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Time dependent variational calculations for the quantum fluctuations of the\ ¢* model
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We work out a time dependent variational approximation with an original approach. The results in one
dimensional space in the symmetric and asymmetric phases of the potential at zero temperature are shown. We
find analytical solutions to the equations of motion of the quantum fluctuations in the free case in one and three
dimensional space for a special kind of initial condition, with special attention to the ultraviolet divergences.
Quantum fluctuations are characterized by a renormalized mass which represents a sort of “mean field.” With
the method we use it is possible to consider spatially dependent configurations for the quantum fluctuations and
for the condensate and time dependent situations simulating a dynamical phase transition. To succeed the
numerical temporal evolution from any initial condition, a generalized density matrix is defined which obeys
a Liouville—von Neunmann—type equation. Its eigenvectors are numerically evolved on a lattice and several
numerical solutions are exhibited. We also show the evolution of some other interesting variables with a
timelike energy density and particle number of the sysfe30556-282(98)04106-X

PACS numbgs): 11.10.Ef; 11.15.Tk

[. INTRODUCTION namics. Also in this approach one has a systematic and direct
way of dealing with divergences, i.e., one knows exactly
The study of the time evolution of a system from a givenhow to renormalize. However, nonperturbative effects are
initial condition in quantum field theory is a difficult task important in many cases, like for spontaneous symmetry
concerning very different problems. For bosonic systemsreaking and bound states. It is worth remembering that in
there are several examples. In inflation models one has time dependent situations the effective potential formalism is
consider a scalar field, in a given state in a potential, whictnot appropriated17].
evolves towards the vacuum of the system. During such time The time dependent variational method has been well
a negative pressure phase occurs and the Universe expesiudied and can be viewed as an extension of the static case,
ments an enormous expansi@in most of the models it is which corresponds to a summation of “cactus” type dia-
exponentiagl at the end of which the field oscillates and pro- grams for the energhl8]. It takes into account more nonlin-
duces particles with subsequent reheating and then standagdrities than perturbation theory. This method allows to con-
big bang theory proceeds. Quantum fluctuations of thesider the problem of initial conditions in a direct and
bosonic field are considered as the origin of the backgroundystematic way although several difficulties afi$8]. First,
radiation fluctuations and inhomogeneities of energy densitythe minimization of the energgaction for the static(time
which allowed the formation of large structures in the Uni-dependentcase makes too hard to obtain an improyadd
verse[1-3]. An interesting task in this domain is the searchthus more realisticwave function. Also, one only usually
for analytical solution$4]. It has been observed a significant knows how to do the calculation with Gaussian wave func-
influence to the field dynamical evolution when one takedionals, which is the exact solution to the free case. Any way
into account quantum fluctuations in a nonperturbative wayt offers an alternative powerful approach and it has already
[5-10Q. At the hadronic level, in the context of heavy ions been extensively studied with a trial Gaussian functional and
collisions, the evolution of a system of interacting particlesit has shown good results compared to perturbation theory
(like a “gas of pions” which multiplicity is usually quite [7,21,9,10,2Q In particular, the time-dependent Gaussian
high in those experimentsgiven an initial condition, is rel- approach has been applied to the quantum mechanical case

evant for the description of several observablég,12. in [7] where a comparison between the Gaussian approxima-
Also, at atomic level, several dynamical effects may be studtion with exact solutions has been done, explaining its fea-
ied, with a nonperturbative formalism. tures and shortcomings in that case. The nonequilibrium

The A ¢* model has been extensively studied in order toquantum electrodynamics cagand also\¢*) has been
develop suitable methods for more realistic theories likeworked out using the closed path time method2a).

gauge theorie§13,14 and chiral models. It is usually con- The aim of this article is to work out a new method to
sidered for inflation studies in spite of its intriguing charac-carry out the temporal evolution of the quantum fluctuations
teristics like “triviality” [15,16]. of A ¢* given an initial condition. This approach corresponds

In the static formalism one only has exact solutions forto the time dependent Hartree BogoliubOvDHB) method

the free case and the most developed approach to solve tléhich is equivalent to the Gaussian approach and it becomes
interacting one is perturbation theory which only works well exact in the free case and in the limit of lartyeof a model
for very small coupling constants as it occurs in electrody-invariant by transformations of the gro@(N). This limit is
equivalent to theN=1 case with a scale transformatif@i.

