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Scalar field quantum inequalities in static spacetimes
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We discuss quantum inequalities for minimally coupled scalar fields in static spacetimes. These are inequali-
ties which place limits on the magnitude and duration of negative energy densities. We derive a general
expression for the quantum inequality for a static observer in terms of a Euclidean two-point function. In a
short sampling time limit, the quantum inequality can be written as the flat space form plus subdominant
correction terms dependent upon the geometric properties of the spacetime. This supports the use of flat space
guantum inequalities to constrain negative energy effects in curved spacetime. Using the exact Euclidean
two-point function method, we develop the quantum inequalities for perfectly reflecting planar mirrors in flat
spacetime. We then look at the quantum inequalities in static de Sitter spacetime, Rindler spacetime and two-
and four-dimensional black holes. In the case of a four-dimensional Schwarzschild black hole, explicit forms
of the inequality are found for static observers near the horizon and at large distances. It is shown that there is
a quantum averaged weak energy conditQAWEC), which states that the energy density averaged over the
entire worldline of a static observer is bounded below by the vacuum energy of the spacetime. In particular, for
an observer at a fixed radial distance away from a black hole, the QAWEC says that the averaged energy
density can never be less than the Boulware vacuum energy dgis656-282(198)02006-2

PACS numbdps): 04.62+v, 03.70:+k, 04.60—m

[. INTRODUCTION hold. This method has since been applied to the Alcubierre
“warp drive” metric [7,8] to show that the negative energy
In a recent papefl], we derived a general form of the that makes up the walls of the warp bubble has to be con-
quantum inequalityQI) for quantized scalar fields in static Strained to exceptionally thin walls, usually on the order of
curved spacetimes. The quantum inequalities are uncertaintjiundreds, or perhaps thousands of Planck lengths at most.
type relations which constrain the magnitude and duration oBimilar results were found for the Krasnikov metfi,10],
negative energy that may be present in a spacetime. This wa¥here the negative energy that is needed must also be con-
an extension of the previous work carried out by Ford andined to exceptionally thin walls.
Roman[2-5] which dealt with the quantum inequalities for  In our earlier work[1], the quantum inequality was de-
scalar fields in two- and four-dimensional Minkowski space-fived for stationary observers in static spactimes where the
time. In curved spacetimes, it was found that the quantunfnagnitude of theg,, component of the metric was 1. In this
inequality could be written in terms of a sum of mode func-paper we will extend the derivation of the quantum inequali-
tions for the scalar field. With the general form of the quan-ties to the entire class of static spacetime metrics of the form
tum inequality in hand, we then proceeded to look at the o
static cases of the three-dimensional closed universe and the ds”= —|gu(x)|dt?+gj;(x)dx'dx. 1)
four-dimensional Robertson-Walker spacetimes. Exact func- ) )
tional forms for the quantum inequalities were developed inf" Sec. Il we will derive the general form of the quantum
these spacetimes. It was found that the curved space quaequality for static observers in such spacetimes, and show
tum inequalities could be written as the flat space quanturfhat it may be written in terms of a Euclidean Greeftigo-
inequalities multiplied by a “scale” function which detailed P0INY function. We will show in Sec. IlI that in the infinite
the behavior of the inequalities at various ratios of the sam$ampling time limit the quantum inequality reduces to the
pling time to the radius of curvature of the spacetime. In the quantum averaged weak energy conditiofQAWEC)
long sampling time limit, the quantum inequality was sub-Which can be written in the form
stantially modified by the scale function. However, in the B
short sampling time limit, the scale functions tend to 1, f _ =
yielding the flat space quantum inequality. This behavior had _w(<</f| Too!|9/|#) = prac)d7=0. @
first been predicted to exist by Ford and Roman in a paper
dealing with negative energy around wormholé§ It was  The quantum averaged weak energy condition says that
argued that by making the sampling time of the quantunalong the entire world line of a static observer, the sampled
inequality much shorter than a minimum characteristic curenergy density can never be more negative than the vacuum
vature scale, then the spacetime could be considered localbnergy,p, ... Here the vacuum energy is obtained using the
flat and the Minkowski space quantum inequality shouldtimelike Killing vector to define positive frequency.
In Sec. IV we will perform a short time expansion of the
two-point function. It is found that the leading term of the
*Email address: mitchel@cosmos2.phy.tufts.edu expansion of the curved space quantum inequality is indeed
"Email address: ford@cosmosz2.phy.tufts.edu of the flat space form. In addition, the first two corrections to
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the leading order term will be explored. We will show that defined to have a unit Klein-Gordon norm. A general solu-
they depend only on the geometric properties of the spacdion of the scalar fieldp can then be expanded in terms of
time such as the metric, scalar curvature, etc. creation and annihilation operators as

In Sec. V we will look at the exact form of the quantum
inequality developed for a half infinite flat spacetime. We
will see that the presence of a perfectly reflecting, infinite
planar mirror modifies the flat space quantum inequality. In b(x)=2, (afy+alf}), (7)
addition we will look at the case of the quantum inequality »
between two parallel mirrors. Both of these cases will bg, oo guantization is carried out over a finite box or uni-

developed by first determining the Feynman Green's funCK/erse. If the spacetime has infinite spatial extent, then we

tion by the method of images, and then using the fqrmal'sn}eplace the summation by an integral over all of the possible
developed in Sec. Il to find the respective quantum inequali-

ties modes.
F.inaII we will look at the quantum inequalities in space- In the development of the quantum inequality, we will
times iny\;vhich there exist ho?izons We v(\q/ill begin Witrr)l the conecem ourselves only with static observers, whose four-
. ; b -1/2 i i i
two-dimensional Rindler coordinates and then move on tvelocny, u“=(|gul "*0), is parallel to the direction of the

the static coordinate representation of de Sitter s,pacetimc(%alme“ke Killing vector. These are geodesic observers in the

X . : Case thapy is a constant, but otherwise are non-geodesic.
Finally in Sec. VIl we will look at the case of two- and ) L .
4 ) . ; . The energy densityfor minimal coupling that such an ob-
four-dimensional black holes. In two dimensions, we will

find the exact form of the quantum inequality for static ob-SETVEr Measures Is given by
servers sitting at fixed radii outside of the black hole. In the
case of the four-dimensional black hole, because there is no
known analytic solution for the mode functions of the scalar
field, we find the quantum inequality in the limits—2M

andr —oo. In the limit of long sampling time, the QAWEC

1
p=TapuuP=—Tgo
|9l

is recovered for these spacetimes. :% |gl | (at¢)2+Vj¢Vj¢+m2¢2 _ @)
tt
IIl. SCALAR FIELD QUANTUM INEQUALITY Upon substitution of the above mode function expansion into

