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Colliding waves in metric-affine gravity
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We generalize the formulation of the colliding gravitational waves to metric-affine theories and present an
example of such kind of exact solution. The plane waves are equipped with five symmetries and the resulting
geometry after the collision possesses two spacelike Killing vedi88556-282(198)02204-9

PACS numbe(s): 04.50+h, 03.50.Kk, 04.20.Jb

[. INTRODUCTION With propagating nonmetricitQQ,;, two types of charge
are expected to aris@ne dilation chargeelated by Noether
In recent years, the collision of plane-fronted gravitationalprocedure to the trac®: =Q,*/4 of the nonmetricity, called
waves possibly coupled with electromagnetic waves haghe Weyl covectoQ=Q,dx. It is the connection associated
been extensively studiefl—4]. Because gravity is always with gaugingR* instead ofU(1) for the Maxwell potential
attractive, it was expegted tha_t focusing of the waves W0U|¢=Aidx‘; nine types ofshear chargeelated to the remain-
occur, and one of the interesting questions is hOW much fol'ng traceless piec®,s:=Q,s— Q0. Of the nonmetricity.
cusing does general relativity predict. Within this frame'fUnder the local Lorentz group, the nonmetricity can be
work, tsi,;[;ong fr?/CltJSr'ng ivr\lloulldri?ippezls\t; k::}y thel (:ie\;]elohpr\r)enbt %Yecomposed into four irreducible piecedQ, 5, with
spacetime curvature singuanties. iany solutions have Been_, , 3 4 the Weyl covector is linked t4'Q 5= Q0,4

resented so far, describing the collisions of plane-fronte _ . : ? .
P g b The following natural step in these lines is to elucidate

gravitational and electromagnetic waves, and quite a few of , , ! :
them do develop Cauchy horizons. the behavior of interacting plane waves. Of particular

The spacetimes describing the interaction region producef§lévance is the head-on collision of two plane waves,
after the collision of plane gravitational waves contain twol-€-» the colliding wave problem. It is assumed that in
spacelike Killing vectors and there exist several generatingh€ corresponding spacetime, the two waves approach each
techniques to obtain solutions with these symmetries. All théther, from opposite sides, in flat Minkowski background;
techniques developed for stationary axisymmetric spacetimedfter the collision, a new gravitational field evolves, which
can be applied to generate cylindrically symmetric spacesatisfies certain continuity conditions. The plane waves are
times, in particular, colliding plane waves. equipped with five symmetries, while the geometry resulting

On the other hand, if one gauges the affine groupafter the collision possesses two spacelike Killing vectors.
and additionally allows for a metrig, then one ends The main pruporse of this paper is to generalize the formu-
up with the metric-affine gauge theory of gravitdAG) [5]. lation of the colliding waves to MAG theories and to present
The four-dimensional affine group(4,R) is the semidirect an example of such kind of solution. We will take advantage
product of thetranslation group R* and thelinear group  of the fact that certain MAG models can be reduced
GL(4R)=R"®[T X& SL(4 R)]. This spacetime encom- to aneffectiveEinstein-Proca systeii®]. Maciaset al. [10],
passes two different post-Riemannian  structuresagnd Socorro etal. [11] mapped the Einstein-
the nonmetricity one-fornQ,s=Qj,p dx' and the torsion  \axwell sector of the dilaton-gravity coming from low en-

two-form T*=3T;;“dx/\dx. In the Yang-Mills fashion, ergy string theory, to MAG, thus finding soliton and multi-
gauge Lagrangians quadratic in curvature, torsionpole solutions.

and nonmetricity are considered. One way to investigaté The plan of the paper is as follows. In Sec. Il the
the potentialities of such models is to look feractsolu-  guadratic MAG Lagrangian is examined. In Sec. Il the
tions. ) o generalization of the colliding waves concept to MAG is

~ The search for exact solutions within the MAG has beenyeyeloped. In Sec. IV a colliding wave solution in MAG is
pioneered by Tresguerrg8,7] and by Tucker and Wan@].  presented. In Sec. V the results are discussed.
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pieces, then a general quadratic Lagrangian in MAG reads oot
O %
3 I
1 / Interaction AN
Vmac =5 20 RPN p— 2N+ T\ Z al''T, u=1/ i \w=1
/ AN

