the reach of a sim
perturbation theory. One can ask if a similar difficulty mu
exist in QCD. The expected answer is no. For one may h
that gluons effectively obtain masses already at small va
of the coupling constant through the gluonic coupling
These masses~or potentials! may set the states with gluon
appart in energy when the width gets small before the c
pling becomes too large for being treated in perturbat
theory.

A comment is in order concerning the similarity approa
in view of the latest findings in the lattice calculations th
glueballs are heavy@11#. The hypothesis is that glueballs a
heavy because the effective potentials binding two glu
are much stronger~perhaps by a factor of four! than the
potentials that bind quarks. The reason is that gluons ar
the octet representation of SU~3!, which is analogous to be
ing a doubly charged object in SU~1!. Thus, if one compares
a quark bound state to hydrogen, a glueball bound stat
comparable to helium, but with one doubly charged elect
rather than two singly charged electrons. Obviously the
lium and doubly charged electron are far more stron
bound than hydrogen is.

What this means is that as the coupling constant incre
with decreasing Hamiltonian width, the coupling of gluo
will always be four times larger than the coupling for quark
which suggests the gluon coupling would be expected
become strong enough to create a bound state of glu
while still too small to bind quarks. The strong gluon bindin
would naturally lead to a high effective mass for gluon
making them unlikely to be present in quark bound sta
This would explain why we see no evidence of explicit co
stituent bound states involving gluons as well as quarks,
allow the quark-quark potential to have strong higher or
corrections. A major question for this picture would be
understand sum rules for deep inelastic scattering wh
have been interpreted as implying a large contribution fr
constituent gluons inside the proton. It might be that dev
opment of the similarity transformation formalism wou
show that sum rule data refers more to ‘‘current’’ quarks a
gluons, before the similarity transformation is applied, rat
than to constituent quarks and gluons after the transfor
tion, where the gluon contribution could be very small
these arguments.

Our study shows that the convergence of perturba
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theory is in jeopardy beyond the second-order expansion
large values of the running coupling constant. Reference@1#
suggested that one can use the phenomenological succe
the constituent quark model to improve convergence w
solving QCD in the light-front Hamiltonian approach. Th
improvement is expected to result from using a constitu
quark Hamiltonian as a first approximation to the sm
width effective Hamiltonian of QCD. The chance exists, th
such a constituent quark Hamiltonian is not much differe
from the theoretical one in QCD. Therefore, the distance
the true effective Hamiltonian may be calculable in pert
bation theory. We wish to add a comment on how this s
gestion could be checked numerically in the model.

The analogous step could be done in the present mod
the following way. For certainl0 close to the bound stat
formation scale, order a few GeV, the running coupling,g̃0

[ g̃(l0), has a value comparable to 0.5. Let us denote
exact value ofg̃0 by gs (s is chosen for ‘‘strong’’!. The
perturbative expansions towards smaller widths order 1 G
in terms of g̃(l) are hard to continue because of the lar
distance from the small couplingg in the initial Hamiltonian.
In these circumstances, we can add and subtract a sui
term in the HamiltonianH(l0), saymCQM ~CQM stands for
the constituent quark model!. This step changes nothing. Bu
we can multiply the subtracted term by the ratiog̃0 /gs . For
g̃05gs nothing is changed in the theory. On the other ha
if we replace g̃0 by a small number, the subtracted ter
together with the original interaction can be treated a
small perturbation. In fact, ifmCQM represents the bulk of the
effective Hamiltonian then the difference between the eff
tive Hamiltonian andmCQM will not lead to large corrections
even if g̃0 is raised togs . Thus, perturbation theory in term
of g̃0 could be continued towards the smaller widths and
coefficients could be kept small. One can think of the Ham
tonianmCQM as a matrix which has only one matrix eleme
different from 0, right in the place on the diagonal where t
bound state eigenvalue appears. Other forms are also
sible. The key example is provided by the approximatio
shown in Fig. 2. The general feature of the example is tha
amounts to the insertion of the similarity factors and adju
ing the couplings.

Another opportunity for improvement in the numeric
accuracy is related to the irrelevant operators. Analysis of
renormalization group equations for low-energy matrix e
ments suggests that for small widthsl, the correctionson
the right-hand side in Eq.~2.13! should include the term
h(l) with matrix elements of the form

hmn~l!5
h̃~l!

l
~Em1En!AEmEnexp@2~Em2En!2/l2#.

~4.1!

A new coupling constanth̃; g̃ 2 is introduced. The new term
behaves asl21 for large l and it disappears forl→`. It
remains to be verified how much this term can improve
accuracy of the perturbative evaluation of narrow effect
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Hamiltonians and the resulting bound state eigenvalues.
two couplingsg̃ and h̃ are related and should be consider
coherently@12#.

Too little is known yet about equations of the type~2.14!
to say if they can help in accelerating convergence of
perturbative expansion.

We should mention that whenb is reduced towards 1 th
number of states per unit of the energy grows and the res
ing matrices would have to be much larger than in the
ample we described. In fact, an interesting problem ar
when one considers more than one state at each s
Namely, when we have only one state per scale then
degenerate or near neighbor interactions arise. If more s
appear at each scale and they couple to the near neigh
the couplings are not reduced by the similarity transform
-
rd

.

he

e

lt-
-
s
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tes
rs,
-

tion. The interesting question is how large can be the eff
tive energy range of such near neighbor interactions?
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