PHYSICAL REVIEW D VOLUME 57, NUMBER 6 15 MARCH 1998

Negative energy density states for the Dirac field in flat spacetime
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Negative energy densities in the Dirac field produced by state vectors that are the superposition of two single
particle electron states are examined. | show that for such states the energy density of the field is not bounded
from below and that the quantum inequalities derived for scalar fields are satisfied. | also show that it is not
possible to produce negative energy densities in a scalar field using state vectors that are arbitrary superposi-
tions of single particle statefS0556-282(198)05106-9

PACS numbegps): 04.62+v, 04.20.Ha

INTRODUCTION Finally | will show that, in contrast to the Dirac field, a
scalar field cannot have negative energy densities for states
Recent work on wormholelsl—3] and the “warp drive”  that are arbitrary superpositions of single particle states.
[4] has generated interest in matter that violates the weak Throughout this paper | will také=c=1 and the metric
energy condition. Most discussions of such exotic matter ocwill be taken to have the signature-(+ + +).
cur within the context of quantum field theory and deal with
bosonic field1,2,5,6,8,9 (see[10-17 for a classical dis-  NEGATIVE ENERGY STATES FOR THE DIRAC FIELD
cussion and7] for a discussion of fermionic fields in a

curved spacetime Recently Ford and Romaf8,9] have The Lagrangian for the Dirac field is

shown that in flat spacetime the energy density of a massless I

§ca|ar f@gld and the electromagnetic field satisfy the quantum L= Elp,yﬂ 5’M¢_ myip. 3
inequalities

Since the canonical energy momentum teng6t is not

;)Et_o * (Too?) dt=— iz e 2o (1)  symmetric the Belinfante tensft3]
7)o (t2+12) 2V
I o — —
. o THy=grv— JHv | my 73 | m
in the finite volume case and 27 (9((9“,//')( ) mi a(5a¢')( S mif
JL — _
- 3A _ (JaV)l wm_ ~_ (Jav)l l//m
=7 Sl @ aah T ) )
. e g . . . aul m L Fapyl m
in the infinite volume case, whe(eT,:) is the expectation (J) "= = (J*) mip (4)

N | I
value of the normal ordered energy densftys 1 for a mass- (3, ¢) d(a,¥)

less s.caIAar field, and=2 for the e_lectromagnetlc f|eld: The ohould be used, wher@*” is the canonical energy momen-
quantityp sampleg(:Too:) over a time of ordety. For sim-  tym tensor,J** is the generator of Lorentz transformations

Egﬁ;ty | will refer to (:Too:) as the energy density of the for ¢ andJ*” is the generator of Lorentz transformations for

Unfortunately the methods used above to obtain generdf- A Short calculation gives
constraints on the energy densities cannot be applied to the | ~ ~
Dirac equation. In this paper | will look at the negative en- To=7 LUy a g+ yy" a* ). (5)
ergy densities that occur in states that are the superposition 4
of two single particle electron states. For such states | sho
that the energy density is not bounded from below and tha
an observer at a fixed spatial point sees the energy density as | o
a wave propagating by at the speed of light superimposed on T00=§[¢/T<//— syl (6)
a positive background. In certain regions of this wave the
energy density is negative and in other regions it is positivey ., define
Thus the negative energy densities do not persist indefinitely.
In fact, | will show that the negative energy density persists (p)={(:Too:) 7)
for a time that is inversely proportional to the minimum
value of the energy density. | will also show that the quan-and consider the Dirac field in a box of volurie The field
tum inequality(1) is satisfied for the states considered in thisoperator can be written in terms of creation and annihilation
paper. operators as

hus
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¢(x>=; 212[ba(k>u“<k)e'“+dl(k)v“(k)e—'“]
’ ®)

where

fo+m N
20wV ¢
ut(k)= oKk ) 9

V2w(w+ m)V¢

> -

o-k

V2w(w+ m)V¢

ve(k)= ) (10

fo+m .
2wV(lS

(23

(p)= 2 2 (@t o) [(BLK)be (K DuT(kju' (k' )e*- KDxp(dl, (k")

kk a,a’
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¢'T=(1,0), and¢?'=(0,1). The creation and annihilation
operators satisfy

{0,(K),b! (K} =8, o Siier (11)
and
{da(k),d",(K)} =8, o Siier (12

with all other anticommutators vanishing. Substituting Eq.
(8) into Eq. (7) gives

a(k)>vTa(k)va,(k’)e'(k*k’)%]}

+(w — 0 [(da(K) b (K))v e (ku® (k")e' k) *— (b (k)d!, (k" )yute(k)o® (k") "krk)-x]y (13)

where | have usedd;,(k)d,/(k"):= —dz,(k’)da(k).
Now consider a state vector of the form

