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Wave propagation in stochastic spacetimes: Localization, amplification, and particle creation

B. L. Hu and K. Shiokawa
Department of Physics, University of Maryland, College Park, Maryland 20742

~Received 30 July 1997; published 24 February 1998!

We study the novel effects associated with electromagnetic wave propagation in a Robertson-Walker uni-
verse and the Schwarzschild spacetime with a small amount of metric stochasticity. We find that localization
of electromagnetic waves occurs in a Robertson-Walker universe with time-independent metric stochasticity,
while time-dependent metric stochasticity induces exponential instability in the particle production rate. For the
Schwarzschild metric, time-independent randomness can decrease the total luminosity of Hawking radiation
due to multiple scattering of waves outside the black hole and gives rise to event horizon fluctuations and thus
fluctuations in the Hawking temperature.@S0556-2821~98!05306-5#

PACS number~s!: 04.62.1v, 05.40.1j, 73.23.2b, 98.80.Cq
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I. INTRODUCTION

Wave propagation and localization@1# in a random media
have been studied extensively for the last two decades@2–4#.
It is known that on the mesoscopic scale, classical w
propagation in a random media can be treated in a sim
way as electron transport in a random potential@4#. One
expects to see the diffusive, localization properties of cla
cal waves similar to electrons moving in the presence
impurities@5,6#. Wave propagation in curved spacetime is
important topic both in general relativity@7# and in semiclas-
sical gravity theory@8#. Classical scalar, electromagneti
and gravitational waves in a Friedmann-Robertson-Wa
~FRW! universe probe into the state of the universe a
manifest in basic cosmological processes such as struc
and defect formation, while that in the Schwarzschild a
Kerr spacetimes depicts high energy astrophysical proce
in black holes. The second-quantized version in terms
quantum fields gives rise to cosmological particle creat
@9# and Hawking radiation@10# which are important pro-
cesses in the early universe and black hole collapse. Re
progress in studying Planck energy processes, especiall
backreaction effect of quantum fields in curved spacetim
underscores the importance of including fluctuations in p
ticle creation@11,12# and the associated energy momentu
tensor of quantum fields@13–15#, and fluctuations and dissi
pation in the dynamics of spacetime@16–19#.

The program devoted to a quantum matter field and c
sical background spacetime with metric fluctuations m
tioned above is rather involved, because it requires the
culation of four-point functions@20# and demands a self
consistent solution@21,22#. In this paper, as a useful paralle
we attempt to address an easier problem, that of wave pr
gation in a stochastic spacetime. It is designed to highli
the effect of fluctuations in a background metric, while n
demanding an explanation of their source or their mut
influence. Stochastic components in the metric can be
duced by primordial gravitational waves, topological defe
in the sub-Planckian scale, or intrinsic metric fluctuations
background spacetimes at the Planck scale. Their detec
and analysis can provide valuable information about the s
of the early universe and black holes. As distinct from t
self-consistent treatment which is necessary for Planck s
570556-2821/98/57~6!/3474~10!/$15.00
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processes, wave propagation in curved spacetimes with
ric stochasticity is a test-field treatment. It is nonetheless
a useful probe for fluctuations in sub-Planckian proces
@such as the grand unified theory~GUT! scale phase transi
tion#, which could have left important imprints on the ob
servable universe@23#.

In this paper, we wish to study novel effects associa
with electromagnetic waves propagation in the Friedma
Robertson-Walker universes and the Schwarzschild sp
time with a small amount of metric stochasticity. Here w
employ a useful observation to link up with the more fam
iar subject of wave propagation in random media stud
extensively in condensed matter and mesoscopic phy
@5,6#. We first show the formal equivalence of the wa
equations in curved spacetimes with wave propagation
media in flat space and identify how the metric compone
appear in the permittivity function~or refractive index! of the
media@24#. Then we introduce metric fluctuations as a s
chastic component in the permittivity function and stu
wave propagation in a curved spacetime with metric stoch
ticity as if it were in a random media. In a spherically sym
metric spacetime the wave equation for the radial part can
written in the form of a Schro¨dinger equation in one dimen
sion. The effect of the curvature of spacetime appears in
potential term in the equation. Once the wave equation
reduced to the parametric form with a stochastic compon
the familiar methods used in quantum field theory in curv
spacetime and insights accumulated in mesoscopic phy
can work to each other’s advantage. We analyze in detail
cases with time-independent and time-dependent metric
chasticity and find that localization of electromagnetic wav
occurs in a metric with time-independent fluctuations.
cases where there is time-dependent randomness in the
ric, exponential instability in the particle production rate o
curs. These are new effects due exclusively to the prese
of metric fluctuations in the background spacetimes. For
Schwarzschild metric, time-independent randomness out
the horizon will decrease the total luminosity of Hawkin
radiation due to multiple scattering of waves. If the rando
ness reaches the horizon, it contributes to the fluctuation
the Hawking temperature. Time-dependent stochasticity
more complicated matter which requires a self-consist
analysis of the interaction between spacetime and the wa
3474 © 1998 The American Physical Society
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57 3475WAVE PROPAGATION IN STOCHASTIC SPACETIMES: . . .
or fields as encoded in fluctuation-dissipation relatio
@21,22#. This is to be investigated later as a part of the s
chastic backreaction problem mentioned above.

