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Wave propagation in stochastic spacetimes: Localization, amplification, and particle creation
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We study the novel effects associated with electromagnetic wave propagation in a Robertson-Walker uni-
verse and the Schwarzschild spacetime with a small amount of metric stochasticity. We find that localization
of electromagnetic waves occurs in a Robertson-Walker universe with time-independent metric stochasticity,
while time-dependent metric stochasticity induces exponential instability in the particle production rate. For the
Schwarzschild metric, time-independent randomness can decrease the total luminosity of Hawking radiation
due to multiple scattering of waves outside the black hole and gives rise to event horizon fluctuations and thus
fluctuations in the Hawking temperatuf&0556-282(198)05306-3

PACS numbes): 04.62:+v, 05.40+j, 73.23—b, 98.80.Cq

[. INTRODUCTION processes, wave propagation in curved spacetimes with met-
ric stochasticity is a test-field treatment. It is nonetheless still
Wave propagation and localizatiph] in a random media a useful probe for fluctuations in sub-Planckian processes
have been studied extensively for the last two decf2led]. [such as the grand unified theoi@UT) scale phase transi-
It is known that on the mesoscopic scale, classical wavdion], which could have left important imprints on the ob-
propagation in a random media can be treated in a similaservable universg23].
way as electron transport in a random potenfil. One In this paper, we wish to study novel effects associated
expects to see the diffusive, localization properties of classiwith electromagnetic waves propagation in the Friedmann-
cal waves similar to electrons moving in the presence oRobertson-Walker universes and the Schwarzschild space-
impurities[5,6]. Wave propagation in curved spacetime is antime with a small amount of metric stochasticity. Here we
important topic both in general relativify] and in semiclas- employ a useful observation to link up with the more famil-
sical gravity theory[8]. Classical scalar, electromagnetic, iar subject of wave propagation in random media studied
and gravitational waves in a Friedmann-Robertson-Walkeextensively in condensed matter and mesoscopic physics
(FRW) universe probe into the state of the universe and5,6]. We first show the formal equivalence of the wave
manifest in basic cosmological processes such as structusguations in curved spacetimes with wave propagation in
and defect formation, while that in the Schwarzschild andmedia in flat space and identify how the metric components
Kerr spacetimes depicts high energy astrophysical processappear in the permittivity functiotor refractive indexof the
in black holes. The second-quantized version in terms ofnedia[24]. Then we introduce metric fluctuations as a sto-
guantum fields gives rise to cosmological particle creatiorchastic component in the permittivity function and study
[9] and Hawking radiatiorf10] which are important pro- wave propagation in a curved spacetime with metric stochas-
cesses in the early universe and black hole collapse. Recetitity as if it were in a random media. In a spherically sym-
progress in studying Planck energy processes, especially tleetric spacetime the wave equation for the radial part can be
backreaction effect of quantum fields in curved spacetimewritten in the form of a Schidinger equation in one dimen-
underscores the importance of including fluctuations in parsion. The effect of the curvature of spacetime appears in the
ticle creation[11,12 and the associated energy momentumpotential term in the equation. Once the wave equation is
tensor of quantum fieldsl3—15, and fluctuations and dissi- reduced to the parametric form with a stochastic component,
pation in the dynamics of spacetim&6—19. the familiar methods used in quantum field theory in curved
The program devoted to a quantum matter field and classpacetime and insights accumulated in mesoscopic physics
sical background spacetime with metric fluctuations mencan work to each other's advantage. We analyze in detail the
tioned above is rather involved, because it requires the caktases with time-independent and time-dependent metric sto-
culation of four-point functiond20] and demands a self- chasticity and find that localization of electromagnetic waves
consistent solutioh21,22. In this paper, as a useful parallel, occurs in a metric with time-independent fluctuations. In
we attempt to address an easier problem, that of wave propaases where there is time-dependent randomness in the met-
gation in a stochastic spacetime. It is designed to highlightic, exponential instability in the particle production rate oc-
the effect of fluctuations in a background metric, while notcurs. These are new effects due exclusively to the presence
demanding an explanation of their source or their mutuabf metric fluctuations in the background spacetimes. For the
influence. Stochastic components in the metric can be inSchwarzschild metric, time-independent randomness outside
duced by primordial gravitational waves, topological defectsthe horizon will decrease the total luminosity of Hawking
in the sub-Planckian scale, or intrinsic metric fluctuations ofradiation due to multiple scattering of waves. If the random-
background spacetimes at the Planck scale. Their detectioress reaches the horizon, it contributes to the fluctuations of
and analysis can provide valuable information about the statthe Hawking temperature. Time-dependent stochasticity is a
of the early universe and black holes. As distinct from themore complicated matter which requires a self-consistent
self-consistent treatment which is necessary for Planck scaknalysis of the interaction between spacetime and the waves

