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Upper bound for entropy in asymptotically de Sitter space-time
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We investigate the nature of asymptotically de Sitter space-times containing a black hole. We show that if
the matter fields satisfy the dominant energy condition and cosmic censorship holds in the considered space-
time, the area of the cosmological event horizon for an observer approaching a future timelike infinity does not
decrease; i.e., the second law is satisfied. We also show under the same conditions that the total area of the
black hole and the cosmological event horizon, a quarter of which is the total Bekenstein-Hawking entropy, is
less than 12p/L, where L is the cosmological constant. The physical implications are also discussed.
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I. INTRODUCTION

There has been interest in space-times with a positive
mological constantL. Recent cosmological observation
suggest the existence ofL in our universe@1#. Also, it is
widely believed that inflation took place in the early stag
of our universe, where the vacuum energy of a scalar fi
~inflaton! plays the roll ofL. Most regions in such a space
time are expected to expand as in de Sitter space-time. S
regions, however, will gravitationally collapse to form bla
holes if the inhomogeneity of the initial matter distribution
large. Then there will be observers who have two types
event horizons, a black hole event horizon~BEH! and a cos-
mological event horizon~CEH!, just like the observers who
approach the future timelike infinity in Schwarzschild–
Sitter space time. Throughout this paper we shall focus
the event horizons for such observers.

Gibbons and Hawking@2# studied the thermodynami
property @3# of event horizons in asymptotically de sitte
space-times. In particular, they found that an observer f
thermal radiation coming from the CEH and that the entro
SC of the CEH is equal to one quarter of its area as in
case of a BEH. Thus, the areas of the event horizons ca
interpreted as the entropies, or lack of information of t
observer about the regions which he cannot see.

In classical general relativity, there have been a numbe
studies on the nature of BEHs in the asymptotically de Si
space-time. Hayward, Shiromizu, and Nakao@4# and Shi-
romizu, Nakao, Kodama, and Maeda@5# showed that the are
of a BEH in the asymptotically de Sitter space-time can
decrease and has an upper bound 4p/L if weak cosmic cen-
sorship~WCC! @6# holds. This means that black holes cann
collide with each other if the total area of them exceeds
upper bound.

Davies@7# investigated a CEH in Robertson-Walker mo
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els withL and a perfect fluid satisfying the dominant energ
condition and showed that the area of the cosmological h
rizon cannot decrease. From this result, one may expect t
in generic asymptotically de Sitter space-times the area o
CEH cannot decrease as in the case of a BEH.

Boucher, Gibbons, and Horowitz@8# showed that the area
of the CEH is bounded from the above by 12p/L on a regu-
lar time-symmetric hypersurface. Shiromizu, Nakao
Kodama, and Maeda@5# also obtained the same conclusion
on a maximal hypersurface. However, one cannot say th
the same conclusion holds for CEHs in a general nonstatio
ary asymptotically de Sitter space-time, because it is high
nontrivial whether a foliation by such hypersurfaces exis
and covers the relevant portion of the space-time.

WCC is assumed in the proof of the above results as we
as in the case of a BEH. An example of Schwarzschild–d
Sitter space-time shows the significance of this assumptio
and also suggests a close relation among the area of
CEH, the WCC and positivity of thegravitational energy
~mass!. Figure 1 shows the mass parameterm as a function
of the areaA of the event horizon and Figs. 2~a! and 2~b!

FIG. 1. The mass parameterm of a Schwarzschild–de Sitter
solution for a fixedL is related to the areaA of event horizons as
m5(A/16p)1/2(12LA/12p). Ab ,Ac are the areas of a BEH and a
CEH, respectively.
3503 © 1998 The American Physical Society
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show the Penrose diagrams for the cases ofm.0 and m
,0, respectively. One easily finds that if the WCC hold
(m.0) the areaAC of the CEH is bounded from the above
by 12p/L. Indeed, one finds that thetotal area of the BEH
and the CEH has an upper bound 12p/L. On the other hand,
if the WCC is violated (m,0) AC is not bounded.

