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Upper bound for entropy in asymptotically de Sitter space-time
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We investigate the nature of asymptotically de Sitter space-times containing a black hole. We show that if
the matter fields satisfy the dominant energy condition and cosmic censorship holds in the considered space-
time, the area of the cosmological event horizon for an observer approaching a future timelike infinity does not
decrease; i.e., the second law is satisfied. We also show under the same conditions that the total area of the
black hole and the cosmological event horizon, a quarter of which is the total Bekenstein-Hawking entropy, is
less than 12/A, where A is the cosmological constant. The physical implications are also discussed.
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I. INTRODUCTION els with A and a perfect fluid satisfying the dominant energy
condition and showed that the area of the cosmological ho-

There has been interest in space-times with a positive cogizon cannot decrease. From this result, one may expect that
mological constantA. Recent cosmological observations in generic asymptotically de Sitter space-times the area of a
suggest the existence of in our universe[1]. Also, it is ~ CEH cannot decrease as in the case of a BEH.
widely believed that inflation took place in the early stages Boucher, Gibbons, and Horowif8] showed that the area
of our universe, where the vacuum energy of a scalar fiel@f the CEH is bounded from the above by42 on a regu-
(inflaton) plays the roll of A. Most regions in such a space- lar time-symmetric hypersurface. ~Shiromizu, Nakao,
time are expected to expand as in de Sitter space-time. Sontf@dama, and Maedgb] also obtained the same conclusion
regions, however, will gravitationally collapse to form black on @ maximal hypersurface. However, one cannot say that
holes if the inhomogeneity of the initial matter distribution is the same conclusion holds for CEHs in a general nonstation-
large. Then there will be observers who have two types oftry asymptotically de Sitter space-time, because it is highly
event horizons, a black hole event horiZBEH) and a cos- nontrivial whether a foliation by such hypersurfaces exists
mological event horizoiCEH), just like the observers who and covers the relevant portion of the space-time.
approach the future timelike infinity in Schwarzschild—de ~WCC is assumed in the proof of the above results as well
Sitter space time. Throughout this paper we shall focus o@s in the case of a BEH. An example of Schwarzschild—de
the event horizons for such observers. Sitter space-time shows the significance of this assumption,

Gibbons and Hawkind2] studied the thermodynamic and also suggests a close relation among the area of the
property [3] of event horizons in asymptotically de sitter CEH, the WCC and positivity of thgravitational energy
space-times. In particular, they found that an observer feelgnass. Figure 1 shows the mass parameteas a function
thermal radiation coming from the CEH and that the entropyof the areaA of the event horizon and Figs(& and 2b)

Sc of the CEH is equal to one quarter of its area as in the
case of a BEH. Thus, the areas of the event horizons can t m
interpreted as the entropies, or lack of information of the
observer about the regions which he cannot see.

In classical general relativity, there have been a number c
studies on the nature of BEHs in the asymptotically de Sitte
space-time. Hayward, Shiromizu, and Nakagd and Shi-
romizu, Nakao, Kodama, and Maeldd showed that the area
of a BEH in the asymptotically de Sitter space-time canno
decrease and has an upper boumdMif weak cosmic cen-

A
sorship(WCC) [6] holds. This means that black holes cannot _'\
]
]
upper bound. m(<0) !

collide with each other if the total area of them exceeds the¢

Davies|7] investigated a CEH in Robertson-Walker mod- \
*Electronic address: maeda@th.phys.titech.ac.jp FIG. 1. The mass parameter of a Schwarzschild—de Sitter
'Electronic address: koike@rk.phys.keio.ac.jp solution for a fixedA is related to the areA of event horizons as
*Electronic address: narita@rikkyo.ac.jp m= (A/16m) 41— AA/127). A, A, are the areas of a BEH and a
SElectronic address: akihiro@th.phys.titech.ac.jp CEH, respectively.
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+oor the CEH can be also defined in termsBf. Namely, we
define thecosmological event horizofCEH) to be the past
Cauchy horizorH ™ (Z") of the future infinity.

