PHYSICAL REVIEW D VOLUME 57, NUMBER 6 15 MARCH 1998

Asymptotic freedom and bound states in Hamiltonian dynamics
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We study a model of asymptotically free theories with bound states using the similarity renormalization
group for Hamiltonians. We find that the renormalized effective Hamiltonians can be approximated in a large
range of widths by introducing similarity factors and the running coupling constant. This approximation loses
accuracy for the small widths on the order of the bound state energy and it is improved by using the expansion
in powers of the running coupling constant. The coupling constant for small widths is of order 1. The small
width effective Hamiltonian is projected on a small subset of the effective basis states. The resulting small
matrix is diagonalized exactly and the bound state energy of the original theory is obtained with accuracy of
the order of 10% using the first three terms in the perturbative expansion of the effective Hamiltonian. We
briefly describe options for improving the accuraf80556-282(98)03006-9

PACS numbd(s): 11.10.Gh

I. INTRODUCTION fective Hamiltonians in the matrix model is obtained numeri-
cally using Wegner’s equation. The bound state eigenvalues
So far, we do not have a precise theoretical description oéf the effective Hamiltonians are found by diagonalization of
the bound states of quarks and gluons in QCD which couldheir matrices.
simultaneously explain the parton model and the constituent We start from the general assumption that the asymptoti-
quark model of hadronic structure. In particular, QCD is as-cally free theories have many degrees of freedom which are
ymptotically free and the perturbative running coupling characterized by different scales of energy as measured by
grows at small momentum transfers beyond limits. This ris€rainHo. Then, we define matrix elements of the initial
invalidates the usual perturbative expansion in the region ofiteraction HamiltoniarH, between eigenstates bk,.
scales where the bound states are formed. The model we study can be alternatively derived by dis-
Reference[1] suggested a light-front Hamiltonian ap- Cretization of the two-dimensional Schiioger equation
proach to this problem which is based on the calculation ofVith @ potential of the form of a coupling constant time§ a
the effective Hamiltonians using the similarity renormaliza-function[7]. The continuous version of the two-dimensional
tion group[2,3]. The effective Hamiltonians can be calcu- model has been studied by many authors. The discretized
lated in perturbation theory and their bound state eigenvalueéersion was analyzed in Ref8] using the exact solution to
can be obtained using a number of methods for diagonalizini/egner's equation. It was shown there that the Wegner
Hamiltonian matrices, not available within the standard La-€quation has the renormalization group interpretation.
grangian approach. In addition to the calculation of the had- This paper is organized as follows. In Sec. Il we describe
ronic spectrum, one of our purposes is to obtain the quarkh® model. The parameters are chosen in a way which will
bound state wave functions that can be used in the partomake it clear that the method of solution we use may have a
models of large momentum transfer processes. An alternd¥ide range of other applications. Numerical results for the
tive approach is the lattice gauge theory which is makingEffeCtive Hamiltonians are presentEd in Sec. Ill. We discuss
progress, but does not easily yield such wave functdis the approximation based on the similarity factors and the
Other recent research in the renormalized light-front Hamil‘unning coupling constant and we describe results obtained
tonian approach to QCD is described in R&. in perturbation theory. In particular, we study bound state
Wegner[6] proposed a flow equation for Hamiltonians in €igenvalues and selected matrix elements of the effective
solid state physics which is of the same kind as in the simiHamiltonians which are most relevant to the bound state dy-
larity renormalization group. Wegner's equation is based oftamics. Section IV concludes the paper with a discussion of
an explicit form for the generator of the similarity transfor- S0me options for improvements in perturbative calculations
mation and corresponds to the Gaussian similarity factoPf the effective Hamiltonians in the range of widths near the

with a uniform width. bound state formation scale.
This paper describes a numerical study of the key ele-
ments of the Hamiltonian approach in a simple matrix model Il. MODEL

which is asymptotically free, contains a bound state and can

be diagonalized exactly. We check the accuracy of different The HamiltonianH, is assumed to have a finite discrete
approximations for effective Hamiltonians, including pertur- set of eigenstates:

bation theory, by comparison with the exact calculation. The

exact solution for the renormalization group flow of the ef- Holi)=E;j|i). (2.1
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The eigenstates are orthogonal and normalized: We use Wegner's flow equati¢B] which provides a very
. . elegant definition of the similarity transformation with a uni-
(i]jy="2". (22 form band width and an explicit expression for the generat-

. . . ing matrix. The effective Hamiltonian matrices{="H(s),
The dynamics of states in the space spanned by this set ISe parametrized by the paramesers ranges from 0 toe.

d;eﬂnedt by the mterac(:jtl:)anamlltonlaH, » whose matrix \yeqner's original notation for this parameter wasnstead
elements are assumed 1o be of s. It will be shown that the Hamiltonian width is given by

(ilH]j)=—9gVEE;, (2.3 A=1//s.

The effective Hamiltonian is divided into two parts:
where g is a dimensionless coupling constant. The whole
Hamiltonian is denoted bid, H=Hy+H, .