The article is presented as follows. In Sec. Il we present the

*Email address: braghin@if.usp.br Gaussian approach and obtain the equations of motion in
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three dimensions, to be general. In Sec. Il the analytical In variational time dependent calculations we have to
solution for the free case in one and three spatial dimensionshoose an action to be minimized in order to obtain the equa-
are presented for an initial condition in the limit of small tions of motion. We take the well known action from Jackiw
deviations from the vacuum of the theory. In Sec. IV theand Kermar22]
TDHB formalism is developed defining a generalized density

matrix and the equations of motion entirely equivalent to the

former ones are obtained. This section and the numerical

results presented in the following one are the most relevant

and original results of this paper. The system is placed in #n order to calculate it, we take the mean value of an operator
one dimensional lattice and several cases of temporal evoli given by

tion are performed in symmetric and asymmetric phases. Ex-

amples of other observables like particle number and energy . .

density are presented. These results are shown in Sec. V and (‘I’|O|‘I’>=f D[ p]¥*OW. (7

the conclusions are discussed in Sec. VI.

J .
|=f i 2~ i), ©)

The mean value of the action after the Gaussian integrations
Il. TIME DEPENDENT GAUSSIAN APPROXIMATION with the trial functional(5) is
TO A ¢* MODEL

: — 1
The Lagrangian for a scalar fiekd with bare massn3 sz dt{f d3y> (x,Y)G(Y,2) + p(X) m(X) — ngl(x,x)Jr
and coupling constarii is

1 b —2| dPyd*zE(x,y)G(y,2)2(z,x)+
£00= 3] 2,000 -0 1300 @ J #vemomeuazian

1 — _
2, 2 272
The corresponding Hamiltonian reads — [AGO(X) + (V (X)) + MG (X,x) + mMod=(x) + ]

m(%)+(V )2+ mgg?(x) + %«zf‘(x)

b 3 b_4 42
S @ gl | PYeewex g0+ 25006000 ||

where the action of operatogs and 7 in functional Schre ®

dinger representation over wave functionaf[#(X)]  variations with respect to the variational parameters and
=(p(X)[¥[]) is their conjugate yield the following equations of moticne-

— peated spatial index means integration over that vanable

Al V[H(X)])=d)[¥[H(X)]),

Ll
T2

)

4l
VL B001)=—1 815601V H(0)]). (xy) HCON TG @Y F 2D
For variational calculations in the Scliiager picture the Sl
wave functional evolves like the Schfiager equation m—ﬁtz(&y):(ZE(X,Z)E(Z,V)
d 1 I'(x,
V6001 =HY[(x)]. (@ —gGl(x,z)Gl(z,y)) o[ LoD
This is, thus, a noncovariant formalism suitable for time de- b—
pendent problems. 5607,
In the Gaussian approximation at zero temperatrés ©)
parametrized by
1 ol 2 Tix) =
‘I’[(l)(X)]:NeXp[ - ZJ dxdySe(x)(GL(x,y) 5;()() —dip(X)=—m(X),
+i(x i _ gl — Y b
YOGy +i [ dxa(x) 5 (x) . (5) ———am () =T (xY) h(y) +54%(X),
o (x)

where §¢(X,t) = ¢(X) — d(X,t); the normalization isﬂ, the  \here T(x,y)= —A+[m§+(b/2)G(x,x)]5(x—y). In this
variational parameters are the condensai#(x,t)  approximation the interaction tering* becomes quadratic:
=(W¥|¢|¥) and its conjugated variable(x,t)=(¥|#|¥); i.e., it contributes to a self consistent mass, as we will see
guantum fluctuations represented by the width of the Gaussxplicitly.

