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Colliding waves in metric-affine gravity
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We generalize the formulation of the colliding gravitational waves to metric-affine theories and present an
example of such kind of exact solution. The plane waves are equipped with five symmetries and the resulting
geometry after the collision possesses two spacelike Killing vectors.@S0556-2821~98!02204-8#
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I. INTRODUCTION

In recent years, the collision of plane-fronted gravitation
waves possibly coupled with electromagnetic waves
been extensively studied@1–4#. Because gravity is alway
attractive, it was expected that focusing of the waves wo
occur, and one of the interesting questions is how much
cusing does general relativity predict. Within this fram
work, strong focusing would appear by the developmen
spacetime curvature singularities. Many solutions have b
presented so far, describing the collisions of plane-fron
gravitational and electromagnetic waves, and quite a few
them do develop Cauchy horizons.

The spacetimes describing the interaction region produ
after the collision of plane gravitational waves contain tw
spacelike Killing vectors and there exist several genera
techniques to obtain solutions with these symmetries. All
techniques developed for stationary axisymmetric spaceti
can be applied to generate cylindrically symmetric spa
times, in particular, colliding plane waves.

On the other hand, if one gauges the affine gro
and additionally allows for a metricg, then one ends
up with the metric-affine gauge theory of gravity~MAG! @5#.
The four-dimensional affine groupA(4,R) is the semidirect
product of thetranslation group R4 and the linear group
GL(4,R)5R1

^ @T 3+ SL(4 ,R)#. This spacetime encom
passes two different post-Riemannian structur
the nonmetricity one-formQab5Qiab dxi and the torsion
two-form Ta5 1

2 Ti j
adxi`dxj . In the Yang-Mills fashion,

gauge Lagrangians quadratic in curvature, torsi
and nonmetricity are considered. One way to investig
the potentialities of such models is to look forexactsolu-
tions.

The search for exact solutions within the MAG has be
pioneered by Tresguerres@6,7# and by Tucker and Wang@8#.
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With propagating nonmetricityQab , two types of charge
are expected to arise:One dilation chargerelated by Noether
procedure to the traceQ:5Qg

g/4 of the nonmetricity, called
the Weyl covectorQ5Qidxi . It is the connection associate
with gaugingR1 instead ofU(1) for the Maxwell potential
A5Aidxi ; nine types ofshear chargerelated to the remain-
ing traceless piece↗Qab :5Qab2Qgab of the nonmetricity.
Under the local Lorentz group, the nonmetricity can
decomposed into four irreducible pieces(I )Qab , with
I 51,2,3,4. The Weyl covector is linked to(4)Qab5Qgab .

The following natural step in these lines is to elucida
the behavior of interacting plane waves. Of particu
relevance is the head-on collision of two plane wav
i.e., the colliding wave problem. It is assumed that
the corresponding spacetime, the two waves approach
other, from opposite sides, in flat Minkowski backgroun
after the collision, a new gravitational field evolves, whi
satisfies certain continuity conditions. The plane waves
equipped with five symmetries, while the geometry result
after the collision possesses two spacelike Killing vecto
The main pruporse of this paper is to generalize the form
lation of the colliding waves to MAG theories and to prese
an example of such kind of solution. We will take advanta
of the fact that certain MAG models can be reduc
to aneffectiveEinstein-Proca system@9#. Macı́aset al. @10#,
and Socorro et al. @11# mapped the Einstein
Maxwell sector of the dilaton-gravity coming from low en
ergy string theory, to MAG, thus finding soliton and mult
pole solutions.

The plan of the paper is as follows. In Sec. II th
quadratic MAG Lagrangian is examined. In Sec. III th
generalization of the colliding waves concept to MAG
developed. In Sec. IV a colliding wave solution in MAG
presented. In Sec. V the results are discussed.

II. QUADRATIC MAG LAGRANGIAN

In a metric-affine spacetime, the curvature haselevenir-
reducible pieces, see@5#, Table 4. If in addition we recall tha
the nonmetricity hasfour and the torsionthree irreducible
3457 © 1998 The American Physical Society
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pieces, then a general quadratic Lagrangian in MAG rea

VMAG5
1

2kF2a0 Rab`hab22lh1Ta`* S (
I 51

3

aI
~ I !TaD

12S (
I 52

4

cI
~ I !QabD `qa`* Tb

1Qab`* S (
I 51

4

bI
~ I !QabD G

2
1

2
Rab`* S (

I 51

6

wI
~ I !Wab1(

I 51

5

zI
~ I !ZabD . ~2.1!