The paper is organized as follows: In Sec. II, we sh
how an electromagnetic wave propagating in curved spa
time can be related to that in flat space but with a refrac
index depending on the metric components@24#. This section
is meant to be a shortcut for readers not too familar w
curved spacetime physics to see the correspondence
wave phenonema.~Readers familiar with it can skip to Sec
III. ! In Sec. III, using the methods developed in Sec. II
study wave propagation in curved spacetime where the m
ric has a stochastic component. We use the Friedma
Robertson-Walker universe as an example to show that if
stochastic component of the metric is independent of t
and for a sufficiently smooth randomness, the Maxwell eq
tion has the same form as a conformally coupled scalar w
equation. If the randomness appears only in the radial di
tion, the radial wave equation has the same form as a o
dimensional Schro¨dinger equation in a random potential. B
cause the electromagnetic wave equation is conform
invariant, it bears the same form as in flat space. With
stochastic metric component we see that the wave loca
in space. In Sec. IV, we study the case of time-depend
~but space-independent! stochasticity in the metric, and sho
that parametric amplification takes place giving rise to c
mological particle creation. However, because of the me
fluctuations, the rate of this amplification increases expon
tially in time. The fluctuation in the particle creation rate
also discussed. In Sec. V, we study wave propagation
Schwarzschild spacetime with time-independent fluctuatio
We show that this can decrease the total luminosity
Hawking radiation due to multiple scattering of waves o
side the black hole. Fluctuations which involve an event
rizon will give rise to fluctuations in the Hawking temper
ture. In Sec. VI we summarize our findings and end with
short discussion.

II. CLASSICAL ELECTROMAGNETIC WAVES
IN CURVED SPACETIME

Maxwell’s equations for an electromagnetic field tens
Fmn in a gravitational field with metricgmn are given by

F ;n
mn50 Fmn;s1Fns;m1Fsm;n50, ~2.1!

where semicolons denote covariant derivatives with resp
to gmn . These equations can be cast in a form for wa
propagating in a permeable media in flat space@24#. The
correspondence betweenE,H ~the electric field and magneti
induction! andD,B ~the electric displacement and magne
field!, respectively, is given by

Di5e ikEk2~G3H ! i ,

Bi5m ikHk2~G3E! i , ~2.2!

where the dielectric and permittivity functions are
s
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e ik5m ik52~2g!1/2
gik

g00
,

Gi52
g0i

g00
. ~2.3!

A. Friedmann-Robertson-Walker universe

Let us now consider the Friedmann-Robertson-Wal
spacetimes with line elements

2ds252dt21a~ t !2R2@dx21s2~x!~du21sin2udf2!#,
~2.4!

wheres(x)5sinx, x, and sinhx correspond to closed, flat
and open cases, respectively. Herea(t) is the scale factor
andR is the radius at timet0 wherea(t0)51.

Using Cartesian coodinates,

dt5a~ t !dh,

x152Rt~x/2!sinucosf,
~2.5!

x252Rt~x/2!sinusinf,

x352Rt~x/2!cosu,

where h[*dt/a is the conformal time, andt(x/2)
5tan(x/2), x/2, and tanh(x/2) correspond to the closed, fla
and open cases, respectively. We can then write the F
line element in the form

2ds25a2@2dh21 f 2~r!~d i j dxidxj !#, ~2.6!

where

r5F(
i

~xi !2G1/2

52Rt~x/2! ~2.7!

and

f ~r!5S 1

11r2/4R2

1

1

12r2/4R2

D ,

where the column elements correspond to closed, flat,
open cases, respectively.

In this isotropic form of the metric, the Maxwell equa
tions are given by

¹3EW 52
d

dh
@ f ~r!HW #,

¹3HW 5
d

dh
@ f ~r!EW #,

~2.8!