In general, the topology oI is not determined. How-
ever, it seems reasonable to supposedhias diffeomorphic
to $?x(0,1) if the topology of the BEH i§?. In analogy to

Poor i weakly asymptotically simple, empty, and future asymptoti-
(@ cally predictable space-timésee proposition 9.2.3 of Ref.
[9]), we also assume that there is a continuous onto map
L L a:(0°) X2 —D*(2)—2 satisfying the following.(1) For

eachte (0,°), a;:=a(t,-), and restriction ofa on (0f)

X a; }(3¢—Z") are homeomorphisms, whe®, :=a({t}

X2); (2) for eachte (0°), 3, is a Cauchy surface for

D(3) such that(@ 3,—Z'C I 7(2y—Z") whenty>t,

and(b) the edge of,,—Z" in M is a spacelike two-sphere in

T+. We defineW,:=3,NZ". We haveW,;CW,, for t,

b >t, and UIE(O,W)WFZ*. We also present a lemma on the
topology of a CEH.
FIG. 2. Penrose diagrams of Schwarzschild—de Sitter space- Lemma 1. (Each component of) any sufficiently nice cut of

times with mass parametefa m>0 and(b) m<O0, respectively. ~ the cosmological event horizon HZ") is a topological

two-sphere.

show the Penrose diagrams for the casesnof0 andm Proof. SinceD ~(Z")NM is a future set irM, its bound-
<0, respectively. One easily finds that if the WCC holds@Y INM, i.e., the CEH, must be @~ embedded submani-
(m>0) the are&A. of the CEH is bounded from the above TOId of M (see proposition 6.3.1 of Ref9]). Moreover,
by 127/A. Indeed, one finds that thetal area of the BEH

i I i

intD ~(Z") is simply connected because it is homeomorphic
and the CEH has an upper boundm®. On the other hand, to TV XR andZ" is simply connected. Thus the conclusion
if the WCC is violated m<0) A is not bounded. follows.

In this paper, we show the area theorem that the area of . I . -
the CEH in an asymptotically de Sitter space-time containing & use the following lemma, which is shown in REd],
a black hole cannot decrease so that the second law of thei@ Prove Lemma 3. _
modynamics is satisfied, and the total area of BEH and CEH Lémma 2; Le® be a partial Cauchy surface. For any p
is less than 12/A, hence total Bekenstein-Hawking entropy €0 (%), 37(P) QD () is compact.
is less than 3/A, if the space-time satisfies the WCC and the ~ Lemma 3. D(Z7)=Uc(0x)D " (Wh). .
energy conditions. To this end, we define a quasilocal energy Proof. Let us define a continuous functioh” s p—t
in a space-time with\ and its monotonicity and positivity. < (0) defined bype edge W,). Because lemma 2 im-
Very roughly speaking, our analysis is a generalization of the?lies that for anype D (Z%), 3"(p)NZ" is compact in
argument of the previous paragraph to general asymptotM, there exists a maximum value for the function above. So
cally de Sitter space-times which are neither stationary nothere is at e (0) such thatW,2J"(p)NZ" and hencep
spherically symmetric. We follow the notation of R¢f)] eD (W,). Thus we have D (Z")CU,.nD ™ (W,)
and use the unitse=G=#%=kg=1. CUic(oz=D ™ (W,). It follows from D (Z")2D (W, for

eachte (0,°) thatD " (Z") DU (0D~ (Wy).

O
Il. ASYMPTOTICALLY de SITTER SPACE-TIME In the next step we will prove lemma 5 by using the
AND THE AREA LAW following limit curve lemma[11].
FOR A COSMOLOGICAL EVENT HORIZON Lemma 4 (limit curve lemma). Let,:(—o,2)—M be a

In thi . hall show th theoréne sequence of inextendible nonspacelike curves (parametrized
n this section we shall show the area theoxéneorem 1 by the arc length in g which is a complete Riemannian

for a CEH In an asymptotically d_e Sitter space-time. ATS ametric). Suppose thateM is an accumulation point of the
precise definition of an asymptotically de Sitter Space't'mesequence[yn(O)}. Then there exists an inextendible non-

safisfying the WCC, we assume space-tini.§) to be spacelike curvey such thaty(0)=p, and a subsequence
strongly asymptotically predictable from the partial Cauchy{s + which con?/yerges toy unijf/(()rrzlyrzilvith respect tog) on
surface, and de Sitter in the futur¢5], and just call it conr;]pact subsets 6t

asymptotically de Sittetn what follows, causal relationships Lemma 5. For any generatov of H™(Z*), parametrized

are considered in a larger manifol(g) in which (M,g) is iy respect to thegg arc length, there exists a sequence
conformally embedded. Note that the future conformal infin—{)\ \ of null geodesics in D(Z"), parametrized with respect
ur N ,

ity 7" of M is a spacelike hypersurface M [10]. to the g arc length, such that (1)x,} converges uniformly

