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Negative energy density states for the Dirac field in flat spacetime

Dan N. Vollick
Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, P.O. Box 3055 MS7700, Canada V8W

~Received 17 September 1997; published 23 February 1998!

Negative energy densities in the Dirac field produced by state vectors that are the superposition of two single
particle electron states are examined. I show that for such states the energy density of the field is not bounded
from below and that the quantum inequalities derived for scalar fields are satisfied. I also show that it is not
possible to produce negative energy densities in a scalar field using state vectors that are arbitrary superposi-
tions of single particle states.@S0556-2821~98!05106-6#

PACS number~s!: 04.62.1v, 04.20.Ha
ea
o
ith

a

le
tu

e

e

er
t

n
iti
o

th
ty
d
th
ive
e
st
m
n
is

a
ates

-
s

or

ion
INTRODUCTION

Recent work on wormholes@1–3# and the ‘‘warp drive’’
@4# has generated interest in matter that violates the w
energy condition. Most discussions of such exotic matter
cur within the context of quantum field theory and deal w
bosonic fields@1,2,5,6,8,9# ~see@10–12# for a classical dis-
cussion and@7# for a discussion of fermionic fields in
curved spacetime!. Recently Ford and Roman@8,9# have
shown that in flat spacetime the energy density of a mass
scalar field and the electromagnetic field satisfy the quan
inequalities

r̂[
t0

pE2`

` ^:T00:&

~ t21t0
2!

dt>2
A

2V(
k

vke
22vkt0 ~1!

in the finite volume case and

r̂>2
3A

32p2t0
4

~2!

in the infinite volume case, where^:T00:& is the expectation
value of the normal ordered energy density,A51 for a mass-
less scalar field, andA52 for the electromagnetic field. Th
quantity r̂ sampleŝ :T00:& over a time of ordert0. For sim-
plicity I will refer to ^:T00:& as the energy density of th
field.

Unfortunately the methods used above to obtain gen
constraints on the energy densities cannot be applied to
Dirac equation. In this paper I will look at the negative e
ergy densities that occur in states that are the superpos
of two single particle electron states. For such states I sh
that the energy density is not bounded from below and
an observer at a fixed spatial point sees the energy densi
a wave propagating by at the speed of light superimpose
a positive background. In certain regions of this wave
energy density is negative and in other regions it is posit
Thus the negative energy densities do not persist indefinit
In fact, I will show that the negative energy density persi
for a time that is inversely proportional to the minimu
value of the energy density. I will also show that the qua
tum inequality~1! is satisfied for the states considered in th
paper.
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Finally I will show that, in contrast to the Dirac field,
scalar field cannot have negative energy densities for st
that are arbitrary superpositions of single particle states.

Throughout this paper I will take\5c51 and the metric
will be taken to have the signature (2111).

NEGATIVE ENERGY STATES FOR THE DIRAC FIELD

The Lagrangian for the Dirac field is

L5
ı

2
c̄gm ]Jmc2mc̄c. ~3!

Since the canonical energy momentum tensorumn is not
symmetric the Belinfante tensor@13#

Tmn5umn2
ı

2
]aF ]L

]~]ac l !
~Jmn! l

mcm1
]L

]~]ac̄ l !
~ J̄mn! l

mc̄m

2
]L

]~]mc l !
~Jan! l

mcm2
]L

]~]mc̄ l !
~ J̄an! l

mc̄m

2
]L

]~]nc l !
~Jam! l

mcm2
]L

]~]nc̄ l !
~ J̄am! l

mc̄mG ~4!

should be used, whereumn is the canonical energy momen
tum tensor,Jmn is the generator of Lorentz transformation
for c and J̄mn is the generator of Lorentz transformations f
c̄. A short calculation gives

Tmn5
ı

4
@c̄gm ]Jnc1c̄gn ]Jmc#. ~5!

Thus

T005
ı

2
@c†ċ2ċ†c#. ~6!

