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Time dependent variational calculations for the quantum fluctuations of thelf4 model

Fábio L. Braghin*

FINPE, Instituto de Fı´sica da Universidade de Sa˜o Paulo, C.P. 66.318, C.E.P. 05389-970, Sa˜o Paulo, Brazil
~Received 25 September 1997; published 18 February 1998!

We work out a time dependent variational approximation with an original approach. The results in one
dimensional space in the symmetric and asymmetric phases of the potential at zero temperature are shown. We
find analytical solutions to the equations of motion of the quantum fluctuations in the free case in one and three
dimensional space for a special kind of initial condition, with special attention to the ultraviolet divergences.
Quantum fluctuations are characterized by a renormalized mass which represents a sort of ‘‘mean field.’’ With
the method we use it is possible to consider spatially dependent configurations for the quantum fluctuations and
for the condensate and time dependent situations simulating a dynamical phase transition. To succeed the
numerical temporal evolution from any initial condition, a generalized density matrix is defined which obeys
a Liouville–von Neunmann–type equation. Its eigenvectors are numerically evolved on a lattice and several
numerical solutions are exhibited. We also show the evolution of some other interesting variables with a
timelike energy density and particle number of the system.@S0556-2821~98!04106-X#

PACS number~s!: 11.10.Ef; 11.15.Tk
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I. INTRODUCTION

The study of the time evolution of a system from a giv
initial condition in quantum field theory is a difficult tas
concerning very different problems. For bosonic syste
there are several examples. In inflation models one ha
consider a scalar field, in a given state in a potential, wh
evolves towards the vacuum of the system. During such t
a negative pressure phase occurs and the Universe ex
ments an enormous expansion~in most of the models it is
exponential! at the end of which the field oscillates and pr
duces particles with subsequent reheating and then stan
big bang theory proceeds. Quantum fluctuations of
bosonic field are considered as the origin of the backgro
radiation fluctuations and inhomogeneities of energy dens
which allowed the formation of large structures in the U
verse@1–3#. An interesting task in this domain is the sear
for analytical solutions@4#. It has been observed a significa
influence to the field dynamical evolution when one tak
into account quantum fluctuations in a nonperturbative w
@5–10#. At the hadronic level, in the context of heavy ion
collisions, the evolution of a system of interacting partic
~like a ‘‘gas of pions’’ which multiplicity is usually quite
high in those experiments!, given an initial condition, is rel-
evant for the description of several observables@11,12#.
Also, at atomic level, several dynamical effects may be st
ied, with a nonperturbative formalism.

The lf4 model has been extensively studied in order
develop suitable methods for more realistic theories l
gauge theories@13,14# and chiral models. It is usually con
sidered for inflation studies in spite of its intriguing chara
teristics like ‘‘triviality’’ @15,16#.

In the static formalism one only has exact solutions
the free case and the most developed approach to solve
interacting one is perturbation theory which only works w
for very small coupling constants as it occurs in electro

*Email address: braghin@if.usp.br
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namics. Also in this approach one has a systematic and d
way of dealing with divergences, i.e., one knows exac
how to renormalize. However, nonperturbative effects
important in many cases, like for spontaneous symme
breaking and bound states. It is worth remembering tha
time dependent situations the effective potential formalism
not appropriated@17#.

The time dependent variational method has been w
studied and can be viewed as an extension of the static c
which corresponds to a summation of ‘‘cactus’’ type di
grams for the energy@18#. It takes into account more nonlin
earities than perturbation theory. This method allows to c
sider the problem of initial conditions in a direct an
systematic way although several difficulties arise@19#. First,
the minimization of the energy~action! for the static~time
dependent! case makes too hard to obtain an improved~and
thus more realistic! wave function. Also, one only usually
knows how to do the calculation with Gaussian wave fun
tionals, which is the exact solution to the free case. Any w
it offers an alternative powerful approach and it has alrea
been extensively studied with a trial Gaussian functional a
it has shown good results compared to perturbation the
@7,21,9,10,20#. In particular, the time-dependent Gaussi
approach has been applied to the quantum mechanical
in @7# where a comparison between the Gaussian approxi
tion with exact solutions has been done, explaining its f
tures and shortcomings in that case. The nonequilibri
quantum electrodynamics case~and alsolf4) has been
worked out using the closed path time method in@21#.