We_ ghall consider asymptotically de Sitter space-t.imes;t0 \ with respect to h on compact subsetspfand (2) each
containing a black hole and an observer whose worldAine ) generates an achronal set.

has a future endpoint at the “future timelike infinity.” Then " prgof. Let p be a point ofA which is not the endpoint.
J7(\) consists of two components, the BEH and the CEHAny neighborhoodU of p contains a point oD ~(Z7). It
for the observef2]. As the BEH can be defined ky (Z), follows from lemma 3 that there exist @ye N such that
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UND ™ (W,)#0 henceUNH™ (W,)#0 for all n=n,. Then pansiond-., the shear™, and the twistw on a two-surface
one can construct a sequergs,} such thatp, e H‘(Wmn) are defined as

andp,—p, where Wy, ) is a subsequence ¢,}. Letting
A\, be the generator d])*(Wmn) throughp,,, one has from 0.==h"1:C.h, (3.1

lemma 4 that there exists a inextendible nonspacetike
curve y throughp such that{\,} converges toy uniformly
on compact subsets &. However, becausg\,} can have
its accumulation points only om ~(Z"), y must lie on
H™(Z"). Sincey is a nonspacelike curve throughand is w= 1 e'h-[1,,1 ] 3.3
lying on H™(Z"), it must coincide with\. 2 A ’

Uizﬁth—ﬁih, (3.2)

O
Finally we present the following area theorem of thewhere L. represents the Lie derivatives along the vector
CEH. fieldsl.. and dots and colons denote single and double con-
Theorem 1 (area law for a CEH). In an asymptotically de tractions, respectively. The quasilocal energy is defined in
Sitter space-time with a piecewise smooth CEH satisfying theach embedded spatial two-surfages
weak energy condition & (Z7)NZ)=A(H (Z7)

N3, ) for t,>t;, where A (S) denotes the area of a 1 /A f ( ‘ 2A
1 E(S):=— — R+e'6,6_—— |, (3.4
two-surfaces. (8) 8x V16m)s" €0+ 3 34

Proof. Piecewise smoothness of the CEH implies that
there are a finite number of pairwise disjoint smooth subwhereA, R, and i represent the total area 6f the Ricci
manifolds U;’s such that the CEH isJ;U;. It suffices to  scalar onS, and the area two-form ofj, respectively. This is
show that the expansiofi=0 on eachpeintU; because the Hawking energy with last term added in the integrand.
eachU; is foliated by future inextendible null geodesic gen- Physically,E(S) is the gravitational energy subtracted by the
erators. For any poinp e intU; for somei there is an open energy due to the cosmological constantso that it is con-
setV s p diffeomorphic toSXR, whereS is a locally space- sidered as the energy of the matter fields. In
like two-surface containingd with compact closure. By Schwarzschild-de Sitter space-tiri€S) coincides with the
lemma 4 and compactness®there is a sequence of diffeo- mass parametem. In spherically symmetric space-times
morphismse, :V—V,CH™(W,) such that(1) each¢,(S)  with dust, E(S) coincides with the mass functigii4]. In
is spacelike,(2) each ¢,, preserves the foliations by null space-time without\ our quasilocal energf(S) reduces to
geodesic generators, af8) ¢,(B) converges uniformly to the Hawking energy.

V on compact subsets 6iXR. Suppose that the expansién The Einstein equations are given by

of future-directed null geodesic generators of the CEH were

negative atp. Then by the continuity of there would be 1 1

somen such that the expansidh, of generators o¥/,, would e 'L.(e'h.)+ > 07+ 1 lo.l*=~8m¢., (3.5

be negative atp,(p). From the weak energy condition the

generator frome,(p), since it is future complete, would

have a conjugate point ob,(S) (see proposition 4.4.6 of L.0.+60.0 +ef

Ref.[9]). This contradicts the achronality &f~ (W,). 2

1R 1Df+
Z > Df*o

Corollary. If the assumptions of theorem 1 hold and every +D.
future incomplete null geodesic terminates in a strong cur-
vature singularity of Krtak [12], then every generator of the
CEH is future complete. where¢..=T(I. ,l.) andp=T(l..,I) for the energy ten-
Proof. From the proof of theorem 1, the expansion of eachSOr T, andD is the covariant derivative with respect o
null geodesic generator cannot be negative. This contradicts Let Us examine the monotonicity &f(S) on an outgoing

the condition of strong curvature singularity. null hypersurfacé_ = const(the monotonicity on an ingoing
0 null hypersurfacet, =const or on a spacelike hypersurface

can be argued similarly The derivative of the energh(S)
Ill. QUASILOCAL ENERGY IN SPACE-TIMES WITH A along the outgoing directioh, is