Now define

^r&5^:T00:& ~7!

and consider the Dirac field in a box of volumeV. The field
operator can be written in terms of creation and annihilat
operators as
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c~x!5(
k

(
a51,2

@ba~k!ua~k!eık•x1da
†~k!va~k!e2ık•x#

~8!

where

ua~k!5SAv1m

2vV
fa

sW •kW

A2v~v1m!V
faD , ~9!

va~k!5S sW •kW

A2v~v1m!V
fa

Av1m

2vV
fa

D , ~10!
f1†5(1,0), andf2†5(0,1). The creation and annihilatio
operators satisfy

$ba~k!,ba8
†

~k8!%5da,a8dk,k8 ~11!

and

$da~k!,da8
†

~k8!%5da,a8dk,k8 ~12!

with all other anticommutators vanishing. Substituting E
~8! into Eq. ~7! gives
^r&5
1

2(k,k8
(
a,a8

$~vk1vk8!@^ba
†~k!ba8~k8!&u†a~k!ua8~k8!e2ı~k2k8!•x1^da8

†
~k8!da~k!&v†a~k!va8~k8!eı~k2k8!•x#%

1~vk82vk!@^da~k!ba8~k8!&v†a~k!ua8~k8!eı~k1k8!•x2^ba
†~k!da8

†
~k8!&u†a~k!va8~k8!e2ı~k1k8!•x#% ~13!
e

ot

e-
where I have used :da(k)da8(k8):52da8
† (k8)da(k).

Now consider a state vector of the form

uc&5
1

A11l2
@ ukz,1&1lukx,2&] ~14!

where uk,a&5ba
†(k)u0& and l is real. Since the stateuc&

contains only electrons all expectation values in Eq.~13!
containingda(k) or da

†(k) vanish. Substituting Eqs.~14! and
~9! into Eq. ~13! gives

^r&5
1

~11l2!V
@vkz

1lb1l2vkx
# ~15!

where

b5
kxkz~vkx

1vkz
!cosu

2Avkx
vkz

~vkx
1m!~vkz

1m!
~16!

andu5(kx2kz)x. Note that^r&5vkz
/V for l50 and^r&

5vkx
/V asl→`, as expected. It is easy to see that^r& will

be negative if

b2.4vkx
vkz

~17!

and if

2
b

2
2AS b

2 D 2

2vkx
vkz

,vkx
l,2

b

2
1AS b

2 D 2

2vkx
vkz

.

~18!
Consider the ultrarelativistic limit,kx ,kz@m. In this limit

b5
1

2
~vkx

1vkz
!cosu. ~19!

Equation~17! becomes

cos2u.
16vkx

vkz

~vkx
1vkz

!2
. ~20!

For a solution to exist it is necessary that 16vkx
vkz

<(vkx

1vkz
)2. This will be satisfied ifvkx

>(71A48)vkz
or if

vkz
>(71A48)vkx

. Thus it is possible to produce negativ

energy densities for state vectors of the form~14! if l is
chosen to satisfy Eq.~18!.

It is now easy to show that the energy density is n
bounded from below. To simplify the discussion takexm

50, so that cosu51. In the ultrarelativistic limit withvkx

@vkz
,

b5
1

2
vkx

~21!

and21/2<l<0. The energy density is given by

^r&.2
lvkx

~11l2!V
S l1

1

2D . ~22!

Thus in the limitvkx
/V→` the energy density at the spac

time pointxm50 goes to2`, for 21/2,l,0.
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Now consider, within the above limits, the energy dens
on the spacetime. For generalxm,

^r&5
lvkx

~11l2!V
Fl1

1

2
cos„vkx

~ t2x!…G . ~23!

Thus ^r& is a cosine wave propagating at the speed of li
superimposed on a positive background. The energy den
at a fixed spatial point will be negative for a timeDt, which
satisfies

2V^r&minDt5
ulu~112l!

11l2
cos21~2ulu!, ~24!

where^r&min is the minimum value of̂r& for fixed vkx
and

l. Since the wave propagates at the speed of light the ex
of the negative energy density will satisfy the same expr
sion as above withDt replaced byDx. For large values of
u^r&uV ~andl not too close to21/2 or 0! the energy density
will undergo rapid oscillations from positive to negative va
ues. Note that the time average of the energy density is p
tive.