Eqg. (8), one finds that there exists a vacuum energy term

Because this derivation closely resembles that developeg@hich is divergent upon summation. A regularization and
earlier[1], we will only highlight the necessary steps to rep- renormalization scheme is needed to define the physical en-
licate the proof for the metric in Eq1). On such a fixed ergy density. This may be sidestepped by concentrating at-
background, the wave equation tention upon the difference between the energy density in an
arbitrary state and that in the vacuum state, as was done in

Refs.[1, 4]. We will therefore concern ourselves primarily

1 with the normal ordered quantity

O¢p—mPe= Waﬁx Viglg*#azp)—mPp=0  (3)

becomes :p:=p—(0|p|0), 9)

where|0) represents the Fock vacuum state define the
here|0) rep he Fock defined by th

1 _ global timelike Killing vector. In cases where the renormal-
— — ip—m"¢=0, ized value of0|p|0) is known, we can convert the difference

| |&2¢+VJV,¢ 2¢=0 (4 ized value ok0|p|0) is k he diff

Y inequality into an inequality on the renormalized energy den-

where g=det@,,), V; is the covariant derivative in the sity in an arbitrary state.

spacelike hypersurfaces orthogonal to the Killing vector, and '!'he energy density as defined above is valid along the
. ; ) o entire world line of the observer. However, let us sample the
m is the mass of the field. Units whefie=c=G=1 are used

throughout this paper. The positive frequency mode functioﬁapergy.densny only along some LS geO(_je
: ; sic. This may be accomplished by means of a weighting
solutions can be written as . : 7
function which has a characteristic tintg, such as the

Lorentzian function,

() =Uy(x)e™"", (5)
whereU, (x) is the solution to the Helmholtz equation h(t)= t_0 1 (10)
T+ts
VjVjU)\+(w§/|gn| ~m?)U, =0. (6)  The integral over all time ofi(t) is equal to 1 and the width

of the Lorentzian is characterized hy. Using such a
The label\ represents the set of quantum numbers necessaweighting function, one finds that the averaged energy dif-
to specify the mode. Additionally, the mode functions areference is given by
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.t “Tool ||t
ApE—OJ <°;'Z|g“2|>— Re Y [ [UXU,.e le~elto(ata, ) —U,U, e @+ )(a,a,,)]
T t°+1tg AN | tl
+[VIUFV, U, e lemelogala, )+ ViU, VU, e (@r el a, ) ]+ m2[UF U, e lemeloala, )

+UAUA,e<‘”+“")t0<axaw>]]. (12)

From this point onward, the derivation continues along thdll. QUANTUM AVERAGED WEAK ENERGY CONDITION
lines of that in Ref[1]. After some algebra, and application

of the inequalities derived in previous papEtss), one finds Let us return to the form of the the quantum inequality

given by Eq.(12),

2
R wy 1 .
_ TS vikva 24— 2w\t
Ap= Z(Ignl+4v VJ)|U)\(X)|e o, (12) )

+ = VV>|U (x)|2e7 2o, (18)

~ w
Ap==2 <| ]
which can be rewritten as Gu

2
A 1 % ; Since we are working in static spacetimes, the vacuum en-
_ | = iv. 202wyt . ’ ’ . i
Ap= 4 (|gtt| v VJ) ; [UrOolFe b (13) ergy does not evolve with time, and so we can rewrite this
equation simply by adding the renormalized vacuum energy

There is a more compact notation in which E43) may be  9€nsityp,acuumto both sides. We then have
expressed. If we take the original metric, Et)., and Euclid-
eanize the time by allowing—it,, then the Euclidean box ’
operator is defined b - W\ P

P y Pren= — E (m"_ viv, )|U)\(X)|2e 2 )‘t0+Pvacuun(X):
i (19
——+VIV,. (14

Oe=
= gyl

he herepren is the sampled, renormalized energy density in
any quantum state. Let us now take the limit of the sampling
time ty—o0. We find (under the assumption that there exist
no modes which have, =0) that

In addition, the sum of the mode functions is equal to t
Euclidean two-point function
Ge(X, —toiX, +1g) = > |U,(x)|%e 20 (15
A

. . . . tO * <TOO/|gtt|>ren
where the spatial separation is allowed to go to zero but the lim p i dt=p,acuun(X). (20
time separation ist3. The Euclidean two-point function is to—e o 0
the counterpart of the Feynman Green’s function for the

Lorentzian metric. The two are related by ] )
This leads directly to the “quantum averaged weak energy

Ge(x,tx',t')=iGp(x,it;x,it"). (16) condition” for static observers,
This allows us to write the quantum inequality in any static .
curved Spacetlme as f_oc (<¢|TOO/|gtt||(ﬂ)ren_Pvacuun*)dt?O- (21)
A 1
APZ_ZDEGE(X,_to;X,"_to). (17)

This is a departure from the classical averaged weak energy

We see that once we are given a metric which admits &£ondition

timelike Killing vector, we can calculate the limitations on

the negative energy densities by either of two methods. If we e

know the §o|utlon_s to the wave equat!on, then we may con- f (W Too!|Gul| ) rend =0. (22)
struct the inequality from the summation of the mode func-

tions. More elegantly, if the Feynman two-point function is

known in the spacetime, then we may immediately calculate

the inequality by first Euclideanizing and then taking theWe see that the derivation of the QAWEC leads to the mea-
appropriate derivatives. sured energy density along the observers geodesic being
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bounded below by the vacuum energy. This type of condi- 1 1
tion was first obtained in Refl4]. [See Eq.(26) of that v1=750RpgrRPIS = o Ry R = o
paper] Recently, there has been much discussion about how
badly the vacuum energy violates the classical energy con-
ditions. For example Visser looked at the specific case of the + )
violation of classical energy conditions for the Boulware,
Hartle-Hawking, and Unruh vacuum stafdd—14 around a We can then express the Green'’s function as
black hole. However, the vacuum energy is not a classical )
i
8 2[