The aim of this article is to work out a new method
carry out the temporal evolution of the quantum fluctuatio
of lf4 given an initial condition. This approach correspon
to the time dependent Hartree Bogoliubov~TDHB! method
which is equivalent to the Gaussian approach and it beco
exact in the free case and in the limit of largeN of a model
invariant by transformations of the groupO(N). This limit is
equivalent to theN51 case with a scale transformation@6#.
The article is presented as follows. In Sec. II we present
Gaussian approach and obtain the equations of motion
3548 © 1998 The American Physical Society
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57 3549TIME DEPENDENT VARIATIONAL CALCULATIONS FOR . . .
three dimensions, to be general. In Sec. III the analyt
solution for the free case in one and three spatial dimens
are presented for an initial condition in the limit of sma
deviations from the vacuum of the theory. In Sec. IV t
TDHB formalism is developed defining a generalized dens
matrix and the equations of motion entirely equivalent to
former ones are obtained. This section and the numer
results presented in the following one are the most relev
and original results of this paper. The system is placed
one dimensional lattice and several cases of temporal ev
tion are performed in symmetric and asymmetric phases.
amples of other observables like particle number and ene
density are presented. These results are shown in Sec. V
the conclusions are discussed in Sec. VI.

II. TIME DEPENDENT GAUSSIAN APPROXIMATION
TO lf4 MODEL

The Lagrangian for a scalar fieldf with bare massm0
2

and coupling constantb is

L~x!5
1

2H ]mf~x!]mf~x!2m0
2f~x!22

b

12
f~x!4J . ~1!

The corresponding Hamiltonian reads

H5
1

2S p2~x!1~¹f!21m0
2f2~x!1

b

12
f4~x! D , ~2!

where the action of operatorsf andp in functional Schro¨-
dinger representation over wave functionalC@f(x)#
5^f(x)uC@f#& is

f̂uC@f~x!#&5f~x!uC@f~x!#&,
~3!

p̂uC@f~x!#&52 id/df~x!uC@f~x!#&.

For variational calculations in the Schro¨dinger picture the
wave functional evolves like the Schro¨dinger equation

i
]

]t
C@f~x!#5HC@f~x!#. ~4!

This is, thus, a noncovariant formalism suitable for time d
pendent problems.

In the Gaussian approximation at zero temperatureC is
parametrized by

C@f~x!#5NexpH 2
1

4E dxdydf~x!„G21~x,y!

1 iS~x,y!…df~y!1 i E dxp̄~x!df~x!J , ~5!

wheredf(x,t)5f(x)2f̄(x,t); the normalization isN, the
variational parameters are the condensatef̄(x,t)
5^CufuC& and its conjugated variablep̄(x,t)5^CupuC&;
quantum fluctuations represented by the width of the Ga
ian G(x,y,t)5^Cuf(x)f(y)uC& and its conjugate variable
S(x,y,t).
l
ns

y
e
al
nt
a

lu-
x-
gy
nd

-

s-

In variational time dependent calculations we have
choose an action to be minimized in order to obtain the eq
tions of motion. We take the well known action from Jack
and Kerman@22#

I 5E dt^Cu i
]

]t
2ĤuC&. ~6!

In order to calculate it, we take the mean value of an opera
Ô given by

^CuÔuC&5E D@f#C* ÔC. ~7!

The mean value of the action after the Gaussian integrat
with the trial functional~5! is

I 5E dtH E d3yṠ ~x,y!G~y,z!1f̄~x!ṗ̄~x!2
1

8
G21~x,x!1

22E d3yd3zS~x,y!G~y,z!S~z,x!1

2
1

2
@DG~x,x!1„¹f̄~x!…21m0

2G~x,x!1m0
2f̄2~x!1#

2
b

8S E d3yG~x,y!G~y,x!1
b

3
f̄4~x!12f̄2~x!G~x,x! D J .

~8!

Variations with respect to the variational parameters a
their conjugate yield the following equations of motion~re-
peated spatial index means integration over that variable!:

dI

dS~x,y!
→] tG~x,y!52@G~x,z!S~z,y!1S~x,z!G~z,y!#,

dI

dG~x,y!
→] tS~x,y!5S 2S~x,z!S~z,y!