0556-2821/98/5(6)/347410)/$15.00 57 3474 © 1998 The American Physical Society



57 WAVE PROPAGATION IN STOCHASTIC SPACETIMES: ... 3475

or fields as encoded in fluctuation-dissipation relations g
[21,22. This is to be investigated later as a part of the sto- €= pix=— (—9) " —,
chastic backreaction problem mentioned above. Goo
The paper is organized as follows: In Sec. Il, we show g°
how an electromagnetic wave propagating in curved space- G=——. (2.3
time can be related to that in flat space but with a refractive Y00
index depending on the metric compongi24]. This section _ _
is meant to be a shortcut for readers not too familar with A. Friedmann-Robertson-Walker universe

curved spacetime physics to see the correspondence with | et us now consider the Friedmann-Robertson-Walker
wave phenonemdReaders familiar with it can skip to Sec. spacetimes with line elements

lll.) In Sec. lll, using the methods developed in Sec. Il we
study wave propagation in curved spacetime where the met- —ds?= —dt?+a(t)?R?[dx?+ s%(x)(d 6+ sirf6d ¢?) ],
ric has a stochastic component. We use the Friedmann- (2.9

Robertson-Walker universe as an example to show that if th\(/evheres( )=sin and sinly correspond to closed, flat
stochastic component of the metric is independent of time -~ e)rg c_aseé(, ?(e,s ectivel Ha(e)pis the scale factor
and for a sufficiently smooth randomness, the Maxwell equa- P - P Y.

ndR is the radius at timé, wherea(tg)=1.

tion has the same form as a conformally coupled scalar wav@d Using Cartesian dinat
equation. If the randomness appears only in the radial direc- sing Lartesian coodinates,

tion, the radial wave equation has the same form as a one- dt=a(t)d,

dimensional Schidinger equation in a random potential. Be-

cause the electromagnetic wave equation is conformally x1=2Rt( y/2)sindcosp,

invariant, it bears the same form as in flat space. With a (2.5

stochastic metric component we see that the wave localizes
in space. In Sec. IV, we study the case of time-dependent
(but space-independerdtochasticity in the metric, and show
that parametric amplification takes place giving rise to cos-
mological particle creation. However, because of the metrigvhere »=fdt/a is the conformal time, andt(y/2)
fluctuations, the rate of this amplification increases exponen=tan(y/2), x/2, and tanh¢/2) correspond to the closed, flat,

tially in time. The fluctuation in the particle creation rate is and open cases, respectively. We can then write the FRW
also discussed. In Sec. V, we study wave propagation in fne element in the form

Schwarzschild spacetime with time-independent fluctuations. o

We show that this can decrease the total luminosity of —ds’=a’[ —d 7+ f2(p)(&;dxdx)], (2.6
Hawking radiation due to multiple scattering of waves out- h

side the black hole. Fluctuations which involve an event ho~"""¢'€

x?=2Rt(x/2)sinfsing,

x3=2Rt(x/2)cod,

rizon will give rise to fluctuations in the Hawking tempera- - 12
ture. In Sec. VI we summarize our findings and end with a p=2 (X)2| =2Rt(x/2) 2.7
short discussion. :
and
Il. CLASSICAL ELECTROMAGNETIC WAVES 1
IN CURVED SPACETIME _
_ o 1+ p?/4R?
Maxwell's equations for an electromagnetic field tensor f(p) = 1
F ., in a gravitational field with metrig,,, are given by p)= '
1
FA'=0 FLetFoeutFou=0, (2.0 1—p?/4R?

where the column elements correspond to closed, flat, and
where semicolons denote covariant derivatives with respe@pen cases, respectively.
to g,,. These equations can be cast in a form for waves |In this isotropic form of the metric, the Maxwell equa-
propagating in a permeable media in flat sp§24]. The tions are given by
correspondence betweénH (the electric field and magnetic

induction andD,B (the electric displacement and magnetic = i 5
field), respectively, is given by VXE dn[f(P)Hl
. d -
Di= €ikEx—(GXH);, VXHzﬁ[f(p)E],
(2.8
i= pikH— (GXE); : -
Bi=uikHk— (G E)n (2.2 V. (fE)=0,

where the dielectric and permittivity functions are V- (fH)=0,
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where one can identify the dielectric and permittivity func- we obtain the radial equation faf™ as
tions as
d2 M
€= mik=T(p) i, v iX) n

[n*=U() 1M (x)=0, (2.1

. . . wheren=Rw and
Assuming a harmonigconforma) time dependence of the @

solutione™'®7, we can write Egs(2.8) as
1s2.8 1(1+1)

U(x)= .
(x) 00

VXE=iwf(p)H, 219

VXH=-lof(p)E, B. Schwarzschild spacetime

(2.10
. The line element for the Schwarzschild spacetime is given
V-(fE)=0, by
)= 2m 2m\ ~t
V(fH)_O —d82=—<1—7)dt2+(1—7) dr2
The symmetry in the relatio(2.10) allows us to write this in o ,
the more compact form +r2[d6?+si*6d ¢°]. (2.18
VXF=wf(p)F, If we definer=p+M +M?3/4p, we can write Eq(2.18 as
V- (fF)=0, (2.1)  —ds?=—f(p)dt>+15(p)[dp?+ p?d 6>+ p?sirfod 2],

s o (2.19

whereF=E+iH.
For the FRW metric with spherical symmetry the solu-where f{(p)=1—2M/r and f,(p)=r/p. Furthermore, a

tions can be expressed in terms of the vector sphericapatial coordinate transformation

harmonics\?m(a,q’)) obtained by operating on the scalar .