g
¢~ g|OR

1)2 , 1 2( 1,
f—g R+Zm §—E)R+§m. (30

1+ 15 RypofoP— -

phenomenon, and so it need not necessarily obey classice&‘(X X')=

energy constraints. From the QAWEC we see that the otie
sampled energy density is bounded below by the vacuum 1
energy in the long sampling time limit. +| | vg— Evo;aanr EUOabUanJF .
IV. EXPANSION OF THE QI FOR SHORT SAMPLING 1
TIMES +lvim Fvna0t e fot |n(a+ie)+w]
We now consider the expansion of the two-point function
for small times. We assume that the two-point function has (31)
the Hadamard forn15] where we have also used the Taylor series expansion of the
AL Van Vleck—Morette determinaft5],
G(X,X')=z—|——+VIn(c+ie)+W|, (23 1 1
87 |otie AY2=1+ 1—2Raba'aab— ZlRab;CUaO'bO'C-I---- . (32

where 2r(x,x') IS . sguare of ’the geodesic distance be_We neglecW, the state dependent part of the Green’s func-
tween the spacetime pointsandx’,

tion, because it is regular as—0. The dominant contribu-
— 12 112y tions to the quantum inequality come from the divergent por-
A=g Tx)detoap)g X @49 tions of the Green'’s function in the—0 limit.
Let us find the geodesic distance between two spacetime
droints, along a curve starting akq, —to) and ending at
(Xo,+1p). For spacetimes in whichg,;|=1, the geodesic
path between these two spacetime points is a straight line.
o Therefore, the geodesic distance is simpty.2However, in
V(x,X' )= 2, Vy(x,x")o", (25)  a more generic static spacetime whgggx) is not constant,
n=0 the geodesic path between the above two spacetime points is
_ i ) ) a curve, with the observer’'s spatial position changing
whereV,, (andW,) is also a regular biscalar function with  throughout time. Thus, we must now solve the equations of
motion for the observer. In terms of an affine paramater

is the Van Vleck—Morette determinant, an(x,x’) and
W(x,x') are regular biscalar functions. In general, thes
functions can be Taylor series expanded in powers,of

1 - .
Vo=0vo— EUO;a‘Ta"' EUOabo'ao'b the geodesic equations are found to be
dt ay 0 33
1/ 3 1 ™ o
+€ _EUOab;c+ 2V 0:(abo 2P+ | (26) d\  [gu(x(N))
d?x! o dx* dx”_0 a4
1 d\Z "7 Avdh dh (39
Vi=vy— Evl:ao'a+"' ) (27) ) . ) .
where a; is an unspecified constant of integration. The
. - . Christoffel coefficients are
where o”=¢"". The coefficientsvg, vgap,... arestrictly
geometrical objects given by 1
FItI:§g|J|gtt|,j )
1 1
vo=3| [ €75 R, @9 r'y=0,
: 1 .
1 I ik=59"(Gmjk+ ki~ Gjkm)- (35
UOab:_l_BOquraRp I’b_:I__S()Rapbquq'l' %Raprp 2 mik T Smkl fiem

It is possible to eliminata. from the position equations, and

1 11 :
~gag0R g6 gg|Ras e | |
d?x! . 1| Y dx dxk+ |G¢t] X dx 0
1 1 T2 T 519ul’ ka1 dr =u.
_1 1 dZ " 2 Gt dt gyl dt dt
¢ 6)RRab+ PRy, (29 -

12
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t/t, We can expand(t) in powers oft centered arount=0, and
43 then carry out the integration to find the geodesic distance.
The parametes- can now be written as

1
o (Xg,tg) = EAsz (40)
2131
2 2 2 " 4 111 (V)
=2f2(0)tg+ 3 F(O)f"(0)tg+ g | = F(0)F™)(0)

1 L " 2|46
+517(02[t5+ - (41)

wo
10
4]
w0
10

r/o
However, we do not necessarily know the values of the met-
ric at the timet=0, but we do at the initial or final positions,
and so we must now expand the functidi{®) around the
time —ty. Upon using Eq(37), one then finds that

13 F

203 1
o (X o)~ — 2|9tt(xo)|t§_ 6 gtt"(xo)gtt,i(xo)tg+ T
(42)

and

4t

1 gtt'i(xo)gtt,'(xo)
FIG. 1. An exaggerated plot of the exact geodesic [atited o'(Xoto) =~ 2to+ 3 . (43

line) and the parabolic approximatidsolid line). « is the coordi- |gtt(X0)|

nate distance from=0 to the horizon in the static de Sitter space- . . . .
time. In any further calculations, we will drop the notation, with

the understanding that all of the further metric elements are
Now if we make the assumption that the velocity of theevaluated at the starting point of the geodesic. Using(Hg).

observer moving along this geodesic is small, then to Iowesﬁ/e can then write the E“C“.de"’%“ _Greens_ function needed to
order the second term can be considered nearly constant, a grve the quantum inequality, in increasing powers,ofas

all the velocity dependent terms are neglected. It is then pos- )

sible to integrate the equation exactly, subject to the above Ge(X,tg)= i 1-0O(tp)+---

end point conditions, to find B0 g2

1
2|gtt|tg_ ggtt’lgtt,itg

. 1 ) .
X(t)~— =|gyli_, (t2—1t2)+X). (37) 1
( 4|gtt|x XO( 0 0 +vgIn 2|gtt|t(2)_ggtt’lgtt,ité

We see that the geodesics are approximated by parabolas, as 5 2
would be expectgd in the NevvtorFl)in:m limit. A co);n%arison of +(vox|Gul *+201|gul ~ 20000t In( 2|9ulto
the exact solution to the geodesic equations and the approxi-
mation is shown in Fig. 1 for the specific case of de Sitter i 4
spacetime. We see that the approximate path very nearly fits ~ o Guito
the exact path in the range efty to +t,.