2
1

8
G21~x,z!G21~z,y! D1S G~x,y!

2

1
b

2
f̄~x!2D ,

~9!

dI

dp̄~x!
→] tf̄~x!52p̄~x!,

dI

df̄~x!
→] tp̄~x!5G~x,y!f̄~y!1

b

6
f̄2~x!,

where G(x,y)52D1@m0
21(b/2)G(x,x)#d(x2y). In this

approximation the interaction termbf4 becomes quadratic
i.e., it contributes to a self consistent mass, as we will
explicitly.

For a translational invariant system, we perform the Fo
rier transformation
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3550 57FÁBIO L. BRAGHIN
f̄~x,t !5
1

~2p!3E dkf̄~k,t !exp„ik~x!…,

p̄~x,t !5
1

~2p!3E dkp̄~k,t !exp„ik~x!…,

~10!

G~x,y!5
1

~2p!3E dkG~k,k8!exp~ ik•x2 ik8•y!,

S~x,y!5
1

~2p!3E dkS~k,k8!exp~ ik•x2 ik8•y!.

We can then eliminate the variablesp̄ andS. The equations
in the asymmetric phase become

G̈kk82
Ġkk8

2

2
Gkk8

21
2

1

2
Gkk8

21
12S k21m0

21
b

2
G~x,x!

1
b

2
f̄ DGkk850,

f̈̄k1S k21m0
21

b

6
f̄21

b

2
G~x,x! D f̄k50, ~11!

with Gkk85^kuG(x,x)uk1q&. These equations were genera
ized for the out of equilibrium~nonzero temperature! using
different methods in@21,20,10#.

For the Gaussian ansatz we use, in the symmetric ph
(f̄50), one needs only two initial conditions for the temp
ral evolution of these equations,G(t50) and Ġ(t50),
which is proportional to its imaginary part:S. The evolution
of f̄ only occurs for a nonzero initial conditionf̄, since the
two phases of the potential are, in principle at this level
knowledge, disconnected.

In Minkowski space there is no exact analytical soluti
but some numerical works have been done. The choic
initial conditions is entirely subordinate to the approxim
tion, in the sense that were it not Gaussian one could hav
consider three conditions instead of two@6#. The analysis of
these equations in@9,10# show that initial conditions~for
homogeneousG and f̄) are crucial for the time interval in
which the system evolves towards the minimum and for
speed of the field evolution. Our approach, however, is
ferent as we will see in Sec. IV.

A. Static case considerations

The vacuum state is obtained whenS5Ġ5 ḟ̄50, and, in
function of the renormalized mass at the minimum,m2, the
fluctuations are described by

G0~x,y!5^xu
1

A2D1m2
uy&, ~12!

wherem2 in the vacuum is given by the self consistent GA
equation
se,

f

of
-
to

e
f-

m25m0
21

b

2
TrG0~x,x!1

b

2
f̄2. ~13!

This equation defines the symmetric phase, withf̄50, and
asymmetric one withf̄2526m0

2/b23^xuGux&. Part of these
solutions have been studied in three dimensions in@16#, as
well as the renormalization procedure. We see that given
‘‘renormalized mass,’’m2, and the coupling constant,b, the
bare mass is defined by the vacuum of the chosen phas

In one spatial dimension, which corresponds to the c
we will analyze numerically, the GAP equation can be ma
finite by renormalizing the mass. We must eliminate the
vergence of the kernelG0(x,y;m2) by fixing a mass scale
m̄2, from G1(x,y;m̄2). This yields the same result of th
renormalization of the equations of movement and it res
in the following GAP equation:

m25m̄2~f̄50!1
b

2
f̄22

3b

4
logS m2

m̄2D . ~14!

As we will see, any deviation of the physical mass fromm2

introduces dynamical effects. More details on renormali
tion in one or three dimensional spaces with different p
scriptions can be found in@23,6,16,15#.