spherical harmonic¥,,,(8,¢) with the invariant operator x*= psindcosp,

—ixXV as

E=>
I,m

x2= psinésing, (2.20

[ - 5
EAFmV><gF<p)Y|m+A|“ﬂng|M<p>Y.m}, X3= pcosd

- - i - brings Eq.(2.19 into a Cartesian form
=3 | AR OE ) in- AT (911
I,m w
212 —ds=—1f(p)dt?+f5(p)[(dx")Z+ (dx?) %+ (dx®)?].
(2.21)
where g=M(p) are functions of radial distance only and
AEM are the coefficients. The superscrigsandM denote  Considering this spacetime acting as a medium, the corre-

the electric and magnetic multipole field components, responding dielectric and permittivity functions are expressed
spectively. in the same form as in Eq§2.9) with

The fieldF is given by

F=3
I,m

fa(p)

= (2.22
[f1(p)]*?

f(p)

. 1 - -
IAIEn(EV X gIE(P)YIm+ gIE(P)YIm>

) 1 R In such a medium, the radial equation for the magnetic
+AN g (p)Yim+ EnglM(p)Ylm (2.13  multipole field is[25]
One can identify thel(m) component of a magnetic multi- d?yM(r*) w2 U(r)TgM(r*) =0 (2.23
pole fieldF. as dr*2 ’ '
- - 1 - *— ;
EM — aM( )\ Yo+ — VX aM(p) V.. . 21 wherer* =r +2Mlog(r/2M — 1) is the Regge-Wheeldtur-
im=01"(P)Yim+ e VX G (P) Yim (2.19 toise coordinate, and the potential term is given by

Writing the magnetic multipole scalar field function

I+ n[ 2™
#M(x)=Rp(x)gM(p(x)), (2.19 -

r2(re) |- r(rx)]

U(r*) (2.24)
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Ill. WAVE PROPAGATION IN CURVED SPACETIME [I:—wf()_(’)]é()z,)Z')= 6\3()2_)?) (3.9
WITH METRIC STOCHASTICITY

Consider the metric as containing an averaggtermin- The disorder-averaged Green'’s function is defined by

istic) partgﬁfy) and a small fluctuatingstochastig parth,,, : G(X )?’)E(é()? )‘(’/)>:<[|:_wf()'(’)]—lb\’z()z_)‘(’l» (3.10
_ (0 .

v =Gpr T N (3.1 |f we define the mean field Green’s functi@f®(x,x') as

then, from Eqs(2.3), GOX, X )=[L—w(f(X))] L63(x—%"), (3.1

(gD, (g L we obtain the Lippmann-Schwinger equation
€ik = Mik= (0) g + (0) h 2 hg

Y00 Y00 G Y%K ) =GO KX ) + w3 (%K), (3.12

=€+ Se; 3.2 ..

€ik Cik 3.2 which defines the self-energy(x,x’). The precise form of

where we have used the synchronbyg=0 gaugd26]. The 3(x,x") can be obtained iteratively.
tracelessh=33_,hi=0 gauge further simplifies the expres-  Averaging Eq.(3.6) gives
sion and we obtain the correlation function of the fluctuating

part of the refractive index in terms of the metric fluctuations (LF)—o(f(Xx)F)=J. (3.13

as Define F=fF=D +iB; then, from Eq.(3.13,
_ 0 1/2r _ ~(0)/y7\71/2 N N .
(e X)) =L I8 70X o(F)=(LF)-3
oo (X)Too (X')
X (h(x)h"(x")). (3.3 =f d*'[GO X X) + 0 (X,X) ~LI(F(X")),
For flat spacetime, it has the simple form (3.14
(B€ij(x) dera(x')) =(hT ) (x")). (3.4

<J?'(>’<’)>=f A3/ [(F(X)) S(X—X") —=(X,X"){F(X")).
We see metric fluctuations can thus be represented as fluc- (3.19

tuations in the optical index. o
We see that the complex electromagnetic displacement vec-

tor has a nonlocal dependence on the media due to the self-
energy term. We can thus develop a formalism making use
In the rest of this section, we consider cases in which thef techniques from quantum field theory to study the effect
permitivity function contains only spatial disorder. of dissipation, higher order correlation, screening, &tee,
If we assume that the background metric as well as the.g.,[27]). This is a subject for future investigation.
stochasticity are both isotropic, we can write the correspond- Further simplification arises in cases when the polariza-

A. Time-independent metric stochasticity

ing refractive index as tion effects are negligible. From Eg&.10, we obtain
€= mik=T(X) Sik., V2E + w?f2(X)E+ Vlogf (X) X VX E+ V[ (E- V)logf ()]
G;=0, (3.5 =0. (3.16

- . Under the conditions that the inhomogeneity and disorder in

wheref(x)_ ISa random_va_rlable. ) . f are smooth, namelywR>1 and wA>1, where\ is the
Assuming a harmonic time dependence of the field withy a4 cteristic length scale of the disorder, the third and the
frequencyw, Eq. (2.11) with source termJ becomes fourth terms representing polarization effects are negligible.