The geodesic distance between two spacetime points,
where the starting and ending spatial positions are the sam
is given by

o (44)

Rrote that none of the geometric terms, suchvgs change
during Euclideanization because they are time independent.
The quantum inequalityl7) can be written as

+1g dx' dx

AS:J _lgtt(t)|+gij(t)amdt. (38 A 1 1 .
~to Apz——(—&f+V'Vi)GE(x,—t0;x,+to). (45
4 \|gy| o

In order to carry out the integration, let us define ) ) ] )

If we insert the Taylor series expansion for the Euclidean
T Green’s function into the above expression and collect terms
_ ax dxt in powers of the proper sampling timg, related tot, by

f(H= \/ 19u(D)]+5 (1) dt dt’ (39) 70=0u| %o, we can write the above expression as
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. 3 1/1 , 41 o) and the scalar curvaturB=6/a® is a constant. It can be
Ap=— 2|l 3 59V'V gy "+ gR—m? |75 shown thatv;—vge=1/8a*. This leads to a quantum in-
0 equality in Einstein’s universe of the form
1(1 ko1 v
+o| 2 kgi——VIVjR+4vl—4ﬂ)) 7 In(272) ) 1(tg)2
316 " gy 12 |9l Ap= 57 sz
327t 3la
+O(7g)+++-|. (46) to)* td
3 a) In(ty/a)+ 0O = (51
In the limit of 7g— 0, the dominant term of the above expres- . . ]
sion reduces to In Ref. [1], an exact quantum inequality valid for aj/a
was derived. In the limity<<a, this inequality agrees with
. 3 Eqg. (51). Similarly, the exact inequality for the static, open
Ap=— 32 A (47 Robertson-Walker universe was obtained in R&f, and in
0

the limit ty<<a agrees with Eq(49).

which is the quantum inequality in four-dimensional

Minkowski spacd4,5]. Thus, the term in the square brackets V- QUANTUM INEQUALITIES NEAR PLANAR MIRRORS
in Eqg. (46) is the short sampling time expansion of the
“scale” function [1], and does indeed reduce to 1 in the ) ) ) ) ) ) )
limit of the sampling time tending to zero. We can ask, in Consider four-dlmensmnal Minkowski spacetlmg which
what range can we consider a curved spacetime to phas a perfectly reflecting boundary &+ 0, located in the

“roughly” flat? The condition is that the correction terms X-Y plane, at which we require the scalar field to vanish. The
should be small compared to 1, i.e. two-point function can be found by using the standard Feyn-

man Green'’s function in Minkowski space,

A. Single mirror

-1/2

1 . 1
70<|50aV Vigy "+ gR-m? . 48  GP(xx")
=i
Each of the three terms on the right-hand side of this relation ~— A (x—x V2 (y=y P+ (z—2 )= (1=t
have a different significance. Tme? term simply reflects the
fact that for a massive scalar field, E@6) is valid only (52)

when the sampling time is small compared to the Compton . . ) .
time. If we are interested in the massless scalar field, thiand applying the method of images to find the required

term is absent. The scalar curvature term, if it is dominant%reen s.funcuon when. the boundary is present. For a single
ﬁonductlng plate one finds

indicates that the flat space inequality is valid on scales smal
compared to the local radius of curvature. This was argued —i 1
on the basis of the equivalence principle in R¢6.8, 10, Ge(X,X")=— — — — —
but is now given a more rigorous demonstration. The most 4m | (x=x) T+ (y=y) T+ (z=2) = (=)
mysterious term in Eq48) is that involvingg,,. Typically, 1

this term dominates when the spacetime contains a horizon, -7 ——2 RV ATy 2}.
and the observer is at rest near the horizon. In this case, the (=X (y=y) "+ (24 2) 7= (=)

horizon would count as a boundary, and so &®) requires (53
that 7, be small compared to the proper distance to the . . . . .
boundary. If we Euclideanize by allowing— —ity, t'—ity and then

In the particular case dfy,|=1, we havery=t, and Eq.  @kex'—X, we find
(46) reduces to

Ge(2tg)= L2 ! 54
A 3 1 1 E( 0)_ 16’7T2 tg tg+zz . ( )
Ap=— W 1+ 3 ER—mz)té
7o In addition, the Euclidean box operator is given by
1
(49 It is easily shown that the quantum inequality is given by
This result has also been obtained by Sphg], who uses a Adm— 1 O.Go(2t) = — 3 N 1
heat kernel expansion of the Green'’s function to develop a pP="4—E e(2to) = 327ty 16m2(t5+2%)2
short sampling time expansion. We can now apply this for a (56)
massless scalar field in the four-dimensional static Einstein
universe. The metric is given by The first term of this inequality is identical to that for

Minkowski space. The second term represents the effect of
ds?=—dt?+a[dy?+sir? x(dé?+sir? 6de?)], (50)  the mirror on the quantum inequality. For the minimally
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coupled scalar field there is a non-zero, negative vacuum Ge(z.a+z)=GO(t,x,y,z;t’ x',y’,axz') (60
energy density which diverges as one approaches the mirror.
Adding this vacuum term to both the left- and right-handthen we can write the Green's functions between the plates

sides of the above expression allows us to find the renormakg
ized quantum inequality for this spacetime,

3 1 1 "_ , / /

- _ _ G(x,x")=Gg(z,2') —Gpg(z,—2") + E [Gg(z,2nL+2Z")
= + .

Pren= 32r%ty  16mw2(t5+2%)° 16m°z* (57 n=1

There are two limits in which the behavior of the renormal- ~Gr(z,—2nL-2")+Ge(z,~2nL+7')

ized quantum inequality can be studied. First consider —Gg(z,2nL—2")]. (62)

>1t,. In this limit, the correction terms due to the mirror and

the vacuum energy very nearly cancel and one finds that thegain, we Euclideanize as above, and let the spatial separa-

quantum inequality reduces to tion between the source and observer points go to zero; we
find
A 3 59
Pren™ " 3omtg’ ooty ( 11| 1 i 2
el<lo) = 2327322 2 2 2

This is exactly the expression for the quantum inequality in 167"\t to+z 167° =1 | to+(nL)
Minkowski spacetime. Thus, if an observer samples the en- 1 1
ergy density on time scales which are small compared to the - 5— 3 5| (62
light travel time to the boundary, then the Minkowski space tot(nL+2)® tH+(nl-2)

guantum inequality is a good approximation. ) ) i . .
The other important limit is whem<t,. This is the case It is now straightforward to find the quantum inequality

for observations made very close to the mirror, but for very

long times. The quantum inequality then reduces to Ap=-— 3 i+ 12
327ty 16mw3(t5+2%)2
- 1
Pren™ ~ 124" (59 1 i (nL)2-3t2 1
R T 167 & [+ (2P [+ (nL+ 27