Here we will define the quasilocal energyS) in space- A 1
8wLLE=1/ 16_77[

=8mp+e A, (3.6)

1Df+
E ~—w

time with A and examine its monotonicity and positivity, oA f ,umf w(R+ef6,6.)
which we will use to show the existence of an upper bound S S
for entropy (theorem 2 in Sec. IV. Let us introduce Hay-
ward’s double null formalisn{13], namely, smooth folia-

1
fﬂe( Z|U+||2+87rq§+)
tions of null three-hypersurfaces labeled By such that §

each intersection of two hypersurfaces of constantis a 1 1 1

closed spacelike two-surface. We have the evolution vector f wo.| = R+= e'6,.6_+D-| = Dftw
u.=4d/d¢. the normal one-forms.=—dé., the metric S 2 2 2

h=g+e f(n.n_+n_n,) induced on the two-surface, the 1 2

projection 1. on the two-surface, the shift vectons. —‘ =Df+w| —8melp }

=1u., and the null normal vectods.=u. —r.. The ex- 2 3.7
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We assume that the matter fields satisfy the dominant energgpology is S* in each 3(t=t;) and surrounds
conditions¢, =0 andp=0, and take a foliation of the hy- J~ (7" )nZ,; (iv) 1 (To)NI* (S, ) (I (") —-D (f))
persurfacet = const by spatial two-surfaces The energy 3+ (s, y: (v) any null geodesic generator of BEH is future
E(S) is nondecreasing in the outgoing null directiof,(  complete;(vi) matter fields satisfy the dominant energy con-

=0,0-<0), L, E=0, if dition. [This implies that matter field satisfies the weak en-
ergy condition(see, e.g., Ref9]).]; and(vii) There exists a
(00 F)=(0:F) 3.8 foliation satisfying Eq.(3.8) on each outgoing null hyper-
on eachs, where spacel” (S;) inside the CAH. Conditior(iv) is similar to

condition (i) above.

1 Lemma 6. For an arbitrary small positive valug there
i f =
Fi=R+e6,0-+2D ( 2 DHw)' (3.9 is an acausal hypersurfacEtl(tl>t0) such that for any
| closed spacelike two-surfacgg of J*(f)nJ*(Etl) the
()= IISL (3.10  quasilocal energy ESg) satisfies
SH
We r.emark that each term df exce.pt the third term is E(Sg)= A(Sg) 87— el—%A(SB) >0
invariant under rescaling of the outgoing null norrhal An 16w 3
example of the foliations satisfying E¢3.8) is one withF (4.9
=const, which we can take by the rescalingl of. Another _ _
example is the uniformly expanding foliatig.5]. Proof. Consider each null geodesic generaltor of the
BEH. By conditions(v), (vi), and the Raychaudhuri equation
IV. UPPER BOUND FOR THE AREA (3.9, lim,_ .6, =0 is satisfied, wherég is an affine param-

eter of |, . Ilmg_,ﬂfg,ue 0,.6_=0 is also satisfied because

In this section we will show that the total area of the BEH the area of a BEH has an upper bound. Therefore there is a
and the CEH is bounded in asymptotically de Sitter spaceEt such that for any closed spacelike two-surfage of
times (theorem 2. We define the apparent horizons accord--
ing to Hayward[16]. A marginal surfaceis a spatial two- v (f)ﬂ‘] (2 ) Jsue'0..0 " 's larger than—e, , where
surfaceS on which#, =0 or §_=0. A black hole apparent €1 is an'arbltrary small positive valge. From E@.4 a'nd
horizon (BAH) is the closureTg of a hypersurfacdy foli- proposition 1 one can get the d_e_s_|_red result by using the

, B . B Gauss-Bonnet theorem and conditi@i).