[|k 1)+ Nk, 2)] (14

where [k,a)=b!(k)|0) and \ is real. Since the statpy)
contains only electrons all expectation values in ER)
containingd (k) or dz(k) vanish. Substituting Eq$14) and
(9) into Eq. (13) gives

1
<P>:—[wkz

2
v +N B+ N2y ] (15)

where

kxkz( wkx + wkz) cosy

= 16
B 2\/wkxwkz(wkx+ m)(wkz-i- m) ( )

and 0= (ky—k,)x. Note that(p)=wy_/V for A=0 and(p)
= wy IV ash—, as expected. Itis easy to see tha will
be negative if

B> 4wy oy, 17

—g— \’(g) —wkxwkz<wkx7\<—§+ V(g) _wkxwkz'

(18)

Consider the ultrarelativistic limitg, ,k,>m. In this limit
1
B: E(a)kx‘f' wkz)CO$. (19)

Equation(17) becomes

lekakZ
cog 0>—. (20
(wy +oy)

For a solution to exist it is necessary thatwlxﬁwkf(wkx
+wy )% This will be satisfied ifw, =(7+ 48)w or if
) =(7+\/48)wy . Thus it is possible to produce negative

energy densmes for state vectors of the fothd) if \ is
chosen to satisfy EJ18).

It is now easy to show that the energy density is not
bounded from below. To simplify the discussion take
=0, so that cog=1. In the ultrarelativistic limit withwy

>wkz,

1
B= 5wk, (21)

and — 1/2<\<0. The energy density is given by
)\a)kx ( 1)
=—————| N+ 3]|. 22
(p) vt 2 (22)

Thus in the Iimitka/V—mo the energy density at the space-
time pointx*=0 goes to—x, for —1/2<\ <0.
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Now consider, within the above limits, the energy density [n,|=rcospsing
on the spacetime. For genere, L
Iny|=rsingsing (31
)\wk 1 | —
X n,|=rcosd
=———| N+ ;c09wy (t—X))|. (23 z :
o= vt 2%

where 0<(6,¢$)=<m/2. Thusf can be written as
Thus(p) is a cosine wave propagating at the speed of light

superimposed on a positive background. The energy density f(r,0,¢)=r(1-ag(6,¢)) (32)
at a fixed spatial point will be negative for a tim, which
satisfies where
IN[(1+2)) 9(0,¢)=J1+2sit(¢p+ ml4)sin(0+¢) (33
_V<P>minAt: > COS_1(2|)\|), (24)
A and
where{p)min is the minimum value ofp) for fixed wy and COt( 1) = V2sin( b+ /). (34)

\. Since the wave propagates at the speed of light the extent
of the negative energy density will satisfy the same expresGiven that G<(6,¢)<mu/2, it is easy to see that 1
sion as above with\t replaced byAx. For large values of <g(4,#)=< /3. The functiong(#8, ¢) has its maximum value
[{p)|V (and\ not too close to-1/2 or O the energy density of /3 when¢= m/4 andd= m/2— cot }(y/2). The minimum
will undergo rapid oscillations from positive to negative val- ya1ue ofg(6, $) occurs wherd=0. In this casey(0,4)=1
ues. Note that the time average of the energy density is posfor all ¢. The functiong(6,$) also equals 1 ab= /2, ¢
tive. =0,m/2. Now if a=1 in Eq.(30) thenf=r(1—g)<0. This
gives the inequality/nZ+ ny2+ nzzs|nx|+|ny|+|nz|. On the
other hand, ifa=1/\/3 thenf=r(1—g/\/3)=0. This gives
In this section | will show that the energy density satisfiesthe inequality 3 ¥q|n,|+|n|+|n,|]<nZ+n7+nZ. Thus
the quantum inequality1) for the state given in Eq14). To  Eq. (29) is proved.

QUANTUM INEQUALITIES

show this | will take the limitm—O0 for the Dirac field. To show that Eq(1) is satisfied | will show that an even
Substituting Eq(23) into more restrictive inequality is satisfied. From Eg9)
A t_o % 2<p>2 (25 O S0 S w; (35
) —ect? 4§
where
and takingx=0 gives
_ 2 36
A )\wkx Wy _K[|nx|+|ny|+|nz|] (36)
e 1 e 9klo], (26)
(1+ N5V
and
Thusp will be negative if 2
F=—1[Iny|+|ny|+|n,]. 3
Now consider the quantum inequality) with A=1. If pe-  Since
riodic boundary conditions are imposed, .
wk*e*Za)k togwke*Zwkto (38)
wzz—w nZ+n%+n? (29
L Vx 'y 'z the quantum inequalityl) will be satisfied if

wheren, ,n,, andn, are integers. Next note that - 1
xlly z g PB__Z wlze—Zw;IO (39)
1 2VE
—(Iny+|ny|+ n)=<\n2+nZ+n32<|n,| +|ny| +|n,].
\/§(| AImFIn D)=y ne<ing +iny|+n| is satisfied. Substituting in the expressions égf and w,
(29 gives