In the current study, we choose the eigenvaluebl gin
the form

H=D+H—D=D+V. (2.5
D is the diagonal part of the effective Hamiltonian matrix:

Ei:bZi_ (2.4) Dmn=DmOmn, (2.6
whereD,,=Hnm. Vis the effective interaction. It is equal to
the off-diagonal part of the matri#{. The Wegner flow
gquation ig6]

In the numerical calculations we ude=\2. The integer
poweri ranges fromM to N. The integeM is considered to
be large and negative. The lower infrared bound on the fre

energies is ¥. The intege is considered to be large and dH/ds=[[D,H],H], 2.7
positive. The upper, ultraviolet free energy bound is given by
2N, In the numerical study, we udd = —21 andN= 16. with the initial condition
For the purpose of analogy to QCD, we adopt the conven-
tion that the energy equal to 1 corresponds to 1 GeV, al- H(0)=H. (2.9

though the units of energy are arbitrary. Thus, the ultraviolet
cutoff corresponds to 65 TeV and the infrared cutoff corre-Equations(2.7) and(2.8) ensure that{(s) is a unitary trans-
sponds to 0.5 eV. form of the initial HamiltonianH. In terms of the matrix

With the above choices, the Hamiltoni&his a 38x38  elements, we have
matrix. For the coupling constamf>1/38, the matrix has
one negative eigenvalue and 37 positive eigenvalues. The
coupling constant is adjusted to obtain the negative eigen-
value equal to-1.00000000 or, in our conventior,1 GeV.
Namely, g=0.06060600631. The many digits are given for =2D)VniVin - 2.9
readers interested in the numbers. , )

The eigenstate with the negative eigenvalue corresponds Eduation(2.9 can be approximately solved for a small
to the s-wave bound state in the continuum Satirger ~ couPling constang by keeping only terms order 1 argl
equation with thes potential. The positive eigenvalue eigen- Namely,
states correspond to thewave scattering states. We refer
the reader to the work of Jacki] for details. The only new Hnn(S) = Emmn— 9VEmEn€XH —S(Em— En)?].
steps required are the replacement of the continuous energy (2.10
scale in Ref[7] by the discrete one in Eq2.4) and the
introduction of the infrared and ultraviolet cutoffs. These
steps are described in R¢8]. ; -2 SO :

To verify the ultraviolet renormalizability of the model Secgjsrggr?ﬁﬁgggg relatest=) "%, The similarity factor is &
and its mfrared convergence, we have studied a sgt Of exact |t is well known that the coupling constagtmust depend
results for different numbens! andN. The same qualitative on the upper energy boundN2in order to eliminate the
results as foM =21 andN=16 can be obtained already |, rithmic divergences in higher orders whidn-. Ref-

for N M :hN:|8. Wel hall_v e thfecked‘lthe 1rgnor(;nallzabll_|ft_y dby erence[8] demonstrated that the Wegner flow equation has
varying the ultraviolet limitN from 4 to 16 and we verified e giandard renormalization group interpretation. Lowering
the infrared convergence by varying the lirht from —4 to the widthx =s~*2in the discrete model is similar to lower-

—21. Wle have srt]ud||ed in detail the C?SEM :E: 12.The  ing the upper bound on the energies of the interacting states.
eigenvailes in the lalier case are almost he same as tH*F]erefore, in the higher-order analysis, we replace the cou-

corresponding eigenvalues in the cdde= —21 andN=16 . . . .~
with the accuracy better than 1% for the extreme eigenvalpllng constang in Eq. (2.10 by the running coupling(s)

ues. The intermediate eigenvalues match with much highetnd use the expansion ig(s) to remove the logarithmic
accuracy, correspondingly. For example, eigenvalues order divergences. We will gradually change the notation from the
have the same 5 significant digits in both cases. mathematical parametsrto the Hamiltonian energy widtk

We calculate effective Hamiltonians using the S|m||ar|ty in our parametrization of the effective Hamiltonians, includ-
renormalization group equations in the differential form. Theing the running coupling constant.
effective Hamiltonians are parametrized by their width in_ The small coupling and large width approximation for
energy. The width is denoted by. g(s) can be derived in the following way,, and E, are

dHmn/ds=— (D= Dp)Vnt > (Dt D,
|

In this approximation,D,,=(1—0)E,,. It is clear that the
parametes and the width\ of the similarity renormalization
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very small numbers fom andn close toM. Therefore, Eq. l1l. NUMERICAL RESULTS
g_g) for m andn close toM, g1 ands close to 0, reduces The goal of our numerical study is to understand the

structure and determine the usefulness of the effective
d3 d Hamiltonians for the c_alculation qf the bound state energy.
——=-7g2—> exp—2E?). (2.1)  We want to find out if perturbatively calculated effective
ds ds5 Hamiltonians of small widtffof order 1 GeV can reproduce
the bound state eigenvalue. We are interested in perturbation
Integration of Eq(2.11) for our choice of the model param- theory because it is the tool we can use in the Hamiltonian
eters gives the approximate running coupling constant  approach to QCD. We aim to make the widthas small as
possible because the smaller is the width the smaller basis of
~ g effective states is required to calculate the bound state eigen-

N)= . 2.1
9 T e 04 mingy 2P value. _ ,
The questions how small can be the width of the pertur-