ated by marginal surfaces on whidh, =0, 6_<0 and
L_60,.<0. A cosmological apparent horizofCAH) is T¢ + _ - +
foliated by marginal surfaces on whicgh =0, 6,>0 and Lemma 7. J(Te) ™ (%)) =[Ud (SYINI" (2¢y).
L, 6_>0. Here the coordinates, are taken so that they are

O

Proof. For any pointpeJ*(TC)ﬂJ*(Eto) there is a

constant on each of the above spatial two-surfaces. point qeJ*(p)NTc. Then there isS;>q so that p
Hayward, Shiromizu, and Nakdd] showed that the area €3 (S).

of a BAH has an upper boundA. They also showed that u

the area of a BEH is less thanm#\ by implicitly assuming Theorem 2. If an asymptotically de Sitter space-time sat-

the existence of the limit two-surfac®of the BEH, though isfies the conditiongi)—(vii) above, A:=lim; _.A(Sp)
its physical meaning is not clegésee the Appendix Instead, and Ac:=lim; _.A(Sc) satisfy

one can reach the same conclusion under a physically rea-

sonable condition; strongly future asymptotically predictabil- 277

ity (or WCO) in an “extended” sensd17]. It states that AB+AC+\/ABAC\ — 4.2
singularities are hidden inside not only a BEH but also a

BAH. More precisely, the closure of the domain of depen-

dence of a partial Cauchy surface contains not dhlyand Remarkin particular, the are&c of the CEH is less than
the BEH but also the outermost part of the BAH, i.¢), 127/A. .
there exist>0 and a subsef of Tg, foliated by marginal Proof. For any closed spacelike two-surfacg; of

_ T ) .
surfaces, such that ™ (T4) NI (3) 23 (ZH)NI* (S, and H™(Z")ND™" () there exists a partial Cauchy surfakg_

1= (TR NTH (51D (3,). We give the following propo- contalnlngSc._ Consider a sequence of mairglnal surfaces
[siticfn \)/vhose( ptr)g& we(wil? give i?] Appendix. g prop S, (neN) defined above and defird; an'd N, as the n.uII

Proposition 1. In an asymptotically de Sitter space- tlmehypersurfaces generated by the future-directed outgoing and
satisfying condition (i) above and the weak energy conditioningoing null geodesic generators 0f (S,), respectively.
the area of a black hole event horiz¢BEH) is less than Denote the spacelike two-surfadé, N5, by K,. From
Ax/A. condition (iv) and lemma 7 it follows that limL, . A(KC)

Now we will show that the total area of the BEH and =A(Sc). The expansiord_ of |_ is non-negative in the
CEH has an upper bound &2\ by making use of proposi- future direction betweeis, and K,, becauseC_(ef6_)<0
tion 1. We require the following condition§i) There exists there, as implied by the Raychaudhuri equati8rb) of | _
to=0 such that the cross section &f (Z*)N3,(t=ty) is  and condition(vi), by 6_=0 on eachS,. Thus, as in the
smooth one connected component and the topolog§?js  proof of proposition 1, there exists, for an arbitrary small
(iii) there exists a marginal surfac® with §_=0 whose positive valuee, such that for alih>n,
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A(Sc) — €2=A(Sn) (4.3

is satisfied. A
Consider  outgoing null hypersurfaces N :
=N, NJI*(2;)NJI*(Xs,)- From the condition(iv) and
lemma 7, for any neighborhood U of
JTHNIT(2)NIT(2s,), there isn,>ny such that fom
>n, eachﬁl: intersectU. For n>n,, take spacelike two-
surfacesQ,, in IQIf{ﬂU. The sequencgQ,} converges to a
spacelike two-surfacesg of J7(Z7)NJI" (3 ))NI"(Zs)-
By the continuity of E(Q,)), for an arbitrary smalle;>0,
there isng>n, such thatE(Sg) — e3<E(Q,) for eachn
>ng. By condition (vii), the energyE(S) is nondecreasing
from Q, to S, on N, . Thus E(Sg) — e3<E(S,) for each

n>n5. By lemma 6 and Eq.3.4) for S,,, this inequality can
be rewritten as

12
ASe) +AS,) =~ — VASIA(S,) +O(e) +O(ey).
4.9

SinceS is an arbitrary two-surface 1 ~(Z*), one gets the
desired result by taking limi¢; ,e3—0.
O

V. CONCLUSIONS AND DISCUSSION

3507

Sitter. Since the areas of the EHs have a universal bound
(i.e., are bounded by numbers which depend onlyomand

the areas are expected to become larger when matter falls
into them, one expects that the amount of matter which falls
into the EHs have a universal bound. So, in the collapse of
an isolated object, if most of the matter falls into either the
BEH or the CEH, i.e., if there are no heavy shelllike “stars”
surrounding the black hole, one can expect that the total
initial energy of the matter should be bounded by a number
which only depends ork. This may provide a criterion for
the existence of the future asymptotic region of space-time,
that is, a criterion for the validity of the cosmic no hair
conjecture.