4 s N
+2| > cVQup | NON* TF / N

1=2

4 of collision

+ Qaﬁ/\* ( lzl bEI)Qaﬁ)

Flat region IV

6 5 FIG. 1. The four regions of the spacetime: Region IV where the
1 waves propagate is flat. The impulsive gravitational waves propa-
_ ZRYBA* (1 (1) -
> R*BN ( 2 W 'W, 5+ E Z aﬂ) (2.1) gate along the null boundaries=0 andu=0, separating regions II
and IV, and Ill and 1V, respectively. In region Il, observers see the

In the above, the Minkowsi metric i8,z=diag(—+ + +), shower of pure gravitational radiation following the wave front
7:=*1 is the volume four-form and the constants propagating along =0. Symmetrical consideration applies in re-
ag,---ag, by, --by, Cp,C5,C4, Wy, - -Wg, 21, - - Z5 are di- gion Ill. The collision occurs at0,00 and the interaction is de-

mensionless. In the curvature square term we have introicribed by region I.
duced the irreducible pieces of the antisymmetric part

W,5:=Rop and the symmetric paZ,;: =R,z Of the where we introduced the abbreviations

curvature two-form. Again, iZ,5, we meet a purely post 6

Riemannian part. The segmental curvaturé Zup - 2 wD _ E 2.
=R,"9,4/4=0,5dQ has formally a similar structure as the ! + Zap! '
electromagnetic field strength=dA. (2.7)

Let us recall the three general field equations of MAG,
see[5] Egs. (5.5.3—(5.5.5. Because of its redundancy, we  Finally, the three-form&,, andE“,; describe the canoni-
omit the zeroth field equation with its gauge momentumcal energy-momentum and hypermomentum currents of the

M<£_The first and the second field equation read gauge fields themselves. One can write them as foll&iis
DH,~E.=2., 22 E.=e.Vinc T (€JTA)/\H g+ (e, JRg"AHE,
DH®;—E“=A“ (2.3 1
B B B
+ 5 (ealQp)MP7, 29

whereX. , andA“; are the canonical energy-momentum and
hypermomentum current three-forms associated with matter.
We will consider thevacuum casawith =,=A%;=0. The E“=—9%\Hz—M%g, (2.9
left-hand sides of Eqg2.2) and (2.3 involve the gravita- _ _ .

tional gauge field momenta two-fornhj;a andHaB (gravita- Whereeaj denotes the interior product with the frame.
tional “excitations”). We find them, together witM *2, by

partial differentiation of the Lagrangiai.l): I1l. COLLIDING WAVES IN MAG
N 207VMAG This work, as was stated previously, is concerned with
T 0Qus fields interpretable as a colliding wave solution. With this

goal in mind, we extend the definition of vacuum colliding
waves, defined by Erngt al. [12] to MAG theories.

The set ofcolliding wave solutions in metric-affine grav-
ity is described by the metric

4

- _ E{*( E bl(l)Qaﬂ
=1

+Cya/\*WT)
K

1
+c319(“/\*(2)T5)+Z(c3—c4)g“ﬁ* T}, (2.9 g=2g(u,v) du dv+g,p(u,v)dx3dx®, ab=1,2,
(3.1

_ Nwac which only depends on the advanced and retarded time
oT® =t—z andv:=t+z, respectively. The domain of the coor-
A dinate charts consists ok{y) e R? and (u,v) e R?; it is the
E g /\ﬂﬁ” union of four continuous regions:*{(u,v):0<u<1,0<v
ap <1}, I ={(u,v):u<0,0sv <1}, Il ={(u,v):0=su<lp
<0}, IV: ={(u,v):u<0p <0}, see Fig. 1.
(2.9 As for the torsion and nonmetricity field configurations,
we concentrate on the simplest nontrivial case with shear.
He = &VMAG aO W4 2@ According to its irreducible decompositideee Appendix B
o IR, RE  2c” s A A of [5]), the nonmetricity contains two covector pieces,
(2.6)  namelyQ,;=Q g,z the dilation piece, and

ar

E a7,
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4 1 DQ,z=27,5, (3.7
3 — af ap