. .o Equation(3.16 then reduces to
[L—-wf(x)]F=J, (3.6
V2E+ w?f4(X)E=0. (3.17
where L=V x. We define the matrix-valued Green’s func-

LA, Then each component satisfies the scalar wave equation
tion G(x,x’) as

V2¢+ 02f2(x)$=0. (3.18
(X)) — 3/ (2 2! Vi
Fi(x) f d*X" Gt (X, X) I X). 3.7 Now consider the conformal type of stochasticity only in the
A spatial part of the metric of the form
G(x,X") obeys the equation

[Eijkvj_‘*’f(i) 5ik]ékm(>2,>z’)=6im83()2—)2'). (3.8 The conformal invariance of Maxwell's equations implies that
the conformal fluctuations in the spacetime metric can be factorized
We simply write Eq.(3.8) as away, and hence they do not give rise to particle credia@h
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f(x)=f(p)edo™), (3.19 1

X)= ————e970, 3.2
) 1+t2(x/2) @29

wherea(x) is a stochastic function anglis a small param-

eter. Expanding it with respect tp as . .
P g pect ® whereg is a small parametdsuch kind of randomness may

f(x)=f 1+ 1, 32 arise from averaging 0u§ more inhomogeneous types of ran-
() =f(p)[1+go(x)] (3.20 domness in a small spatial region due to the spherically sym-
Eq. (3.18 becomes metric nature of the underlying curved spacetime

If o(x) varies slowly in spaced’ <o), the wave equa-
V2h+ w?f2(p)p+2gwfi(p)o(X)p=0. (3.2)  tion in the radial direction, Eq2.16), is replaced by

In a flat FRW spacetimd(p) =1, or for p<R in closed and 2y I(1+1)
open casesf(p)~1. In this region, all three cases are de- — n%(1+go)%— 5 $=0, (3.30
scribed by the equation in flat spacetime dx s“(x)
VZ¢p+w?¢+2gw’ocd=0. (3.22  where we simply use for M. This has the same form as a
) ) L scalar wave equation in media with a random refractive in-
The corresponding equation for the Green function is dex.
(V24 02+ 29020)G(X,X )= S(X—X'). (3.23 For the closed FRW universe, the angular-momentum-

induced potential term in Eq3.30 is a single well potential
which becomes infinitely high at the origin ang= 7. Then

the wave is necessarily localized around the bottom of the
well in this coordinate. On the other hand, for the flat and
open FRW universe cases, the potential term becomes as-

The disorder-averaged Green functio@G(IZ,IZ’,w))
=G(K,w) S is known to have a form

G(k,w)= 1 (3.24) ymptotically flat as the radius be(_:om(_as infinite: In these
WP K24 L cases, the stochastic term plays a significant role in the trans-

port property of the wave. If we expand the second term in
Eq. (3.30 into n?+2gn?o around the perturbation param-
in the leading order in¢ly) %, wherel, is an elastic mean eterg and note the positivity of the original second term, we
free path. For a Gaussian white noisecal) random variable see that Eq(3.30 describes a Schdinger equation with a
o(x), ly=2m/gDw® whereD is the strength of disorder fixed positive energy. As such , we can write E8.30 as
defined by{o(X)o(X")) =D §(X—X).

We also define the intensity d2y
. L — S PVU=Ed, (3.3)
1(X)=(¢* (X) (x)) (3.29 X
and the intensity-intensity correlation function whereE=n? andV(x)=—2gn?c+[1(1+1)/s?(x)].

. . - - For the flat or open universes, the potential barrier van-
Cxx")=(¢*(X)(X)¢* (X' )p(X'))c. (320  jshes in the asymptotic limit. The property of the eigenfunc-
tion in this case is well studied from the context of electron
transport[4—6]. It is known that in one dimension for any
value of E, the eigenstate of Eq(3.31) localizes[1,4].
Namely, all eigenfunctions decay exponentially with rate

_ . (3.27  given by the Lyapunov exponefsee Eq.(3.34) below]. If
16721 | X| the correlation radiug. of the fluctuating part of the poten-
tial V(x) is smaller than the “wavelengtif’(y.<n"?1), the

If we confine the disorder in a slab of thicknelssand  potential can be considered as the white noise type
cross-sectional are, then, forr=|x—x'|<ly,

where C denotes the cumulant. As shown [i89], we can
evaluate the disorder-averaged intensity as

(1(x))=

2 (VOOV(X ) =4g’n"a(x)a(x))=49°R**DS(x—x'),
) e v, (3.28 (3.32

Sinwr
wr

COXX) =(1X))H(X"))

where we have assumed a delta function type of correlation
with the strengttD for the random potentiad(x).2

The cumulative density of staté$(w) has the following
form for the white noise potential with correlation given in
Eq. (3.32 [32]:

Forr>1y,, diffusion modes interact with each other and give
rise to a long range correlation with a power law def28.