N is taken in units of GeV. The number 0.4 results from Eq_batively calculated effective Hamiltonians and how well the
(2.11) because the contributions of terms withclose to Hamiltonians can reproduce the bound state properties, are
In\2/In4 are smaller than 1. of principal interest because the perturbative running cou-
Equation(2.12 implies that the family of the effective pling constant grows in asymptotically free the_ories when
theories exhibits typical asymptotic freedom behavior: theh® width gets smaller and at some unknown point perturba-

coupling gets smaller when the effective cutafis large. tion theory becomes useless. _ _

The effective Hamiltonians can be written now as N The approximate result for the running coupling constant
ga(N\) in Eqg. (2.13 can be compared to the exact value of
Hon(N) =EmSmn— 9a(AN) VEmEneXf — (Ep— En)?/A?] the running coupling. The exact solution is obtained by the

numerical integration of the flow equation, i.e., HQ.7).
+corrections. (213  The numerical computations were performed using the

_ Runge-Kutta integration algorithm of rank{@]. The results

Here,Dy(N)=[1—ga(\) ]E,+ corrections. were obtained using two independent algorithms. The

Equation (2.13 demonstrates the utility of Wegner's Hamiltonians were cross checked using various theoretical
equation. However, the uniform width of the effective conditions such as the hermiticity and width-independence of
Hamiltonian distinguishes this solution from the wideningthe eigenvalues.

band structure in the similarity scheme from R3] and The exact running couplingg(\), is defined as
[3]. The widening of the band is useful in high-order pertur-
bation theory. A whole class of generalized Wegner equa- IOV =—Hy ms 1N/ NVEWEW 1.1 (3.1

tions for the Hamiltonian matrix elements can be written
which allow the high-energy widening of the effective This definition is motivated by the requirement that the cou-
Hamiltonian width. Namely, pling constant determines the strength of the interaction at
small energies as in the Thomson limit in QED, which is a
H, -1 standard way to define a coupling constant. Therefore, we
we ~alFHE L (2.14  choose the off-diagonal matrix element of the Hamiltonian
with the smallest possible subscripts. In fact, one could use

In the original Wegner caseF{H}=[D,H]. We have matrix elements with larger subscrigteindj as long as the

made calculations in the model using different formula:sCorresDondlng energids andEj are negligible in compari- .
for the operationF. For example, we usedF{%}] son to the bound state formation scale and the whole analysis
. ] mn

= 00| A ] = X](|A e = X)¥A i H where A of the bound state dynamics would not be altered since the
mni mn mn’t*mn:»

mn ; ;

= (D,,—D.)/(Dyy+ D,) andx is a function of\ such that resulltlng coupling constant -Would bg the same. _

1>x(\)>Xo>0, (see also Re{10]). Nevertheless, we limit ~ Figure 1 shows the running coupling constagtandg,

the present paper discussion to the application of the originaS functions of the width.. It is visible that the approximate

Wegner equation, for simplicity and because no clear advargolution blows up in the flow before the effective Hamil-

tage of the more general equations over the Wegner equatidfnian width is reduced to the scale where the bound state is

has been visible in the numerical studies we performed sérmed.

far. The bound state formation scale is defined using the rel-
The structure of Eq2.10 demonstrates that the approxi- evant effective Hamiltonian matrix element which is de-

mate solution including the running coupling cannot be ob-ined as

tained in the first-order perturbation theory. Equati@rLl) _

shows that the running coupling constant approximation can m(N)=H_;_1(N)—0.5 GeV. 3.2

be obtained in perturbation theory if one keeps terms order

92. The approximate running couplirgy(\) is given in Eq. & becomes equat 1.5 GeV when the diagonal matrix ele-

(2.12. mentH_, _, of thg effective Hamiltonian becomes equal to
The question is how large are the corrections indicated ithe bound state eigenvalue,1 GeV. The widthh where the

Eq. (2.13? The next section describes our numerical study?ound state eigenvalue appears on the diagonal is equal to

of the model. about 0.5 GeVy stays constant for smallex. This width
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FIG. 1. The approximate running coupling,(\) from Eq. FIG. 2. The bound state eigenvalue of approximate effective

Hamiltonians in ratio to the exact valuel GeV. CurveE results
from Eq. (2.13 with correctionsset equal 0 and the coupling con-

stant set equal to the exact vaigeat givenx. CurveD is obtained

(2.12 and the exact running coupling(\) from Eqg. (3.1) plotted
as functions of the effective Hamiltonian width The exact re-

duced matrix element from Eq.(3.2) is also plotted to show the h ‘ ; | . .
width range where the bound state eigenvalue appears on the dial _t_e same way ak except forH, eigenva ues n the Gaussian
imilarity factor replaced by the diagonal matrix elements of the

onal. -~
approximate effective Hamiltonian, i.eD=(1—g)E, (see the

scale(order 1 GeV is called the bound state formation scale.tex). The intermediate curve markegl is obtained by usingD
The exact result of integrating E€R.7) gives the function =(1—9)E in the exponent, i.e., the initial coupling instead of the

