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Scalar field quantum inequalities in static spacetimes

Michael J. Pfenning* and L. H. Ford†

Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155
~Received 10 October 1997; published 18 February 1998!

We discuss quantum inequalities for minimally coupled scalar fields in static spacetimes. These are inequali-
ties which place limits on the magnitude and duration of negative energy densities. We derive a general
expression for the quantum inequality for a static observer in terms of a Euclidean two-point function. In a
short sampling time limit, the quantum inequality can be written as the flat space form plus subdominant
correction terms dependent upon the geometric properties of the spacetime. This supports the use of flat space
quantum inequalities to constrain negative energy effects in curved spacetime. Using the exact Euclidean
two-point function method, we develop the quantum inequalities for perfectly reflecting planar mirrors in flat
spacetime. We then look at the quantum inequalities in static de Sitter spacetime, Rindler spacetime and two-
and four-dimensional black holes. In the case of a four-dimensional Schwarzschild black hole, explicit forms
of the inequality are found for static observers near the horizon and at large distances. It is shown that there is
a quantum averaged weak energy condition~QAWEC!, which states that the energy density averaged over the
entire worldline of a static observer is bounded below by the vacuum energy of the spacetime. In particular, for
an observer at a fixed radial distance away from a black hole, the QAWEC says that the averaged energy
density can never be less than the Boulware vacuum energy density.@S0556-2821~98!02006-2#

PACS number~s!: 04.62.1v, 03.70.1k, 04.60.2m
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I. INTRODUCTION

In a recent paper@1#, we derived a general form of th
quantum inequality~QI! for quantized scalar fields in stati
curved spacetimes. The quantum inequalities are uncerta
type relations which constrain the magnitude and duration
negative energy that may be present in a spacetime. This
an extension of the previous work carried out by Ford a
Roman@2–5# which dealt with the quantum inequalities fo
scalar fields in two- and four-dimensional Minkowski spac
time. In curved spacetimes, it was found that the quan
inequality could be written in terms of a sum of mode fun
tions for the scalar field. With the general form of the qua
tum inequality in hand, we then proceeded to look at
static cases of the three-dimensional closed universe and
four-dimensional Robertson-Walker spacetimes. Exact fu
tional forms for the quantum inequalities were developed
these spacetimes. It was found that the curved space q
tum inequalities could be written as the flat space quan
inequalities multiplied by a ‘‘scale’’ function which detaile
the behavior of the inequalities at various ratios of the sa
pling time to the radius of curvature of the spacetime. In
long sampling time limit, the quantum inequality was su
stantially modified by the scale function. However, in t
short sampling time limit, the scale functions tend to
yielding the flat space quantum inequality. This behavior h
first been predicted to exist by Ford and Roman in a pa
dealing with negative energy around wormholes@6#. It was
argued that by making the sampling time of the quant
inequality much shorter than a minimum characteristic c
vature scale, then the spacetime could be considered lo
flat and the Minkowski space quantum inequality sho
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hold. This method has since been applied to the Alcubie
‘‘warp drive’’ metric @7,8# to show that the negative energ
that makes up the walls of the warp bubble has to be c
strained to exceptionally thin walls, usually on the order
hundreds, or perhaps thousands of Planck lengths at m
Similar results were found for the Krasnikov metric@9,10#,
where the negative energy that is needed must also be
fined to exceptionally thin walls.

In our earlier work@1#, the quantum inequality was de
rived for stationary observers in static spactimes where
magnitude of thegtt component of the metric was 1. In thi
paper we will extend the derivation of the quantum inequa
ties to the entire class of static spacetime metrics of the fo

ds252ugtt~x!udt21gi j ~x!dxidxj . ~1!

In Sec. II we will derive the general form of the quantu
inequality for static observers in such spacetimes, and s
that it may be written in terms of a Euclidean Green’s~two-
point! function. We will show in Sec. III that in the infinite
sampling time limit the quantum inequality reduces to t
‘‘quantum averaged weak energy condition’’~QAWEC!
which can be written in the form

E
2`

`

~^cuT00/ugttuuc&2rvac!dt>0. ~2!

The quantum averaged weak energy condition says
along the entire world line of a static observer, the samp
energy density can never be more negative than the vac
energy,rvac . Here the vacuum energy is obtained using t
timelike Killing vector to define positive frequency.

In Sec. IV we will perform a short time expansion of th
two-point function. It is found that the leading term of th
expansion of the curved space quantum inequality is ind
of the flat space form. In addition, the first two corrections
3489 © 1998 The American Physical Society
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the leading order term will be explored. We will show th
they depend only on the geometric properties of the spa
time such as the metric, scalar curvature, etc.

In Sec. V we will look at the exact form of the quantu
inequality developed for a half infinite flat spacetime. W
will see that the presence of a perfectly reflecting, infin
planar mirror modifies the flat space quantum inequality.
addition we will look at the case of the quantum inequal
between two parallel mirrors. Both of these cases will
developed by first determining the Feynman Green’s fu
tion by the method of images, and then using the formal
developed in Sec. II to find the respective quantum inequ
ties.

Finally, we will look at the quantum inequalities in spac
times in which there exist horizons. We will begin with th
two-dimensional Rindler coordinates and then move on
the static coordinate representation of de Sitter spacet
Finally in Sec. VII we will look at the case of two- an
four-dimensional black holes. In two dimensions, we w
find the exact form of the quantum inequality for static o
servers sitting at fixed radii outside of the black hole. In t
case of the four-dimensional black hole, because there i
known analytic solution for the mode functions of the sca
field, we find the quantum inequality in the limitsr→2M
and r→`. In the limit of long sampling time, the QAWEC
is recovered for these spacetimes.

II. SCALAR FIELD QUANTUM INEQUALITY

Because this derivation closely resembles that develo
earlier@1#, we will only highlight the necessary steps to re
licate the proof for the metric in Eq.~1!. On such a fixed
background, the wave equation

hf2m2f5
1

Augu
]a~Augugab]bf!2m2f50 ~3!

becomes

2
1

ugttu
] t

2f1¹ j¹ jf2m2f50, ~4!

where g5det(gmn), ¹ i is the covariant derivative in the
spacelike hypersurfaces orthogonal to the Killing vector, a
m is the mass of the field. Units where\5c5G51 are used
throughout this paper. The positive frequency mode funct
solutions can be written as

f l~x,t !5Ul~x!e2 ivt, ~5!

whereUl(x) is the solution to the Helmholtz equation

¹ j¹ jUl1~vl
2/ugttu2m2!Ul50. ~6!

The labell represents the set of quantum numbers neces
to specify the mode. Additionally, the mode functions a
e-
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defined to have a unit Klein-Gordon norm. A general so
tion of the scalar fieldf can then be expanded in terms
creation and annihilation operators as

f~x!5(
l

~al f l1al
† f l* !, ~7!

where quantization is carried out over a finite box or u
verse. If the spacetime has infinite spatial extent, then
replace the summation by an integral over all of the poss
modes.