( )Qaﬁ_§ 19(aeB)JA_ ZgaﬁA '

it merely consists of one irreducible pieced@Q=2,"
with A:=9%€#] G5, (3.2 =@z, 7. ConsequentlyQ serves as potentialfor (V7 Y in

) ] the same way a8 for F=dA. In addition, the third part of
a proper shear piece. Accordingly, our ansatz for the NONEq. (3.7) read5(3)(DQa,3)=2(3)Zaﬁ, where

metricity reads
w=20Q,5+ Q5. (3.3 3 2 1

The torsion, in addition to its tensor piece, encompasses a
covector and an axial covector piece. Let us choose only the

: S M 1
covector piece as nonvanishing: with &= Eﬁa/\eﬁj z”aﬂ_ (3.9
1 .
Te=@Te=_92AT, with T:=e,|T® (3.9 o .
3 The similarity in structure of Eq(3.2) and Eq.(3.8) is ap-

, . parent. Indeed, provided torsion carries only a covector
Thus we are left with the three nontrivial one-for@s A, piece, see Eq3.4), we find

and T. We shall assume that this triplet of one-forms share
the spacetime symmetries, i.e., they depend on the variables 1
u andv only. The metric and the triplet fields have to be 5= =dA, (3.9
continuous over the whole domain. 6
In region IV, a subregion of the Minkowski space, it is

required that i.e., ®Q,, acts as a potential fof¥)Z 5.
In this way, the problem is reduced to knowing the metric
9,,(U0)=0,,(0,0, Q=Qo, A=Ay, T:TO(’S 5 (coframe and the fuctiorp. Thus, the most general form of

our fields compatible with colliding wave spacetime struc-

which by scale transformations can be brought to standarf'"® iS given by[13,14:

Minkowski metric and vanishing constants. In region Il, the

metric components and the triplet of one-forms depends only p=p(U,v),
onwv, ie., 9,,=9,,(0v), Q=(0v), A=A(Op), andT
=T(0p). In region 1l these fields are functions of the co-
ordinate u, i.e., g,,=9,,(u,0), Q=(u,0), A=A(u,0),
and T=T(u,0). In region I, which is occupied by the scat- +W,opWeq) +2W,4VapVeq,  region |,
tered null fields, the metric components and the triplet are

functions of bothu andv coordinates.

Chvea= 2V U apUcat 2% 5(UapVeat VapUed

The metric, the torsion and the nonmetricity fields in re- p=p(v), Cipeg=2WoUapUca, region Il,
gions Il and Ill depend only on one variable, i.a.andv,
respectively. Each of these regions is equipped with five p=p(U), Clpeg=2%,VaVeq, region I,
Killing vectors related with the metric. Moreover, the con- (3.10

formal Weyl tensor part corresponding to the Riemannian

part possesses a quadrupole null e|.gend|rect|0n belng .Covﬁl_herec*b 4 is the conformal Weyl tensor corresponding to
riantly constant. These two properties are characteristic o . —abed = .

opN waves. In region I, we have a pp wave, depending onl)}he Riemannian part of the curvature tensor, and with

on v, propagating to the right, while in region Ill the pp

wave, depending om, propagates to the left. Both waves W= MMy — MMy — Kl + Kl 4,

collide at the evenu=v =0, and from this event arises the
interaction region 1. In our case the torsion and nonmetricity
depend in the various regions considered in the same way on
u andv as the metric. Therefore, our situation describe also
torsional and nonmetricity waves which propagate along null Uap= _|aﬁ'qb+ | bﬁ'qa, (3.11
directions in regions Il and Il and collide in region I.

The following ansatz turns to be compatible with the -
above considerations: wherem,, my, k,, andl, are null tetrads. In the next sec-

tion we present an example of these kind of exact solutions.