w(\) which is plotted in Fig. 1. running one.
Figure 1 also shows that the exact effective coupling con-
stant is close to the one in E(R.13. This is a hint that the nal matrix elements are within the range ordearound the
corrections indicated in Eq2.13 are small for larger than  given state diagonal matrix element. =2 only a small
order 16 GeV. The effective Hamiltonians for smallemay = number of states participate in the interaction of states with
still have similar structure, but the running coupling is notthe diagonal matrix elements larger thanTherefore, when
given by Eq.(2.12. N\ drops below the bound state formation scale, the small
The most important feature visible in Fig. 1 is that the energy(small diagonal matrix elemenstates are decoupled
exact effective coupling constant does not grow unlimitedly.from the bound state dynamics.
This encourages us to use expansion in the running coupling The rise of the coupling above 1 and the inversion feature
constant in calculations of the effective Hamiltonians. suggest that even in the full Hamiltonian flow the perturba-
On the other hand, the diagonal matrix elemeftg tive expansion is useless at the bound state formation scale.
=(1-9)E,, with smallm become negative wheg grows  But the coupling approaches 1 from below rather smoothly.
above 1[8]. Thus, the absolute energy order of states is/Ve can ask for how small the effective Hamiltonian can be
reversed. The diagonal matrix elements for states corre€liably calculated in perturbation theory.
sponding to lowesE,, become negative, but they are small ~ Scaling symmetry in the model and Fig. 1 suggest a large
in modulus. At the same time, the diagonal matrix element$ange of validity of perturbation theory down to at least the
for states corresponding to larggy, become more negative. Width order 16 GeV where the formu(@.12 begins to fail.

Therefore, wherg grows above 1, the states correspondingNamely’ the Hamiltonians in Ed2.13 possess the discrete

L . ; caling symmetry: two effective Hamiltonians for two values

Tgvigrrgi ?{,'S'Zﬁgg';féggciﬁ;ﬁ 2”85313/6:6‘5?3;: ecome mucﬁf the width \ differing t__)y t_he factor‘pfz_ have matrix ele-

This inversion feature reverses the role of the bilinear™e"tS reiated bylhe shift>i =1 andj—j—1 and replace-
terms inV in Eq. (2.9). The coupling stops growing and it ment ofg(x) by g(b~2\). Thus, the flow of the effective
begins to drop. At the same time the bound state eigenvalud@miltonians is reduced to the change of the width and the
is localized in the diagonal matrix elemeht ; ;. This ma- ~ coupling constant for as long as one can neglect the bound-
trix element corresponds to the state which appears to be &Y effects due to finité andM. Since the coupling in Eq.
the bottom of the energy scale. The bound state dynamics i€.12 is obtained keeping terms ordgr? and it runs cor-
located in matrix elements at the center of the effectiverectly down to about 16 GeV, one can expect that dL3
Hamiltonian matrix instead of the lowest indices corner, aglescribes the effective Hamiltonians correctly down to that
one might expect if the lowest momentum scales were imscale.
portant in the bound state formation. Further renormalization Figure 2 shows the bound state eigenvalue of approximate

group flow reduceﬁ below 1 and successively establishes€ffective Hamiltonians in ratio to the exact valuel GeV, as
small positive eigenvalues on the diagonal. In other words2 function of the widthi. Ratios formed this way will be
the negative bound state eigenva'ue is settled before ma ed as measures Of the aCCUI’acy Of effective Hamiltonians
low positive eigenvalues are. The bound state eigenvalue aggsroughout this work.

pears almost independently of what happens at the bottom of Three approximations are shown in Fig. 2. The one de-
the positive spectrum. This can be verified by chandihg n_oted by E results from diagonalization of Hamiltonians
The Hamiltonian widthx limits couplings of a given state 9iven by Eq.(2.13 with corrections set equal 0 and inserting
with other states to a limited number of states whose diagothe exact value off(\) for g,()\). The curve labeled b is
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FIG. 3. The ratio of the effective Hamiltonian bound state ei- FIG. 4. The accuracy of the bound state eigenvalues obtained
genvalue to the exact result, for the Hamiltonians of wiNtlcal- from effective Hamiltonians whose renormalization group flow
culated using expansion in powers of the initial coupling congdant with the width\ is calculated expanding in powers of the effective
upto 1,2, 3, and 4, respectively. It is visible, that the expansion igoupling constant(\,) and including terms order ig(\,) and
not useful in the calculation of the bound state eigenvalue. T2(\y). The accuracy is given as ratio of the bound state eigen-

value obtained by diagonalization of the effective Hamiltonian of
obtained in the same way except for one modification that irwidth \ to the exact value;-1 GeV. The curves correspond to the
the exponentE,, and E, are multiplied by the factor 1 indicated values ok (in units of Ge\J. The result of expansion in

_a()\)_ This multiplication replacek,, andE,, in the expo- the initial couplingg is denoted byx. The arrows show points
nent by D, and D,, respectively. The intermediate curve W€ =Xo-
markedg is obtained by usin@>=(1—g)E in the exponent,

. . .7 . cations in the bound state dynamics.
i.e., the initial coupling instead of the running one. . .
- The reason we stress this fact here despite that such result
The three curves show strong deviation from the exact .