In this paper, we show the area theorem that the area
the CEH in an asymptotically de Sitter space-time containin
a black hole cannot decrease so that the second law of th
modynamics is satisfied, and the total area of BEH and CE
is less than 12p/L, hence total Bekenstein-Hawking entropy
is less than 3p/L, if the space-time satisfies the WCC and th
energy conditions. To this end, we define a quasilocal ener
in a space-time withL and its monotonicity and positivity.
Very roughly speaking, our analysis is a generalization of th
argument of the previous paragraph to general asympto
cally de Sitter space-times which are neither stationary n
spherically symmetric. We follow the notation of Ref.@9#
and use the unitsc5G5\5kB51.

II. ASYMPTOTICALLY de SITTER SPACE-TIME
AND THE AREA LAW

FOR A COSMOLOGICAL EVENT HORIZON

In this section we shall show the area theorem~theorem 1!
for a CEH in an asymptotically de Sitter space-time. As
precise definition of an asymptotically de Sitter space-tim
satisfying the WCC, we assume space-time (M ,g) to be
strongly asymptotically predictable from the partial Cauch
surfaceS and de Sitter in the future@5#, and just call it
asymptotically de Sitter.In what follows, causal relationships
are considered in a larger manifold (M̃ ,g̃) in which (M ,g) is
conformally embedded. Note that the future conformal infin
ity I1 of M is a spacelike hypersurface inM̃ @10#.

We shall consider asymptotically de Sitter space-time
containing a black hole and an observer whose world linel
has a future endpoint at the ‘‘future timelike infinity.’’ Then
J̇2(l) consists of two components, the BEH and the CE
for the observer@2#. As the BEH can be defined byJ̇2(I1),

FIG. 2. Penrose diagrams of Schwarzschild–de Sitter spac
times with mass parameters~a! m.0 and~b! m,0, respectively.
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the CEH can be also defined in terms ofI1. Namely, we
define thecosmological event horizon~CEH! to be the past
Cauchy horizonH2(I1) of the future infinity.

In general, the topology ofI1 is not determined. How-
ever, it seems reasonable to suppose thatI1 is diffeomorphic
to S23(0,1) if the topology of the BEH isS2. In analogy to
weakly asymptotically simple, empty, and future asympto
cally predictable space-time~see proposition 9.2.3 of Ref
@9#!, we also assume that there is a continuous onto m
a:(0,̀ )3S→D1(S)2S satisfying the following.~1! For
each tP(0,̀ ), a t :5a(t,•), and restriction ofa on (0,t)
3a t

21(S t2I1) are homeomorphisms, whereS t :5a($t%
3S); ~2! for each tP(0,̀ ), S t is a Cauchy surface fo
D(S) such that~a! S t22I1, I 1(S t12I1) when t2.t1

and~b! the edge ofS t2I1 in M̃ is a spacelike two-sphere i
I1. We defineWt :5S tùI1. We haveWt1,Wt2 for t2
.t1 andø tP(0,̀ )Wt5I1. We also present a lemma on th
topology of a CEH.

Lemma 1. (Each component of) any sufficiently nice cu
the cosmological event horizon H2(I1) is a topological
two-sphere.

Proof. SinceD2(I1)ùM is a future set inM , its bound-
ary in M , i.e., the CEH, must be aC12 embedded submani
fold of M ~see proposition 6.3.1 of Ref.@9#!. Moreover,
intD2(I1) is simply connected because it is homeomorp
to I13R andI1 is simply connected. Thus the conclusio
follows.

h
We use the following lemma, which is shown in Ref.@9#,

to prove Lemma 3.
Lemma 2. LetS be a partial Cauchy surface. For any p

PD2(S), J1(p)ùD2(S) is compact.
Lemma 3. D2(I1)5ø tP(0,̀ )D

2(Wt).
Proof. Let us define a continuous functionI1{p°t

P(0,̀ ) defined bypP edge (Wt). Because lemma 2 im
plies that for anypPD2(I1), J1(p)ùI1 is compact in
M̃ , there exists a maximum value for the function above.
there is atP(0,̀ ) such thatWt$J1(p)ùI1 and hencep
PD2(Wt). Thus we have D2(I1)#ønPND2(Wn)
#ø tP(0,̀ )D

2(Wt). It follows from D2(I1)$D2(Wt) for
eachtP(0,̀ ) that D2(I1)$ø tP(0,̀ )D

2(Wt).
h

In the next step we will prove lemma 5 by using th
following limit curve lemma@11#.