III. SMALL DEVIATIONS AROUND THE SYMMETRIC
MINIMUM

In the symmetric phase, we will consider small deviatio
around the minimum by linearizing the equations of motio
The initial condition is thus given byG(x,t50)5G0
1dG(x,t50), whereG0 is the value in the vacuum, anddG
is the deviation from the minimum. In momentum spa
keeping only the linear terms indG of ~11! we obtain

dG̈kk852dGkk8~Ak21m21A~k1q!21m2!2

2
b

4S 1

Ak21m2
1

1

A~k1q!21m2D(p
dGpp1q .

~15!

One is left to the problem analogous to that of an infin
number of coupled harmonic oscillators. We will conside
plane wave prescription todG in the homogeneous case (q
50)

dGk~ t !5dGk~ t50!e2 iVt. ~16!

It is important to remark that we are dealing with nonren
malized equations of motion and this may make possible
determination of time dependent divergences.

The free case solution for Eq.~15! in d dimensions is

dG~x,y;t !52E ddk

~2p!d
dGk,k8~ t50!cos@M ~k,q!t#,

~17!

whereM (k,q)5(Ak21m21A(k1q)21m2).
Since the trial form of a Gaussian for the system rema

valid during the temporal evolution we associate the dev
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tion from the minimum of the initial condition (G0) to the
small change of the mass, as Eq.~12! suggests. In this uni-
form case, q50, we considerdm25m22m2 and then
dG(t50)5(m22m2)/2(Ak21m2)3/2. The explicit solution
for the time evolution ind dimensions reads

dG~ t !5~m22m2!E ddk

~2p!d

cos~2Ak21m2t !

4~k21m2!3/2
. ~18!

We will refer to these solutions~18! as semianalytical solu
tions and they will be useful to verify the numerical calcu
tion. For a space of dimensiond53 dimensions, Eq.~18!
keeps an ultraviolet divergence.

When t50 the integral is very easy and in one dime
sional space it is given by

dG~ t50!5
m22m2

8pm2
. ~19!

In one spatial dimension, the integral~18!, at anyt, with a
change of variables, (y25k21m2) can be written as

dG~ t !5~m22m2!E
m

` dy

~4p!

cos~2yt!

y2~y22m2!1/2
. ~20!

We notice from Eq.~18! that there is no ultraviolet diver
gences and we find as a solution the following express
@24#:

^xudGux&5
m22m2

8p F1

2
m22BS 1

2
,1D

1

F2S 2
1

4
;0,

1

2
;2m2t2D

1
Ap

2
t2GS 3

2D
1

F2S 1

2
;2,

3

2
;2m2t2D G , ~21!

whereF are the generalized hypergeometric functions@24#;
G(b) are gamma functions andB(a,b) is the beta function

G~a!5E
0

`

tz21e2tdt,

~22!

B~a,b!5E
0

1

ta21~12t !b21dt.

The hypergeometric functions can be expanded in se
@24#:

1F2~a;b,c;z!5 (
k50

`
~a!k

~b!k~c!k

zk

k!
, ~23!

where (a)k5G(a1k)/G(a). The important thing here is to
know that this series converges foruzu,` @24#, since the
numerical integration of expression~20! offers a very safe
way to obtaindG(t).

Although in this paper we are not analyzing the case
three-dimensional space we will show the solution of E
~18! because it has an interesting feature. In three dimens
the solution of~18! with an integration by parts can be wri
ten as
n

es

f
.
ns

^xudGux&52
m22m2

8p2 S p

2
N0~2mt !

1m2E
m

`

dy
cos~2yt!

y2~y22m2!1/2D , ~24!

whereN0 is the zero order Bessel function and the seco
term corresponds to the one dimensional integral case un
for a multiplicative constant. Fort50 we see one divergenc
in N0(t50) which might be regularized and it is related th
initial condition or static case, it is absent in one dimensio
space. A detailed study of the time dependent case in 3
tial dimensions will be shown elsewhere.

IV. NUMERICAL METHOD:
TDHB IN SYMMETRIC PHASE

From here on we change sometimes the notation in o
to place the system on a lattice, so, instead of continu
space (x,y) we may have discrete parameters (i , j ).

Gaussian approximation corresponds to a mean field
proximation where the two or more field coupling terms a
decomposed in terms of two point Green’s function^xuGuy&,
and this is manifested in the self consistent mass~13!. This
kind of approach can be established in terms of a general
density matrixR in the frame of TD Hartree Bogoliubov
formalism. This will be done in the following in order to
perform numerical calculations.