Here, we see that the quantum field is satisfying the quantum
averaged weak energy condition. Recall that throughout the 1
present paper, we are concerned with observers at rest with + m . (63

respect to the plate. If the observer is moving and passes

through the plate_,_ the_n It s necessary_to reformulate _th%e again have that the first term in the above expression is
quantum inequalities in terms of sampling functions withiyoiica) 1o that found for Minkowski space. The second

C?T;]paCt suppoiftl7]. It Sho;ﬂd b? ?ot_eddthattth:ahdivergﬁnc_ea:ﬁrm is the modification of the quantum inequality due to the
of the vacuum energy on the piate is due 10 tn€ unpnysiCay,; ., ot 7= 0. The modification due to the presence of the

nature of perfectly reflecting boundary conditions. If the mir- second mirror is contained in the summation, as well as all of

ror becomes trans_parent _at high frequencies, the divergen?ﬁe multiple reflection contributions. When the Casimir
is removed. Even if the mirror is perfectly reflecting, but hasvacuum energy, given bji9]

a nonzero position uncertainty, the divergence is also re-
moved[18]. B 7% 3-2sirf(7z/L) 2
Pvac™ = 48 % " sif(mzIL) 14404

(64)
B. Two parallel plates

Now let us consider the case of two parallel plates, onds added back into this equation for renormalization, we find,
located in thez=0 plane and another located in taesL  as we did with a single mirror, that close to either of the
plane. We are interested in finding the quantum inequality immirror surfaces the vacuum energy comes to dominate and
the region between the two plates, nametyB<L. We can  the quantum inequality becomes extremely weak.
again use the method of images to find the Green’s function.
In this case, not only do we have to consider the reflection of
the source in each mirror, but we must also take into account
the reflection of one image in the other mirror, and then the We will now change from flat spacetimes with boundaries
reflection of the reflections. This leads to an infinite numberto spacetimes in which there exist horizons. We will begin
of terms that must be summed to find the exact form of thewith the two-dimensional Rindler spacetime to develop the
Green'’s function. If we place a source at,k’',y’,z"), then  quantum inequality for uniformly accelerating observers. For
there is an image of the source at,k’,y’,—2z') from the these observers, there exists a particle horizon along the null
mirror at z=0 and a second image at'(x’,y’,2L—2") raysx==*t (see Fig. 2
from the mirror atz=L. Then, we must add the images of = We will then look at the static coordinatization of de Sit-
these images to the Green'’s function, continuadgnfinitum  ter spacetime. Again there exists a particle horizon in this
for every pair of resulting images. If we use the notation spacetime, somewhat similar to that of the Rindler space-

VI. SPACETIMES WITH HORIZONS
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which has the positive frequency mode function solutions
fi(7.6)=(4mw) Hoelkeion, (71

Here —oo<k<o andw=|k|. The plus and minus signs cor-
respond to the left or right Rindler wedges, respectively. Us-
ing the above mode functions, we can expand the general
solution as

dn.6)= | AKbLti(n. 80 1 (n.0

+ bR (7,6 + b T (7,8)], (72)

Lt L . R~
FIG. 2. A plot of the Rindler coordinatization of two- whereb, andby are the creation and annihilation operators

. . _ i .
dimensional Minkowski spacetime. The time coordinates in the left Rindler wedge and Slmllarlbf and bE in the
= const are straight lines passing through the origin, while the spacgight Rindler wedge. We also need to define two valfya
coordinatest=const are hyperbolas. The Minkowski spacetime iSand|OR> with the properties
covered by four separate coordinate patches, labeléd By F and
= =— i t t

P. The two null rays(x=t andx= —t) act as horizons. bk |OR>:bE |0L>:bk|0L>:bk|0R>:bE|OL>:bt|OR>:(O-)

73
time. The two problems differ somewhat by the fact that
Rindler space is flat while the de Sitter spacetime has confhe Rindler particle states are then excitations above the

stant, positive spacetime curvature. vacuum given by
N
A. Two-dimensional Rindler spacetime |{1k}L>:bllz |0L> (74)
We begin with the usual two-dimensional Minkowski i
metric {Li}r)=bi |OR). (75

ds?= —dt2+dx>. (65  With this in hand, we can find the two-point function in
either the left or right hand regions. Let us consider the right
Now let us consider an observer who is moving with con-hand region, where
stant acceleration. We can transform to the observer’s rest

frame (Sec. 4.5 of20]) by G (x,x")=(0g| (x) #(x")|Og) (76)
— a— 18 o *®
t=a -e S|nh a7] (66) :f dkfk(x)fﬂkc(x/) (77)
x=a le? coshay, (67)
_ | 1o odk
wherea is a constant related to the acceleration by = — glk(e=&)—ie(n=n")
ae ¥ =proper acceleration. (689 (78)

91’0 find the Euclidean two-point function required for the

The metric in the rest frame of the observer is then given b ) ) ; ) ;
quantum inequality, we first allow the spatial separation to

ds?=e?¢(—dn?+de?). (69) go to zero and then takep(- ") — — 2i 59, yielding
The accelerating observers coordinates) only cover one Ge(270)= i J'”’ d_w e 2070 (79
quadrant of Minkowski spacetime, whese>|t|. This is N 1) '

shown in Fig. 2. Four different coordinate patches are re-

quired to cover all of Minkowski spacetime in the regionsIn two dimensions, the Euclidean Green’s function for the
labeledL, R, F and P. For the remainder of the paper we massless scalar field has an infrared divergence as can be
will be working specifically in the left and right regions, seen from the form above, in which the integral is not well
labeled L and R respectively. In these two regions, uni- defined in the limit ofw—0. However, in the process of
formly accelerating observers in Minkowski spacetime carfinding the quantum inequality we act on the Green’s func-
be represented by observers at rest at congtamtRindler  tion with the Euclidean box operator. If we first take the

coordinates, as shown by the hyperbola in Fig. 2. derivatives of the Green’s function, and then carry out the
The massless scalar wave equation in Rindler spacetime istegration, the result is well defined for all values@fIn
given by Rindler space, the Euclidean box operator is given by
a2 d? d>  d?
-2a¢l _ o = _ —e—2a8 4
e ( d772+ d§2)¢(77,§) 0 (70 Ueg=e d172+ dgz)- (80)
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It is now easy to solve for the quantum inequality, m take the value$=0,1,2,... and-l1<m=l|. The radial por-
tion of the solution is given by

- 1
Ap=-— ZDEGE(ZUO)