eigenvalue at the beginning of the flow. This is caused by thénlght be expected in the Lagrangian approach, is that we

boundary effect due to the cutdff. The curves also deviate s;udy a I—_Iamlltonlan approach. The Har_n_|lton|an approach IS
. . L - different in many respects from the familiar perturbative La-
from 1 at small width. This deviation shows the limited va-

lidity of the approximation. It is also clear that the Gaussiandandian approachdd]. In the light-front Hamiltonian ap-

similarity factor with free energies gives a better approxima—pro"’mhes’bIt 1S often sHen;thasl_f,urr;nefd that one can.lana}lyze
tion than the same factor with the diagonal matrix elementsnonper.tur ative aspects of the light-front QCD Hami tonian

. dynamics using canonical Hamiltonian terms and neglecting
; ) = ) %he running coupling effects. Figure 3 warns us not to do so.
running couplinge.g., only terms order 1 angl are used in In contrast to Fig. 3, Fig. 4 shows results obtained from

the case of curvéE) may produce effective Hamiltonians gffective Hamiltonians calculated in the second-order expan-

: ) 0 "
o s e G e o ln ntems of th efecve couping consiho). for a
: 9 set of choices oh . The curves are marked by the value of

that by simply introducing the similarity function and vary- X, in GeV. For comparison, we include the second-order

ing the coupling one can reduce the width of the Ham|lton|anresult of the expansion in terms gfwhich is marked by the

by a factor order 4000 and make a small error. Other eigen—i oo and equals to the curve marked 2 in Fia. 3. The actual
values are more accurate with the exception of eigenvalue%g q 9. .

order or larger than for which the approximation is not Value ofg which is used to evaluate the Hamiltoniak¢)
expected to work. However, the width is still quite far from is equal to the exact value @f(\) in the model. In a theory
the bound state formation scale. The key question now isvhere an exact solution is not known, the exact coupling
how far down in the width one can get using an expansion irconstantg(\ o) is not known and its value must be fitted in
the running coupling constant. H(\) at a useful value ok. Varying of A should not cause
The first comment we wish to make concerning perturbasignificant changes if the approximation and the fit are nearly
tion theory is that the direct expansion in powers of the ini-exact.
tial couplingg is not useful for calculating effective Hamil- ~ The expansion of the renormalization group flow in pow-
tonians with sr_nall width. Thls_ls |Ilustre_1ted_|n Fig. 3 by the or5 of an effective coupling (o) is done in the following
plot of the ratio of the effective Hamiltonian bound stateway_ One expands the flow in powers of the initgland

eigenvalue to the exact result for Hamiltonians of width computes (\o) as a series iy using Eq.(3.1). The latter
calculated using expansion in E@.7) into a series of pow- ) putesg(Xo) 1eS Iy using £q.(3. 1.

ers ofg up to 1, 2, 3, and 4. Note that the analogy betweerp€ries is inverted and is calculated as a series B()o).

the model and QCD is such thgtin the model corresponds Then, the whole family of effective Hamlltomani param-
to the strength of the two-particle interaction which is of theetrized by\ is calculated in expansion of powers @f\,)
second order in QCD. Therefore, terms ordehere corre- by substituting the inverted series into the known expansion
spond to terms ordegdcp, terms orderg® correspond to  in powers ofg.

terms orderggCD, etc. Figure 3 C|ear|y demonstrates that Thus, the effective Hamiltonians are calculated USing ex-
perturbative expansions in terms of the canonical couplingpansion in powers of (\o). They are diagonalized and their
constant in the initial Hamiltonian are not suitable for appli- bound state eigenvalues are plotted as function& ,ofor
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every single value ol, we choose. It is expected that an 1.2

expansion in powers oﬁ()\o) works only for effective -
Hamiltonians with widths\ in the vicinity of Ay. This fea- 1.1f
ture is clearly visible in Fig. 4 fohy=, 512, 32, 8, 2, and 3
1 GeV. The arrows in Fig. 4 show points wheve= . 1.0
The next question is what happens in the higher orders of .
perturbation theory. This question can be only partially an- 0.9}
swered on the basis of the limited numerical studies we have . c 9
performed. Therefore, we limit the discussion here to the 0.8 I W
analysis of the lowest orders in the perturbative expansion 64 16 4 1
for the key matrix element of Eq3.2) and the bound state A [GeV]
eigenvalue.
Firstly, note that Eq(2.12 can be viewed as a result of FIG. 5. The accuracy of the perturbatively calculated effective

summing a geometric series. It is clear that wherap- Lo . ~

o ) = Hamiltonians as measured by the matrix elemek) from Eq.
proaches 2 GeV, the coefficients in the expansiomofin (3.9 in ratio to its exact value. The numbers label results obtained
powers ofg grow as powers ON' Therefore, one should by expanding in powers of the running coupling constgih)
expect that whery>1/N the series will not converge. The inciyding powers up to 1, 2, 3, and 4, respectively. The ratio would

value ofg we are using in the model is only a little bit pe indistinguishable from 1 for widths larger than 64 GeV if it were
smaller thani, as required by the condition for the bound plotted in the scale of this figure.