[’

E ne-an
n=0

[’

2> e k-1

2

To see this definé(n,,ny,n,) by 237
, (40

f(ny,Nny N = nZ+ni+nZ—a(|n+[n|+[n,) Lv
(

p=

30)
wherea=4mxty/L. The sums can easily be performed, giv-

wherea is a positive constant. Now let ing
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. 2\Bme ¥(l+e )? K-k +m?
pra V3w ( § 4) . (41) (p)= . R S (wgwy )
LV (1-e 9 VR Voo

Thus Eq.(1) will be satisfied if

<al,ak>e'(khk’”)xu

(49

AN, J3e ¥(1+e )2 (oo tk K —mf)

+
)\+ e " /2)> . (42 VoL
14\ 2( (1—e @)% Kk

(aaye' K% (50

. . . . _ The state vector can be written as
is satisfied. Forn outside the interval € e *™20) the

above inequality will obviously be satisfied. Thus consider 1
le~a™2<)\ <0. Equation(42) will be satisfied if | )= N; ay|Kk) (51)
—a —a\2
INn(n+ e any2) < \/§e (1te %) (43) where thea, are arbitrary complex numbers ahdis chosen
(1—e™9* so that|y) is normalized. The energy density can now be
. . ) written as
is satisfied. Now leh = — (o/2)e” “"™2, The above inequal-
ity becomes o +K-K' +m?2
<p>— 22 ( kWk )ak,ake'(ku_klﬂ)xﬂ
1 o J3e ¥(1+e )2 2VNy Voo
29Me M(1—o)= - s (44 (52
Now define
The left hand side is maximized fosr=1/2 and for n,
=1/a. But n, is a positive integer. Thus far=1 taken, ay
=1. The above inequality will then be satisfiéfdr «=1) if B= Ek: Voyae ™, A= mEk w—ke'kﬂxf‘, (53
1 3(1+e )2
- \/—( (45) and
16 (1—e” a)4
is satisfied. This is obviously satisfied for al=1. For « 7 2 \/— e, (54)
<1 let ny,=1/a (i.e. generalizen, to a real number The @k
inequality (44) will be satisfied if Thus for state vectors of the fors1)
1 | V3ae “(1+e )2
TRe TS (46) 2 2., 1212
16 (1—e @)% (p)= (1BI7+ N2+ 4], (55)

2V N2

is satisfied. In the interval @ «<1 the right hand side is a
monotonically decreasing function af with a minimum
value ofe"}(1+e 1)?(1—e 1)~* Thus the above inequal-
ity is satisfied. Therefore inequaliti42) will be satisfied, CONCLUSION
which implies that the quantum inequality) will be satis-
fied.

and the energy density is non-negative.

In this paper | examined the negative energy densities that
can be produced in the Dirac field by state vectors of the

form
THE KLEIN-GORDON FIELD

In this section | will show that the energy density for a )=
massive scalar field is positive for all states that are arbitrary J1+
superpositions of single particle states.
The scalar field operator can be written in terms of cre-wherelk,, 1) and|k,,2) are single particle electron states and
ation and annihilation operators as \ is real. | showed that ik, ,k,>m, the energy density at a
space-time poink* will be negative ifA is chosen so that

(|k211>+)\|k><12>) (56)

1
H(X)=1, (ae*u—ale V). (47) 2 2
K V2Vaoy - g— \/ (g) — Wy W, <wkx)\< - §+ g) W Wk,
The energy-momentum tensor for the scalar field is given by (57
1 is satisfied, where
TH'= g1 $pd" p— = "9, pd* p+m2p?). (49
B= (wk + oy Jcog (K —k'#)x,,]. (58)

A short calculation gives
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Since | am taking\ to be real it is necessary tha#
=4, . This will be satisfied ifw, =(7+\48)w,_ or if
wkz>(7+ \/Is)wkx'

If, in addition tok, ,k,>m, one takesmkx> W, then

1 1
—Eg)\SO, ’Bziwkx (59
and
)\(ka
WZm(“z ©0

at the pointx*=0. Thus(p)——= as wy /V—e, for
—1/2<\<0 and(p) is not bounded from below.
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The time average ofp) is positive and the energy density
will be negative for a time intervakt, which satisfies

IN(1+2)0)
“Vlphmindt="———cos "2\ (6D
| also showed that the quantum inequality
~ to ® <p>dt 1 2
=_ =— — —2oylg
(ol 2 RO

which is satisfied by a massless scalar field, is satisfied by
the Dirac field for state vectors of the for(86) in the limit

m— 0. Finally, | showed that, in contrast to the Dirac field, it
is not possible to produce negative energy densities in a sca-

An observer will sedp) as a cosine wave propagating at lar field using state vectors that are arbitrary superpositions
the speed of light superimposed on a positive backgroundf single particle states.
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