In the development of the quantum inequality, we w
concern ourselves only with static observers, whose fo
velocity, um5(ugttu21/2,0), is parallel to the direction of the
timelike Killing vector. These are geodesic observers in
case thatgtt is a constant, but otherwise are non-geode
The energy density~for minimal coupling! that such an ob-
server measures is given by

r5Tabuaub5
1

ugttu
T00

5
1

2 F 1

ugttu
~] tf!21¹ jf¹ jf1m2f2G . ~8!

Upon substitution of the above mode function expansion i
Eq. ~8!, one finds that there exists a vacuum energy te
which is divergent upon summation. A regularization a
renormalization scheme is needed to define the physical
ergy density. This may be sidestepped by concentrating
tention upon the difference between the energy density in
arbitrary state and that in the vacuum state, as was don
Refs. @1, 4#. We will therefore concern ourselves primari
with the normal ordered quantity

:r:5r2^0uru0&, ~9!

where u0& represents the Fock vacuum state defined by
global timelike Killing vector. In cases where the renorma
ized value of̂ 0uru0& is known, we can convert the differenc
inequality into an inequality on the renormalized energy d
sity in an arbitrary state.

The energy density as defined above is valid along
entire world line of the observer. However, let us sample
energy density only along some finite interval of the geo
sic. This may be accomplished by means of a weight
function which has a characteristic timet0 , such as the
Lorentzian function,

h~ t !5
t0

p

1

t21t0
2 . ~10!

The integral over all time ofh(t) is equal to 1 and the width
of the Lorentzian is characterized byt0 . Using such a
weighting function, one finds that the averaged energy
ference is given by
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Dr̂[
t0

p E
2`

` ^:T00/ugttu:&dt

t21t0
2 5Re (

ll8
H vv8

ugttu
@Ul* Ul8e

2uv2v8ut0^al
†al8&2UlUl8e

2~v1v8!t0^alal8&#

1@¹ jUl* ¹ jUl8e
2uv2v8ut0^al

†al8&1¹ jUl¹ jUl8e
2~v1v8!t0^alal8&#1m2@Ul* Ul8e

2uv2v8ut0^al
†al8&

1UlUl8e
2~v1v8!t0^alal8&#J . ~11!
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From this point onward, the derivation continues along
lines of that in Ref.@1#. After some algebra, and applicatio
of the inequalities derived in previous papers@1,5#, one finds

Dr̂>2(
l

S vl
2

ugttu
1

1

4
¹ j¹ j D uUl~x!u2e22vlt0, ~12!

which can be rewritten as

Dr̂>2
1

4
S ] t0

2

ugttu
1¹ j¹ j D(

l
uUl~x!u2e22vlt0. ~13!

There is a more compact notation in which Eq.~13! may be
expressed. If we take the original metric, Eq.~1!, and Euclid-
eanize the time by allowingt→ i t 0 , then the Euclidean box
operator is defined by

hE[
] t0

2

ugttu
1¹ j¹ j . ~14!

In addition, the sum of the mode functions is equal to
Euclidean two-point function

GE~x,2t0 ;x,1t0!5(
l

uUl~x!u2e22vlt0 ~15!

where the spatial separation is allowed to go to zero but
time separation is 2t0 . The Euclidean two-point function is
the counterpart of the Feynman Green’s function for
Lorentzian metric. The two are related by

GE~x,t;x8,t8!5 iGF~x,i t ;x8,i t 8!. ~16!

This allows us to write the quantum inequality in any sta
curved spacetime as

Dr̂>2
1

4
hEGE~x,2t0 ;x,1t0!. ~17!

We see that once we are given a metric which admit
timelike Killing vector, we can calculate the limitations o
the negative energy densities by either of two methods. If
know the solutions to the wave equation, then we may c
struct the inequality from the summation of the mode fun
tions. More elegantly, if the Feynman two-point function
known in the spacetime, then we may immediately calcu
the inequality by first Euclideanizing and then taking t
appropriate derivatives.
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III. QUANTUM AVERAGED WEAK ENERGY CONDITION

Let us return to the form of the the quantum inequal
given by Eq.~12!,

Dr̂>2(
l

S vl
2

ugttu
1

1

4
¹ j¹ j D uUl~x!u2e22vlt0. ~18!

Since we are working in static spacetimes, the vacuum
ergy does not evolve with time, and so we can rewrite t
equation simply by adding the renormalized vacuum ene
densityrvacuum to both sides. We then have

r̂ ren>2(
l

S vl
2

ugttu
1

1

4
¹ j¹ j D uUl~x!u2e22vlt01rvacuum~x!,

~19!

where r̂ ren is the sampled, renormalized energy density
any quantum state. Let us now take the limit of the sampl
time t0→`. We find ~under the assumption that there ex
no modes which havevl50! that

lim
t0→`

t0

p E
2`

` ^T00/ugttu& ren

t21t0
2 dt>rvacuum~x!. ~20!

This leads directly to the ‘‘quantum averaged weak ene
condition’’ for static observers,

E
2`

1`

~^cuT00/ugttuuc& ren2rvacuum!dt>0. ~21!

This is a departure from the classical averaged weak en
condition

E
2`

1`

^cuT00/ugttuuc& rendt>0. ~22!

We see that the derivation of the QAWEC leads to the m
sured energy density along the observers geodesic b



d

ho
o
th
e

ic
si
th
u

on
a

be

s

f the

c-

or-

time

line.

ts is
ng
of

he

d

3492 57MICHAEL J. PFENNING AND L. H. FORD
bounded below by the vacuum energy. This type of con
tion was first obtained in Ref.@4#. @See Eq.~26! of that
paper.# Recently, there has been much discussion about
badly the vacuum energy violates the classical energy c
ditions. For example Visser looked at the specific case of
violation of classical energy conditions for the Boulwar
Hartle-Hawking, and Unruh vacuum states@11–14# around a
black hole. However, the vacuum energy is not a class
phenomenon, and so it need not necessarily obey clas
energy constraints. From the QAWEC we see that
sampled energy density is bounded below by the vacu
energy in the long sampling time limit.

IV. EXPANSION OF THE QI FOR SHORT SAMPLING
TIMES

We now consider the expansion of the two-point functi
for small times. We assume that the two-point function h
the Hadamard form@15#

G~x,x8!5
i

8p2 F D1/2

s1 i e
1V ln~s1 i e!1WG , ~23!

where 2s(x,x8) is the square of the geodesic distance
tween the spacetime pointsx andx8,

D[2g21/2~x!det~s ;ab8!g
21/2~x8! ~24!

is the Van Vleck–Morette determinant, andV(x,x8) and
W(x,x8) are regular biscalar functions. In general, the
functions can be Taylor series expanded in powers ofs,

V~x,x8!5 (
n50

`

Vn~x,x8!sn, ~25!

whereVn ~andWn! is also a regular biscalar function with

V05v02
1

2
v0;asa1

1

2
v0abs

asb

1
1

6 S 2
3

2
v0ab;c1

1

4
v0;~abc!Dsasbsc1••• , ~26!