ian G(x,y,t)=(¥|(x)$(y)|¥) and its conjugate variable For a translational invariant system, we perform the Fou-
3 (X,Y,1). rier transformation
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_ 1 — b b—
d(x,t)= 2 )sf dko(k,t)explik(x)), p?=mi+ 5 1TGo(X,X) + §¢>2- 13
o
1 This equation defines the symmetric phase, with 0, and
m(x,t)= J dkr(k,t)expik(x)), asymmetric one with?= — 6m3/b— 3(x|G|x). Part of these
(27) solutions have been studied in three dimensiongls], as

(100  well as the renormalization procedure. We see that given the
L “renormalized mass,”u?, and the coupling constari, the
_ , . - bare mass is defined by the vacuum of the chosen phase.
G(xy)= (277)3f dkG(kk")exp(ik-x—ik’-y), In one spatial dimension, which corresponds to the case
we will analyze numerically, the GAP equation can be made
1 finite by renormalizing the mass. We must eliminate the di-
3f dkS (k, k" )expik-x—ik’-y). vergence of the k_erneiBo(x,y;p,z) by fixing a mass scale,
) w?, from Gy(x,y; ). This yields the same result of the
_ renormalization of the equations of movement and it results
We can then eliminate the variablesand;. The equations i the following GAP equation:
in the asymmetric phase become

2(xy)= 2

G2 1 -
- kk! ~—1 -1 2
G = G =5 G +2 g

y — — b—2 3b
no=u($=0)+5¢°——-log : (14

k2+m2+EG(x X)
0 2 '

As we will see, any deviation of the physical mass frarh
+ Eg Gy =0, introduces dynamical effects. More details on renormaliza-
2 tion in one or three dimensional spaces with different pre-
scriptions can be found if23,6,16,15.

bt 5=0, (11

b—. b
k2+m3+ €¢2+ 5G(x.x)

Ill. SMALL DEVIATIONS AROUND THE SYMMETRIC
MINIMUM
with Gy = (k|G(x,x)|k+q). These equations were general- _ _ _ L
ized for the out of equilibriun{nonzero temperatuyeising In the symmetric phase, we will consider small deviations
different methods i21,20,10. aroun'd .t'he minimum by I|near|zm'g the equations of motion.
For the Gaussian ansatz we use, in the symmetric phasén€ initial condition is thus given byG(x,t=0)=G

($= 0), one needs only two initial conditions for the tempo- + 5G(X’t=.0).' whereG, is the."?"“e in the vacuum, arits
is the deviation from the minimum. In momentum space

ral evolution of these equationsz(t=0) and G(t=0),  yeeping only the linear terms i6G of (11) we obtain
which is proportional to its imaginary pat:. The evolution
of ¢ only occurs for a nonzero initial conditiog, since the 5G = — 8G e (VKP4 2+ \(k+q) %+ u?)?
two phases of the potential are, in principle at this level of

knowledge, disconnected. b 1 1

In Minkowski space there is no exact analytical solution T4 N + Jk+q) 2+ 2 % Gpp+q-
but some numerical works have been done. The choice of K K
initial conditions is entirely subordinate to the approxima- (15

tion, in the sense that were it not Gaussian one could have
consider three conditions instead of th&). The analysis of
these equations if9,10] show that initial conditiongfor
homogeneou$ and ¢) are crucial for the time interval in  —
which the system evolves towards the minimum and for the

speed of the field evolution. Our approach, however, is dif- 5G(1)=5G(t=0)e ', (16)
ferent as we will see in Sec. IV.

t . o
8ne is left to the problem analogous to that of an infinite
number of coupled harmonic oscillators. We will consider a
plane wave prescription t6G in the homogeneous casg (

It is important to remark that we are dealing with nonrenor-

A. Static case considerations malized equations of motion and this may make possible the
. _ L _ determination of time dependent divergences.
The vacuum state is obtained whEr-G= ¢=0, and, in The free case solution for E¢L5) in d dimensions is

function of the renormalized mass at the minimya?, the

fluctuations are described by d

d%
5G(X,y;t)=—f—d5Gk,kr(t=0)00iM(k,Q)t],
——syl o 7

Go(X,Y) =(X| ===y, (12
~Ate whereM (k,q) = (VK®+ u? 2+ u?
)= (VK2 + w4 J(k+ )+ p?).