state energy to be-1 GeV. ForA>2 GeV the coefficients

are powers of much smaller numbers thénand one can tegt the series and see that it provides a good convergent

expect a small number of terms to reproduce the runnin roximation to thai(g) for very small values of, such
coupling value, but when the width gets small, the number o PP w9 y ’
as 0.001 or even 0.01.

terms in the expansion must become very large to reach the The exact value of the running coupling constant
approximate result. When one switches to the expansion in i i ~ '
the exact running coupling constant, the number of neede8l (16 GeV), is of the order 0.27. For this value gfone
terms is unknown. We will discuss the lowest 6 terms only.obtains the result u(16 GeV)=(—0.13500+0.000057
Secondly, it follows from Fig. 1 that the exact solution for +0.00079-0.00074+ 0.00174-0.00671) GeV. This sum
g(\) is limited and always stays below 1.1, in a dramaticdoes not include terms order 1. The first term comes from the

distinction from the approximate running coupling resultorderg, second fromg ?, etc.
which diverges below 4 GeV. This suggests that the pertur- |t is clear now that for the first three terms ordgf with
bative expansion for the full Hamiltonian may be extendiblek=0, 1, and 2 we can expect convergence of the effective
beyond the barrier around 4 GeV. We show below it does{amiltonian calculation while the higher orders may destroy
happen so for the first three terms in the expansion. it if one keeps only a few terms.

The difficulty we encounter with terms of higher order  The need for many orders in the expansion to reach con-
than g2 can be seen still using Eq2.12. Supposex  vergencebeyond the first three terniis the expansion can be
=16 GeV. We see in Fig. 1 that the second-order perturbasuggested already on the basis of Fig. 1. Namely, we see that

tive result forg,(16 GeV) is quite close to the exact cou- the perturbative switching of,(\) from +o to —o is

p“ng Constanﬁ(]_B GeV) SO, let us approximate the func- smoothed out in the full I’enOI’Taliza’[ion group ﬂOW’@)\)
tion g(\) by the functionaa()\) for A=16 GeV. Then, However, the turn of the curvg below 1 GeV is sharp and

using Eq.(2.12 atA =16 GeV, one obtains the inverse series2 large number of terms is required to reproduce the whole
curve.
It is also visible, that the successive terms may cancel out.
=9 —(13.49 )2+ (13.49)3— (13.49 )*+---. (3.3 F_or e_xample, the fourth-order term may remove a large con-
9=9-(13.49)"+(13.49)"~(13-49) @3 tribution of the third-order term. If the numerical cancella-

tion appears for many digits, the round off errors require a
pclose examination.

We have not performed extended studies of the model

with the alternating sign. The first 6 actual coefficients whic

replace the successive powers of 13.4 in the full perturbativ% dthe | q heref limi |
expansion are 1.0, —13.42, 177.3, —2309, 29752, Peyon the lowest-order terms. Therefore, we limit ourselves

and —379277. For example, the approximation in E8.3) to the presentation of Figi. 5and 6 Which iIIust.rate.What
deviates from the actual coefficients by about 5% for thehappens up to terms order*. The effective Hamiltonian
coefficient ofg* and about 20% fog °. H(\) is expanded in a series of powers @f\) (i.e., the

Now, let us calculate the matrix elemea(16 GeV) of ~ "unning coupling at the same value f. ,
Eq. (3.2 as a power series ig. The actual coefficients Figure 5 shows the accuracy of the perturbatively calcu-
are—050 —6.71 —88.6. — 1153. — 14832 and— 188759, 'ated effective Hamiltonians as measured by the matrix ele-

Inserting the expansion from E€B.3 one obtains the coef- Mentu(\) from Eq. (3.2 in ratio to the exact value. The

ficients inz(16 GeV) in front of the powers of (16 GeV), expansion including terms order 1 agdwvorks with 10% or
from the 1st to 6th, equal—0.5, 0.0008, 0.04, €ven better accuracy down to the width 1 GeV. It is also

—0.14, 1.2, and—17.3, correspondingly. One can easily visible, that the expansion including terms ordgf pro-



3564 STANISLAW D. GLAZEK AND KENNETH G. WILSON 57

TABLE |I. Ratio of the bound state eigenvalue of the small
window Hamiltonian with indices limited bgn andn, to the eigen-
value of the whole effective Hamiltonian at=1 GeV calculated
using expansion up to second power in the running coupling
g(1 GeV). 0.993 corresponds to the absolute accuracy of the
bound state eigenvalue equal 12% and 0.908 to 199 the text

0.9 g window/whole h=2 n=1 h=0
16384 1024 64 16 4 1
m=-8 0.993 0.993 0.961
A [GeV] ~
m=-5 0.940 0.940 0.908

FIG. 6. Accuracy of the bound state eigenvalue obtained from

diagonalization of the effective Hamiltoniarfg(A) expanded in . .
g (A) exp model that the bound state eigenvalue can be obtained from

g?gﬁfﬁig;ﬁg&é?ﬁ ??]lépchgg(e)‘i ::gltlé?]'gg cpu;\\;\'leerlfi;pztgv&éf diagonalization_ of ar:) effective Hamiltonian with the width

from the left boundary region. The curve order 2 shows 10% accuprder 1 Gev.wlth 10% accuracy.