One defines theR matrix as@25#

R~x,y!5S r~x,y! k~x,y!

2k* ~x,y! 2r* ~x,y!
D , ~25!

wherer(x,y)5 1
2 ^a(x)a†(y)1a†(y)a(x)&, is Hermitian and

k(x,y)52^a(x)a(y)& is symmetric; they are respectivel
the one and two particle density matrices. These two qua
ties are directly related to the variational parametersG andS
by the creation and annihilation operators, which, written
a lattice ofd with mesh sizeDx, are

a~ j !5
1

A2
$f~ j !~Dx!~d21!/21 ip~ j !~Dx!~11d!/2%, ~26!

a†~ j !5
1

A2
$f~ j !~Dx!~d21!/22 ip~ j !~Dx!~11d!/2%.

~27!

The mean values of the fields allow one to relate, in
symmetric phase, to all these variables as

G~ i , j !5^f~ i !f~ j !&5
1

~Dx!d21
Re„r~ i , j !2k~ i , j !…,

F~ i , j !5^P~ i !P~ j !&5
1

~Dx!d11
Re„r~ i , j !1k~ i , j !…,

~28!

whereF( i , j )5G( i , j )21/414S( i ,k)G(k,l )S( l ,i ).
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The density matrixR(x,y) at zero temperature is com
posed by pure states and has a sympletic structure which
be conserved in the temporal evolution. This basically me
thattRt5Rt (Rt is the transposed ofR!, where we used the
‘‘sympletic metric’’

t5S 0 1

21 0D . ~29!

In the case of pure states the following relation is also sa
fied:

R251. ~30!

This relation guarantees a number of conserved quant
~finite on the lattice! at each time step in the temporal ev
lution, since (d/dt)R250.

The variation of the total energy,E5*ddz^H(z)&, pro-
duces the Hartree-Bogoliubov energyH(x,y) which is de-
fined by @25#

1

2
Hi j ~x,y!5

dE

dRji ~y,x!
. ~31!

On a Cartesian lattice ofd dimensions with mesh sizeDx,
we obtain

Hi , j5S Wi , j Di , j

2Di , j 2Wi , j
D , ~32!

where we have defined the matrices

Wi j 5
1

2
„G i j8 ~Dx!12d1~Dx!212dd i j …,

~33!

Di j 5
1

2
„ G i j8 ~Dx!12d2~Dx!212dd i j …,

whereG i j8 52D i j 1(m0
21bGii /2)d i j 52D i j 1m2d i j .

With these quantities we can write the equations of m
tion under the form of Liouville–von Neunmannentirely
equivalent to the equations~9! in the symmetric phase, re
specting expression~30!:

iṘi j 5@Hik ,Rk j#. ~34!

This complete equivalence was verified explicitly by subs
tuting Hi , j and Ri . j written in terms ofGi , j and S i , j in the
above equation.

Consequently we can consider the time evolution of
system by diagonalizing the generalized density matrixR
and performing the temporal evolution of its eigenvect
(un andvn), which have the sympletic normalization, in th
lattice: ( iln$uun( i )u22uvn( i )u2%51, consistent with expres
sion ~30!.

A new evolution equation can now be written as

i ] tS un~ i !

vn~ i !
D 5H~ i , j !S un~ j !

vn~ j !
D . ~35!
ill
s

s-

es

-

-

e

s

Thus, with initial conditions forG andS we diagonalize
the density matrixR(t50), whose eigenvectors (un andvn)
are evolved in time and related tor andk by

r i j 5 (
n.0

ln„un~ i !un* ~ j !1vn* ~ i !vn* ~ j !…,

~36!

k i j 52 (
n.0

ln„un~ i !un* ~ j !1vn* ~ i !vn* ~ j !….

These variables may be expressed in terms ofG and F at
each time step by Eq.~28! and so on.

SinceH depends on the evolved eigenvectors we utiliz
self consistent method which require interactions in ea
time step. We have verified the independence of the ev
tion sense with the inverse evolution operationt→2t, as
well as the independence of the results with relation to
variation of the time stepDt.