V15v12
1

2
v1;asa1••• , ~27!

where sn5s ;n. The coefficientsv0 , v0ab ,... are strictly
geometrical objects given by

v05
1

2 F S j2
1

6DR1m2G , ~28!

v0ab52
1

180
RpqraR

pqr
b2

1

180
RapbqR

pq1
1

90
RapRb

p

2
1

120
hRab1S 1

6
j2

1

40DR;ab

1
1

12S j2
1

6DRRab1
1

12
m2Rab , ~29!
i-

w
n-
e

,

al
cal
e
m

s

-

e

v15
1

720
RpqrsR

pqrs2
1

720
RpqR

pq2
1

24S j2
1

5DhR

1
1

8 S j2
1

6D 2

R21
1

4
m2S j2

1

6DR1
1

8
m4. ~30!

We can then express the Green’s function as

G~x,x8!5
i

8p2 H 11 1
12 Rabs

asb2•••

s1 i e

1F S v02
1

2
v0;asa1

1

2
v0abs

asb1••• D
1S v12

1

2
v1;asa1••• Ds1••• G ln~s1 i e!1WJ

~31!

where we have also used the Taylor series expansion o
Van Vleck–Morette determinant@15#,

D1/2511
1

12
Rabs

asb2
1

24
Rab;cs

asbsc1••• . ~32!

We neglectW, the state dependent part of the Green’s fun
tion, because it is regular ass→0. The dominant contribu-
tions to the quantum inequality come from the divergent p
tions of the Green’s function in thes→0 limit.

Let us find the geodesic distance between two space
points, along a curve starting at (x0 ,2t0) and ending at
(x0 ,1t0). For spacetimes in whichugttu51, the geodesic
path between these two spacetime points is a straight
Therefore, the geodesic distance is simply 2t0 . However, in
a more generic static spacetime wheregtt(x) is not constant,
the geodesic path between the above two spacetime poin
a curve, with the observer’s spatial position changi
throughout time. Thus, we must now solve the equations
motion for the observer. In terms of an affine parameterl,
the geodesic equations are found to be

dt

dl
2

at

ugtt„x~l!…u
50, ~33!

d2xi

dl2 1G i
mn

dxm

dl

dxn

dl
50, ~34!

where at is an unspecified constant of integration. T
Christoffel coefficients are

G i
t t5

1

2
gi j ugttu , j ,

G i
t j50,

G i
jk5

1

2
gim~gm j,k1gmk, j2gjk,m!. ~35!

It is possible to eliminatel from the position equations, an
write

d2xi

dt2
1

1

2
ugttu ,i1G i

jk

dxj

dt

dxk

dt
1

ugttu ,k

ugttu
dxi

dt

dxk

dt
50.

~36!
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Now if we make the assumption that the velocity of t
observer moving along this geodesic is small, then to low
order the second term can be considered nearly constant
all the velocity dependent terms are neglected. It is then p
sible to integrate the equation exactly, subject to the ab
end point conditions, to find

xi~ t !'2
1

4
ugttux5x0

,i ~ t22t0
2!1x0

i . ~37!

We see that the geodesics are approximated by parabola
would be expected in the Newtonian limit. A comparison
the exact solution to the geodesic equations and the app
mation is shown in Fig. 1 for the specific case of de Sit
spacetime. We see that the approximate path very nearly
the exact path in the range of2t0 to 1t0 .

The geodesic distance between two spacetime po
where the starting and ending spatial positions are the sa
is given by

Ds5E
2t0

1t0A2ugtt~ t !u1gi j ~ t !
dxi

dt

dxj

dt
dt. ~38!

In order to carry out the integration, let us define

f ~ t ![A2ugtt~ t !u1gi j ~ t !
dxi

dt

dxj

dt
. ~39!

FIG. 1. An exaggerated plot of the exact geodesic path~dotted
line! and the parabolic approximation~solid line!. a is the coordi-
nate distance fromr 50 to the horizon in the static de Sitter spac
time.
st
nd
s-
e

, as
f
xi-
r
ts

ts,
e,

We can expandf (t) in powers oft centered aroundt50, and
then carry out the integration to find the geodesic distan
The parameters can now be written as

s~x0 ,t0!5
1

2
Ds2 ~40!

52 f 2~0!t0
21

2

3
f ~0! f 9~0!t0

41
1

6 F1

5
f ~0! f ~ IV !~0!

1
1

3
f 9~0!2G t0

61••• . ~41!

However, we do not necessarily know the values of the m
ric at the timet50, but we do at the initial or final positions
and so we must now expand the functionsf (0) around the
time 2t0 . Upon using Eq.~37!, one then finds that

s~x0,t0!'22ugtt~x0!ut0
22

1

6
gtt

,i~x0!gtt,i~x0!t0
41•••

~42!

and

s t~x0,t0!'2t01
1

3

gtt
,i~x0!gtt,i~x0!

ugtt~x0!u
t0
31••• . ~43!

In any further calculations, we will drop thex0 notation, with
the understanding that all of the further metric elements
evaluated at the starting point of the geodesic. Using Eq.~16!
we can then write the Euclidean Green’s function needed
derive the quantum inequality, in increasing powers oft0 , as

GE~x,t0!5
1

8p2 F 12O~ t0
2!1•••

2ugttut0
22

1

6
gtt

,igtt,i t0
4

1v0 lnS 2ugttut0
22

1

6
gtt

,igtt,i t0
4D

1~v0,kugttu ,k12v1ugttu22v000!t0
2 lnS 2ugttut0

2

2
1

6
gtt

,igtt,i t0
4D1•••G . ~44!

Note that none of the geometric terms, such asv0 , change
during Euclideanization because they are time independ
The quantum inequality~17! can be written as

Dr̂>2
1

4 S 1

ugttu
] t0

2 1¹ i¹ i DGE~x,2t0 ;x,1t0!. ~45!

If we insert the Taylor series expansion for the Euclide
Green’s function into the above expression and collect te
in powers of the proper sampling timet0 , related tot0 by
t05ugttu1/2t0 , we can write the above expression as
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Dr̂>2
3

32p2t0
4 F11

1

3 S 1

2
gtt¹

j¹ jgtt
211

1

6
R2m2D t0

2

1
1

3 S 1

6
R,k

gtt
,k

gtt
2

1

12
¹ j¹ jR14v124

v000

ugttu
D t0

4 ln~2t0
2!

1O~t0
4!1••• G . ~46!