¹•~ f EW !50,

¹•~ f HW !50,
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3476 57B. L. HU AND K. SHIOKAWA
where one can identify the dielectric and permittivity fun
tions as

e ik5m ik5 f ~r!d ik ,

Gi50. ~2.9!

Assuming a harmonic~conformal! time dependence of th
solutione2 ivh, we can write Eqs.~2.8! as

¹3EW 5 iv f ~r!HW ,

¹3HW 52 iv f ~r!EW ,
~2.10!

¹•~ f EW !50,

¹•~ f HW !50.

The symmetry in the relation~2.10! allows us to write this in
the more compact form

¹3FW 5v f ~r!FW ,

¹•~ f FW !50, ~2.11!

whereFW [EW 1 iHW .
For the FRW metric with spherical symmetry the so

tions can be expressed in terms of the vector spher
harmonicsYW lm(u,f) obtained by operating on the scal
spherical harmonicsYlm(u,f) with the invariant operator
2 ixW3¹ as

EW 5(
l ,m

F i

v f
Alm

E ¹3gl
E~r!YW lm1Alm

M gl
M~r!YW lmG ,

HW 5(
l ,m

FAlm
E gl

E~r!YW lm2
i

v f
Alm

M ¹3gl
M~r!YW lmG ,

~2.12!

where gl
E,M(r) are functions of radial distance only an

Alm
E,M are the coefficients. The superscriptsE andM denote

the electric and magnetic multipole field components,
spectively.

The fieldFW is given by

FW 5(
l ,m

F iAlm
E S 1

v f
¹3gl

E~r!YW lm1gl
E~r!YW lmD

1Alm
M S gl

M~r!YW lm1
1

v f
¹3gl

M~r!YW lmD G . ~2.13!

One can identify the (l ,m) component of a magnetic multi
pole fieldFW lm

M as

FW lm
M 5gl

M~r!YW lm1
1

v f
¹3gl

M~r!YW lm . ~2.14!

Writing the magnetic multipole scalar field function

cM~x!5Rr~x!gl
M

„r~x!…, ~2.15!
al

-

we obtain the radial equation forcM as

d2cM~x!

dx2
1@n22U~x!#cM~x!50, ~2.16!

wheren5Rv and

U~x!5
l ~ l 11!

s2~x!
. ~2.17!

B. Schwarzschild spacetime

The line element for the Schwarzschild spacetime is giv
by

2ds252S 12
2M

r Ddt21S 12
2M

r D 21

dr2

1r 2@du21sin2udf2#. ~2.18!

If we definer[r1M1M2/4r, we can write Eq.~2.18! as

2ds252 f 1~r!dt21 f 2
2~r!@dr21r2du21r2sin2udf2#,

~2.19!

where f 1(r)5122M /r and f 2(r)5r /r. Furthermore, a
spatial coordinate transformation

x15rsinucosf,

x25rsinusinf, ~2.20!

x35rcosu

brings Eq.~2.19! into a Cartesian form

2ds252 f 1~r!dt21 f 2
2~r!@~dx1!21~dx2!21~dx3!2#.

~2.21!

Considering this spacetime acting as a medium, the co
sponding dielectric and permittivity functions are express
in the same form as in Eqs.~2.9! with

f ~r!5
f 2~r!

@ f 1~r!#1/2
. ~2.22!

In such a medium, the radial equation for the magne
multipole field is@25#

d2cM~r * !

dr* 2
1@v22U~r * !#cM~r * !50, ~2.23!

wherer * 5r 12M log(r/2M21) is the Regge-Wheeler~tur-
toise! coordinate, and the potential term is given by

U~r * !5
l ~ l 11!

r 2~r * !
F12

2M

r ~r* !G . ~2.24!



s-
ing
ns

flu

th

th
n

it

c-

vec-
self-
use
ect

za-

r in

the
le.

he

at
ized

57 3477WAVE PROPAGATION IN STOCHASTIC SPACETIMES: . . .
III. WAVE PROPAGATION IN CURVED SPACETIME
WITH METRIC STOCHASTICITY

Consider the metric as containing an averaged~determin-
istic! part gmn

(0) and a small fluctuating~stochastic! part hmn :

gmn5gmn
~0!1hmn ; ~3.1!

then, from Eqs.~2.3!,

e ik5m ik52
~2g~0!!1/2

g00
~0!

g~0!ik1
~2g~0!!1/2

g00
~0! S hi j 2

1

2
hg~0!ikD

5e ik
~0!1de ik , ~3.2!

where we have used the synchronoush0050 gauge@26#. The
tracelessh[( i 51

3 hi
i50 gauge further simplifies the expre

sion and we obtain the correlation function of the fluctuat
part of the refractive index in terms of the metric fluctuatio
as

^de i j ~x!dekl~x8!&5
@2g~0!~x!#1/2@2g~0!~x8!#1/2

g00
~0!~x!g00

~0!~x8!