Now we are lead, for example, in the symmetric pha
(f̄50) to give the initial conditions. We choose one co
figuration for the fluctuationG at t50, and its ‘‘velocity’’
~which will be taken to be zero along this paper,S;Ġ
50). As we have seen the two point Green’s function ha
‘‘natural parametrization’’ corresponding to its static form

G~x,y,t !5^xu
1

A2D1m2
uy& with S~x,y,t50!50.

~37!

If we put m25m2 we get the vacuum. The renormalize
mass becomes thus the ‘‘new’’ variational parameterm2

5m(t)2, and it is possible to consider several spatial a
temporal different configurationsm25m2(x,t).1 The bare
massm0

2 ~for both phases! in the energy equation~32!, is
given by the GAP equation~13!, determining the required
vacuum state. However, these initial conditions corresp
to the particular case of the Gaussian approximation: i
possible to take more general prescriptions to which o
needs to consider three conditions@6#.

Thus there are two free parameters: the physical massm2

and the coupling constant. In 3 spatial dimensionsb is con-
strained by the running coupling constant equation@16#. If
we take into account some inflation models and primord
energy density inhomogeneities in 3 dimensions its val
(b) for most of the inflation models are severely constrain
to the order of 10210 @2#. This makes the field to keep near
the free case dynamics. In lattice calculation, in three spa
dimensions, the value ofb56 is usually adopted.

An interesting variable to regard is the energy dens
since we will examine a nonhomogeneous configuration.
the lattice, the energy density@the mean value of~17! in the
symmetric case# can be written as

1In fact, a description only dependent onm and ṁ may be con-
sidered with the elimination of the other degrees of freedom
integration in momentum spacek of movement equations and e
fective action.
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^H&~ i ,i !5
1

2D2x
Re„r~ i ,i !1k~ i ,i !…

1
1

2(j
Ḡ( j ,i ) Re„r~ j ,i !2k~ j ,i !…

1

Dx
, ~38!

where Ḡ( j ,i ) 52D j ,i1(m0
21bGj ,i /4)d j ,i . This expression

allows us to plot the energy density in the lattice and its tr
gives the total energy which is conserved in all cases sho
below.

Another useful variable is the particle number@N̂( i ,i )
5a†( i )a( i )#, whose mean value in a general lattice of d
mension~d!, in the symmetric case, is given by

^N&~ i ,i !5
1

2
G~ i ,i !~Dx!d211

1

2
F~ i ,i !~Dx!d11

1@S~ i , j !G~ j ,i !2G~ i , j !S~ j ,i !#~Dx!d

2
1

2
d i , j

d ~Dx!d. ~39!

This expression can be rewritten in terms only of ther( i , j )
variable as

^N&~ i ,i !5Re„r~ i ,i !…2Im„r~ i ,i !…2
1

2
dd~ i , j !~Dx!d.

~40!

V. RESULTS ON A LATTICE OF 1 1 1 DIMENSIONS

In this section we show some numerical results on a
tice of one spatial dimension of 5 fm with a mesh size of 0
fm. We have considered between 6 and 14 interaction
each time step for the energyH and eigenvectors determina
tion, self consistently with a time step, chosen in such a w
to guarantee the stability of the evolution, given byDt
50.03 fm. The physical mass has been chosen asm5100
MeV. We have considered periodic boundary conditions
the Green functionG( i , j ).

For an initial condition in the vacuumm25m2 and S
50, the system remains in such state, as expected, with
served total energy, independently of time step value.
spatial configuration ofG( i ,i ) is shown in Fig. 1, remember
ing that it is a symmetric and diagonal matrix.

Then we consider an homogeneous initial condition c
responding to a small deviation of the mass from the vacu
value:m(t50)50.9m ~with m5100 MeV!, in the free case
(b50). In Fig. 2 we show the temporal evolution of th
deviation of the width with relation to its vacuum valu
dG( i ,i ;t)5G( i ,i ;t)2G0( i ,i ). This numerical solution
~continuous line! is compared to the semianalytical solutio
of Eq. ~18!. The system oscillates around the state of mi
mum indefinitely since there is no dissipation. Total ene
is conserved and results are independent of the consid
values of the mesh size, as well as in all following cases