wherew? in the vacuum is given by the self consistent GAP  Since the trial form of a Gaussian for the system remains
equation valid during the temporal evolution we associate the devia-
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tion from the minimum of the initial conditionG,) to the m2— [
small change of the mass, as Ef2) suggests. In this uni- (x| 6G|x)= — — ENO(Z,ut)
form case,q=0, we considerdm?=m?— 2 and then 8
5G(t=0)=(u?—mA)/2(Jk?+ u?)%2 The explicit solution B vt
for the time evolution ird dimensions reads + 2 | cod2yy 24
M 202 2\12]" (24)
rooYAYTp)

, o [ A% cog2\k*+pu’t)
oG()=(u"—m?) ord At D (18)  whereN, is the zero order Bessel function and the second
(2m) ( ©o) term corresponds to the one dimensional integral case unless

; ; ; ; for a multiplicative constant. Fdr=0 we see one divergence
We will refer to these solution€l8) as semianalytical solu- . . 1 . o
68 y in No(t=0) which might be regularized and it is related the

tions and they will be useful to verify the numerical calcula-. . . A . e . ) .
tion. For a space of dimensiati=3 dimensions, Eq(18) initial condition or static case, it is absent in one dimensional

keeps an ultraviolet divergence space. A detailed study of the time dependent case in 3 spa-

Whent=0 the integral is very easy and in one dimen- tial dimensions will be shown elsewhere.
sional space it is given by

IV. NUMERICAL METHOD:
2 2 TDHB IN SYMMETRIC PHASE

ue—m
: 19 _ o
8mu? (19 From here on we change sometimes the notation in order

to place the system on a lattice, so, instead of continuous
In one spatial dimension, the integr@dl8), at anyt, with a  space X,y) we may have discrete parameterg ).

6G(t=0)=

change of variablesy€=k?+ u?) can be written as Gaussian approximation corresponds to a mean field ap-
proximation where the two or more field coupling terms are
cog 2yt) decomposed in terms of two point Green’s functiatGly),

o dy
8G(t)=(pu?—m?) L 4 212 (200 and this is manifested in the self consistent mdss. This

20,2 _
yy'mn kind of approach can be established in terms of a generalized
We notice from Eq.(18) that there is no ultraviolet diver- density matrixR in the frame of TD Hartree Bogoliubov

gences and we find as a solution the following expressiofiomalism. This will be done in the following in order to
[24]: perform numerical calculations.

One defines th&® matrix as[25]

8

NCIE 3

1
2| = Tt 22
+ 5 tF(z)le(z,Z,z, ,LLt)

whereF are the generalized hypergeometric functi¢®4];
I'(b) are gamma functions ari8i(a,b) is the beta function

2m2

(x| 6G|x) = £

‘28(1 1) F ( ! O1 2t2) (X,y) (X,Y)

Sk B{5.1] Fo| —7:055—u p(X, K(X,

2 27/, 4'72 RxY)=| . , (25
K*(XY)  —p*(X.y)

, (21)  wherep(x,y)=2%(a(x)a'(y)+a'(y)a(x)), is Hermitian and

k(x,y)=—{a(x)a(y)) is symmetric; they are respectively

the one and two particle density matrices. These two quanti-

ties are directly related to the variational parame@nd2,

by the creation and annihilation operators, which, written for

a lattice ofd with mesh sizeAx, are

F(a)zJ'mtzfle*‘dt,
° (22 o1 ; d-1)24 i s+ 1+d)y/2
a(J)—E{QﬂJ)(AX)( 2rim(j)(ax) 92 (26)

B(a,b)=folta’l(l—t)b’ldt.