3^hi j ~x!hkl~x8!&. ~3.3!

For flat spacetime, it has the simple form

^de i j ~x!dekl~x8!&5^hi j ~x!hkl~x8!&. ~3.4!

We see metric fluctuations can thus be represented as
tuations in the optical index.

A. Time-independent metric stochasticity

In the rest of this section, we consider cases in which
permitivity function contains only spatial disorder.

If we assume that the background metric as well as
stochasticity are both isotropic, we can write the correspo
ing refractive index as

e ik5m ik5 f ~xW !d ik ,

Gi50, ~3.5!

where f (xW ) is a random variable.
Assuming a harmonic time dependence of the field w

frequencyv, Eq. ~2.11! with source termJW becomes

@LW 2v f ~xW !#FW 5JW , ~3.6!

whereLW [¹3. We define the matrix-valued Green’s fun
tion Ĝ(xW ,xW8) as

Fi~xW !5E d3x8Ĝik~xW ,xW8!Jk~xW8!. ~3.7!

Ĝ(xW ,xW8) obeys the equation

@e i jk¹ j2v f ~xW !d ik#Ĝkm~xW ,xW8!5d imd3~xW2xW8!. ~3.8!

We simply write Eq.~3.8! as
c-

e

e
d-

h

@LW 2v f ~xW !#Ĝ~xW ,xW8!5d3~xW2xW8!. ~3.9!

The disorder-averaged Green’s function is defined by

G~xW ,xW8![^Ĝ~xW ,xW8!&5^@LW 2v f ~xW !#21d3~xW2xW8!&. ~3.10!

If we define the mean field Green’s functionG(0)(x,x8) as

G~0!~xW ,xW8![@LW 2v^ f ~xW !&#21d3~xW2xW8!, ~3.11!

we obtain the Lippmann-Schwinger equation

G21~xW ,xW8!5G~0!21~xW ,xW8!1vS~xW ,xW8!, ~3.12!

which defines the self-energyS(xW ,xW8). The precise form of
S(xW ,xW8) can be obtained iteratively.

Averaging Eq.~3.6! gives

^LW FW &2v^ f ~xW !FW &5JW . ~3.13!

DefineFW [ f FW 5DW 1 iBW ; then, from Eq.~3.13!,

v^FW &5^LW FW &2JW

5E d3x8@G~0!21~xW ,xW8!1vS~xW ,xW8!2LW #^FW ~xW8!&,

~3.14!

^FW ~xW !&5E d3x8@^ f ~xW !&d~xW2xW8!2S~xW ,xW8!#^FW ~xW8!&.

~3.15!

We see that the complex electromagnetic displacement
tor has a nonlocal dependence on the media due to the
energy term. We can thus develop a formalism making
of techniques from quantum field theory to study the eff
of dissipation, higher order correlation, screening, etc.~see,
e.g.,@27#!. This is a subject for future investigation.

Further simplification arises in cases when the polari
tion effects are negligible. From Eqs.~2.10!, we obtain

¹2EW 1v2f 2~xW !EW 1¹ logf ~xW !3¹3EW 1¹@~EW •¹!logf ~xW !#

50. ~3.16!

Under the conditions that the inhomogeneity and disorde
f are smooth, namely,vR@1 andvl@1, wherel is the
characteristic length scale of the disorder, the third and
fourth terms representing polarization effects are negligib
Equation~3.16! then reduces to

¹2EW 1v2f 2~xW !EW 50. ~3.17!

Then each component satisfies the scalar wave equation

¹2f1v2f 2~xW !f50. ~3.18!

Now consider the conformal type of stochasticity only in t
spatial part of the metric of the form1

1The conformal invariance of Maxwell’s equations implies th
the conformal fluctuations in the spacetime metric can be factor
away, and hence they do not give rise to particle creation@28#.
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3478 57B. L. HU AND K. SHIOKAWA
f ~xW !5 f ~r!egs~xW !, ~3.19!

wheres(xW ) is a stochastic function andg is a small param-
eter. Expanding it with respect tog as

f ~xW !5 f ~r!@11gs~xW !#, ~3.20!

Eq. ~3.18! becomes

¹2f1v2f 2~r!f12gv2f 2~r!s~xW !f50. ~3.21!