Lemma 4 (limit curve lemma). Letgn :(2`,`)→M be a
sequence of inextendible nonspacelike curves (parametr
by the arc length in gR which is a complete Riemannia
metric). Suppose that pPM is an accumulation point of the
sequence$gn(0)%. Then there exists an inextendible no
spacelike curveg such thatg(0)5p, and a subsequenc
$gm% which converges tog uniformly (with respect to gR) on
compact subsets ofR.

Lemma 5. For any generatorl of H2(I1), parametrized
with respect to thegR arc length, there exists a sequenc
$ln% of null geodesics in D2(I1), parametrized with respec
to the gR arc length, such that (1)$ln% converges uniformly
to l with respect to h on compact subsets ofR, and (2) each
ln generates an achronal set.

Proof. Let p be a point ofl which is not the endpoint.
Any neighborhoodU of p contains a point ofD2(I1). It
follows from lemma 3 that there exist an0PN such that

e-
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UùD2(Wn)Þ0” henceUùH2(Wn)Þ0” for all n>n0 . Then
one can construct a sequence$pn% such thatpnPH2(Wmn

)
andpn→p, where (Wmn

) is a subsequence of$Wn%. Letting
ln be the generator ofD2(Wmn

) throughpn , one has from
lemma 4 that there exists a inextendible nonspacelikeC0

curveg throughp such that$ln% converges tog uniformly
on compact subsets ofR. However, because$ln% can have
its accumulation points only onH2(I1), g must lie on
H2(I1). Sinceg is a nonspacelike curve throughp and is
lying on H2(I1), it must coincide withl.

h
Finally we present the following area theorem of t

CEH.
Theorem 1 (area law for a CEH). In an asymptotically

Sitter space-time with a piecewise smooth CEH satisfying
weak energy condition A(H2(I1)ùS t2

)>A(H2(I1)
ùS t1

) for t2.t1 , where A ~S! denotes the area of a
two-surfaceS.

Proof. Piecewise smoothness of the CEH implies th
there are a finite number of pairwise disjoint smooth s
manifolds Ui ’s such that the CEH isø i Ū i . It suffices to
show that the expansionu >0 on eachpP int Ui because
eachUi is foliated by future inextendible null geodesic ge
erators. For any pointpP int Ui for somei there is an open
setV{p diffeomorphic toS3R, whereS is a locally space-
like two-surface containingp with compact closure. By
lemma 4 and compactness ofS̄ there is a sequence of diffeo
morphismsfn :V→Vn,H2(Wn) such that~1! eachfn(S)
is spacelike,~2! each fn preserves the foliations by nu
geodesic generators, and~3! fn(B) converges uniformly to
V on compact subsets ofS3R. Suppose that the expansionu
of future-directed null geodesic generators of the CEH w
negative atp. Then by the continuity ofu there would be
somen such that the expansionun of generators ofVn would
be negative atfn(p). From the weak energy condition th
generator fromfn(p), since it is future complete, would
have a conjugate point offn~S! ~see proposition 4.4.6 o
Ref. @9#!. This contradicts the achronality ofH2(Wn).

h
Corollary. If the assumptions of theorem 1 hold and ev

future incomplete null geodesic terminates in a strong c
vature singularity of Kro´lak @12#, then every generator of th
CEH is future complete.