I'(b;")I'(b, .
flw(z): ( I) ( |) Zl(l_ZZ)IawIZ
1 o '+ |T'liaw)
— _ _ _a—2aé —2wng— _ >
271_e jo dowe —2877(ea§770) . (81
3
- + . .52
However, the coordinate timg, is related to the observer's XF by bl ks ) (87)

proper time by
where Fg, 8;y;2) is the hypergeometric functidi26] and

by =1/2(1+ 32+ i aw= 94— a?u?). (89)

To= eag 70, (82)

allowing us to rewrite the quantum inequality in a more co-

variant form We can then express the two-point function as
Aps— T (83) G(x,x')=2, de;f'*(z)f'(z’)v* (6,0)
p= 87775' ’ m Jo Ama’k k Im?. 7>
This is exactly the same form of the quantum inequality as XY im(0',@" ekt (89

found in two-dimensional Minkowski spacetinjd,5]. We ] . ] )

will see in Sec. VII A that this is a typical property of static Wherek=aw. Now if we Euclideanize according to E(L.6)
two-dimensional spacetimes. This arises because in two dind set the spatial separation of the points to zero, we may
mensions all static spacetimes are conformal to one anothefake use of the addition theorem for the spherical harmonics
However, the renormalized quantum inequalities are not27],

identical in different spacetimes because of differences in the |

) 21+1
vacuum energies. > Yim(6,0)2= ——, (90)
m=—1 4

B. de Sitter spacetime . . .
) _ ) ) ~ to find the Euclidean Green’s function
Let us now consider four-dimensional de Sitter spacetime.

The scalar field quantum inequality, E¢L7), assumes a ©  (21+1)
timelike Killing vector, and so it will be convenient to use ~ Ge=75—2 Z JO dk—p
the static parametrization of de Sitter space,

r(b)T(by) |2
r(1+§)rk)

2

2 e—2kt0 /a. (91)

r r2\ -1 % 72!
ds’=— 1—? dt’+ 1—? dr2+r2(d02

3
F<b| by ;I+§;z2

+sir? 6d¢?). (84)  This is independent of the angular coordinates, as expected,
because de Sitter space is isotropic. We now need the Eu-
There is a particle horizon at=a for an observer sitting at clidean box operator. Because of the angular independence
rest atr=0. The coordinates take the valuessf<a, 0  Of the Green’s function, it is only necessary to know the
<@<m and O<¢<2m. It should be noted that this choice temporal and radial portions of the box operator. One finds
of metric covers one quarter of de Sitter spacetime. that the energy density inequality, EG.7), becomes
The scalar wave equation is 1

1 2 1 2 2
APZ_Z 1-2 It azzzaz[z (1-299,]

-1

2 1 r2
1-—| 2¢p— — o1 1— —|d,| ¢
a ot a®) ™t X Ge(X, —ty: X, + o) (92)
(X, —1g:X, +1p).
- iz _i&g(sin 09,)+ % (ﬁ b+ u2p=0. The temporal derivative term in E(92) will simply bring
resing sint ¢ down two powers ok/«. Using the properties of the hyper-

(85)  geometric function, it can be shown that

. . . 2
The unit norm positive frequency mode functions are found

[21-25 to be of the form

3 . 3
(93

b1 m(t.r,0,0)= ! (2)Y (6, 0)e7 1t (86
Part.ml ®) ® o(DYim(6.¢) (8 from which we can take the appropriate spatial derivatives. If

1
Vara®
we allowz— 0, then we havé&—1 and only thd =0 terms
wherez=r/« is a dimensionless length, thg,X6,¢)’s are  will contribute in the time derivative part of E¢Q2). For the
the standard spherical harmonics and the mode ldbatel  radial derivative, one may show
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im 2 - 201 12
iﬂ) ?52{22(1_ZZ)ﬁZ[ZZl(l_Zz)lsz(Zz)]} o (@y ~2 ;z) |t (105
2(a?u?—k?) for 1=0 291 142 1,
= 6 for =1 (94) Ulza)?—E?Jr gH (106

0 otherwise.

1 v -1
Egttvlngtt = (107

Using these results, we find for the observer at0 that

A 1 °° i i
Ap=— —— f dk sinh(mk)[ (K2 The general short time expansion, E46), now becomes
0
B B . 3 12, 1(3-r?a®
+a®u?)|T(bg )T (bg)[*+4|T (by )T (by)[*Je~ 2o, A== | Mg |2 T 2 ey |
+ & w2 5] in2r% a?) + O(d)+ -
There are two cases for which the right hand side can be 6 \M a2 0 0 :
evaluated analyticallyu=0 and u=v2/a. For u=0, we
h (108
ave
1 . K13 K2 wherero=(1—r?/a?)Y%,. If r=0 andu takes the value 0
Aﬁ?—mf dk sinr(qu)[k2 F(i—)l" —+i= or v2/a, this agrees with Eq(98) or (104), respectively.
8m"a” Jo 2/ \2 2 Note that this smalt, expansion is valid for all radii, &r
1k K12 <a. We can also find the proper sampling time from Eq.
+4|T >+ i > F( 2+i 5) e 2okl (96)  (48) for which this expansion is valid:

1-réla
1 @ T Tn=a\| — == 109
—— g | aK @K skge 2o (97) N % (109
0

For an observer sitting at the origin of the coordinate system,

_ 3 1+ E t_o 2 98 ro<al /5. This is the scale on which the spacetime can be
- 327r2t3 3\lal | (98) considered “locally flat.” For observers at>0, who do not
move on geodesics;, decreases and approaches zero as
where we have made use of the identities —a:
~ -r), . 110
I —— (99) T Ve(ar), r—a (110
k/2 sinh(7k/2)
Note that the proper distance to the horizon from radiis
o
|F(1/2+ik/2)|2=m, (100 « dr’
/=f —————— =g w/2—arcsinr/« 117
T el
ID(1+iki2) = —2 (101)
(1+ik/2) ~ sinh(wk/2)’ ~\2a(a—r) as r—a. (112
) , T ) coshwk/2) Thus, for observers close to the horizon, if the sampling time
T (3/2+1k/2)[*=7 (1+k%) cosiak)+1° (102 is small compared to this distance to the horizags</,
then 7y<< 7, and the short time expansion is valid.
and We can also obtain a renormalized quantum inequality for
the energy density at the origin for the casev2a. By the
sinh(7k/2) addition of the vacuum enerdytr =0) to both sides of Eq.