In a flat FRW spacetime,f (r)51, or forr!R in closed and
open cases,f (r);1. In this region, all three cases are d
scribed by the equation in flat spacetime

¹2f1v2f12gv2sf50. ~3.22!

The corresponding equation for the Green function is

~¹21v212gv2s!G~xW ,xW8,v!5d~xW2xW8!. ~3.23!

The disorder-averaged Green function̂G(kW ,kW8,v)&
5G(kW ,v)dkk8 is known to have a form

G~kW ,v!5
1

v22kW21 i
v

l M

~3.24!

in the leading order in (v l M)21, wherel M is an elastic mean
free path. For a Gaussian white noise~local! random variable
s(xW ), l M52p/gDv4, whereD is the strength of disorde
defined by^s(xW )s(xW8)&5Dd(xW2xW ).

We also define the intensity

I ~xW !5^f* ~xW !f~xW !& ~3.25!

and the intensity-intensity correlation function

C~xW ,xW8!5^f* ~xW !f~xW !f* ~xW8!f~xW8!&C , ~3.26!

whereC denotes the cumulant. As shown in@29#, we can
evaluate the disorder-averaged intensity as

^I ~xW !&5
3

16p2l MuxW u
. ~3.27!

If we confine the disorder in a slab of thicknessL and
cross-sectional areaA, then, forr[uxW2xW8u, l M ,

C~xW ,xW8!5^I ~xW !&^I ~xW8!&S sinvr

vr D 2

e2r / l M. ~3.28!

For r . l M , diffusion modes interact with each other and gi
rise to a long range correlation with a power law decay@30#.
In the Schro¨dinger equation analogy, this corresponds
conductance fluctuations in metals@31#.

B. Radial disorder and localization

Here we also start from the conformal type of metric s
chasticity but assume that the stochasticity is only in
radial direction
-
e

f ~x!5
1

11t2~x/2!
egs~x!, ~3.29!

whereg is a small parameter~such kind of randomness ma
arise from averaging out more inhomogeneous types of
domness in a small spatial region due to the spherically s
metric nature of the underlying curved spacetime!.

If s(x) varies slowly in space (s8!s), the wave equa-
tion in the radial direction, Eq.~2.16!, is replaced by

d2c

dx2
1Fn2~11gs!22

l ~ l 11!

s2~x!
Gc50, ~3.30!

where we simply usec for cM. This has the same form as
scalar wave equation in media with a random refractive
dex.

For the closed FRW universe, the angular-momentu
induced potential term in Eq.~3.30! is a single well potential
which becomes infinitely high at the origin andx5p. Then
the wave is necessarily localized around the bottom of
well in this coordinate. On the other hand, for the flat a
open FRW universe cases, the potential term becomes
ymptotically flat as the radius becomes infinite. In the
cases, the stochastic term plays a significant role in the tr
port property of the wave. If we expand the second term
Eq. ~3.30! into n212gn2s around the perturbation param
eterg and note the positivity of the original second term, w
see that Eq.~3.30! describes a Schro¨dinger equation with a
fixed positive energy. As such , we can write Eq.~3.30! as

2
d2c

dx2
1V~x!c5Ec, ~3.31!

whereE[n2 andV(x)[22gn2s1@ l ( l 11)/s2(x)#.
For the flat or open universes, the potential barrier v

ishes in the asymptotic limit. The property of the eigenfun
tion in this case is well studied from the context of electr
transport@4–6#. It is known that in one dimension for an
value of E, the eigenstate of Eq.~3.31! localizes @1,4#.
Namely, all eigenfunctions decay exponentially with ra
given by the Lyapunov exponent@see Eq.~3.34! below#. If
the correlation radiusxc of the fluctuating part of the poten
tial V(x) is smaller than the ‘‘wavelength’’2 (xc!n21), the
potential can be considered as the white noise type

^V~x!V~x8!&54g2n4^s~x!s~x8!&54g2R4v4Dd~x2x8!,
~3.32!

where we have assumed a delta function type of correla
with the strengthD for the random potentials(x).3

The cumulative density of statesN(v) has the following
form for the white noise potential with correlation given
Eq. ~3.32! @32#:

2The ‘‘energy’’ E5R2v2 in Eq. ~ 3.31! is dimensionless and so i
the angular variablex.

3Hereafter we absorbg in the definition ofD.
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N~v!5
~2R2v2D !1/3

p2

3
1

Ai2@2~Rv/2D !2/3#1Bi2@2~Rv/2D !2/3#
,

~3.33!

where Ai and Bi are two independent Airy functions whic
satisfy the equationy92xy50.