QUANTUM INEQUALITIES

In this section I will show that the energy density satisfi
the quantum inequality~1! for the state given in Eq.~14!. To
show this I will take the limitm→0 for the Dirac field.
Substituting Eq.~23! into

r̂5
t0

pE2`

` ^r&

t21t0
2

dt ~25!

and takingxW50 gives

r̂5
lvkx

~11l2!V
@l1 1

2 e2vkx
t0#. ~26!

Thus r̂ will be negative if

vkx
t0,2 ln~2ulu!. ~27!

Now consider the quantum inequality~1! with A51. If pe-
riodic boundary conditions are imposed,

v5
2p

L
Anx

21ny
21nz

2 ~28!

wherenx ,ny , andnz are integers. Next note that

1

A3
~ unxu1unyu1unzu!<Anx

21ny
21nz

2<unxu1unyu1unzu.

~29!

To see this definef (nx ,ny ,nz) by

f ~nx ,ny ,nz!5Anx
21ny

21nz
22a~ unxu1unyu1unzu!

~30!

wherea is a positive constant. Now let
t
ity

nt
s-

si-

s

unxu5rcosfsinu

unyu5rsinfsinu

unzu5rcosu,

~31!

where 0<(u,f)<p/2. Thus f can be written as

f ~r ,u,f!5r „12ag~u,f!… ~32!

where

g~u,f!5A112sin2~f1p/4!sin~u1c! ~33!

and

cot~c!5A2sin~f1p/4!. ~34!

Given that 0<(u,f)<p/2, it is easy to see that 1
<g(u,f)<A3. The functiong(u,f) has its maximum value
of A3 whenf5p/4 andu5p/22cot21(A2). The minimum
value ofg(u,f) occurs whenu50. In this caseg(0,f)51
for all f. The functiong(u,f) also equals 1 atu5p/2, f
50,p/2. Now if a51 in Eq.~30! then f 5r (12g)<0. This

gives the inequalityAnx
21ny

21nz
2<unxu1unyu1unzu. On the

other hand, ifa51/A3 then f 5r (12g/A3)>0. This gives
the inequality 321/2@ unxu1unyu1unzu#<Anx

21ny
21nz

2. Thus
Eq. ~29! is proved.

To show that Eq.~1! is satisfied I will show that an even
more restrictive inequality is satisfied. From Eq.~29!

vk
2<vk<vk

1 ~35!

where

vk
25

2p

A3L
@ unxu1unyu1unzu# ~36!

and

vk
15

2p

L
@ unxu1unyu1unzu#. ~37!

Since

vk
2e22vk

1t0<vke
22vkt0 ~38!

the quantum inequality~1! will be satisfied if

r̂>2
1

2V(
k

vk
2e22vk

1t0 ~39!

is satisfied. Substituting in the expressions forvk
1 and vk

2

gives

r̂>2
2A3p

LV F (
n50

`

ne2anGF2(
k50

`

e2ak21G2

, ~40!

wherea54pt0 /L. The sums can easily be performed, gi
ing
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r̂>2
2A3p

LV

e2a~11e2a!2

~12e2a!4
. ~41!

Thus Eq.~1! will be satisfied if

lnx

11l2
~l1 1

2 e2anx/2!>2
A3e2a~11e2a!2

~12e2a!4
. ~42!

is satisfied. Forl outside the interval (2 1
2 e2anx/2,0) the

above inequality will obviously be satisfied. Thus consid
2 1

2 e2anx/2,l,0. Equation~42! will be satisfied if

ulunx~l1 1
2 e2anx/2!<

A3e2a~11e2a!2

~12e2a!4
~43!

is satisfied. Now letl52(s/2)e2anx/2. The above inequal-
ity becomes

1

4
snxe

2anx~12s!<
A3e2a~11e2a!2

~12e2a!4
. ~44!