Proof.From the proof of theorem 1, the expansion of ea
null geodesic generator cannot be negative. This contrad
the condition of strong curvature singularity.

h

III. QUASILOCAL ENERGY IN SPACE-TIMES WITH L

Here we will define the quasilocal energyE(S) in space-
time with L and examine its monotonicity and positivity
which we will use to show the existence of an upper bou
for entropy ~theorem 2! in Sec. IV. Let us introduce Hay
ward’s double null formalism@13#, namely, smooth folia-
tions of null three-hypersurfaces labeled byj6 such that
each intersection of two hypersurfaces of constantj6 is a
closed spacelike two-surface. We have the evolution ve
u65]/]j6, the normal one-formsn652dj6 , the metric
h5g1e2 f(n1n21n2n1) induced on the two-surface, th
projection ' on the two-surface, the shift vectorsr 6

5'u6 , and the null normal vectorsl 65u62r 6 . The ex-
e

t
-

e

y
-

h
ts

d

or

pansionu6 , the shears6, and the twistv on a two-surface
are defined as

u65
1

2
h21:L6h, ~3.1!

s65L6h2u6h, ~3.2!

v5
1

2
efh•@ l 1 ,l 2#, ~3.3!

whereL6 represents the Lie derivatives along the vec
fields l 6, and dots and colons denote single and double c
tractions, respectively. The quasilocal energy is defined
each embedded spatial two-surfaceS as

E~S!:5
1

8p
A A

16pESmSR1efu1u22
2L

3 D , ~3.4!

whereA, R, andm represent the total area ofS, the Ricci
scalar onS, and the area two-form onS, respectively. This is
the Hawking energy with last term added in the integra
Physically,E(S! is the gravitational energy subtracted by t
energy due to the cosmological constantL, so that it is con-
sidered as the energy of the matter fields.
Schwarzschild-de Sitter space-timeE(S! coincides with the
mass parameterm. In spherically symmetric space-time
with dust, E(S! coincides with the mass function@14#. In
space-time withoutL our quasilocal energyE(S) reduces to
the Hawking energy.

The Einstein equations are given by

e2 fL6~efu6!1
1

2
u6

2 1
1

4
is6i2528pf6 , ~3.5!

L6u61u1u21e2 fF 1

2
R2U 1

2
Df 6vU2

1D•S 1

2
Df 6v D G58pr1e2 fL, ~3.6!

wheref65T( l 6 ,l 6) andr5T( l 1 ,l 2) for the energy ten-
sor T, andD is the covariant derivative with respect toh.

Let us examine the monotonicity ofE(S) on an outgoing
null hypersurfacej25const~the monotonicity on an ingoing
null hypersurfacej15const or on a spacelike hypersurfa
can be argued similarly!. The derivative of the energyE(S)
along the outgoing directionl 1 is

8pL1E5A A

16pH 1

2A E
S
mu1E

S
m~R1efu1u2!

2E
S
mu2S 1

4
is1i218pf1D

2E
S
mu1F 1

2
R1

1

2
efu1u21D•S 1

2
Df 1v D

2U 1

2
Df 1vU2

28pefrG J .
~3.7!
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We assume that the matter fields satisfy the dominant en
conditionsf1>0 andr>0, and take a foliation of the hy
persurfacej25const by spatial two-surfacesS. The energy
E(S) is nondecreasing in the outgoing null direction (u1

>0,u2<0), L1E>0, if

^u1&^F&>^u1F& ~3.8!

on eachS, where

F:5R1efu1u212D•S 1

2
Df 1v D , ~3.9!

^•&:5
iSm•

iSm
. ~3.10!

We remark that each term ofF except the third term is
invariant under rescaling of the outgoing null normall 1 . An
example of the foliations satisfying Eq.~3.8! is one withF
5const, which we can take by the rescaling ofl 1 . Another
example is the uniformly expanding foliation@15#.