The asymptotic behavior of the solution shows an ex
nential growth characterized by the Lyapunov exponentlv

defined by@6#

lv5 lim
x→`

lv~x!5
1

2Lloc~v!
, ~3.34!

whereLloc(v) is the localization length given below and th
wave function grows as

c~x!→elv~x!x, ~3.35!

asx increases.
In the case of white noise potential given in Eq.~3.32!,

the Lyapunov exponent has the form@6#

lv5
Ap

2
N~v!E

0

`
Aye2y2/122~Rv/2D !2/3ydy. ~3.36!

The entire curve is plotted in Fig. 1. We obtain th
asymptotic behavior of the localization length

Lloc~v!;H ~D/Rv!2/3 for v→0

1/D for v→`.
~3.37!

We see that in the long wavelength limitv→0, the wave
function delocalizes. This is a direct consequence of the m
tiplicative nature of the stochasticity for classical wa
propagation in random media@4#.

IV. WAVE PROPAGATION IN SPACETIMES WITH
TIME-DEPENDENT METRIC STOCHASTICITY:

PARAMETRIC AMPLIFICATION AND PARTICLE
CREATION

Because of the conformal invariance of Maxwell’s equ
tions, time-dependent fluctuations in the scale factor can
transformed away~in a conformally related coordinate!. As-
suming spatial homogeneity, the time dependence of
metric is uniform in space, and we start from the metric w
conformal fluctuations similar to Eq.~3.19!, but let the spa-
tial part of the metricf acquiring a time dependence.

If the background spacetime curvature is negligible,
corresponding dielectric and permeability functions take
form

e ik5m ik5h~h!d ik ,

Gi50, ~4.1!
-

l-

-
e

e

e
e

where we write the time-dependent factor ash(h) instead of
f (h) for clarity. Assumingh(h) has the exponential form a
in Eq. ~3.19!,

h~h!5en~h!, ~4.2!

then Maxwell’s equations become

¹3EW 52
d

dh
@h~h!HW #,

¹3HW 5
d

dh
@h~h!EW #,

~4.3!

¹•EW 50,

¹•HW 50.

From this we obtain a wave equation forE,

¹3¹3EW 52
d

dhS h~h!
d

dh
h~h!EW D ~4.4!

and a similar one forHW .
Since EW has no divergence, for a slowly varying nois

such thatuḣ(h)u!vh(h), wherev is the frequency ofEW ,
the above equation takes the simpler form

d2

dh2
EW 2

1

h2
¹2EW 50. ~4.5!

In momentum space, it reads

d2

dh2
EW k1

k2

h2
EW k5

d2

dh2
EW k1k2e22n~h!EW k50. ~4.6!

Expanding in terms ofn gives

d2

dh2
EW k1@k222n~h!k2#EW k50. ~4.7!

FIG. 1. The localization length is plotted as a function of fr
quency.R andD are set equal to 1.
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This equation should be compared to Eq.~3.31! with l 50 by
identifying V52nk2 andE5k2.

Following the argument from Eq.~3.31! to Eq.~3.37! and
noting that the time coordinateh plays the role of space
coordinatex here, we see the qualitative features of solutio
to Eq. ~4.7!: They show an exponential parametric ampli
cation @33# with the rate characterized by the Lyapunov e
ponentlh introduced in Eq.~3.34!,

lh5 lim
h→`

lh~h!5
1

2Lh~k!
, ~4.8!

andEW k grows,

EW k→EW k~h50!elh~h!h, ~4.9!

as h increases. The characteristic time scale for parame
amplificationLh(k) is equivalent to the localization length i
Eq. ~3.34! under theh→x correspondence. For a Gaussi
white noisen with correlation^n(h)n(h8)&5Dd(h2h8),
the asymptotic behavior ofLh(k) is given by

Lh~k!;H ~D/k!2/3 for k→0

1/D for k→`.
~4.10!

It is well known that the cosmological particle creatio
problem in a FRW universe can be cast into a o
dimensional wave scattering problem@9# by reading the time
variable h as a space variable and adopting the followi
boundary conditions:

EW→H e2 ikh for h→2`

ae2 ikh1beikh for h→`.

In this analogy, the reflection coefficientb ~or, rather,ubu2)
in the wave scattering picture gives the parametric amp
cation factor and, in second quantization, the particle c
ation rate. Since in this picture the transmission coefficiet
corresponds to the incoming flux which is normalized to
the effect of localization translates to an exponential incre
of the particle creation rateb ~so isa):

b→elh~h!h. ~4.11!