To solve the problems above, it is very important to know
the property of the total entrop$; of the universe, i.e., the
sum of the entropy of the EHs and that of the matter between
the EHs. We conjecture that in asymptotically de sitter
space-timeS; is nondecreasing, i.e., the generalized second
law of thermodynamics holds, and alSg is bounded.
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ing if the WCC and the weak energy condition hold. This
means that the area law of event horizons holds not only for
a BEH but also for a CEH, hence, it also applies to the total
area of event horizoné&otal Bekenstein-Hawking entropy, In their proof of the theorem of the upper bound for the
i.e., a quarter of the total area of the BEH and the GEH area of the BEH in Ref4] Hayward, Shiromizu, and Nakao
Next we have shown in theorem 2 that the final values of thémplicitly assumed that there is a limited two-surface of the
areas satisfyAg+Ac+ VAgAc<127/A. This means that BEH on which quantities such a&_ 6, are continuous, i.e.,
the final values of entropieSg:Ag/4 of the BEH andS:: independent of how one approaches the “timelike infinity”
=Ac/4 of the CEH, satisfy i*. However, this is physically not very well motivated and
is highly nontrivial in general. Here, we shall drop the as-
SgtSct VSgSc=37/A. (5.9 sumption above and prove a slightly modified version of the
In particular, the total entropy is bounded from the above b)}heorem. . .
3a/A in asymptotically de Sitter space-time. We note that  ProOf of proposition it is enough to show that the area
the inequality in theorem 2 is stronger than the previou®f @ BEH inJ7(X) has an upper bound because the area
result and conjecture which state tha{Sz)<4m/A and does not deqrease in the future d|rect|op as shown m[B}ef.
A(Se)=<127/A. Let us consider a sequence of marginal surfaSgswith
As discussed in Ref2], a BEH is unstable against Hawk- +=0 on the BAHTg and take a sequence of SUbSHS,Of
ing radiation, while a CEH is stable. Physically this suggests's Such thatT, ;CT,, edgel)=S,, UncnTn=Tg.
that all asymptotically de Sitter space-times approach de SitConsider spacelike two-surfacesT:J9(Z")NX; and
ter space-time. This is consistent with the inequalyl)  7Z,:H (T,) N2 for some(sufficiently large fixedt. We can
which states that for a fixed the total entropy attains its observeD ~(Tg)=U,.nD (T,), by replacingZ” in lemma
maximum in de sitter space-time, although the quantum ef3 with Tg. This together with conditiori) implies that the
fects were not taken into account in the derivation of thesequencel,, converges td. The expansiord, of each null
inequality. This curious correspondence suggests that the igreodesic generatdr, of H™(T,,) is non-negative in the fu-
equality is another law of EH thermodynamics in asymptoti-ture direction betweerZ, and S, becausel. (e'6,)=<0
cally de Sitter space-times. there, as implied by the Raychaudhuri equatidr) and the

It is of interest to pursue connections of the present resuliveak energy condition, and b, =0 on eachS,. Thus,
with the cosmic no hair conjectuf@,18]. Here we consider

a weaker version of the conjecture which states that a space-
time with A has a future asymptotic region rather than being
recollapsing, i.e., the space-time is future asymptotically de

APPENDIX: PROOF OF PROPOSITION 1

4
A(T)< A(S,) < - (A1)
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where the second inequality is obtained by integrating Eq. A

(3.6) multiplied by e’ on marginal surfacé, and using the AD—e=< 4. (A3)
Gauss-Bonnet theorepd]. Since the sequencg, converges

to 7, for arbitrary smalle>0 there exists @oe N such that  gjnce this holds for anyg we have

A(7,) with n>n, satisfies

41
A(7)—e <A(T7,). (A2) AT < e (A4)

From inequalitiegAl) and(A2) we have O
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