In the Schrdinger equation analogy, this corresponds to
conductance fluctuations in metql].

B. Radial disorder and localization

Here we also start from the conformal type of metric sto- 2The “energy” E=R%w? in Eq. ( 3.31) is dimensionless and so is
chasticity but assume that the stochasticity is only in thehe angular variablg.
radial direction SHereafter we absorl in the definition ofD.
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(2R?w?D)Y3 where we write the time-dependent factorgs;) instead of
N(w)= - 5 f(#n) for clarity. Assumingh(#) has the exponential form as
™ in Eq. (3.19),
X ! h(n)=e"7, 4.2
Ai7[ - (Rw/2D)?3+Bi’[ - (Rw/2D)?3’ _
then Maxwell’'s equations become
(3.33
- d -
where Ai and Bi are two independent Airy functions which VXE=-— E[h(ﬂ)H]l

satisfy the equatioy” —xy=0.

The asymptotic behavior of the solution shows an expo- . d .
nential growth characterized by the Lyapunov exponept VXH= g [h(mE]
defined by[6] 7

4.3
. V-E=0
A= lImA ()= s——, 3.3 ’
M0 =30 w) (339 i
V-H=0.
whereL,,.(w) is the localization length given below and the . ) .
wave function grows as From this we obtain a wave equation far
- d d -
P(x)—erox, (3.3 VxVsz—ﬁ(h(n)ﬁh(n)E) (4.4)

asy increases. . -
In the case of white noise potential given in £§.32, anda S'”l"ar one foH.
the Lyapunov exponent has the fof6) Since E has no divergence, for a slowly varying noise
such that|h(75)|<wh(7), wherew is the frequency of,

® the above equation takes the simpler form
MF@N(Q’)L Jye vz Ro20*gy (3,39 q P

1
_ _ o _ — E——V?E=0. (4.5
The entire curve is plotted in Fig. 1. We obtain the d7n? h?

asymptotic behavior of the localization length
In momentum space, it reads
(D/IRw)?® for w—0
(3.37 dz . k2 d?

o) [1/D for w—ee. — Ex+ — Ex= — Ex+k2%e 2WE,=0. (4.6
d7n? h2 d»?

We see that in the long wavelength limit— 0, the wave . )

function delocalizes. This is a direct consequence of the mufEXPanding in terms ob gives

tiplicative nature of the stochasticity for classical wave 5

propagation in random medjd]. — E,+[k2— 20(7)k?]E,=0. 4.7
dn

IV. WAVE PROPAGATION IN SPACETIMES WITH
TIME-DEPENDENT METRIC STOCHASTICITY:
PARAMETRIC AMPLIFICATION AND PARTICLE

CREATION

o

IS

Because of the conformal invariance of Maxwell’'s equa-
tions, time-dependent fluctuations in the scale factor can bég
transformed awayin a conformally related coordingteAs-
suming spatial homogeneity, the time dependence of the
metric is uniform in space, and we start from the metric with
conformal fluctuations similar to E¢3.19), but let the spa-
tial part of the metricf acquiring a time dependence.

If the background spacetime curvature is negligible, the 1
corresponding dielectric and permeability functions take the
form

zation Length
[

2

Locali

o L B L LI

o

Frequency

€= mik=h(7) ik,
FIG. 1. The localization length is plotted as a function of fre-
G;=0, (4.)  quency.R andD are set equal to 1.
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This equation should be compared to E231) with |=0 by  rate characterized by,,. We can obtain the asymptotic be-

identifying V=2vk? andE=k?. havior of the average dN in the high energy limit as fol-
Following the argument from E@3.31) to Eq.(3.37 and  lows:

noting that the time coordinate plays the role of space

coordinatey here, we see the qualitative features of solutions TP S
to Eq. (4.7): They show an exponential parametric amplifi- (N)=(|8")= E(e ). (4.12
cation[33] with the rate characterized by the Lyapunov ex-
ponent\, introduced in Eq(3.34), Hence the fluctuations diN) becomes
. 1 1
Ap= luinxxh( = 3L (4.9 AN?=(N?)—(N)?= ge?tn(e?"tn—-1) (413

and Ek grows, for »>L,, whereL,=1/D is the characteristic particle cre-

. ation rate which appeared in EGL.8). The exponential di-

Ev—Ex(n=0)e"("7, (4.9  vergence ofAN? results in the non-self-averaging nature of

. L the observable.
as 7 increases. The characteristic time scale for parametric

amplificationL (k) is equivalent to the localization length in V. HAWKING RADIATION FROM A FLUCTUATIN
Eq. (3.39 under then— x correspondence. For a Gaussian ' G BL,SCK HgLE UcTu G
white noisev with correlation{v(7n)v(%'))=Dd&(n—7'),

the asymptotic behavior df,(k) is given by In this section, we study the effect of metric stochasticity
in the Schwarzschild spacetime and discuss how it affects the

(D/K)*R for k—0 (410 Hawking radiation 10].