Vap=KamMy—Kkpm,

5 Kk k
Q=Kop(U,v)92=2A= T, (3.6)
ki kg IV. COLLIDING WAVE SOLUTION IN MAG
Here we introduced a second functipfu,v) which has to Let us consider a MAG solution in interaction region I,
be determined by the field equations of MAG. i.e., the region arising after the collision of the waves. The

If we take the trace of the zeroth Bianchi identity coframe in the coordinatesifv,X,y) reads
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5 du du A rather weak condition, which must be imposed on these
9= \E(U—V) coeffitlsients, prescribes a value for the coupling congbant
namely,
- du dv
1_ agk+2c4k
9=\ U*V) 4:0T042' with k:=3ko—ky+2k,, (4.9
5 A 5 ) and the following relation fog,:
9= \/=[dx+j“(uv —UV)“dy]
D 2
, (koN)
ql =KZ4 2a0 . (41@

93= \/%(Uv—UV){j dx-+[ (xm
+a(uVv-oU))?+j?]dy (4.1

with two unknown functions. (u,v),A(u,v). Consequently,
the metric is given by

dudv 1 . - _
g(|)=42Uv+§{(UU—UV) {jdx+(j°+[xm+a(uVv

—vU)P)dy}2+ Aldx+j%(uv —UV)2dy]?, (4.2
where
U:=m, V:=P,
S=[a(uV—oU)+«km]?+j3(uvV+uvU)?,
a?=m?k’—j?—qi,
A=a%(uv+UV)2, (4.3

The nonmetricity and the torsion read as follows:

5(uV—vU)+Km[

4
0f= 53 [kONo“'B+§k1N 3eef)|
1 ~
_ _ 2B 2
4o ) 97, (4.9
. kNauv-ovU)+xm 5
T(|):_ D ATAND (4_5)

3 VEA

Herej, m, q;, andN are arbitraryintegration constantsand

Our solution can be extended to the full spacetime by
introducing the Heaviside step function

1, u=0,

0, u<o, (4.1

(E)(u):[

with ®2(u)=0(u), and replacingU—+1—0(u)u? and
V—1-0(v)v?, cf. [15].

Then in region Il the coframe reduces to
. d
90= \/§< du— vv) ,

dur 3
Ty

92= \/g(dxvtjz(l—vz)dy),

9= _ @\/1—v2{jdx+[(f<m—5v)2+]Z]dy},

9= %

’

(4.12
and the corresponding metric is given by
=43 dudy +1 1-v?){(dx+[j>+
g(ll)_ \/1_—02 2( v ){(J X [J (Km

—av)?]dy)®+aqdx+j%(1-v?)dy]?}, (4.13
where
S =(km-av)?+j%?% A=a%1-v?),

(4.19

the coefficientsky,k; ,k, in the ansat13.6) are determined Which represents a plane wave solutidn the sense of
by the dimensionless coupling constants of the LagrangianPetrov classification, a type-N solutiqd4,15). The non-

a
ko=<?_ao (8bz+ap) —3(cs+ag)?, (4.6
a
ky=-9|a, ?—ao +(c3tag)(cstag)|,
(4.7)
3
k2:§[3ao(ca+ao)+(8b3+ao)(c4+ao)]-
(4.9

metricity and the torsion in this region can be written as
follows:

Crﬁ,_KI'T'I_aU N f N _E u 5
Qun= A koNo*#+ gklN 9eeh)| 70 Bl 192,
(4.15
« KNxm—av - 5
n=-3 N FND (4.1

In region Il we arrive at the coframe
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ﬁ6=\/§(%—dv),

U

H=\5

du+d
u )

9= \/g[dxﬂz(l—“z)dy]'

P 1 ~
93=— \/;/1—u2{j dx+[(km+au)?+j?]dy},
(4.17
and the metric takes the following form:
_s3 dudv N 1
Iam \/l——uz S
+au)2ldy)?+ a%[dx+j2(1—u?)dy]?},
(4.18

(1—u?){(jdx+[j%+ (xkm

where

S =(km+au)?+j2u?, A=a%(1-u?).