X 77
|F(2+lk/2)|2:Zk(4+ k?) coshak) =1 (103 (104 one finds

Similarly for u=v2/a, we find - 3 to)?
y # “ Pren=— 2.4 +(_) (113
327t o
. 3 to)2
Ap?— 5a 2.4 1+ — . . . . P
327t a We can now predict what will happen in the infinite sam-
pling time limit of the renormalized quantum inequality for
We can compare these results with the short sampling timany observer’'s position. We know from Eq91) and (92

approximation from Sec. IV. Solving for the necessary geo+that the difference inequality will always go to zero, yielding
metrical coefficients, we find a QAWEC in static de Sitter space of

© 960m2a*
(104
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oty [* (Toulu®en As in the case of two-dimensional Rindler space, the Euclid-
lim — T 2 ean Green's function has an infrared divergence. We can
to—e o 0 again apply the Euclidean box operator first and then do the
1 o? 1 r2 integration to obtain the quantum inequality
= — — -
2807%a* | (a?—17) ' 2 (1 azﬂ' (114 L L
AAB— f dwwe_z“’t():——.
where the right-hand side 5,5 un{f). We immediately see P="2mC(n) Jo 8mwC(r)tg
that for a static observer who is arbitrarily close to the hori- (120

zon in de Sitter spacetime, the right hand side of @44 o )
becomes extremely negative, and diverges on the horizoffowever, the observer's proper time is related to the coordi-
itself. This is similar to the behavior found for static observ-nate time byr=C(r)*%, such that we can write the differ-
ers located near the perfectly reflecting mirror discussed eance inequality as

lier.

- 1
Ap=—

. (121)
VII. BLACK HOLES 87

We now turn our attention to an especially interestingThis is the same form as found for two-dimensional
spacetime in which quantum inequalities can be developedyinkowski and Rindler spacetime. This is the expected re-
the exterior region of a black hole in two and four dimen- gyt hecause all two-dimensional static spacetimes are con-
sions. formal to one another. For an extensive treatment of quan-

tum inequalities in two-dimensional Minkowski spacetime,
A. Two-dimensional black holes see[28].

This now brings us to the matter of renormalization.

There exist three candidates for the vacuum state of a black

ds’=—C(r)dt>+C(r) *dr?, (115  hole: the Boulware vacuum, the Hartle-Hawking vacuum,

and the Unruh vacuum. However the derivation of the dif-

where C(r) is a function chosen such th&f—1 and ference inequality relies on the mode functions being defined

dClgr—0 asr—o. Additionally, there is an event horizon to have positive frequency with respect to the timelike Kill-

at some valuer, where C(ro)=0. For example, in the ing vectors,, and that the vacuum state was destroyed by

Schwarzschild spacetim&(r)=1—2Mr 1, there is a ho- the annihilation operator, i.e.

rizon atr =2M. Another choice foC is that of the Reissner-

Nordstran black hole, wher€(r)=1—2Mr 1+ Q?% 2. In a,|0,)=0 for all k. (122

general, we will leave the functio€ unspecified for the

remainder of the derivation. The above metric leads to thén Schwarzschild spacetime, this defines the Boulware

massless, minimally coupled scalar wave equation vacuum. Thus, we can solve for the renormalized quantum
inequality

~ t0 fw <Ttt>ren

I

Let us consider the metric

1
—match)(r,t)ﬁtﬁr[C(r)ﬁr(b(r,t)]=0. (116)

1
dt=— g +pg(r). (123
Unlike in four dimensions, the two-dimensional wave equa- 0
tion can be analytically solved everywhere. If we use th

standard definition of the* coordinate, ®r'he Boulware vacuum energy density in two dimensions for

the Reissner-Nordstno black hole is given explicitly bysee

dr Sec. 8.2 0f20])
r*Ef co (117
(r) L (1 2M+Q2)1[ M TM?  6Q°
r _— —_— —_—— — —_—— — —
then it is convenient for us to take as the definition of the Pe 24 r re r ré ré
positive frequency mode functions 14MQ? 5Q°
. ¥ -3 t—% | (1249
fi(r,)=i(4mw) Y2k~ 1ot u=|k|, (118 r r
where — oo <k<{o, In the limit 7o—o°, one recovers a QAWEC condition on the
The problem of finding the quantum inequality simply energy density
reduces to using the mode functions to find the Euclidean
Green'’s function. We have tg ([ (Ty/
lim = Mdtzmg(r). (125)
2 to oo R Sl 1
% i _— 0
Ge(2tg) = f dk|——=¢€'k""| e 2%k , _ , , ,
—o d7w This has the interpretation that the integrated energy density

in an arbitrary particle state can never be more negative than
_ 1 —1,-20t that of the Boulware vacuum state. In particular, this will be
= dow™ e 0, (119 . P
2w Jo true for the Hartle-Hawking and Unruh vacuum states.
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B. Four-dimensional Schwarzschild spacetime —), the radial portion of the wave equation also satisfies a
Now let us turn to the four-dimensional SchwarzschildSUm rule. It was found by Candelg30] that
spacetime with the metric

;0 (21+1)|Ry(w]|r)[?

2M 2m\ 1
d52=—<1—T dt2+ I_T) dr2+r2(d02
4w?(1—2M/r)" L, r—2M,
+sir? 6de?). (126) %
. . . r=2> (21+1)|B(w)|2, r—x, (132
The normalized mode functions for a massless scalar field in =0
the exterior regionr(>2M) of Schwarzschild spacetime can
be written ag29] and
_ V2a—iotd < -

foum(X)=(47w)"e R|((D|I’)Y|m(9,(p), |=§:o (2|+l)|R|((1)|I’)|2

fuim(X) = (470) Y% 'R (0]1) Y m(6,0),  (127) .