1/D for k—oo. ' In the presence of metric stochasticity, the Helmholtz

) . ) _equation acquires a fluctuating component in the refractive
It is well known that the cosmological particle creation jngex similar to the Friedmann-Robertson-Walker universe

problem in a FRW universe can be cast into a onetase. Assuming the same conformal form of stochasticity as

dimensional wave scattering probl¢j by reading the time i, £q.(3.19), but in a radial direction only for simplicity, the

variable 7 as a space variable and adopting the followingHe|mholz equation in this case has the following form:
boundary conditions:

Lh(k)N[

—ik dZ M r*
. for z——e A Lo+ 20()w?— U () TgM(r) =0,
E—=1 ae * 74+ gek7 for p—co. dr

(5.9

In this analogy, the reflection coefficiegt (or, rather,|8]?)  wherea(r*) is a stochastic variable as a function ©f. If

in the wave scattering picture gives the parametric amplifiwe assume that the metric stochasticity is restricted in the
cation factor and, in second quantization, the particle crefinite region—L<r* <0, the incoming flux from future in-
ation rate. Since in this picture the transmission coeffidient finity suffers backscattering not only from the potential

corresponds to the incoming flux which is normalized to 1,U(r*) but also from the randomness. The absorption prob-
the effect of localization translates to an exponential increasgbility I",, is thus reduced by a factor ef *o- where\ , is

of the particle creation ratg (so is«a): the Lyapunov exponent which appeared in E34) with
R=1.
B—ernl7, (4.1 Hence the total luminosity has the form

More explicitly, if we compare Eq(4.11) with the corre- %
;pqnding scattering problem in which the wave packet is inz, (2j+l)focdwa0e"wL/ (e8™Me_ 1),
incident from=cc and transit top= — 2m{=0 0
_ (5.2
. [te k7 for p— —o,
E— e k74 relk7 for psoo, The more interesting case is when the fluctuating region
contains the event horizon such that the stochasticity induces
we see that the particle creation raﬂe:|B|2:|r/t|2 in an horizon fluctuationg34-36. For simplicity, we restrict the
expanding universe measures a dimensionless resistancedrguments to the scalar wave case in the rest of the section.
the wave transport picture. The transmission coefficient in dhe scalar wave in the metr{@.19 satisfies the equation
random potential is a multiplicative quantity which decreases

: . SO : 12 412
exponentially with length. This implies that the logarithm of _ 2M i 2 4 _

the resistance is an additive quantity and its average in length prip)|1 r(p)/ dp +o7r(p) ¢(p)=0.
becomes constant in the thermodynamic limit and hence (5.3

nonfluctuating. The average of the resistance if$edhce the
average particle creation ratis also known to show an ex- This takes on a simple form if we define the coordinate
ponential increase in lengttin conformal time») with the  such thatdx=f(p)dp/p?,
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2

d 2,4
— T oT%(X) | $(x)=0. (5.9 =
dx

204v(pg)
If the metric in Eq.(2.19 has the conformal type of sto- —A4mre™rs (for —0)

chasticity in the formf,(p)e?°?) and f,(p)e*?), where —Amr 1+ 4v(pg) + 812 (p)+---].  (5.12
a(p) and v(p) are two independent random variables with s s s

zero mean, the equation corresponding to (5¢3) becomes  The average absorption cross section is then

|

We can absorlar(p) by choosing the coordinate such that
dx="f(p)e"P (P dp/p?. Then we have

2 (oa)=4mri+32ar(v?(ps)) = Au+8Au(v2(ps)),

+w2r4(p)] $(p)=0. (5.13

(5.5 where Ay=4nrZ is the area of the event horizon and we
assume that all the higher momentswofanish. It is known
that the low energy absorption cross section of the scalar
wave gives the area of the event horizon for a large class of
black hole solution$37].

1/2 d
1— _) eo(p)—vip) —
rip) dp

prip)

d? Therefore, we expect that the second term gives the hori-
_ 2.4 4v(p) _ ’
o2 e ()™ 6(x)=0. (58 70n area fluctuations
SAL=8AL(12(ps)), 5.1
At the horizon, only an incoming wave exists. So the solu- H H(v(ps)) (519
tion of Eq.(5.6) will be which induce fluctuations in the Hawking temperature,
~ —icwrle?vips ST
exg —lwrge™"Ps'x], 5. H
e Tene] 57 FH=407(p)) 519

wherer s=2M andps=M/2. This mode function behaves as
VI. DISCUSSION
i wr2e4V(ps)
dp—1-iwrie? P14+ —> (5.9 In this paper, we have studied the effect of metric fluc-
p tuations on wave propagation in flat and curved spacetimes.
) We saw that for electromagnetic waves the effect of metric
asx—1 or, equivalently p—o. Here we assumed that the siochasticity is equivalent to that of a random optical index.