In the limit of t0→0, the dominant term of the above expre
sion reduces to

Dr̂>2
3

32p2t0
4 , ~47!

which is the quantum inequality in four-dimension
Minkowski space@4,5#. Thus, the term in the square bracke
in Eq. ~46! is the short sampling time expansion of th
‘‘scale’’ function @1#, and does indeed reduce to 1 in th
limit of the sampling time tending to zero. We can ask,
what range can we consider a curved spacetime to
‘‘roughly’’ flat? The condition is that the correction term
should be small compared to 1, i.e.

t0!U12 gtt¹
i¹ igtt

211
1

6
R2m2U21/2

. ~48!

Each of the three terms on the right-hand side of this rela
have a different significance. Them2 term simply reflects the
fact that for a massive scalar field, Eq.~46! is valid only
when the sampling time is small compared to the Comp
time. If we are interested in the massless scalar field,
term is absent. The scalar curvature term, if it is domina
indicates that the flat space inequality is valid on scales sm
compared to the local radius of curvature. This was arg
on the basis of the equivalence principle in Refs.@6, 8, 10#,
but is now given a more rigorous demonstration. The m
mysterious term in Eq.~48! is that involvinggtt . Typically,
this term dominates when the spacetime contains a hori
and the observer is at rest near the horizon. In this case
horizon would count as a boundary, and so Eq.~48! requires
that t0 be small compared to the proper distance to
boundary.

In the particular case ofugttu51, we havet05t0 and Eq.
~46! reduces to

Dr̂>2
3

32p2t0
4 F11

1

3 S 1

6
R2m2D t0

2

1
1

3 S 2
1

12
¹ i¹ iR14v124v000D t0

4 ln~2t0
2!1••• G .

~49!

This result has also been obtained by Song@16#, who uses a
heat kernel expansion of the Green’s function to develo
short sampling time expansion. We can now apply this fo
massless scalar field in the four-dimensional static Eins
universe. The metric is given by

ds252dt21a2@dx21sin2 x~du21sin2 udw2!#, ~50!
-

e

n

n
is
t,
all
d

st

n,
he

e

a
a
in

and the scalar curvatureR56/a2 is a constant. It can be
shown thatv12v00051/8a4. This leads to a quantum in
equality in Einstein’s universe of the form

Dr̂>2
3

32p2t0
4 F11

1

3 S t0

a D 2

1
1

3 S t0

a D 4

ln~ t0 /a!1OS t0
4

a4D 1•••G . ~51!

In Ref. @1#, an exact quantum inequality valid for allt0 /a
was derived. In the limitt0!a, this inequality agrees with
Eq. ~51!. Similarly, the exact inequality for the static, ope
Robertson-Walker universe was obtained in Ref.@1#, and in
the limit t0!a agrees with Eq.~49!.

V. QUANTUM INEQUALITIES NEAR PLANAR MIRRORS

A. Single mirror

Consider four-dimensional Minkowski spacetime whi
has a perfectly reflecting boundary atz50, located in the
x-y plane, at which we require the scalar field to vanish. T
two-point function can be found by using the standard Fe
man Green’s function in Minkowski space,

GF
~0!~x,x8!

5
2 i

4p2@~x2x8!21~y2y8!21~z2z8!22~ t2t8!2#
,

~52!

and applying the method of images to find the requir
Green’s function when the boundary is present. For a sin
conducting plate one finds

GF~x,x8!5
2 i

4p2 F 1

~x2x8!21~y2y8!21~z2z8!22~ t2t8!2

2
1

~x2x8!21~y2y8!21~z1z8!22~ t2t8!2G .
~53!

If we Euclideanize by allowingt→2 i t 0 , t8→ i t 0 and then
takex8→x, we find

GE~2t0!5
1

16p2 S 1

t0
2 2

1

t0
21z2D . ~54!

In addition, the Euclidean box operator is given by

hE5] t0
2 1]x

21]y
21]z

2 . ~55!

It is easily shown that the quantum inequality is given by

Dr̂>2
1

4
hEGE~2t0!52

3

32p2t0
4 1

1

16p2~ t0
21z2!2 .

~56!

The first term of this inequality is identical to that fo
Minkowski space. The second term represents the effec
the mirror on the quantum inequality. For the minimal
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coupled scalar field there is a non-zero, negative vacu
energy density which diverges as one approaches the mi
Adding this vacuum term to both the left- and right-ha
sides of the above expression allows us to find the renorm
ized quantum inequality for this spacetime,

r̂ ren>2
3

32p2t0
4 1

1

16p2~ t0
21z2!2 2

1

16p2z4 . ~57!

There are two limits in which the behavior of the renorm
ized quantum inequality can be studied. First considez
@t0 . In this limit, the correction terms due to the mirror an
the vacuum energy very nearly cancel and one finds that
quantum inequality reduces to

r̂ ren>2
3

32p2t0
4 . ~58!

This is exactly the expression for the quantum inequality
Minkowski spacetime. Thus, if an observer samples the
ergy density on time scales which are small compared to
light travel time to the boundary, then the Minkowski spa
quantum inequality is a good approximation.

The other important limit is whenz!t0 . This is the case
for observations made very close to the mirror, but for ve
long times. The quantum inequality then reduces to

r̂ ren>2
1

16p2z4 . ~59!

Here, we see that the quantum field is satisfying the quan
averaged weak energy condition. Recall that throughout
present paper, we are concerned with observers at rest
respect to the plate. If the observer is moving and pas
through the plate, then it is necessary to reformulate
quantum inequalities in terms of sampling functions w
compact support@17#. It should be noted that the divergenc
of the vacuum energy on the plate is due to the unphys
nature of perfectly reflecting boundary conditions. If the m
ror becomes transparent at high frequencies, the diverg
is removed. Even if the mirror is perfectly reflecting, but h
a nonzero position uncertainty, the divergence is also
moved@18#.

B. Two parallel plates

Now let us consider the case of two parallel plates, o
located in thez50 plane and another located in thez5L
plane. We are interested in finding the quantum inequality
the region between the two plates, namely 0<z<L. We can
again use the method of images to find the Green’s funct
In this case, not only do we have to consider the reflection
the source in each mirror, but we must also take into acco
the reflection of one image in the other mirror, and then
reflection of the reflections. This leads to an infinite numb
of terms that must be summed to find the exact form of
Green’s function. If we place a source at (t8,x8,y8,z8), then
there is an image of the source at (t8,x8,y8,2z8) from the
mirror at z50 and a second image at (t8,x8,y8,2L2z8)
from the mirror atz5L. Then, we must add the images
these images to the Green’s function, continuingad infinitum
for every pair of resulting images. If we use the notation
m
or.
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GF~z,a6z8![GF
~0!~ t,x,y,z;t8,x8,y8,a6z8! ~60!

then we can write the Green’s functions between the pla
as

G~x,x8!5GF~z,z8!2GF~z,2z8!1 (
n51

`

@GF~z,2nL1z8!