1
Triy= i (d=1)/12__; H (1+d)/
The hypergeometric functions can be expanded in series al(j) \/§{¢(J)(AX) hr(j)(AX) %
[24]: (27)

L o (@) The mean values of the fields allow one to relate, in the
1F2(a'b1072):k§=:0 (b)(C)k Kk’ (23 symmetric phase, to all these variables as

where @),=I'(a+k)/I'(a). The important thing here is to o ] ) 1 o o
know that this series converges ftaj <o [24], since the G('*J):<¢(')¢(J)>:WRG(P("J)_K("J))v
numerical integration of expressid@0) offers a very safe
way to obtaindG(t). 1

Although in this paper we are not analyzing the case of N : N . o
three-dimensional space we will show the solution of Eq. F(iL1)=({IIOI())) (Ax)d+1Re(p("J)+K("l))’
(18) because it has an interesting feature. In three dimensions (28)
the solution of(18) with an integration by parts can be writ-
ten as whereF(i,j)=G(i,j) Y4+ 43 (i, k) G(k,1)=(I,i).
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The density matrixR(x,y) at zero temperature is com-  Thus, with initial conditions foiG and2 we diagonalize
posed by pure states and has a sympletic structure which wilhe density matribR(t=0), whose eigenvectorsif andv,)
be conserved in the temporal evolution. This basically meanare evolved in time and related goand « by
that TfR7=R! (R is the transposed d?), where we used the
“sympletic metric”

pii= 2 MnlUn(DUn (D) + o7 (DuR (1),

0 1
7= ( o 0). (29) (36)

kij=— 2 Ap(Up(DUX () +vE (o).
In the case of pure states the following relation is also satis- ! ”ZO (el e

fied:
5 These variables may be expressed in term&adnd F at
R*=1. (300 each time step by Eq28) and so on.

) ) __ SinceH depends on the evolved eigenvectors we utilize a
This relation guarantees a number of conserved quantitiese|f consistent method which require interactions in each
(finite on the latticg at each time step in the temporal evo- time step. We have verified the independence of the evolu-
lution, since @/dt)R*=0. tion sense with the inverse evolution operatior —t, as

The variation of the total energyg=/d"2(H(2)), pro-  well as the independence of the results with relation to a
duces the Hartree-Bogoliubov enert(x,y) which is de-  yariation of the time stept.
fined by[25] Now we are lead, for example, in the symmetric phase

(¢=0) to give the initial conditions. We choose one con-
(31 figuration for the fluctuatiorG att=0, and its “velocity”
(which will be taken to be zero along this papér;vG
=0). As we have seen the two point Green’s function has a
“natural parametrization” corresponding to its static form

6E

1
EHij(va):m-

On a Cartesian lattice al dimensions with mesh siz&x,
we obtain

[

D 1 _
Sly)  with  S(x,y,t=0)=0.

] =(X| ——
—Wi,;)’ (32 G(x,y,t) <X|JT .

where we have defined the matrices

Hi,j: .
1]

If we put m®>=pu? we get the vacuum. The renormalized

mass becomes thus the “new” variational parameter

=m(t)?, and it is possible to consider several spatial and
(33 temporal different configurationa’®=m?(x,t).} The bare

1 massmj (for both phasesin the energy equatiof32), is

Dij:E(Fi,j(AX)l_d_(AX)_l_d(Sij)r given by the GAP equatioil3), determining the required
vacuum state. However, these initial conditions correspond
to the particular case of the Gaussian approximation: it is

Wherel_'l']=—A”-l-(mg-i-bG”/Z)ﬁ,]:—A|]+m25,] . . .. .
With these quantities we can write the equations of mo_pOSS|bIe to take more general prescriptions to which one

. S ; needs to consider three conditigr@.
tion under the form of Liouville—von Neunmanantirely Thus there are two free parameters: the physical mass
equivalent to the equation®) in the symmetric phase, re- b ' phy

; . i and the coupling constant. In 3 spatial dimensibris con-

specting expressiof80): strained by the running coupling constant equafib]. If
we take into account some inflation models and primordial
energy density inhomogeneities in 3 dimensions its values
) ) . o . (b) for most of the inflation models are severely constrained
This complete eqqulencg was verified explicitly t_)y substi-t5 the order of 101° [2]. This makes the field to keep nearly
tuting H; ; andR; ; written in terms ofG; ; and,;; in the  the free case dynamics. In lattice calculation, in three spatial
above equation. _ _ _ dimensions, the value d&f=6 is usually adopted.