The cases for the coupling constant equal tob56 fm22

and 30 fm22 are considered fordG(t) and exhibited respec
tively in Figs. 3 and 4, with an initial condition equal to th
e
ed

t-
1
in

y

r

n-
e

-
m

-
y
ed

of Fig. 2. Frequency oscillation changes a lot depending
the coupling constant but the amplitude depends exclusiv
on the initial condition. The particle number correspondin
to the case of Fig. 2~for b56 fm22) is shown in Fig. 5. We
observe that this variable is not conserved and there are
aspects to be considered here. First, as it can be seen by
figure, the number of particles at the beginning and at
end of the temporal evolution are not exact integer numbe
This shows that the considered states are not eigenstate
this quantum number, whose symmetry is broken by the
proximation. On the other hand it is obvious from the expre
sion ~39! that the number of particles at zero temperatu
depends strongly on the relevant variables of the syste
namelyG andS, in such a way to vary with temporal evo
lution. However an initial condition with a definite particle
number can be chosen, and moreover, the t-dependent ei
states can be projected into states with definite particle nu
ber @26#. This procedure would be of great interest whe
considering cases with internal symmetries gauge or ch
theories, given that as we see the variation

FIG. 1. Spatial configuration forG( i ,i ), with m5100 MeV,
with relation to the points of the lattice.

FIG. 2. Deviation with relation to the vacuum statedG(t) in
function of time for the numerical solution~solid line! and the semi-
analytical solution~dotted line! in the free case with an initial con-
dition given by m(t50)50.9m and the physical massm5100
MeV.
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approach may break some symmetry of the system, a
actually does@13#.

Another case of great general interest as initial condit
is the bubble configuration as shown in Fig. 6. It is a ze
mass bubble measured by the sizeA55 fm centered at the
lattice point,xc52.5 fm, inside the solution of symmetri
vacuum as the expression:

m25m2tanhS xi2xc

A D . ~41!

The configurations of the function̂xuGux& and the energy
density respectively for the timest50,0.33,3.3,5.0,5.7 fm
and t50,3.3,5.0,10 fm are shown in Figs. 7 and 8. The e
lution of the mean value on the latticeGM5( i

NG( i )/N and
the value of one point of the latticeG(25) is shown in Fig. 9.
The energy is distributed among the degrees of freedom
the lattice and the system still oscillates around the stat
minimum. Again, a mesh size variation of the lattice w
done with a corresponding variation of the parameters (b and

FIG. 3. DeviationdG(t) in function of time for an initial con-
dition m50.9m, massm5100 MeV and couplingb56 fm22.

FIG. 4. DeviationdG(t) in function of time (3 0.1 fm! for an
initial condition m50.9m, mass m5100 MeV and couplingb
530 fm22.
it

n
o

-

of
of

m0) in such a way to guarantee the independence of
results with respect to the mesh size.

In Fig. 10 we show the evolution of the Green’s functio
G( i ,i ;t) for a time dependent mass. The initial conditio
corresponds to the vacuum of the symmetric phase form
5100 MeV, which yields, in the symmetric phase, by th
GAP equation,m0s

2 522.474621 fm22 with b56 fm22,
according to Eq.~13!. Whent>3 fm the evolution is deter-
mined by the asymmetric phasem0a

2 522.478473 fm22

coupled with the condensate, for which we have chosen
have an initial condition att53 fm equal tof̄(t53 fm)
51.1f̄0, where f̄05A3m2/b corresponds to the minimum
of the potential. This time dependence ofm0

2 simulates a
phase transition. The Green’s function tends to oscilla
around the asymmetric vacuum point. This value of the co
densate can be compared to the minimum in a tree appr
mation wheref̄05A26m0

2/b. Then, in Fig. 11 we show the
particle number for this last case of phase transition. Ther
particle creation, which ‘‘dissipates’’ the widthG( i ,t). Fi-
nally in Fig. 12, the evolution of the deviation of the con

FIG. 5. Particle number as defined in the text for the case of
conditions shown in Fig. 2.

FIG. 6. Initial condition corresponding to a bubble of zero ma
m25m2@ tanh„(r 22.5)/5…#2 for a physical mass ofm5100 MeV.
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densatedf̄(t)5f̄(t)2f̄0 with relation to its value in the
minimum is presented. The field oscillates around th
vacuum value. A self consistent treatment of this proble
with the evolution off̄ in three spatial dimension is unde
work. Results are in very good qualitative agreement wi
those obtained by the authors of@9,10#.