2GF~z,22nL2z8!1GF~z,22nL1z8!

2GF~z,2nL2z8!#. ~61!

Again, we Euclideanize as above, and let the spatial sep
tion between the source and observer points go to zero;
find

GE~2t0!5
1

16p2 S 1

t0
2 2

1

t0
21z2D 1

1

16p2 (
n51

` F 2

t0
21~nL!2

2
1

t0
21~nL1z!2 2

1

t0
21~nl2z!2G . ~62!

It is now straightforward to find the quantum inequality

Dr̂>2
3

32p2t0
4 1

1

16p2~ t0
21z2!2

1
1

16p2 (
n51

` H ~nL!223t0
2

@ t0
21~nL!2#3 1

1

@ t0
21~nL1z!2#2

1
1

@ t0
21~nL2z!2#2 J . ~63!

We again have that the first term in the above expressio
identical to that found for Minkowski space. The seco
term is the modification of the quantum inequality due to t
mirror at z50. The modification due to the presence of t
second mirror is contained in the summation, as well as a
the multiple reflection contributions. When the Casim
vacuum energy, given by@19#

rvac52
p2

48L4

322 sin2~pz/L !

sin4~pz/L !
2

p2

1440L4 , ~64!

is added back into this equation for renormalization, we fi
as we did with a single mirror, that close to either of t
mirror surfaces the vacuum energy comes to dominate
the quantum inequality becomes extremely weak.

VI. SPACETIMES WITH HORIZONS

We will now change from flat spacetimes with boundar
to spacetimes in which there exist horizons. We will beg
with the two-dimensional Rindler spacetime to develop
quantum inequality for uniformly accelerating observers. F
these observers, there exists a particle horizon along the
raysx56t ~see Fig. 2!.

We will then look at the static coordinatization of de S
ter spacetime. Again there exists a particle horizon in t
spacetime, somewhat similar to that of the Rindler spa
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time. The two problems differ somewhat by the fact th
Rindler space is flat while the de Sitter spacetime has c
stant, positive spacetime curvature.

A. Two-dimensional Rindler spacetime

We begin with the usual two-dimensional Minkows
metric

ds252dt21dx2. ~65!

Now let us consider an observer who is moving with co
stant acceleration. We can transform to the observer’s
frame ~Sec. 4.5 of@20#! by

t5a21eaj sinh ah ~66!

x5a21eaj coshah, ~67!

wherea is a constant related to the acceleration by

ae2aj5proper acceleration. ~68!

The metric in the rest frame of the observer is then given

ds25e2aj~2dh21dj2!. ~69!

The accelerating observers coordinates~h,j! only cover one
quadrant of Minkowski spacetime, wherex.utu. This is
shown in Fig. 2. Four different coordinate patches are
quired to cover all of Minkowski spacetime in the regio
labeledL , R, F and P. For the remainder of the paper w
will be working specifically in the left and right regions
labeled L and R respectively. In these two regions, un
formly accelerating observers in Minkowski spacetime c
be represented by observers at rest at constantj in Rindler
coordinates, as shown by the hyperbola in Fig. 2.

The massless scalar wave equation in Rindler spacetim
given by

e22ajS 2
d2

dh2 1
d2

dj2Df~h,j!50 ~70!

FIG. 2. A plot of the Rindler coordinatization of two
dimensional Minkowski spacetime. The time coordinatesh
5const are straight lines passing through the origin, while the sp
coordinatesj5const are hyperbolas. The Minkowski spacetime
covered by four separate coordinate patches, labeled byL , R, F and
P. The two null rays~x5t andx52t! act as horizons.
t
n-

-
st

y

-

n

is

which has the positive frequency mode function solutions

f k~h,j!5~4pv!21/2eikj6 ivh. ~71!

Here2`,k,` andv5uku. The plus and minus signs cor
respond to the left or right Rindler wedges, respectively. U
ing the above mode functions, we can expand the gen
solution as

f~h,j!5E
2`

`

dk@bk
L f k~h,j!1bk

L†
f k* ~h,j!

1bk
Rf k~h,j!1bk

R†
f k* ~h,j!#, ~72!

wherebk
L†

andbk
L are the creation and annihilation operato

in the left Rindler wedge and similarlybk
R†

and bk
R in the

right Rindler wedge. We also need to define two vacuau0L&
and u0R& with the properties

bk
L†

u0R&5bk
R†

u0L&5bk
Lu0L&5bk

Lu0R&5bk
Ru0L&5bk

Lu0R&50.
~73!

The Rindler particle states are then excitations above
vacuum given by

u$1k%L&5bk
L†

u0L& ~74!

u$1k%R&5bk
R†

u0R&. ~75!

With this in hand, we can find the two-point function i
either the left or right hand regions. Let us consider the ri
hand region, where

G1~x,x8!5^0Ruf~x!f~x8!u0R& ~76!

5E
2`

`

dk fk~x! f k* ~x8! ~77!

5
1

4p E
2`

` dk

v
eik~j2j8!2 iv~h2h8!.

~78!

To find the Euclidean two-point function required for th
quantum inequality, we first allow the spatial separation
go to zero and then take (h2h8)→22ih0 , yielding

GE~2h0!5
1

2p E
0

` dv

v
e22vh0. ~79!

In two dimensions, the Euclidean Green’s function for t
massless scalar field has an infrared divergence as ca
seen from the form above, in which the integral is not w
defined in the limit ofv→0. However, in the process o
finding the quantum inequality we act on the Green’s fun
tion with the Euclidean box operator. If we first take th
derivatives of the Green’s function, and then carry out
integration, the result is well defined for all values ofv. In
Rindler space, the Euclidean box operator is given by

hE5e22ajS d2

dh2 1
d2

dj2D . ~80!

ce
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It is now easy to solve for the quantum inequality,

Dr̂>2
1

4
hEGE~2h0!

52
1

2p
e22ajE

0

`

dvve22vh052
1

8p~eajh0!2 . ~81!

However, the coordinate timeh0 is related to the observer’
proper time by

t05eajh0 , ~82!

allowing us to rewrite the quantum inequality in a more c
variant form

Dr̂>2
1

8pt0
2 . ~83!

This is exactly the same form of the quantum inequality
found in two-dimensional Minkowski spacetime@4,5#. We
will see in Sec. VII A that this is a typical property of stat
two-dimensional spacetimes. This arises because in two
mensions all static spacetimes are conformal to one ano
However, the renormalized quantum inequalities are
identical in different spacetimes because of differences in
vacuum energies.

B. de Sitter spacetime

Let us now consider four-dimensional de Sitter spacetim
The scalar field quantum inequality, Eq.~17!, assumes a
timelike Killing vector, and so it will be convenient to us
the static parametrization of de Sitter space,

ds252S 12
r 2

a2Ddt21S 12
r 2

a2D 21

dr21r 2~du2

1sin2 udw2!. ~84!