Consequently we can consider the time evolution of the - An interesting variable to regard is the energy density
system by diagonalizing the generalized density maix gince we will examine a nonhomogeneous configuration. On

and performing the temporal evolution of its eigenvectorsyyg |attice, the energy densitihe mean value ofL7) in the
(U andvy), which have the sympletic normalization, in the symmetric casgcan be written as

lattice: i\ p{|un(i)|?—|va(i)|?} =1, consistent with expres-
sion (30).
A new evolution equation can now be written as

1
Wi :E(F{j(Ax)lfd‘F(AX)flfdb\ij),

iRi; =[Hik,Ryjl. (34

Iin fact, a description only dependent amand m may be con-
. . sidered with the elimination of the other degrees of freedom by
[ Un(D) - [ Un(]) integration in momentum spade of movement equations and ef-
g . | =HGDL ] (35) gration P q
vn(i) vn()) fective action.
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(H)(i,i)=

8.80e-01

+32 T Relp(D = K(iD)5y (39

8.60e-01

where lT(j A)=—A4; +(m§+ bG;i/4)5; . This expression &
allows us to plot the energy density in the lattice and its trace
gives the total energy which is conserved in all cases showe

below. 8.20e-01 |

Another useful variable is the particle numbeM(i,i)
=a'(i)a(i)], whose mean value in a general lattice of di-

8.40e-01

8.00e-01

mension(d), in the symmetric case, is given by oo ! 2 8 2 s
r (fm)
1 1 . ' . . )
NY(P L) = =G(i,i)(AX)9 T+ =F(i i) (Ax)d*? FIG. 1. Spatial configuration fo6(i,i), with m=100 MeV,
(N)@.D) 2 (1D (Ax) 2 (1, (Ax) with relation to the points of the lattice.
+[2(1,)G(,1)— G, E(],)](Ax)* of Fig. 2. Frequency oscillation changes a lot depending on
1 the coupling constant but the amplitude depends exclusively
__5d (Ax)d (39 on the initial condition. The particle number corresponding

to the case of Fig. for b=6 fm~?2) is shown in Fig. 5. We
observe that this variable is not conserved and there are two
This expression can be rewritten in terms only of H{e,j)  aspects to be considered here. First, as it can be seen by the
variable as figure, the number of particles at the beginning and at the
end of the temporal evolution are not exact integer numbers.
. . . 1 . This shows that the considered states are not eigenstates of
(N)(i,i)=Re(p(i,i))—Im(p(i,i))— §5d(|,1)(AX)d- this quantum number, whose symmetry is broken by the ap-
(40)  Pproximation. On the other hand it is obvious from the expres-
sion (39) that the number of particles at zero temperature
depends strongly on the relevant variables of the system,
V. RESULTS ON A LATTICE OF 1 + 1 DIMENSIONS namelyG and2, in such a way to vary with temporal evo-
lution. However an initial condition with a definite particle
number can be chosen, and moreover, the t-dependent eigen-
tates can be projected into states with definite particle num-
er [26]. This procedure would be of great interest when
onsidering cases with internal symmetries gauge or chiral
heories, given that as we see the Vvariational

In this section we show some numerical results on a lat-
tice of one spatial dimension of 5 fm with a mesh size of 0.1
fm. We have considered between 6 and 14 interactions i
each time step for the energiy and eigenvectors determina-
tion, self consistently with a time step, chosen in such a wa
to guarantee the stability of the evolution, given Ky
=0.03 fm. The physical mass has been chosem &s00
MeV. We have considered periodic boundary conditions for 0.040
the Green functior(i,j).