racy down to the width 1 GeV. The lack of convergence for higher- The rema'r,"ng question 'S. how small the spacg of statgs

order curves at small widths is discussed in the text. Can_ be on which one can project the ”a”F’W effective Ha,m'l'
tonian and reproduce the bound state eigenvalue by diago-

duces accuracy on the order of 3% or better down to th(glalization of the projected matrix. The wave function is ex-

. - ted to be reproduced with a similar accurac
width order 2 GeV, but the accuracy drops down si nifi- P€¢ P . . Y- .
cantly near 1 GeV. The third power te¥m erC))dUCES a cgnsid— The answer is provided in Table I. The table contains the

erable drop in the accuracy which is then partially Counter_rat|o of the bound state eigenvalue obtained by the diagonal-

balanced by the inclusion of the fourth power term. Theization of a small window matri¥{(\) whose matrix ele-

oscillation pattern needs further studies to explain. We hav&ents are the same as the matrix element#{(X) in the

not performed such studies. small window, but they equal O everywhere outside the win-
Figure 6 shows the accuracy of the bound state eigenvalugow. The indices of the window range from to n includ-

obtained from diagonalization of the effective Hamiltoniansing the limiting values. The bound state eigenvalue of the

H(\) expanded in powers of the running couplimg)) window is d_ivided b_y th_e bound state eigenvalue of the
including powers up to 1, 2, 3, and 4, respectively. The curvavhole effeclve Hamiltonian. Table | gives the results ob-
1 for the first-order calculation matches curkein Fig. 2  tained fromH(1 GeV) which is calculated in second-order
away from the ultravioletleft) boundary region. This feature expansion in the running coupling constay(tl GeV). The

confirms the expectation based on Figs. 1 and 2 that a lowhound state eigenvalue of the whole effective Hamiltonian
order perturbative expansion in the running coupling con4¢(1 GeV) is equal —0.8902 GeV (the exact value is

stant can accurately reproduce the effective Hamiltonians at 1 Ge\). The entries in Table | show that the small window
small width. The curve 2 represents the result of the secondnatrix easily reproduces this result with a relatively high

order expansion and shows a considerable improvement. Thgcuracy. This is a spectacular feature of the method and the

accuracy is about 10% or better down to the width 1 GeViodel. Eor the coupling consta@(l GeV) is equal 1.05

which is at the edge of the bound state formation scale. Thg,q i the bound state eigenvalue accuracy one obtains

second power ofy in the model is analogous to the fourth from the small window Hamiltonians calculated in second-

power of the coupling constant in QCD. Thus, the analogougrder perturbation theory is on the order of 10%.

calculation in QCD requires the fourth-order expansion of Table | demonstrates that our Hamiltonian approach can

the effective Hamiltonians in powers of the strong interac-he ysed to calculate a ¥Q0 or even 55 matrix whose

tion coupling constant. N lowest eigenvalue reproduces the full theory bound state ei-
It is visible in Fig. 6 that for the small values @f the  genvalue with accuracy order 10 to 20%. This model result

perturbative expansion is convergent. However, as expectedan be viewed as encouraging to pursue a similar strategy in

at small widths the powers 3 and 4 of the coupling constantase of QCD. However, the slow down or absence of con-

appear with large coefficients. The curve including terms uprergence beyond the second-order expansion near the bound

to the third power ofg(\) falls down quite low when we State formation scale, require improvements.
substitute the exact value of the coupling.

The fourth_—order curve labeled 4 is_ ended at the bottom IV. CONCLUSION
edge of the figure to avoid overlap with curves 1 and 2. In
fact, the curve 4 continues down to about 0.53 Mt We have studied two basic approximations which may be

=16 GeV, shoots back up to 0.94 at about 12 GeV, deepsf help in the Hamiltonian calculations of bound state prop-
down again to about 0.5 at 8 GeV and skyrockets right afteerties in asymptotically free theories. The first one can be
8 GeV crossing 1 and reaching about 100 at 1 GeV. Thidriefly described as constructing effective Hamiltonians by
erratic behavior is clearly correlated with the pattern visibleintroducing the similarity factors and adjusting coupling con-
in Fig. 5. stants. We provide the definition of the asymptotically free
Despite the slow convergence problem which requiresunning coupling constant in the Hamiltonian approach. The
further study, Figs. 1 to 6 illustrate the striking feature of thesecond approximation is an expansion into a series of powers
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of the running coupling constant. In both cases, the bountheory is in jeopardy beyond the second-order expansion for
state eigenvalues and eigenstates of the full theory are fourldrge values of the running coupling constant. Referdige
by diagonalizing the effective Hamiltonians. suggested that one can use the phenomenological success of
Our model study suggests that one may hope to calculaté@e constituent quark model to improve convergence when
effective Hamiltonians down to the similarity width which is solving QCD in the light-front Hamiltonian approach. The
close to the bound state formation scale. The coupling conmprovement is expected to result from using a constituent
stant growth is limited. Moreover, the effective Hamiltonian guark Hamiltonian as a first approximation to the small
can be diagonalized in a limited subspace of states whiclidth effective Hamiltonian of QCD. The chance exists, that
dominate the bound state dynamics, instead of using the sufuch a constituent quark Hamiltonian is not much different

basis. The small window Hamiltonian reproduces the whold ©™M the theoretical one in QCD. Therefore, the distance to

effective Hamiltonian bound state eigenvalue with accurac he_true effective Hgmntonlan may be calculable in pertur-
order 10% or better. ation theory. We wish to add a comment on how this sug-