R - -2 2
where R|(w|r) and R(w|r) are the outgoing and ingoing (2M) ;0 @+1[B(w)% r—2M, (133

solutions to the radial portion of the wave equation, respec-
tively. Although they cannot be written down analytically,
their asymptotic forms are

4w2, r—oo,

with the coefficient j w) given, in the case Mw<1, by

reteler + A (w)r e, r—2M, [31]
Ri(o|r)~ ~ 1t (I3
Bi(w)r e, r—o, _ I+1
Bi(0)~ Gy prant (C4Me)' (139
(128
_ If we insert these relations into the Green'’s functions, it is
for the outgoing modes, and possible to carry out the integration in One finds
Bi(w)r te i, r—2mMm, —— 1 1
R,(w|r)~ r_le_i“”*+,&|(w)r_1ei“’r*, r—oo, BE( O) 167T2 (1_2M/r)t(2)
6 21+2
(129 1 (1)° [2m
ar& Pl ) M

for the ingoing modes. The normalization factorg &),

A|(w) and A(w) are the transmission and reflection coeffi- (139
cients for the scalar field with an angular momentum-

. : in the near field limit, and in the far field limit,
dependent potential barrier.

Now let us consider the two-point function in the Boul- 1 [1 1 (1H®  [2Mm)|2+2
ware vacuum. It is given by Gee(2to)~ 752 {%"‘ = ;O TCINE (K) }
» dw ) ,
Gp(x,x')=2 f —— e Y (0,0)Yi (60 ¢) r—e. (136
m Jo 47w

R - < < We immediately see that the Green'’s function is independent
X[Ri(o|NRF (o]r") +Ri(o|NRF (ofr")]. of the angular coordinates, as one expects because of spheri-
(130  cal symmetry. Note that the maximum valueldfor which
the expansion in Eqg135 and(136) can be used depends
We are interested in the two-point function when the spatialipon the order of the leading terms which have been dropped
separation goes to zero, i.e. letting—r, 6’'—#0, and ¢’ in Eq. (134). If this correction isO((M w)' *?), then only the
— . We can again make use of an addition theorem, Eql=0 terms are significant, a8, would then contain sub-
(90), for the spherical harmonics. Let us also Euclideanizedominant pieces which yield a contribution ®gg(2tg)
by taking t—t’')— —2ity. The Euclidean two-point func- larger than the leading contribution froBy . In what fol-
tion then reduces to lows, we will explicitly retain only thd =0 contribution. In
order to find the quantum inequality around a black hole we

1 * dw - must evaluate
GBE(Zto)ZlTTrzzl fo - ¢ Zo(2l+ 1)[|Ry(w]r)|?

N 1
+IRi(w]r)2]. (13D Ap=— 7 0eGe(2to). (137)

In the two asymptotic regimes, close to the event horizon oHowever, the only parts of the Euclidean box operator that
the black hole {—2M), or far from the black holer(  are relevant are the temporal and radial terms, i.e.
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Oe=(1-2M/r) 32 +1 723, [r3(1-2M/1)3,]. VIIl. SUMMARY AND CONCLUSIONS

(138 We have shown for static spacetimes that the energy den-
sity sampled for a characteristic tinig along the world line

Upon taking the appropriate derivatives, and using the relapf 3 static observer is bounded below by the quantum in-
tion of the proper time of a stationary observer to the coorequality

dinate time,
To=to\V1—2M/r, (139 Anzlo F (ZTooZ/gtt>dt
P ). e
we find that the quantum inequality is given by 5
1 ‘7to .
5 3 (1(2M\?( 7\ 2M|7! =3\, TV 2 Ul e, (149
=— ——— (- —| | — - + tt A
Ap=" 552 6( A A 1
2M 2M\? An observer doing the sampling may observe negative en-
+ 1= e +0O||1- R r—2M, ergy densities. However, as we have seen in the various ex-

amples here and in previous wdrk 5], the magnitude of the
(140 sampled negative energy density is bounded below, in four
dimensions, by

Ap= f(to). (145

32778

+] f—c. Here, f(ty) is called the scale function and carries specific
information about how the quantum inequality is modified

(141)  from the flat space form when we are in curved spacetimes.

) o It has the general property that when the sampling time of

An alternative approach to finding the quantum inequality isthe observation becomes small, the sampling functidg)

to use the short time expansion from Sec. 1V, which yields _, 1 and we recover the Minkowski space form of the quan-

tum inequality.

We may also write the quantum inequality in terms of the
Euclidean box operator and the Euclidean Green’s function

MZ
ré(1—2M/r) +O(

3 1
327%7y 16775

Ap= 3+ .

(142 1
-_ - .
Note that this short time expansion coincides with the first Ap==7HeCe(x ~tox + o) (149
two terms of ther —2M form, Eq.(140. This is somewhat
unexpected, as Eq140 is an expansion for smatl—2M
with 7 fixed, whereas Eq142) is an expansion for smati,
with r fixed.

and thus avoid carrying out the sum over all the modes if the
Green'’s function is already known. If the Green’s function in
: . a particular spacetime is not explicitly known, we can still
We immediately see from Eq141) that we recover the gy the guantum inequality by using an expansion of the

Minkowski space guantum inequality in thie-c limit. It~ aqamard form of the Green’s function in the limit of small
we consider experlments pe.rformed on the surface of Earﬂ%ampling times. In Sec. IV, it was shown that the quantum
where the rad|us .of Earth is several_ orders of magn'tUd‘?nequality in this limit is given by Eq(46), which gives the
larger than its equivalent Schwarzschild radius, then the flal, 4t re-dependent corrections to the flat space inequality,
space inequality is an exceptionally good approximationgq (47). This result confirms the arguments made in R&F.
From Eq.(48), we can also find the proper sampling time for 5 fyrther utilized ir[8,10] to the effect that the flat space-
which the inequality, Eq(142), holds to be time quantum inequality may be used in curved spacetimes if
the sampling time is sufficiently short.
r’ 2M In the limit of long sampling timety,—oc, one can derive
To< o 2(1——). (143 g sampiing 0% .
2M r a quantum averaged weak energy condition, @d), which
says that the expectation value of the renormalized energy
As was the case in two dimensions, if we allow the sam-density for a static observer sampled for all time is bounded
pling time to go to infinity in the exact quantum inequality, below by the vacuum self-energy of the spacetime.
we recover the QAWEC, Eq125), for the four-dimensional An exact quantum inequality was found in several ex-
black hole. The QAWEC says that the renormalized energyamples, including perfectly reflecting mirrors in flat space-
density for an arbitrary particle state, sampled over the entime, Rindler and de Sitter spacetimes and two-dimensional
tirety of the rest observer's world line, can never be moreblack hole spacetimes. In all cases, the short sampling time
negative than the Boulware vacuum energy density. limit agrees with the general short sampling time expansion
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