IV. UPPER BOUND FOR THE AREA

In this section we will show that the total area of the BE
and the CEH is bounded in asymptotically de Sitter spa
times ~theorem 2!. We define the apparent horizons acco
ing to Hayward@16#. A marginal surfaceis a spatial two-
surfaceS on whichu150 or u250. A black hole apparent
horizon ~BAH! is the closureTB of a hypersurfaceTB foli-
ated by marginal surfaces on whichu150, u2,0 and
L2u1,0. A cosmological apparent horizon~CAH! is TC
foliated by marginal surfaces on whichu250, u1.0 and
L1u2.0. Here the coordinatesj6 are taken so that they ar
constant on each of the above spatial two-surfaces.

Hayward, Shiromizu, and Nakao@4# showed that the are
of a BAH has an upper bound 4p/L. They also showed tha
the area of a BEH is less than 4p/L by implicitly assuming
the existence of the limit two-surfaceS of the BEH, though
its physical meaning is not clear~see the Appendix!. Instead,
one can reach the same conclusion under a physically
sonable condition; strongly future asymptotically predictab
ity ~or WCO! in an ‘‘extended’’ sense@17#. It states that
singularities are hidden inside not only a BEH but also
BAH. More precisely, the closure of the domain of depe
dence of a partial Cauchy surface contains not onlyI1 and
the BEH but also the outermost part of the BAH, i.e.,~i!
there existt.0 and a subsetTB8 of TB , foliated by marginal
surfaces, such thatH2(TB8 )ùJ1(S t)$ J̇2(I1)ùJ1(S t) and
@ I 2(TB8 )ùI1(S t)##D1(S t). We give the following propo-
sition, whose proof we will give in Appendix.

Proposition 1. In an asymptotically de Sitter space-tim
satisfying condition (i) above and the weak energy conditi
the area of a black hole event horizon~BEH! is less than
4p/L.

Now we will show that the total area of the BEH an
CEH has an upper bound 12p/L by making use of proposi
tion 1. We require the following conditions.~ii ! There exists
t0>0 such that the cross section ofJ̇2(I1)ùS t(t>t0) is
smooth one connected component and the topology isS2;
~iii ! there exists a marginal surfaceSt with u250 whose
gy

-
-

a-
-

a
-

,

topology is S2 in each S t(t>t0) and surrounds
J̇2(I1)ùS t ; ~iv! I 2(TC)ùJ1(S t0

)5(I 2(I1)2D2(I1))

ùJ1(S0); ~v! any null geodesic generator of BEH is futu
complete;~vi! matter fields satisfy the dominant energy co
dition. @This implies that matter field satisfies the weak e
ergy condition~see, e.g., Ref.@9#!.#; and~vii ! There exists a
foliation satisfying Eq.~3.8! on each outgoing null hyper
spaceJ̇2(St) inside the CAH. Condition~iv! is similar to
condition ~i! above.

Lemma 6. For an arbitrary small positive valuee1 there
is an acausal hypersurfaceS t1

(t1.t0) such that for any

closed spacelike two-surfaceSB of J̇2(I1)ùJ1(S t1
) the

quasilocal energy E(SB) satisfies

E~SB!>
1

8p
A A~SB!

16p S 8p2e12
2L

3
A~SB! D.0.

~4.1!

Proof. Consider each null geodesic generatorl 1 of the
BEH. By conditions~v!, ~vi!, and the Raychaudhuri equatio
~3.5!, limj→`u150 is satisfied, wherej is an affine param-
eter of l 1•

limj→`*Smefu1u250 is also satisfied becaus
the area of a BEH has an upper bound. Therefore there
S t1

such that for any closed spacelike two-surfaceSB of

J̇2(I1)ùJ1(S t1
), *Smefu1u2 is larger than2e1 , where

e1 is an arbitrary small positive value. From Eq.~3.4! and
proposition 1 one can get the desired result by using
Gauss-Bonnet theorem and condition~ii !.

h

Lemma 7. J2(TC)ùJ1(S t0
)5@ø tJ

2(St)#ùJ1(S t0
).