The model exhibits an inversion of the energy hierarchygestlon could be checked numencally.m the model. .
of states when the coupling constant becomes slightly large The anglogous step could_be done in the present model in
than 1. On the one hand, this feature is welcomed because € following way. For certain, close to the bound Etate
decouples the small momentum scales from the bound statgrmation scale, order a few GeV, the running coupligg,
dynamics. On the other hand, this feature appears at the coe=g (), has a value comparable to 0.5. Let us denote the

pling larger than 1 and it is beyond the reach of a simpleexact value ofg, by gs (s is chosen for “strong). The
perturbation theory. One can ask if a similar difficulty must perturbative expansions towards smaller widths order 1 GeV
exist in QCD. The expected answer is no. For one may hopg, 1o me ofg(\) are hard to continue because of the large
that gluons effectively obtain masses already at small valuegigiance from the small couplirgyin the initial Hamiltonian.

$fh the coupling cotnsttgnlt throught ttr?e ?h:OﬂlC .t%oulpllngs.ln these circumstances, we can add and subtract a suitable
ese masse(r potentialy may set the states with gluons term in the Hamiltoniar{(\ ), say ucom (CQM stands for

appart in energy when the W'dth. gets small pefore the COUthe constituent guark modelThis step changes nothing. But
pling becomes too large for being treated in perturbation . ~
theory. we can multiply the subtracted term by the ratig/gs. For

A comment is in order concerning the similarity approachgo= 9s nothing is changed in the theory. On the other hand,
in view of the latest findings in the lattice calculations thatif we replaceg, by a small number, the subtracted term
glueballs are heavjl1]. The hypothesis is that glueballs are together with the original interaction can be treated as a
heavy because the effective potentials binding two gluonsmall perturbation. In fact, if.com represents the bulk of the
are much strongefperhaps by a factor of fourthan the effective Hamiltonian then the difference between the effec-
potentials that bind quarks. The reason is that gluons are itive Hamiltonian anducqy Will not lead to large corrections

the octet representation of &), which is analogous to be-  eyen ifg, is raised togs. Thus, perturbation theory in terms

ing a doubly charged object in $1). Thus, if one compares of g, could be continued towards the smaller widths and the

a quark bound state to hydr_ogen, a glueball bound state Roefficients could be kept small. One can think of the Hamil-
comparable to helium, but with one doubly charged eleCtro%nian,ucQM as a matrix which has only one matrix element

r_ather than two singly charged electrons. Obviously the he('jifferent from 0O, right in the place on the diagonal where the
lium and doubly charged electron are far more strong|

Y ; 3
bound than hydrogen is. bound state eigenvalue appears. Other forms are also pos

What this means is that as the coupling constant increaseS'bIe' The key example is provided by the approximations

with decreasing Hamiltonian width, the coupling of gluons Shown in Fig. 2. The general feature of the example is that it

: : . amounts to the insertion of the similarity factors and adjust-
will always be four times larger than the coupling for quarks,ing the couplings
which suggests the gluon coupling would be expected to Another opportunity for improvement in the numerical

become strong enough to create a bound state of gluonasccurac is related to the irrelevant operators. Analysis of the
while still too small to bind quarks. The strong gluon binding Y b : Y

would naturally lead to a high effective mass for gluons1renormallzat|on group equations for low-energy matrix ele-

. . . ments suggests that for small widths the correctionson
making them unlikely to be present in quark bound statesfhe right-hand side in Eq(2.13 should include the term
This would explain why we see no evidence of explicit con-h()\) with matrix elements o;‘ the form
stituent bound states involving gluons as well as quarks, yet
allow the quark-quark potential to have strong higher order
corrections. A major question for this picture would be to
understand sum rules for deep inelastic scattering which ROy
have been interpreted as implying a large contribution from _ == 2y 2
constituent quoFr)\s inside thepp))/rot%n. It rgnight be that devel- Aimr(M) = A (Em+ En) VEmEneXid = (Em~E) /A7
opment of the similarity transformation formalism would (4.7
show that sum rule data refers more to “current” quarks and
gluons, before the similarity transformation is applied, rather o
than to constituent quarks and gluons after the transformaA new coupling constartt ~ g 2 is introduced. The new term
tion, where the gluon contribution could be very small by behaves ag ~! for large N and it disappears fok—oe. It
these arguments. remains to be verified how much this term can improve the

Our study shows that the convergence of perturbatioraccuracy of the perturbative evaluation of narrow effective
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Hamiltonians and the resulting bound state eigenvalues. Thi&on. The interesting question is how large can be the effec-
two couplingsg andh are related and should be consideredtive energy range of such near neighbor interactions?
coherently[12].

Too little is known yet about equations of the ty(#14)
to say if they can help in accelerating convergence of the ACKNOWLEDGMENTS
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