The left hand side is maximized fors51/2 and for nx
51/a. But nx is a positive integer. Thus fora>1 takenx
51. The above inequality will then be satisfied~for a>1) if

1

16
<

A3~11e2a!2

~12e2a!4
~45!

is satisfied. This is obviously satisfied for alla>1. For a
,1 let nx51/a ~i.e. generalizenx to a real number!. The
inequality ~44! will be satisfied if

1

16
e21<

A3ae2a~11e2a!2

~12e2a!4
~46!

is satisfied. In the interval 0,a,1 the right hand side is a
monotonically decreasing function ofa with a minimum
value ofe21(11e21)2(12e21)24. Thus the above inequal
ity is satisfied. Therefore inequality~42! will be satisfied,
which implies that the quantum inequality~1! will be satis-
fied.

THE KLEIN-GORDON FIELD

In this section I will show that the energy density for
massive scalar field is positive for all states that are arbitr
superpositions of single particle states.

The scalar field operator can be written in terms of c
ation and annihilation operators as

f~x!5ı(
k

1

A2Vvk

~ake
ıkmxm2ak

†e2ıkmxm!. ~47!

The energy-momentum tensor for the scalar field is given

Tmn5]mf]nf2
1

2
hmn~]af]af1m2f2!. ~48!

A short calculation gives
ry

-

y

^r&5
1

2V
Re(

k,k8

~vkvk81kW•kW81m2!

Avkvk8

^ak8
† ak&e

ı~km2k8m!xm

~49!

1
~vkvk81kW•kW82m2!

Avkvk8

^ak8ak&e
ı~km1k8m!xm. ~50!

The state vector can be written as

uc&5
1

N(
k

akuk& ~51!

where theak are arbitrary complex numbers andN is chosen
so thatuc& is normalized. The energy density can now
written as

^r&5
1

2VN2(
k,k8

~vkvk81kW•kW81m2!

Avkvk8

ak8
* ake

ı~km2k8m!xm.

~52!

Now define

b5(
k

Avkake
ıkmxm, l5m(

k

ak

vk
eıkmxm, ~53!

and

gW 5(
k

kW

Avk

ake
ıkmxm. ~54!

Thus for state vectors of the form~51!

^r&5
1

2VN2
~ ubu21ulu21ugW u2!, ~55!

and the energy density is non-negative.

CONCLUSION

In this paper I examined the negative energy densities
can be produced in the Dirac field by state vectors of
form

uc&5
1

A11l2
~ ukz,1&1lukx,2&), ~56!

whereukz,1& andukx,2& are single particle electron states a
l is real. I showed that ifkx ,kz@m, the energy density at a
space-time pointxm will be negative ifl is chosen so that

2
b

2
2AS b

2 D 2

2vkx
vkz

,vkx
l,2

b

2
1AS b

2 D 2

2vkx
vky

~57!

is satisfied, where

b5
1

2
~vkx

1vkz
!cos@~km2k8m!xm#. ~58!
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Since I am takingl to be real it is necessary thatb
>4vkx

vkz
. This will be satisfied ifvkx

>(71A48)vkz
or if

vkz
>(71A48)vkx

.

If, in addition tokx ,kz@m, one takesvkx
@vkz

then

2
1

2
<l<0, b5

1

2
vkx

~59!

and

^r&5
lvkx

~11l2!V
S l1

1

2D ~60!

at the point xm50. Thus ^r&→2` as vkx
/V→`, for

21/2,l,0 and^r& is not bounded from below.
An observer will seêr& as a cosine wave propagating

the speed of light superimposed on a positive backgrou
v

d.

The time average of̂r& is positive and the energy densit
will be negative for a time intervalDt, which satisfies

2V^r&minDt5
ulu~112l!

11l2
cos21~2ulu!. ~61!

I also showed that the quantum inequality

r̂[
t0

pE2`

` ^r&dt

t21t0
2
>2

1

2V(
k

vke
22vkt0, ~62!

which is satisfied by a massless scalar field, is satisfied
the Dirac field for state vectors of the form~56! in the limit
m→0. Finally, I showed that, in contrast to the Dirac field,
is not possible to produce negative energy densities in a
lar field using state vectors that are arbitrary superpositi
of single particle states.
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