In the above, the Minkowsi metric isoab5diag(2111),
h:5* 1 is the volume four-form and the constan
a0 ,•••a3, b1 ,•••b4, c2 ,c3 ,c4, w1 ,•••w6, z1 ,•••z5 are di-
mensionless. In the curvature square term we have in
duced the irreducible pieces of the antisymmetric p
Wab :5R@ab# and the symmetric partZab :5R(ab) of the
curvature two-form. Again, inZab , we meet a purely post
Riemannian part. The segmental curvature(4)Zab :
5Rg

ggab/45gabdQ has formally a similar structure as th
electromagnetic field strengthF5dA.

Let us recall the three general field equations of MA
see@5# Eqs. ~5.5.3!–~5.5.5!. Because of its redundancy, w
omit the zeroth field equation with its gauge momentu
Mab. The first and the second field equation read

DHa2Ea5Sa , ~2.2!

DHa
b2Ea

b5Da
b , ~2.3!

whereSa andDa
b are the canonical energy-momentum a

hypermomentum current three-forms associated with ma
We will consider thevacuum casewith Sa5Da

b50. The
left-hand sides of Eqs.~2.2! and ~2.3! involve the gravita-
tional gauge field momenta two-formsHa andHa

b ~gravita-
tional ‘‘excitations’’!. We find them, together withMab, by
partial differentiation of the Lagrangian~2.1!:

Mab:522
]VMAG

]Qab

52
2

kF * S (
I 51

4

bI
~ I !QabD 1c2q~a`* ~1!Tb)

1c3q~a`* ~2!Tb)1
1

4
~c32c4!gab* TG , ~2.4!

Ha:52
]VMAG

]Ta

52
1

k
* F S (

I 51

3

aI
~ I !TaD 1S (

I 52

4

cI
~ I !Qab`qbD G ,

~2.5!

Ha
b:52

]VMAG

]Ra
b

5
a0

2k
ha

b1Wa
b1Za

b ,

~2.6!
o-
rt

,

r.

where we introduced the abbreviations

Wab :5* S (
I 51

6

wI
~ I !WabD , Zab :5* S (

I 51

5

zI
~ I !ZabD .

~2.7!

Finally, the three-formsEa andEa
b describe the canoni

cal energy-momentum and hypermomentum currents of
gauge fields themselves. One can write them as follows@5#:

Ea5eacVMAG1~eacTb!`Hb1~eacRb
g!`Hb

g

1
1

2
~eacQbg!Mbg, ~2.8!

Ea
b52qa`Hb2Ma

b , ~2.9!

whereeac denotes the interior product with the frame.

III. COLLIDING WAVES IN MAG

This work, as was stated previously, is concerned w
fields interpretable as a colliding wave solution. With th
goal in mind, we extend the definition of vacuum collidin
waves, defined by Ernstet al. @12# to MAG theories.

The set ofcolliding wave solutions in metric-affine grav
ity is described by the metric

g52g~u,v ! du dv1gab~u,v !dxadxb, a,b51,2,
~3.1!

which only depends on the advanced and retarded timeu:
5t2z andv:5t1z, respectively. The domain of the coo
dinate charts consists of (x,y)PR2 and (u,v)PR2; it is the
union of four continuous regions: I:5$(u,v):0<u,1,0<v
,1% , II: 5$(u,v):u,0,0<v,1%, III: 5$(u,v):0<u,1,v
,0%, IV: 5$(u,v):u<0,v<0%, see Fig. 1.

As for the torsion and nonmetricity field configuration
we concentrate on the simplest nontrivial case with she
According to its irreducible decomposition~see Appendix B
of @5#!, the nonmetricity contains two covector piece
namely (4)Qab5Q gab , the dilation piece, and

FIG. 1. The four regions of the spacetime: Region IV where
waves propagate is flat. The impulsive gravitational waves pro
gate along the null boundariesv50 andu50, separating regions II
and IV, and III and IV, respectively. In region II, observers see
shower of pure gravitational radiation following the wave fro
propagating alongv50. Symmetrical consideration applies in re
gion III. The collision occurs at~0,0! and the interaction is de
scribed by region I.
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57 3459COLLIDING WAVES IN METRIC-AFFINE GRAVITY
~3!Qab5
4

9S q~aeb)cL2
1

4
gabL D ,

with L:5qaebc↗Qab , ~3.2!

a proper shear piece. Accordingly, our ansatz for the n
metricity reads

Qab5 ~3!Qab1 ~4!Qab . ~3.3!