There is a particle horizon atr 5a for an observer sitting a
rest at r 50. The coordinates take the values, 0<r ,a, 0
<u<p and 0<w,2p. It should be noted that this choic
of metric covers one quarter of de Sitter spacetime.

The scalar wave equation is

S 12
r 2

a2D 21

] t
2f2

1

r 2 ] rF r 2S 12
r 2

a2D ] r Gf
2

1

r 2 F 1

sinu
]u~sin u]u!1

1

sin2 u
]w

2 Gf1m2f50 .

~85!

The unit norm positive frequency mode functions are fou
@21–25# to be of the form

f̂v,l ,m~ t,r ,u,w!5
1

A4pa3v
f v

l ~z!Y lm~u,w!e2 ivt ~86!

wherez5r /a is a dimensionless length, the Ylm(u,w)’s are
the standard spherical harmonics and the mode labelsl and
-

s

i-
er.
t
e

e.

d

m take the valuesl 50,1,2,... and2 l<m< l . The radial por-
tion of the solution is given by

f v
l ~z!5

G~bl
1!G~bl

2!

GS l 1
3

2DG~ iav!

zl~12z2! iav/2

3F S bl
2 ,bl

1 ; l 1
3

2
;z2D , ~87!

where F(a,b;g;z) is the hypergeometric function@26# and

bl
651/2~ l 13/21 iav6A9/42a2m2!. ~88!

We can then express the two-point function as

G~x,x8!5(
lm

E
0

`

dk
1

4pa2k
f k

l* ~z! f k
l ~z8!Y lm* ~u,w!

3Y lm~u8,w8!eik~ t2t8!/a, ~89!

wherek[av. Now if we Euclideanize according to Eq.~16!
and set the spatial separation of the points to zero, we m
make use of the addition theorem for the spherical harmo
@27#,

(
m52 l

l

uY lm~u,w!u25
2l 11

4p
, ~90!

to find the Euclidean Green’s function

GE5
1

16p2a2 (
l
E

0

`

dk
~2l 11!

k U G~bl
1!G~bl

2!

G~ l 1 3
2 !G~ ik !

U2

3z2lUFS bl
2 ,bl

1 ; l 1
3

2
;z2D U2

e22kt0 /a. ~91!

This is independent of the angular coordinates, as expec
because de Sitter space is isotropic. We now need the
clidean box operator. Because of the angular independe
of the Green’s function, it is only necessary to know t
temporal and radial portions of the box operator. One fin
that the energy density inequality, Eq.~17!, becomes

Dr̂>2
1

4 H 1

~12z2!
] t0

2 1
1

a2z2 ]z@z2~12z2!]z#J
3GE~x,2t0 ;x,1t0!. ~92!

The temporal derivative term in Eq.~92! will simply bring
down two powers ofk/a. Using the properties of the hyper
geometric function, it can be shown that

UFS bl
2 ,bl

1 ; l 1
3

2
;z2D U2

5~12z2! ikF2S bl
2 ,bl

1 ; l 1
3

2
;z2D ,

~93!

from which we can take the appropriate spatial derivatives
we allowz→0, then we haveF→1 and only thel 50 terms
will contribute in the time derivative part of Eq.~92!. For the
radial derivative, one may show
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lim
z→0

1

z2 ]z$z
2~12z2!]z@z2l~12z2! ikF2~z2!#%

5H 2~a2m22k2! for l 50

6 for l 51

0 otherwise.

~94!

Using these results, we find for the observer atr 50 that

Dr̂>2
1

8p4a4 E
0

`

dk sinh~pk!@~k2

1a2m2!uG~b0
2!G~b0

1!u214uG~b1
2!G~b1

1!u2#e22t0k/a.

~95!

There are two cases for which the right hand side can
evaluated analytically,m50 and m5&/a. For m50, we
have

Dr̂>2
1

8p4a4 E
0

`

dk sinh~pk!Fk2UGS i
k

2DGS 3

2
1 i

k

2D U2

14UGS 1

2
1 i

k

2DGS 21 i
k

2D U2Ge22t0k/a ~96!

52
1

8p2a4 E
0

`

dk~2k315k!e22t0k/a ~97!

52
3

32p2t0
4 F11

5

3 S t0

a D 2G , ~98!

where we have made use of the identities

uG~ ik/2!u25
p

k/2 sinh~pk/2!
, ~99!

uG~1/21 ik/2!u25
p

cosh~pk/2!
, ~100!

uG~11 ik/2!u25
pk/2

sinh~pk/2!
, ~101!

uG~3/21 ik/2!u25
p

2
~11k2!

cosh~pk/2!

cosh~pk!11
, ~102!

and

uG~21 ik/2!u25
p

4
k~41k2!

sinh~pk/2!

cosh~pk!21
. ~103!

Similarly for m5&/a, we find

Dr̂>2
3

32p2t0
4 F11S t0

a D 2G . ~104!

We can compare these results with the short sampling t
approximation from Sec. IV. Solving for the necessary g
metrical coefficients, we find
e

e
-

v0005S 29

60

1

a4 2
1

4

m2

a2D ugttu, ~105!

v15
29

60

1

a4 2
1

2

m2

a2 1
1

8
m4, ~106!

1

2
gtt¹

j¹ jgtt
215

1

a2

~32r 2/a2!

~12r 2/a2!
. ~107!

The general short time expansion, Eq.~46!, now becomes

Dr̂>2
3

32p2t0
4 H 11

1

3 F 2

a2 2m21
1

a2

~32r 2/a2!

~12r 2/a2!Gt0
2

1
m2

6 S m22
2

a2D t0
4 ln~2t0

2/a2!1O~t0
4!1•••J ,

~108!

wheret05(12r 2/a2)1/2t0 . If r 50 andm takes the value 0
or &/a, this agrees with Eq.~98! or ~104!, respectively.
Note that this smallt0 expansion is valid for all radii, 0<r
,a. We can also find the proper sampling time from E
~48! for which this expansion is valid:

t0!tm[aA 12r 2/a2

523r 2/a2. ~109!

For an observer sitting at the origin of the coordinate syste
t0!a/A5. This is the scale on which the spacetime can
considered ‘‘locally flat.’’ For observers atr .0, who do not
move on geodesics,tm decreases and approaches zero ar
→a:

tm;Aa~a2r !, r→a. ~110!

Note that the proper distance to the horizon from radiusr is

l 5E
r

a dr8

A12r 82/a2
5a@p/22arcsin~r /a!# ~111!

;A2a~a2r ! as r→a. ~112!

Thus, for observers close to the horizon, if the sampling ti
is small compared to this distance to the horizon,t0!l ,
thent0!tm , and the short time expansion is valid.

We can also obtain a renormalized quantum inequality
the energy density at the origin for the casem5&a. By the
addition of the vacuum energy~at r 50! to both sides of Eq.
~104! one finds

r̂ ren>2
3

32p2t0
4 F11S t0

a D 2G2
1

960p2a4 . ~113!