For an initial condition in the vacuurm?=pu? and 3 !
=0, the system remains in such state, as expected, with cot 0.020 | )
served total energy, independently of time step value. The
spatial configuration o6&(i,i) is shown in Fig. 1, remember-
ing that it is a symmetric and diagonal matrix. = o000 |

Then we consider an homogeneous initial condition cor-
responding to a small deviation of the mass from the vacuun %910
value:m(t=0)=0.9u (with =100 MeV), in the free case
(b=0). In Fig. 2 we show the temporal evolution of the

0.030 -

0.010 +

-0.020

deviation of the width with relation to its vacuum value, -0.030 |

8G(i,i;t)=G(i,i;t)—Ggy(i,i). This numerical solution ‘ ‘ . ‘
(continuous ling is compared to the semianalytical solution %0 20 40 6.0 8.0 10.0
of Eq. (18). The system oscillates around the state of mini- t (fm)

mum indefinitely since there is no dissipation. Total energy

is conserved and results are independent of the considered g, 2. peviation with relation to the vacuum stad&(t) in

values of the mesh size, as well as in all following cases. function of time for the numerical solutiaisolid line) and the semi-
The cases for the coupling constant equabte6 fm™2  analytical solutiondotted ling in the free case with an initial con-

and 30 fm 2 are considered fofG(t) and exhibited respec- dition given by m(t=0)=0.9« and the physical masg =100

tively in Figs. 3 and 4, with an initial condition equal to that MeV.
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0.020 T 125
0010 o
-8 12.0
S 2
=
Z
v 0000 .g
5
A 115
-0.010
002055 50 10.0 %0 20 a0 0 8.0 10.0
t (fm) t (fm)
~ FIG. 3. DeviationsG(t) in function of time for an initial con- FIG. 5. Particle number as defined in the text for the case of the
dition m=0.9x, massu =100 MeV and coupling=6 fm 2 conditions shown in Fig. 2.

approach may break some symmetry of the system, as it _ . .
actually doeg13]. mp) in such a way to guarantee the independence of the

Another case of great general interest as initial conditio €SUltS with respect to the mesh size. , ,
is the bubble configuration as shown in Fig. 6. It is a zero_ !N Fig- 10 we show the evolution of the Green's function

mass bubble measured by the size 5 fm centered at the G(i,i;t) for a time dependent mass. The injtial condition
lattice point,x,=2.5 fm, inside the solution of symmetric COrresponds to the vacuum of the symmetric phaseyfor

vacuum as the expression: =100 MeV,_ WhiC2h yields, in the sXmmgtric phase, Py the

GAP equation,mi,= —2.474621 fm?2 with b=6 fm 2,
according to Eq(13). Whent=3 fm the evolution is deter-

m2=,u2tam'( A ) (41)  mined by the asymmetric phasej,=—2.478473 fm?
coupled with the condensate, for which we have chosen to

The configurations of the functiofx|G|x) and the energy Nave an initial condition at=3 fm equal to¢(t=3 fm)
density respectively for the times=0,0.33,3.3,5.0,5.7 fm = 1.1¢o, where ¢o=y3u“/b corresponds to the minimum
andt=0,3.3,5.0,10 fm are shown in Figs. 7 and 8. The evo-0f the potential. This time dependence mf simulates a
lution of the mean value on the latti@M=3;"G(i)/N and  phase transition. The Green’s function tends to oscillate
the value of one point of the lattic®(25) is shown in Fig. 9. around the asymmetric vacuum point. This value of the con-
The energy is distributed among the degrees of freedom giensate can be compared to the minimum in a tree approxi-
the lattice and the system still oscillates around the state ahation wherap,=/—6mZ/b. Then, in Fig. 11 we show the
minimum. Again, a mesh size variation of the lattice wasparticle number for this last case of phase transition. There is
done with a corresponding variation of the parametbrar{d  particle creation, which “dissipates” the widtB(i,t). Fi-
nally in Fig. 12, the evolution of the deviation of the con-
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FIG. 4. DeviationdG(t) in function of time (X 0.1 fm) for an
initial condition m=0.9u, mass =100 MeV and couplingb FIG. 6. Initial condition corresponding to a bubble of zero mass
=30 fm 2, m?= u?[tanh((r —2.5)/9]? for a physical mass ofi=100 MeV.
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F_IC_5: 7| Terg_p_oral e_volutl_on I(:)f bugble gonﬂgu:at@{r,t) f;)t: FIG. 9. DeviationdG(t) in function of time for central point of
an |n|t|§12 condition given in Fig. . an .couplng c.on.st t the lattice (continue ling and for the mean deviation of all the
=6 fm™ <. Curves correspond to configurationsat@ (solid line), . P . . . .

points (5G) (dotted ling for the initial condition of Fig. 6.