The torsion, in addition to its tensor piece, encompasse
covector and an axial covector piece. Let us choose only
covector piece as nonvanishing:

Ta5 ~2!Ta5
1

3
qa`T, with T:5eacTa. ~3.4!

Thus we are left with the three nontrivial one-formsQ, L,
and T. We shall assume that this triplet of one-forms sh
the spacetime symmetries, i.e., they depend on the varia
u and v only. The metric and the triplet fields have to b
continuous over the whole domain.

In region IV, a subregion of the Minkowski space, it
required that

gmn~u,v !5gmn~0,0!, Q5Q0 , L5L0 , T5T0 ,
~3.5!

which by scale transformations can be brought to stand
Minkowski metric and vanishing constants. In region II, t
metric components and the triplet of one-forms depends o
on v, i.e., gmn5gmn(0,v), Q5(0,v), L5L(0,v), and T
5T(0,v). In region III these fields are functions of the c
ordinate u, i.e., gmn5gmn(u,0), Q5(u,0), L5L(u,0),
and T5T(u,0). In region I, which is occupied by the sca
tered null fields, the metric components and the triplet
functions of bothu andv coordinates.

The metric, the torsion and the nonmetricity fields in r
gions II and III depend only on one variable, i.e.,u and v,
respectively. Each of these regions is equipped with fi
Killing vectors related with the metric. Moreover, the co
formal Weyl tensor part corresponding to the Riemann
part possesses a quadrupole null eigendirection being c
riantly constant. These two properties are characteristic
ppN waves. In region II, we have a pp wave, depending o
on v, propagating to the right, while in region III the p
wave, depending onu, propagates to the left. Both wave
collide at the eventu5v50, and from this event arises th
interaction region I. In our case the torsion and nonmetric
depend in the various regions considered in the same wa
u andv as the metric. Therefore, our situation describe a
torsional and nonmetricity waves which propagate along n
directions in regions II and III and collide in region I.

The following ansatz turns to be compatible with t
above considerations:

Q5k0r~u,v !q 2̂5
k0

k1
L5

k0

k2
T. ~3.6!

Here we introduced a second functionr(u,v) which has to
be determined by the field equations of MAG.

If we take the trace of the zeroth Bianchi identity
-
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DQab52Zab , ~3.7!

it merely consists of one irreducible piece 2dQ5Zg
g

5 (4)Zg
g. Consequently,Q serves as apotentialfor (4)Zg

g in
the same way asA for F5dA. In addition, the third part of
Eq. ~3.7! reads(3)(DQab)52(3)Zab , where

~3!Zab5
2

3S q~a`eb)cd2
1

2
gabd D ,

with d:5
1

2
qa`ebc↗Zab . ~3.8!

The similarity in structure of Eq.~3.2! and Eq.~3.8! is ap-
parent. Indeed, provided torsion carries only a covec
piece, see Eq.~3.4!, we find

d5
1

6
dL, ~3.9!

i.e., (3)Qab acts as a potential for(3)Zab .
In this way, the problem is reduced to knowing the met

~coframe! and the fuctionr. Thus, the most general form o
our fields compatible with colliding wave spacetime stru
ture is given by@13,14#:

r5r~u,v !,

Cabcd
! 52C0UabUcd12C2~UabVcd1VabUcd

1WabWcd!12C4VabVcd , region I,

r5r~v !, Cabcd
! 52C0UabUcd , region II,

r5r~u!, Cabcd
! 52C4VabVcd , region III,

~3.10!

whereCabcd
! is the conformal Weyl tensor corresponding

the Riemannian part of the curvature tensor, and with

Wab5mam̃b2mbm̃a2kal b1kbl a,

Vab5kamb2kbma ,

Uab52 l am̃b1 l bm̃a , ~3.11!

wherema , m̃b , ka , andl a are null tetrads. In the next sec
tion we present an example of these kind of exact solutio

IV. COLLIDING WAVE SOLUTION IN MAG

Let us consider a MAG solution in interaction region
i.e., the region arising after the collision of the waves. T
coframe in the coordinates (u,v,x,y) reads
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q 0̂5ASS du