Proof. For any point pPJ2(TC)ùJ1(S t0
) there is a

point qPJ1(p)ùTC . Then there isSt{q so that p
PJ2(St).

h
Theorem 2. If an asymptotically de Sitter space-time s

isfies the conditions~i!–~vii ! above, AB :5 limj1→`A(SB)

and AC :5 limj2→`A(SC) satisfy

AB1AC1AABAC<
12p

L
. ~4.2!

Remark.In particular, the areaAC of the CEH is less than
12p/L.

Proof. For any closed spacelike two-surfaceSC of
H2(I1)ùD1(S) there exists a partial Cauchy surfaceSSC

containingSC . Consider a sequence of marginal surfac
Sn (nPN) defined above and defineNn

1 andNn
2 as the null

hypersurfaces generated by the future-directed outgoing
ingoing null geodesic generators ofJ̇2(Sn), respectively.
Denote the spacelike two-surfaceNn

2ùSSC
by Kn . From

condition ~iv! and lemma 7 it follows that limn→`A(Kn)
5A(SC). The expansionu2 of l 2 is non-negative in the
future direction betweenSn andKn becauseL2(efu2)<0
there, as implied by the Raychaudhuri equation~3.5! of l 2

and condition~vi!, by u250 on eachSn . Thus, as in the
proof of proposition 1, there existsn1 for an arbitrary small
positive valuee2 such that for alln.n1
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A~SC!2e2<A~Sn! ~4.3!

is satisfied.
Consider outgoing null hypersurfaces N̂n

1 :
5Nn

1ùJ1(S t1
)ùJ1(SSC

). From the condition~iv! and

lemma 7, for any neighborhood U of
J̇(I1)ùJ1(S t1

)ùJ1(SSC
), there isn2.n1 such that forn

.n2 eachN̂n
1 intersectU. For n.n2 , take spacelike two-

surfacesQn in N̂n
1ùU. The sequence$Qn% converges to a

spacelike two-surfaceSB of J̇2(I1)ùJ1(S t1
)ùJ1(SSC

).

By the continuity ofE(Qn), for an arbitrary smalle3.0,
there is n3.n2 such thatE(SB)2e3<E(Qn) for each n
.n3 . By condition ~vii !, the energyE(S) is nondecreasing
from Qn to Sn on N̂n

1 . Thus E(SB)2e3<E(Sn) for each
n.n3 . By lemma 6 and Eq.~3.4! for Sn , this inequality can
be rewritten as

A~SB!1A~Sn!<
12p

L
2AA~SB!A~Sn!1O~e1!1O~e3!.

~4.4!

SinceSC is an arbitrary two-surface ofH2(I1), one gets the
desired result by taking limite1 ,e3→0.

h

V. CONCLUSIONS AND DISCUSSION

We have shown in theorem 1 that in asymptotically
Sitter space-time the areaA(SC) of the CEH is nondecreas
ing if the WCC and the weak energy condition hold. Th
means that the area law of event horizons holds not only
a BEH but also for a CEH, hence, it also applies to the to
area of event horizons~total Bekenstein-Hawking entropy
i.e., a quarter of the total area of the BEH and the CE!.
Next we have shown in theorem 2 that the final values of
areas satisfyAB1AC1AABAC<12p/L. This means that
the final values of entropiesSB :AB/4 of the BEH andSC :
5AC/4 of the CEH, satisfy

SB1SC1ASBSC<3p/L. ~5.1!

In particular, the total entropy is bounded from the above
3p/L in asymptotically de Sitter space-time. We note th
the inequality in theorem 2 is stronger than the previo
result and conjecture which state thatA(SB)<4p/L and
A(SC)<12p/L.

As discussed in Ref.@2#, a BEH is unstable against Hawk
ing radiation, while a CEH is stable. Physically this sugge
that all asymptotically de Sitter space-times approach de
ter space-time. This is consistent with the inequality~5.1!
which states that for a fixedL the total entropy attains its
maximum in de sitter space-time, although the quantum
fects were not taken into account in the derivation of
inequality. This curious correspondence suggests that th
equality is another law of EH thermodynamics in asympto
cally de Sitter space-times.