stochastic variables(p) and v(p) vanish at infinity. With this analogy, we can calculate the correction to the
~ Far from the horizon, the asymptotic flatness of the spacescattering cross section of the electromagnetic wave in
time allows us to write Eq(5.3) as curved spacetime with metric fluctuations. We also see the

intensity fluctuations due to multiple scattering. If we assume

d|? that classical spacetime is effectively emerging from the un-
— 2.4 = . . e .
[ pr(p) dp ot (p)]¢(p) 0, (59 erlying quantum fluctuations by coarse graining, it seems
reasonable to assume that the stochastic part reflects the sym-
with the solution metry of the background spacetime. When the stochastic part

of the metric has only a radial dependence, the problem is
1 further reduced to a one-dimensional transport problem in
(p)= —=[AJyfwp)+BI_1wp)] which Anderson localization is manisfest. For time-
Jop dependent but space-independent stochasticity, the particle
creation rate shows exponential instability in conformal time.
. \E Furthermore, an analogy with mesoscopic transport in one
T dimension predicts large fluctuations in the particle creation
rate due to its non-self-averaging nature. For Schwarzschild
Comparing Eq(5.10 with Eq. (5.8), we obtain the follow- spacetime, time-independent stochasticity induces fluctua-
ing absorption coefficient for low energy scattering of thetions of the event horizon and, correspondingly, Hawking
scalar wave: temperature.
The restrictions we made on the separate space and time
2 dependence of the stochastic metric are mainly for technical
1+i— simplicity. We expect a qualitatively similar phenomenon in
=1-| ——| —40?%2e*®) (for w—0). the more general cases, where space- and time-dependent
B metric fluctuations both exist. Certain modifications are ex-
A pected such as dissipative effects on localization for a time-
(5.11) dependent random potential.
Possible origins of the metric fluctuations have been dis-
From Eq.(5.13), the absorption cross section for this processcussed recently. Primordial stochastic gravitational waves
is are currently under intense investigati@8,38,39. Stochas-

B
A+ —} (for wp<1). (5.10
wp
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ticity used in such a context is different from that in stochas{34]. He suggests that the horizon fluctuations are small
tic semiclasical gravity theory12,16—18. In the former it enough to validify the semiclassical derivation of Hawking
refers to(quantizedl linear perturbation of the metric obey- radiation. Casheet al. argue that the semiclasscal approxi-
ing Einstein’s equations, whereas in the latter metric fluctuamation breaks down close tout at much larger than the
tions are induced by fluctuations in quantum matter fieldsPlanck scale fromthe horizon[36] due to the interaction
which obey the Einstein-Langevin equation, as a generalizanith the atmosphere of the horizon. Sorkin's argument is
tion of the semiclassical Einstein equation governing thébased on Newtonian mechanics and its vadility for general
mean values of the metric and matter stress energy. The neelativistic cases remains to be shoWsb]. Since we as-
ive replacement of the stress-energy tensor with its expectaumed a static metric stochasticity for the Schwarzschild
tion value leads to some pathological results such as thspacetime, direct comparison with their results is not obvi-
violation of the weak energy condition of the Einstein equa-ous. Nevertheless, we believe our arguments have certain
tion [13]. A possible cure may be obtained by including thedegrees of generality, knowing that randomness can arise
smearing term in the classical background spacefitd®®.  from the imhomogeneity of a static spacetime. These issues
Self-consistency between the classical gravitation and thare currently under investigation.
guantum matter sectors also points to the inevitable dynamic
role (_)f the_metnc_: and flelql fluc_tuatloﬂj&l]. From the a_stro- ACKNOWLEDGMENTS
physical viewpoint, cosmic string network may provide the
source of the stochastic gravitational wave background We thank Professor P. Sheng for introducing us to the
which lies in the observable frequency range of the Lasesubject of wave propagation in a random media and Profes-
Interferometric Gravitational Wave ObservatdhyGO) de-  sor E. Calzetta for useful comments. We enjoyed the hospi-
tector[23]. The discussions and results in this work are mordality of the physics and mathematics department of the
of a generic nature insensitive to the origin of particularHong Kong University of Science and Technology where
sources. part of this work was done. This work is supported in part by
Ford argued that light cone fluctuations based on linearthe U.S. National Science Foundation under grant PHY94-
ized quantum gravity induce black hole horizon fluctuations21849.