We can now predict what will happen in the infinite sam
pling time limit of the renormalized quantum inequality fo
any observer’s position. We know from Eqs.~91! and ~92!
that the difference inequality will always go to zero, yieldin
a QAWEC in static de Sitter space of
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lim
t0→`

t0

p E
2`

` ^T00u
0u0& ren

t21t0
2 dt

>
1

480p2a4 F2
a2

~a22r 2!
1

1

2 S 12
r 2

a2D G , ~114!

where the right-hand side ispvacuum(r ). We immediately see
that for a static observer who is arbitrarily close to the ho
zon in de Sitter spacetime, the right hand side of Eq.~114!
becomes extremely negative, and diverges on the hor
itself. This is similar to the behavior found for static obser
ers located near the perfectly reflecting mirror discussed
lier.

VII. BLACK HOLES

We now turn our attention to an especially interesti
spacetime in which quantum inequalities can be develop
the exterior region of a black hole in two and four dime
sions.

A. Two-dimensional black holes

Let us consider the metric

ds252C~r !dt21C~r !21dr2, ~115!

where C(r ) is a function chosen such thatC→1 and
]C/]r→0 asr→`. Additionally, there is an event horizo
at some valuer 0 where C(r 0)50. For example, in the
Schwarzschild spacetime,C(r )5122Mr 21, there is a ho-
rizon atr 52M . Another choice forC is that of the Reissner
Nordström black hole, whereC(r )5122Mr 211Q2r 22. In
general, we will leave the functionC unspecified for the
remainder of the derivation. The above metric leads to
massless, minimally coupled scalar wave equation

2
1

C~r !
] t

2f~r ,t !1] r@C~r !] rf~r ,t !#50. ~116!

Unlike in four dimensions, the two-dimensional wave equ
tion can be analytically solved everywhere. If we use
standard definition of ther * coordinate,

r * [E dr

C~r !
, ~117!

then it is convenient for us to take as the definition of t
positive frequency mode functions

f k~r ,t !5 i ~4pv!21/2eikr* 2 ivt, v5uku, ~118!

where2`,k,`.
The problem of finding the quantum inequality simp

reduces to using the mode functions to find the Euclid
Green’s function. We have

GE~2t0!5E
2`

`

dkU i

A4pv
eikr*U2

e22vt0

5
1

2p E
0

`

dvv21e22vt0. ~119!
-

on
-
r-

d,

e

-
e

n

As in the case of two-dimensional Rindler space, the Euc
ean Green’s function has an infrared divergence. We
again apply the Euclidean box operator first and then do
integration to obtain the quantum inequality

Dr̂>2
1

2pC~r !
E

0

`

dvve22vt052
1

8pC~r !t0
2 .

~120!

However, the observer’s proper time is related to the coo
nate time byt5C(r )1/2t, such that we can write the differ
ence inequality as

Dr̂>2
1

8pt0
2 . ~121!

This is the same form as found for two-dimension
Minkowski and Rindler spacetime. This is the expected
sult because all two-dimensional static spacetimes are
formal to one another. For an extensive treatment of qu
tum inequalities in two-dimensional Minkowski spacetim
see@28#.

This now brings us to the matter of renormalizatio
There exist three candidates for the vacuum state of a b
hole: the Boulware vacuum, the Hartle-Hawking vacuu
and the Unruh vacuum. However the derivation of the d
ference inequality relies on the mode functions being defi
to have positive frequency with respect to the timelike Ki
ing vector] t , and that the vacuum state was destroyed
the annihilation operator, i.e.

aku0k&50 for all k. ~122!

In Schwarzschild spacetime, this defines the Boulw
vacuum. Thus, we can solve for the renormalized quan
inequality

r̂ ren[
t0

p E
2`

` ^Ttt& ren

t21t0
2 dt>2

1

8pt0
2 1rB~r !. ~123!

The Boulware vacuum energy density in two dimensions
the Reissner-Nordstro¨m black hole is given explicitly by~see
Sec. 8.2 of@20#!

rB~r !5
1

24p S 12
2M

r
1

Q2

r 2 D 21F2
4M

r 3 1
7M2

r 4 1
6Q2

r 4

2
14MQ2

r 5 1
5Q4

r 6 G . ~124!

In the limit t0→`, one recovers a QAWEC condition on th
energy density

lim
t0→`

t0

p E
2`

` ^Ttt /gtt& ren

t21t0
2 dt>rB~r !. ~125!

This has the interpretation that the integrated energy den
in an arbitrary particle state can never be more negative t
that of the Boulware vacuum state. In particular, this will
true for the Hartle-Hawking and Unruh vacuum states.
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B. Four-dimensional Schwarzschild spacetime

Now let us turn to the four-dimensional Schwarzsch
spacetime with the metric

ds252S 12
2M

r Ddt21S 12
2M

r D 21

dr21r 2~du2

1sin2 udw2!. ~126!

The normalized mode functions for a massless scalar fiel
the exterior region (r .2M ) of Schwarzschild spacetime ca
be written as@29#

fWv lm~x!5~4pv!1/2e2 ivtRW l~vur !Y lm~u,w!,

fQv lm~x!5~4pv!1/2e2 ivtRQ l~vur !Y lm~u,w!, ~127!

where RW l(vur ) and RQ l(vur ) are the outgoing and ingoin
solutions to the radial portion of the wave equation, resp
tively. Although they cannot be written down analyticall
their asymptotic forms are

RW l~vur !;H r 21eivr* 1AW l~v!r 21e2 ivr* , r→2M ,

Bl~v!r 21eivr* , r→`,

~128!

for the outgoing modes, and

RQ l~vur !;H Bl~v!r 21e2 ivr* , r→2M ,

r 21e2 ivr* 1AQ l~v!r 21eivr* , r→`,

~129!

for the ingoing modes. The normalization factors Bl(v),
AW l(v) and AQ l(v) are the transmission and reflection coef
cients for the scalar field with an angular momentu
dependent potential barrier.

Now let us consider the two-point function in the Bou
ware vacuum. It is given by

GB~x,x8!5(
lm

E
0

` dv

4pv
e2 iv~ t2t8!Y lm~u,w!Y lm* ~u8,w8!

3@RW l~vur !RW l* ~vur 8!1RQ l~vur !RQ l* ~vur 8!#.

~130!

We are interested in the two-point function when the spa
separation goes to zero, i.e. lettingr 8→r , u8→u, and w8
→w. We can again make use of an addition theorem,
~90!, for the spherical harmonics. Let us also Euclideani
by taking (t2t8)→22i t 0 . The Euclidean two-point func
tion then reduces to

GBE~2t0!5
1

16p2 (
l

E
0

` dv

v
e22t0~2l 11!@ uRW l~vur !u2

1uRQ l~vur !u2#. ~131!