It is of interest to pursue connections of the present re
with the cosmic no hair conjecture@2,18#. Here we consider
a weaker version of the conjecture which states that a sp
time with L has a future asymptotic region rather than be
recollapsing, i.e., the space-time is future asymptotically
or
l

e

y
t
s

s
it-

f-
e
in-
-

lt

e-
g
e

Sitter. Since the areas of the EHs have a universal bo
~i.e., are bounded by numbers which depend only onL! and
the areas are expected to become larger when matter
into them, one expects that the amount of matter which f
into the EHs have a universal bound. So, in the collapse
an isolated object, if most of the matter falls into either t
BEH or the CEH, i.e., if there are no heavy shelllike ‘‘stars
surrounding the black hole, one can expect that the t
initial energy of the matter should be bounded by a num
which only depends onL. This may provide a criterion for
the existence of the future asymptotic region of space-tim
that is, a criterion for the validity of the cosmic no ha
conjecture.

To solve the problems above, it is very important to kno
the property of the total entropyST of the universe, i.e., the
sum of the entropy of the EHs and that of the matter betw
the EHs. We conjecture that in asymptotically de sit
space-timeST is nondecreasing, i.e., the generalized seco
law of thermodynamics holds, and alsoST is bounded.

ACKNOWLEDGMENTS

We express our special thanks to Professor H. Koda
for critical comments and fruitful discussions at the ea
stage of the work. We thank Dr. S. Hayward, Dr.
Mishima, Dr. T. Okamura, and Dr. T. Shiromizu for discu
sions, and Professor A. Hosoya and Professor H. Ishihara
encouragement. The work was supported in part by the Ja
Society for Promotion of Science~K.M.! and the Ministry of
Education, Science, Sports and Culture of Japan~T.K.!.

APPENDIX: PROOF OF PROPOSITION 1

In their proof of the theorem of the upper bound for t
area of the BEH in Ref.@4# Hayward, Shiromizu, and Naka
implicitly assumed that there is a limited two-surface of t
BEH on which quantities such asL2u1 are continuous, i.e.
independent of how one approaches the ‘‘timelike infinity
i 1. However, this is physically not very well motivated an
is highly nontrivial in general. Here, we shall drop the a
sumption above and prove a slightly modified version of
theorem.

Proof of proposition 1.It is enough to show that the are
of a BEH in J1(S) has an upper bound because the a
does not decrease in the future direction as shown in Ref.@5#.
Let us consider a sequence of marginal surfacesSn with
u150 on the BAHTB and take a sequence of subsetsTn of
TB8 such that Tn21,Tn , edge(Tn)5Sn , ønPNTn5TB8 .
Consider spacelike two-surfacesT: J̇u(I1)ùS t and
Tn :H2(Tn)ùS t for some~sufficiently large! fixed t. We can
observeD2(TB8 )5ønPND2(Tn), by replacingI1 in lemma
3 with TB8 . This together with condition~i! implies that the
sequenceTn converges toT. The expansionu1 of each null
geodesic generatorl 1 of H2(Tn) is non-negative in the fu-
ture direction betweenTn and Sn becauseL1(efu1)<0
there, as implied by the Raychaudhuri equation~3.5! and the
weak energy condition, and byu150 on eachSn . Thus,

A~Tn!< A~Sn!<
4p

L
, ~A1!
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where the second inequality is obtained by integrating
~3.6! multiplied by ef on marginal surfaceSn and using the
Gauss-Bonnet theorem@4#. Since the sequenceTn converges
to T, for arbitrary smalle.0 there exists an0PN such that
A(Tn) with n.n0 satisfies

A~T!2e <A~Tn!. ~A2!

From inequalities~A1! and ~A2! we have
s-

n

ys
.
A~T!2e <

4p

L
. ~A3!

Since this holds for anye we have

A~T!<
4p

L
. ~A4!
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