[1] P. W. Anderson, Phys. Re®09, 1492(1958. [17] B. L. Hu and S. Sinha, Phys. Rev. ®1, 1587(1995.
[2] H. L. Frish, inProbabilistic Methods in Applied Mathematics [18] A. Campos and E. Verdaguer, Phys. Rev58) 1927(1996.
(Academic, New York, 1968 [19] E. Calzetta, A. Campos, and E. Verdaguer, Phys. Re%6D
[3] A. Ishimaru, Wave Propagation and Scattering in Random 2163(1997.
Media (IEEE, New York, 1997. [20] B. L. Hu, N. Phillips, and A. Raval, “Fluctuations of the En-
[4] S. John, irPhotonic Band Gaps and Localizatioedited by C. ergy Momentum Tensor of a Quantum Field in a Black Hole
M. Soukoulis(Plenum, New York, 1998 P. Sheng|ntroduc- Spacetime”(in preparation
tion to Wave Scattering, Localization, and Mesoscopic Phe{21] A. Campos, B. L. Hu and A. Raval, “Fluctuation-Dissipation
nomena(Academic, New York, 1995 Relation for a Quantum Black Hole in Quasi-equilibrium with
[5] P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys, 287 its Hawking Radiation”(in preparation
(1985. [22] B. L. Hu, Alpan Raval, and S. Sinha, “Backreaction of a Ra-
[6] I. M. Lifshits, S. A. Gredeskul, and L. A. Pastuntroduction diating Quantum Black Hole and Fluctuation-Dissipation Re-
to the Theory of Disordered Systenié/iley, New York, lation” (in preparation
1988. [23] B. Allen, to be published in proceedings of Astrophysical
[7] C. W. Misner, K. S. Thorne, and J. A. Wheel&ravitation Sources of Gravitational Radiation, Les Houches, France,
(Freeman, New York, 1973 1995, gr-qc/9604033, and reference therein.
[8] N. D. Birrell and P. C. DavisQuantum Fields in Curved [24] B. Mashhoon, Phys. Rev. 8 4297(1973; J. Plebanski, Phys.
Space(Cambridge University Press, New York, 1982 Rev.118 1396(1960; A. M. Volkov, A. A. Izmest'ev, and G.
[9] L. Parker, Phys. Revi83 1057(1969; R. U. Sexl and H. K. V. Skrotskii, Zh. Esp. Teor. Fiz59, 1254(1970 [Sov. Phys.
Ubantke,ibid. 179, 1247(1969; Ya. B. Zeldovich, Zh.,IEsp. JETP32, 686(1971)].

Teor. Fiz. Pis’'ma Red12, 443 (1970 [JETP Lett.32, 307 [25] B. Mashhoon, Phys. Rev. b, 2807(1973.
(1970]; B. L. Hu, Phys. Rev. [, 3263(1974; B. S. De Witt, [26] E. M. Lifshitz, J. Phys(Moscow 10, 116 (1946.

Phys. Rep., Phys. Let€19, 295 (1975. [27] R. Balian and J-J Niez, J. Phys5) 7 (1995.
[10] S. W. Hawking, NaturgLondon 248 30 (1974; Commun. [28] L. Parker, Phys. Rew183 1057 (1969.

Math. Phys43, 199 (1975. [29] B. Shapiro, Phys. Rev. Leth7, 2168(1986.
[11] B. L. Hu, Physica A158 399(1979. [30] M. J. Stephen and G. Cwilic, Phys. Rev. Lé3®, 285(1987).
[12] E. Calzetta and B. L. Hu, Phys. Rev.49, 6636(1994. [31] R. A. Webb, S. Washburn, C. P. Umbach, and R. B. Laibow-
[13] C. I. Kuo and L. H. Ford, Phys. Rev. B7, 4510(1993. itz, Phys. Rev. Lett54, 2696(1989; P. A. Lee, A. D. Stone,
[14] N. Phillips and B. L. Hu, Phys. Rev. B5, 6123(1997. and H. Fukuyama, Phys. Rev. 35, 1039(1987).

[15] E. Flanagan and R. M. Wald, Phys. Rev5B, 6233(1996. [32] B. I. Halperin, Phys. Revi39, 104(1965.
[16] B. L. Hu and A. Matacz, Phys. Rev. b1, 1577(1995. [33] Ya. B. Zeldovich, Zh. Ksp. Teor. Fiz. Pis’'ma Redl2, 443



57 WAVE PROPAGATION IN STOCHASTIC SPACETIMES: ... 3483

(1970 [JETP Lett.32, 307 (1970]. sky and S. M. Shurilov, Sov. Phys. JEBB, 1 (1974; S. R.
[34] L. H. Ford and N. F. Svaiter, Phys. Rev.38, 2226(1997. Das, G. Gibbons, and S. D. Mathur, Phys. Rev. Le#.417
[35] R. D. Sorkin, “How Wrinkled is the Surface of a Black (1997).

Hole?,” gr-qc/9701056. [38] L. H. Ford, Phys. Rev. 31, 1692(1995.

[36] A. Casher, F. Englert, N. ltzhaki, and R. Parentani, Nucl. Phys[39] L. P. Grishchuck and Y. V. Sidorov, Phys. Rev.42, 3413

B484, 419(1997. (1990.

[37] W. G. Unruh, Phys. Rev. D4, 3251(1976; A. A. Storobin-