10 (long-dashed, short-dashed.00 (dotted, 150 (short-dashex

170 (long-dashegdAt, with At=0.03 fm. . . .
(long 2 absent in the one dimensional case.

_ _ - . . . Then we have shown the numerical method that consists
densated(t) = ¢(t) — ¢ with relation to its value in the  on g mean field approximation for the quantum fluctuations
minimum is presented. The field oscillates around thgn which a generalized density matrix obeys a Liouville—von
vacuum value. A self consistent treatment of this prome”Neumann—type movement equations. These equations are
with the evolution of¢ in three spatial dimension is under exactly equal to those equations obtained by a variational
work. Results are in very good qualitative agreement withmethod with a Gaussian trial wave functional in the symmet-

those obtained by the authors [&10]. ric phase. We can on the other hand couple these equations
to the equation of the condensateé)(in the asymmetric
VI. CONCLUSIONS phase. The equations written in that form allow a simple way

) to perform time evolution of the density matrix eigenvectors
In this paper we have worked out a new method to per¢orresponding to the evolution of variational parameters re-
form temporal evolution of quantum fluctuations applied tospecting sympletic structure of the equations of motion. This
\¢* model in the Schiminger representation. First, how- means in particular a number of conserved quantities in the
ever, we have found the solutions for the free equations ofattice equal to the number of points of this lattice. If we
motion in 1 and 3 dimensional space in the special case Qfere not in lattice but in the continuum, there would be an
small deviations from the vacuum as initial condition andinfinite number of conserved quantities. In one dimensional
concluded that, concerning ultra violet divergences, the thregpace several initial configurations were given and the re-
dimensional case presents only one divergence in the initial
condition (equivalent to a static case divergeneehich is
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FIG. 10. DeviationdG(t) in function of time for an initial con-

FIG. 8. Temporal evolution of energy densijigt,r) fm~* cor- dition in the symmetrical vacuum, witp=100 MeV, untilt = 3
responding to the evolution oB(r,t) shown in Fig. 5. Curves fm. From this time on, the evolution is determined by the asymmet-
correspond to time$=0 (solid line), t=100 (dotted ling, t=150 ric phase with the condensagt=3 fm)=1.1¢,. Coupling con-
(dashed lingandt=300 (long dashed lingAt. stant was taken to be=6 fm~2.
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FIG. 11. Particle number for the case of Fig. 10. FIG. 12. Temporal evolution of the deviation of the condensate
with relation to its vacuum value for the case of Fig. 10.

spective evolution shown for the quantum fluctuations devia-

tions from the vacuum. For the free case we were able to One interesting pr0b|em we are left is the app”cation of
compare the semianalytical solution with the numerical onghjs method to other more realistic models, like to pions in
being the curves very close to each other. The field alwayfeavy ion collisions, considering the observations of the last
oscillates around the vacuum stai@ the symmetric or  section, but in three dimensional space. As stated above this
asymmetric phasebeing the energy distributed among the kind of “mean field” may break symmetry properties like
degrees of freedom of the system: quantum fluctuations, coRhpse associated to particle number conservation and angular
densate ¢) and kinetic contributions, on the lattice. This momentd25]. The same occurs for the theories where some
occurs specially in the case of nonhomogeneous configuraymmetry plays an important role like in gauge or chiral
tion, like a bubble of zero mass in the vacuum. The resultsymmetry models. An extension of the used numerical
concerning homogeneous configuration are in very goodnethod in three dimensional space for nonequilibrium cases
qualitative agreement with those obtained[ByLQ] in three  or finite temperature is thus of high interest and is under
dimensional space with a different method. The influence ofvork.

b was shown by considering=0, 6 and 30 fm 2, and for
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