VI. CONCLUSIONS

In this paper we have worked out a new method to pe
form temporal evolution of quantum fluctuations applied
lf4 model in the Schro¨dinger representation. First, how
ever, we have found the solutions for the free equations
motion in 1 and 3 dimensional space in the special case
small deviations from the vacuum as initial condition an
concluded that, concerning ultra violet divergences, the th
dimensional case presents only one divergence in the ini
condition ~equivalent to a static case divergence! which is

FIG. 7. Temporal evolution of bubble configurationG(r ,t) for
an initial condition given in Fig. 6 and coupling constantb
56 fm22. Curves correspond to configurations at t5 0 ~solid line!,
10 ~long-dashed, short-dashed!, 100 ~dotted!, 150 ~short-dashed!,
170 ~long-dashed! Dt, with Dt50.03 fm.

FIG. 8. Temporal evolution of energy densityr(t,r ) fm21 cor-
responding to the evolution ofG(r ,t) shown in Fig. 5. Curves
correspond to timest50 ~solid line!, t5100 ~dotted line!, t5150
~dashed line! and t5300 ~long dashed line! Dt.
e

h

r-

of
of

e
ial

absent in the one dimensional case.
Then we have shown the numerical method that cons

on a mean field approximation for the quantum fluctuatio
in which a generalized density matrix obeys a Liouville–vo
Neumann–type movement equations. These equations
exactly equal to those equations obtained by a variatio
method with a Gaussian trial wave functional in the symm
ric phase. We can on the other hand couple these equat
to the equation of the condensate (f̄) in the asymmetric
phase. The equations written in that form allow a simple w
to perform time evolution of the density matrix eigenvecto
corresponding to the evolution of variational parameters
specting sympletic structure of the equations of motion. T
means in particular a number of conserved quantities in
lattice equal to the number of points of this lattice. If w
were not in lattice but in the continuum, there would be
infinite number of conserved quantities. In one dimension
space several initial configurations were given and the

FIG. 9. DeviationdG(t) in function of time for central point of
the lattice ~continue line! and for the mean deviation of all the

points (dḠ) ~dotted line! for the initial condition of Fig. 6.

FIG. 10. DeviationdG(t) in function of time for an initial con-
dition in the symmetrical vacuum, withm5100 MeV, until t 5 3
fm. From this time on, the evolution is determined by the asymm

ric phase with the condensatef̄(t53 fm)51.1f̄0. Coupling con-
stant was taken to beb56 fm22.
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spective evolution shown for the quantum fluctuations dev
tions from the vacuum. For the free case we were able
compare the semianalytical solution with the numerical o
being the curves very close to each other. The field alwa
oscillates around the vacuum state~in the symmetric or
asymmetric phase!, being the energy distributed among th
degrees of freedom of the system: quantum fluctuations, c
densate (f̄) and kinetic contributions, on the lattice. Thi
occurs specially in the case of nonhomogeneous configu
tion, like a bubble of zero mass in the vacuum. The resu
concerning homogeneous configuration are in very go
qualitative agreement with those obtained by@9,10# in three
dimensional space with a different method. The influence
b was shown by consideringb50, 6 and 30 fm22, and for
higher coupling constants, higher is the frequency oscil
tion. The amplitude of the oscillation depends on the initi
condition, as it happens in simple quantum mechanics w
an analogous potential. Time dependence of energy den
and particle number observables were also shown, rem
bering that we have considered periodic boundary con
tions.

FIG. 11. Particle number for the case of Fig. 10.
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One interesting problem we are left is the application
this method to other more realistic models, like to pions
heavy ion collisions, considering the observations of the
section, but in three dimensional space. As stated above
kind of ‘‘mean field’’ may break symmetry properties lik
those associated to particle number conservation and ang
momenta@25#. The same occurs for the theories where so
symmetry plays an important role like in gauge or chi
symmetry models. An extension of the used numeri
method in three dimensional space for nonequilibrium ca
or finite temperature is thus of high interest and is un
work.
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FIG. 12. Temporal evolution of the deviation of the condens
with relation to its vacuum value for the case of Fig. 10.
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