U
2

dv
V D

q 1̂5ASS du

U
1

dv
V D

q 2̂5AD

S
@dx1 j 2~uv2UV!2dy#

q 3̂5A1

S
~uv2UV!$ j dx1@„km

1 ã~uV2vU !…21 j 2#dy ~4.1!

with two unknown functionsS(u,v),D(u,v). Consequently,
the metric is given by

g~ I!54S
du

U

dv
V

1
1

S
$~uv2UV!2$ jdx1„j 21@km1 ã~uV

2vU !#2
…dy%21D@dx1 j 2~uv2UV!2dy#2%, ~4.2!

where

U:5A12u2, V:5A12v2,

S5@ ã~uV2vU !1km#21 j 2~uV1vU !2,

ã25m2k22 j 22q1
2 ,

D5 ã2~uv1UV!2. ~4.3!

The nonmetricity and the torsion read as follows:

Q~ I!
ab5

ã~uV2vU !1km

ASD
Fk0Noab1

4

9
k1NS q~aeb)c

2
1

4
oabD Gq 2̂, ~4.4!

T~ I!
a 5

k2N

3

ã~uV2vU !1km

ASD
qa`q 2̂. ~4.5!

Here j , m, q1, andN are arbitraryintegration constants, and
the coefficientsk0 ,k1 ,k2 in the ansatz~3.6! are determined
by the dimensionless coupling constants of the Lagrangi

k05S a2

2
2a0D ~8b31a0!23~c31a0!2, ~4.6!

k1529Fa0S a2

2
2a0D1~c31a0!~c41a0!G ,

~4.7!

k25
3

2
@3a0~c31a0!1~8b31a0!~c41a0!#.

~4.8!
:

A rather weak condition, which must be imposed on the
coefficients, prescribes a value for the coupling constantb4,
namely,

b45
a0k12c4k2

8k0
, with k:53k02k112k2, ~4.9!

and the following relation forz4:

q1
25kz4

~k0N!2

2a0
. ~4.10!

Our solution can be extended to the full spacetime
introducing the Heaviside step function

Q~u!5H 1, u>0,

0, u,0,
~4.11!

with Q2(u)5Q(u), and replacingU→A12Q(u)u2 and
V→A12Q(v)v2, cf. @15#.

Then in region II the coframe reduces to

q 0̂5ASS du2
dv
V D ,

q 1̂5ASS du1
dv
V D ,

q 2̂5AD

S
~dx1 j 2~12v2!dy!,

q 3̂52A1

S
A12v2$ jdx1@~km2 ãv !21 j 2#dy%,

~4.12!

and the corresponding metric is given by

g~ II !54S
dudv

A12v2
1

1

S
~12v2!$„jdx1@ j 21~km

2 ãv !2#dy…

21 ã2@dx1 j 2~12v2!dy#2%, ~4.13!

where

S5~km2 ãv !21 j 2v2, D5 ã2~12v2!, ~4.14!

which represents a plane wave solution~in the sense of
Petrov classification, a type-N solution@14,15#!. The non-
metricity and the torsion in this region can be written
follows:

Q~ II !
ab 5

km2 ãv

ASD
Fk0Noab1

4

9
k1NS q~aeb)c2

1

4
oabD Gq 2̂,

~4.15!

T~ II !
a 5

k2N

3

km2 ãv

ASD
qa`q 2̂. ~4.16!

In region III we arrive at the coframe
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q 0̂5ASS du

U
2dv D ,

q 1̂5ASS du

U
1dv D ,

q 2̂5AD

S
@dx1 j 2~12u2!dy#,

q 3̂52A1

S
A12u2$ j dx1@~km1 ãu!21 j 2#dy%,

~4.17!

and the metric takes the following form:

g~ III !54S
dudv

A12u2
1

1

S
~12u2!$„jdx1@ j 21~km

1 ãu!2#dy…

21 ã2@dx1 j 2~12u2!dy#2%,

~4.18!

where

S5~km1 ãu!21 j 2u2, D5 ã2~12u2!. ~4.19!

The nonmetricity and the torsion are now given by

Q~ III !
ab 5

km1 ãu

ASD
Fk0N oab1

4

9
k1NS q~aeb)c2

1

4
oabD Gq 2̂,

~4.20!

T~ III !
a 5

k2N

3

km1 ãu

ASD
qa`q 2̂. ~4.21!

Here and in region II,k0, k1, andk2 still satisfy Eqs.~4.6!,
~4.7!, and ~4.8!. It is easy to see that this is also a wa
solution.