(4.19

The nonmetricity and the torsion are now given by

.p KM+AU a4 NP SO P
Qi =—=— 53 koN 0%+ 5k;N| o e?) 207 |9%
(4.20
N koN km+au = 5
Thn="3 ﬁﬁ N (4.2))

Here and in region llkg, ki, andk, still satisfy Eqs.(4.6),

3461

[19]. The way of derivation of this solution is related to the
search of a class of cylindrically symetric solutions in MAG,
starting with the line element

dp?
P(p)

do?
Q(a)

ds2=A< )+§[dr+ﬁ(q)do]2

+§[dr+|\7|(p)da]2, (4.24

with A:=M —N. Assuming first thaf andQ are polyno-
mials up to fourth degree op andq, respectively, second

thatM andN are polynomials up to second degree alsgon
andq, and third that the torsion and nonmetricity are propor-
tional to rational functions, then one arrives at algebraic
equations, solvable by computer algebra programs, for the
polynomials’ coefficients. It is always possible to introduce
theu andv coordinates througp=uV+uvV, g=uV-ovU,
U=1-u? andV=1-0v2 However, only certain solu-
tions satisfy the requirement of Ernst colliding wav¥esm-
pare Ref[12] and Sec. II).

V. DISCUSSION

As it has been pointed out, the solution presented de-
scribes the scattering of two noncollinear polarized gravita-
tion plane waves. At the leading edge of each colliding
type-N gravitational wave, the curvature tensor exhibits a
jump discontinuity arising, for example, from the second de-
rivative (—U?)"=u?8’(u)+4ud(u)+20(u). The former
is interpreted as a gravitational impulsive wave, whereas the
latter is attributed to a gravitational shock wave.

As far as the nonmetricity and torsion are concerned, if
they are considered as fundamental quantities then they be-
have as continuous functions when crossing different re-
gions; if they are considered as secondary quantities defined

(4.7), and (4.8). It is easy to see that this is also a wave by means of derivatives of more fundamental functions, then

solution.
Finally, in the flat region 1V,

99= S (du—dv),

=3 (du+do),

. A

2__ _ £ 2

B —\/;(dxﬂ dy),

9°=— \/;,- dx=+[(km)*+j]dy},

(4.22
gov)=4x* m? du dv + S{Gdx+[[2+(xm)?]dy)?
(km)
+afdx+j2dy]?, (4.23

which is always reducible to the flat Minkowski form.
This solution was checked witREDUCE [16] with its
EXCALC packag€17] for treating exterior differential forms

they could present delta singularities and jump discontinui-
ties. However, even then the Bianchi identities hold in a
distributional sense, sdd5]. In particular, alsdDT“=Rg"
/A9# holds. There are no problems on the right-hand side
because the delta type singularities of the curvature are mul-
tiplied by the smooth distributionsy1—®(u)u? and
J1-0(v)v? respectively.

So far it is not quite clear if this special MAG model has
problems withredundant variablesin the case of restricted
Poincaregauge modelgwithout nonmetricity, a similar re-
duction (induced via a double duality ansatwas based on
theteleparallelism equivalencsee Baekleet al.[23]. How-
ever, it was shown by Lenzd22], and later confirmed in
Ref. [24] that then necessarilfyee functions occur in exact
torsion solutions(The tentavive gauge fixing approach sug-
gested there as a way out met considerable critigidinus
for the so-called “viable” set there exigtfinite many exact
vacuum solutions which may indicate a physically problem-
atic degeneracyf those model$25]. Recent reports to res-
cue the initial value problem in PG theory by Hedttal.
[21] and the references therein, seem not to be conclusive.

The related situation for MAG is not yet resolved, since

[18] and theREDUCE-basedGRG computer algebra system again ateleparallelism type relatiorsee(5.9.16 of Ref.[5],
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seems to be crucial for the equivalence proof of MAG withmetricity Q ;4 including the Weyl covectoQ and, second,
the Einstein-Proca Lagrangian. Already earlier, within thealso colliding waves exhibiting shock fronts are considered.
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