More explicitly, if we compare Eq.~4.11! with the corre-
sponding scattering problem in which the wave packe
incident fromh5` and transit toh52`

EW→H te2 ikh for h→2`,

e2 ikh1reikh for h→`,

we see that the particle creation rateN5ubu25ur /tu2 in an
expanding universe measures a dimensionless resistan
the wave transport picture. The transmission coefficient i
random potential is a multiplicative quantity which decrea
exponentially with length. This implies that the logarithm
the resistance is an additive quantity and its average in le
becomes constant in the thermodynamic limit and he
nonfluctuating. The average of the resistance itself~hence the
average particle creation rate! is also known to show an ex
ponential increase in length~in conformal timeh) with the
s

-

ic

-

-
-

,
e

s

in
a
s

th
e

rate characterized bylh . We can obtain the asymptotic be
havior of the average ofN in the high energy limit as fol-
lows:

^N&5^ubu2&5
1

2
~e2h/Lh11!. ~4.12!

Hence the fluctuations of̂N& becomes

DN25^N2&2^N&25
1

8
e4h/Lh~e2h/Lh21! ~4.13!

for h@Lh, whereLh51/D is the characteristic particle cre
ation rate which appeared in Eq.~4.8!. The exponential di-
vergence ofDN2 results in the non-self-averaging nature
the observable.

V. HAWKING RADIATION FROM A FLUCTUATING
BLACK HOLE

In this section, we study the effect of metric stochastic
in the Schwarzschild spacetime and discuss how it affects
Hawking radiation@10#.

In the presence of metric stochasticity, the Helmho
equation acquires a fluctuating component in the refrac
index similar to the Friedmann-Robertson-Walker unive
case. Assuming the same conformal form of stochasticity
in Eq. ~3.19!, but in a radial direction only for simplicity, the
Helmholz equation in this case has the following form:

d2cM~r * !

dr* 2
1@v212s~r * !v22U~r * !#cM~r * !50,

~5.1!

wheres(r *) is a stochastic variable as a function ofr *. If
we assume that the metric stochasticity is restricted in
finite region2L,r * ,0, the incoming flux from future in-
finity suffers backscattering not only from the potent
U(r *) but also from the randomness. The absorption pro
ability Gv is thus reduced by a factor ofe2lvL wherelv is
the Lyapunov exponent which appeared in Eq.~3.34! with
R51.

Hence the total luminosity has the form

L5
1

2p(
j 50

`

~2 j 11!E
0

`

dvvG0e2lvLY ~e8pMv21!.

~5.2!

The more interesting case is when the fluctuating reg
contains the event horizon such that the stochasticity indu
horizon fluctuations@34–36#. For simplicity, we restrict the
arguments to the scalar wave case in the rest of the sec
The scalar wave in the metric~2.19! satisfies the equation

H Frr ~r!S 12
2M

r ~r! D
1/2 d

drG2

1v2r 4~r!J f~r!50.

~5.3!

This takes on a simple form if we define the coordinatex
such thatdx5 f (r)dr/r2,
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F d2

dx2
1v2r 4~x!Gf~x!50. ~5.4!

If the metric in Eq.~2.19! has the conformal type of sto
chasticity in the form f 1(r)e2s(r) and f 2(r)en(r), where
s(r) and n(r) are two independent random variables w
zero mean, the equation corresponding to Eq.~5.3! becomes

H Frr ~r!S 12
2M

r ~r! D
1/2

es~r!2n~r!
d

drG2

1v2r 4~r!J f~r!50.

~5.5!

We can absorbs(r) by choosing the coordinatex such that
dx5 f (r)en(r)2s(r)dr/r2. Then we have

F d2

dx2
1v2r 4~x!e4n~r!Gf~x!50. ~5.6!

At the horizon, only an incoming wave exists. So the so
tion of Eq. ~5.6! will be

f;exp@2 ivr s
2e4n~rs!x#, ~5.7!

wherer s[2M andrs[M /2. This mode function behaves a

f→12 ivr s
2e4n~rs!x→11

ivr s
2e4n~rs!

r
, ~5.8!

as x→1 or, equivalently,r→`. Here we assumed that th
stochastic variabless(r) andn(r) vanish at infinity.

Far from the horizon, the asymptotic flatness of the spa
time allows us to write Eq.~5.3! as

H Frr ~r!
d

drG2

1v2r 4~r!J f~r!50, ~5.9!

with the solution

f~r!5
1

Avr
@AJ1/2~vr!1BJ21/2~vr!#

→A2

p FA1
B

vr G ~for vr!1). ~5.10!