In the two asymptotic regimes, close to the event horizon
the black hole (r→2M ), or far from the black hole (r
in

c-

-

l

q.
,

f

→`), the radial portion of the wave equation also satisfie
sum rule. It was found by Candelas@30# that

(
l 50

`

~2l 11!uRW l~vur !u2

;H 4v2~122M /r !21, r→2M ,

r 22(
l 50

`

~2l 11!uBl~v!u2, r→`,
~132!

and

(
l 50

`

~2l 11!uRQ l~vur !u2

;H ~2M !22(
l 50

`

~2l 11!uBl~v!u2, r→2M ,

4v2, r→`,

~133!

with the coefficient Bl(v) given, in the case 2Mv!1, by
@31#

Bl~v!'
~ l ! !3

~2l 11!! ~2l !!
~24iM v! l 11. ~134!

If we insert these relations into the Green’s functions, it
possible to carry out the integration inv. One finds

GBE~2t0!;
1

16p2 F 1

~122M /r !t0
2

1
1

4M2 (
l 50

~ l ! !6

@~2l !! #3 S 2M

t0
D 2l 12G , r→2M ,

~135!

in the near field limit, and in the far field limit,

GBE~2t0!;
1

16p2 F 1

t0
2 1

1

r 2 (
l 50

~ l ! !6

@~2l !! #3 S 2M

t0
D 2l 12G ,

r→`. ~136!

We immediately see that the Green’s function is independ
of the angular coordinates, as one expects because of sp
cal symmetry. Note that the maximum value ofl for which
the expansion in Eqs.~135! and ~136! can be used depend
upon the order of the leading terms which have been drop
in Eq. ~134!. If this correction isO„(Mv) l 12

…, then only the
l 50 terms are significant, asB0 would then contain sub-
dominant pieces which yield a contribution toGBE(2t0)
larger than the leading contribution fromB1 . In what fol-
lows, we will explicitly retain only thel 50 contribution. In
order to find the quantum inequality around a black hole
must evaluate

Dr̂>2
1

4
hEGE~2t0!. ~137!

However, the only parts of the Euclidean box operator t
are relevant are the temporal and radial terms, i.e.
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hE⇒~122M /r !21] t0
2 1r 22] r@r 2~122M /r !] r #.

~138!

Upon taking the appropriate derivatives, and using the r
tion of the proper time of a stationary observer to the co
dinate time,

t05t0A122M /r , ~139!

we find that the quantum inequality is given by

Dr̂>2
3

32p2t0
4 H 1

6 S 2M

r D 2S t0

r D 2S 12
2M

r D 21

11

1S 12
2M

r D1OF S 12
2M

r D 2G1•••J , r→2M ,

~140!

and

Dr̂>2
3

32p2t0
4 H 12

2M

r
1S 2M

r D 2F11
1

3 S t0

r D 2G
2S 2M

r D 3F11S t0

r D 2G1OF S 2M

r D 4G1•••J , r→`.

~141!

An alternative approach to finding the quantum inequality
to use the short time expansion from Sec. IV, which yiel

Dr̂>2
3

32p2t0
4 2

1

16p2t0
2 F M2

r 4~122M /r !
1O~t0

2!1••• G .
~142!

Note that this short time expansion coincides with the fi
two terms of ther→2M form, Eq. ~140!. This is somewhat
unexpected, as Eq.~140! is an expansion for smallr 22M
with t0 fixed, whereas Eq.~142! is an expansion for smallt0
with r fixed.

We immediately see from Eq.~141! that we recover the
Minkowski space quantum inequality in ther→` limit. If
we consider experiments performed on the surface of Ea
where the radius of Earth is several orders of magnit
larger than its equivalent Schwarzschild radius, then the
space inequality is an exceptionally good approximati
From Eq.~48!, we can also find the proper sampling time f
which the inequality, Eq.~142!, holds to be

t0!
r 2

2M
A2 S 12

2M

r D . ~143!

As was the case in two dimensions, if we allow the sa
pling time to go to infinity in the exact quantum inequalit
we recover the QAWEC, Eq.~125!, for the four-dimensional
black hole. The QAWEC says that the renormalized ene
density for an arbitrary particle state, sampled over the
tirety of the rest observer’s world line, can never be mo
negative than the Boulware vacuum energy density.
a-
-
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t

h,
e
at
.

-

y
n-
e

VIII. SUMMARY AND CONCLUSIONS

We have shown for static spacetimes that the energy d
sity sampled for a characteristic timet0 along the world line
of a static observer is bounded below by the quantum
equality

Dr̂[
t0

p E
2`

` ^:T00:/gtt&
t21t0

2 dt

>2
1

4
S ] t0

2

gtt
1¹ j¹ j D(

l
uUl~x!u2e22vlt0. ~144!

An observer doing the sampling may observe negative
ergy densities. However, as we have seen in the various
amples here and in previous work@1,5#, the magnitude of the
sampled negative energy density is bounded below, in f
dimensions, by

Dr̂>2
3

32p2t0
4 f ~ t0!. ~145!

Here, f (t0) is called the scale function and carries spec
information about how the quantum inequality is modifi
from the flat space form when we are in curved spacetim
It has the general property that when the sampling time
the observation becomes small, the sampling functionf (t0)
→1, and we recover the Minkowski space form of the qua
tum inequality.

We may also write the quantum inequality in terms of t
Euclidean box operator and the Euclidean Green’s funct

Dr̂>2
1

4
hEGE~x,2t0 ;x,1t0! ~146!

and thus avoid carrying out the sum over all the modes if
Green’s function is already known. If the Green’s function
a particular spacetime is not explicitly known, we can s
find the quantum inequality by using an expansion of
Hadamard form of the Green’s function in the limit of sma
sampling times. In Sec. IV, it was shown that the quant
inequality in this limit is given by Eq.~46!, which gives the
curvature-dependent corrections to the flat space inequa
Eq. ~47!. This result confirms the arguments made in Ref.@6#
and further utilized in@8,10# to the effect that the flat space
time quantum inequality may be used in curved spacetime
the sampling time is sufficiently short.

In the limit of long sampling time,t0→`, one can derive
a quantum averaged weak energy condition, Eq.~21!, which
says that the expectation value of the renormalized ene
density for a static observer sampled for all time is bound
below by the vacuum self-energy of the spacetime.

An exact quantum inequality was found in several e
amples, including perfectly reflecting mirrors in flat spac
time, Rindler and de Sitter spacetimes and two-dimensio
black hole spacetimes. In all cases, the short sampling t
limit agrees with the general short sampling time expans
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derived in Sec. IV. Approximate forms of the quantum i
equality in four-dimensional Schwarzschild spacetime w
found in the vicinity of the horizon and at large distance
This inequality places a limit on how much more negat
the local energy density in an arbitrary state may be than
in the Boulware vacuum state.
a-
e
.
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