Finally, in the flat region IV,

q 0̂5AS~du2dv !,

q 1̂5AS~du1dv !,

q 2̂5AD

S
~dx1 j 2 dy!,

q 3̂52A1

S
$ j dx1@~km!21 j 2#dy%, ~4.22!

g~ IV !54k2 m2 du dv1
1

~km!2
$„jdx1@ j 21~km!2#dy…

2

1 ã2@dx1 j 2dy#2%, ~4.23!

which is always reducible to the flat Minkowski form.
This solution was checked withREDUCE @16# with its

EXCALC package@17# for treating exterior differential forms
@18# and theREDUCE–basedGRG computer algebra system
@19#. The way of derivation of this solution is related to th
search of a class of cylindrically symetric solutions in MAG
starting with the line element

ds25DS dp2

P~p!
2

dq2

Q~q! D1
P

D
@dt1Ñ~q!ds#2

1
Q

D
@dt1M̃ ~p!ds#2, ~4.24!

with D:5M̃2Ñ. Assuming first thatP and Q are polyno-
mials up to fourth degree onp and q, respectively, second
that M̃ andÑ are polynomials up to second degree also onp
andq, and third that the torsion and nonmetricity are prop
tional to rational functions, then one arrives at algebr
equations, solvable by computer algebra programs, for
polynomials’ coefficients. It is always possible to introdu
the u andv coordinates throughp5uV1vV, q5uV2vU,
U5A12u2, and V5A12v2. However, only certain solu-
tions satisfy the requirement of Ernst colliding waves~com-
pare Ref.@12# and Sec. III!.

V. DISCUSSION

As it has been pointed out, the solution presented
scribes the scattering of two noncollinear polarized grav
tion plane waves. At the leading edge of each collidi
type-N gravitational wave, the curvature tensor exhibits
jump discontinuity arising, for example, from the second d
rivative (2U2)95u2d8(u)14ud(u)12Q(u). The former
is interpreted as a gravitational impulsive wave, whereas
latter is attributed to a gravitational shock wave.

As far as the nonmetricity and torsion are concerned
they are considered as fundamental quantities then they
have as continuous functions when crossing different
gions; if they are considered as secondary quantities defi
by means of derivatives of more fundamental functions, th
they could present delta singularities and jump discontin
ties. However, even then the Bianchi identities hold in
distributional sense, see@15#. In particular, alsoDTa5Rb

a

`qb holds. There are no problems on the right-hand s
because the delta type singularities of the curvature are m
tiplied by the smooth distributionsA12Q(u)u2 and
A12Q(v)v2, respectively.

So far it is not quite clear if this special MAG model ha
problems withredundant variables. In the case of restricted
Poincare´ gauge models~without nonmetricity!, a similar re-
duction ~induced via a double duality ansatz! was based on
the teleparallelism equivalence, see Baekleret al. @23#. How-
ever, it was shown by Lenzen@22#, and later confirmed in
Ref. @24# that then necessarilyfree functions occur in exact
torsion solutions.~The tentavive gauge fixing approach su
gested there as a way out met considerable criticism.! Thus
for the so-called ‘‘viable’’ set there existinfinite many exact
vacuum solutions which may indicate a physically proble
atic degeneracyof those models@25#. Recent reports to res
cue the initial value problem in PG theory by Hechtet al.
@21# and the references therein, seem not to be conclusi

The related situation for MAG is not yet resolved, sin
again ateleparallelism type relation, see~5.9.16! of Ref. @5#,
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seems to be crucial for the equivalence proof of MAG w
the Einstein-Proca Lagrangian. Already earlier, within t
framework of the Poincare´ gauge theory~PG! of gravity, the
post-Newtonian generation of gravitational radiation in o
parameter teleparallelism typeT2 models were studied by
Schweizeret al. @20#. In a first order approximation no de
viation from Einstein’s GR was found; also, as a bonus,
dipole gravitational radiation of other alternative theories
absent here.

More recently, plane wave solutions of GR are gene
ized toR1R21T2 models by Zhytnikov@26#. ~Note here the
possibility of notational confusion, sinceQ is there used for
torsion.! Our present paper is an extension of this work
two different directions: First we extend to models with no
o

g,

m

e

e
s

l-

-

metricity Qab including the Weyl covectorQ and, second,
also colliding waves exhibiting shock fronts are consider
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