Comparing Eq.~5.10! with Eq. ~5.8!, we obtain the follow-
ing absorption coefficient for low energy scattering of t
scalar wave:

Ga512U11 i
B

A

12 i
B

A

U 2

→4v2r s
2e4n~rs! ~ for v→0!.

~5.11!

From Eq.~5.11!, the absorption cross section for this proce
is
-

e-

s

sa5
p

v2
Ga

→4pr s
2e4n~rs! ~ for v→0!

54pr s
2@114n~rs!18n2~rs!1•••#. ~5.12!

The average absorption cross section is then

^sa&54pr s
2132pr s

2^n2~rs!&5AH18AH^n2~rs!&,
~5.13!

where AH[4pr s
2 is the area of the event horizon and w

assume that all the higher moments ofn vanish. It is known
that the low energy absorption cross section of the sc
wave gives the area of the event horizon for a large clas
black hole solutions@37#.

Therefore, we expect that the second term gives the h
zon area fluctuations

dAH58AH^n2~rs!&, ~5.14!

which induce fluctuations in the Hawking temperature,

dTH

TH
54^n2~rs!&. ~5.15!

VI. DISCUSSION

In this paper, we have studied the effect of metric flu
tuations on wave propagation in flat and curved spacetim
We saw that for electromagnetic waves the effect of me
stochasticity is equivalent to that of a random optical ind
With this analogy, we can calculate the correction to t
scattering cross section of the electromagnetic wave
curved spacetime with metric fluctuations. We also see
intensity fluctuations due to multiple scattering. If we assu
that classical spacetime is effectively emerging from the
derlying quantum fluctuations by coarse graining, it see
reasonable to assume that the stochastic part reflects the
metry of the background spacetime. When the stochastic
of the metric has only a radial dependence, the problem
further reduced to a one-dimensional transport problem
which Anderson localization is manisfest. For tim
dependent but space-independent stochasticity, the par
creation rate shows exponential instability in conformal tim
Furthermore, an analogy with mesoscopic transport in
dimension predicts large fluctuations in the particle creat
rate due to its non-self-averaging nature. For Schwarzsc
spacetime, time-independent stochasticity induces fluc
tions of the event horizon and, correspondingly, Hawki
temperature.

The restrictions we made on the separate space and
dependence of the stochastic metric are mainly for techn
simplicity. We expect a qualitatively similar phenomenon
the more general cases, where space- and time-depen
metric fluctuations both exist. Certain modifications are e
pected such as dissipative effects on localization for a tim
dependent random potential.

Possible origins of the metric fluctuations have been d
cussed recently. Primordial stochastic gravitational wa
are currently under intense investigation@23,38,39#. Stochas-
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ticity used in such a context is different from that in stoch
tic semiclasical gravity theory@12,16–18#. In the former it
refers to~quantized! linear perturbation of the metric obey
ing Einstein’s equations, whereas in the latter metric fluct
tions are induced by fluctuations in quantum matter fiel
which obey the Einstein-Langevin equation, as a general
tion of the semiclassical Einstein equation governing
mean values of the metric and matter stress energy. The
ive replacement of the stress-energy tensor with its expe
tion value leads to some pathological results such as
violation of the weak energy condition of the Einstein equ
tion @13#. A possible cure may be obtained by including t
smearing term in the classical background spacetime@15#.
Self-consistency between the classical gravitation and
quantum matter sectors also points to the inevitable dyna
role of the metric and field fluctuations@11#. From the astro-
physical viewpoint, cosmic string network may provide t
source of the stochastic gravitational wave backgrou
which lies in the observable frequency range of the La
Interferometric Gravitational Wave Observatory~LIGO! de-
tector@23#. The discussions and results in this work are m
of a generic nature insensitive to the origin of particu
sources.

Ford argued that light cone fluctuations based on line
ized quantum gravity induce black hole horizon fluctuatio
s

m

he
-

-
,

a-
e
a-
a-
e

-

e
ic

d
r

e
r

r-
s

@34#. He suggests that the horizon fluctuations are sm
enough to validify the semiclassical derivation of Hawkin
radiation. Casheret al. argue that the semiclasscal approx
mation breaks down close to~but at much larger than the
Planck scale from! the horizon@36# due to the interaction
with the atmosphere of the horizon. Sorkin’s argument
based on Newtonian mechanics and its vadility for gene
relativistic cases remains to be shown@35#. Since we as-
sumed a static metric stochasticity for the Schwarzsch
spacetime, direct comparison with their results is not ob
ous. Nevertheless, we believe our arguments have ce
degrees of generality, knowing that randomness can a
from the imhomogeneity of a static spacetime. These iss
are currently under investigation.
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