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Symplectic current for the field perturbations in dilaton-axion gravity coupled
with Abelian fields
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Using the self-adjointness of the perturbation equations in the most general four-dimensional dilaton-axion
gravity coupled with Abelian fields, a covariantly conserved current associated with the coupled field pertur-
bations is obtained. By particular choices of the background quantities, the low-energy limit of the string
theory is covered and the part of the current corresponding to the purely Einstein-Maxwell perturbations is
fully consistent with that obtained previously by Burnett and Wiy a different approagh The possible
extensions of the present results are discuds&@b56-282(98)04206-4

PACS numbes): 04.40.Nr, 04.20.Jb

. INTRODUCTION =(1J—g)e*"*F, , corresponds to the dual &f,,. On the
other hand ¢ represents the dilatofscalaj field and » the
The more recent unification theories such as supergravitgixion (pseudoscalarfield; the arbitrary functionsZ(¢),
or superstrings predict the existence of long-range scalag(¢), andw(7) are collectively known as the coupling func-
partners to the usual tensor gravity of ordinary Einsteintions (chosen arbitrary for generalityThe presence of these
theory. The main feature of these scalar fields is that theyunctions makes that the dilaton and axion appear nonmini-
appear nonminimally coupled to the gravity and mattermally coupled to the gravity and matter field&( ¢, ) rep-
fields. Although the presence of these scalar fields changegsents the dilaton-axion potential, which iénzell-behaved
radically the structure of the solutions, their implications andfunction of the dilaton and the axion alone, and contains no
the understanding of general aspects of the ordinary gravityjerivatives of these fieldsS covers a large family of non-
some fundamental problems even persist. For example, thevial actions for four-dimensional gravity appearing in the
usual concept of energy and momentum as conserved quamodern literature; a specific choice of the coupling functions
tities in special-relativistic theory does not exist when grav-and the dilaton-axion potential corresponds to a particular
ity is involved,; it is not clear how to extend this concept to gravity theory. For example, for the special choite e,
the setting of general relativity and, of course, to the moreg=e 2% andw= 7, the action(1) reduces to the usual low-
general formulations mentioned above. However, in perturenergy effective action for the heterotic string thedrymay
bation theory of black holes in the framework of the ordinarype a Liouville-type dilaton potential\e®?, i.e., a cosmologi-
Einstein-Maxwell(EM) theory, some conservation laws are ca| constant term with dilaton couplingee[3] and refer-
known; in fact, it has been demonstrated that the existence @nces therein The factors —2 and- 1 appearing in the ac-
a conserved current for the coupled gravitational and electrajon (1) are introduced for future convenience.
magnetic perturbations, is a very general feature of the EM | et us derive now the field equations from the actitn
theory[1]. Variation of S with respect to the gauge fiell, gives the
The aim of this paper is to demonstrate that in the morenodified Maxwell equations
general framework of the Einstein-Abelian fields interacting
with the scalar partners, namely, dilaton and axion fields, a v (w,*fﬂmrg,:,w):o )
conserved quantity for coupled field perturbations can be ob- K’ '
tained, generalizing in this manner the results reached in Re{ogether with the Bianchi identities
[1]. In addition of giving the explicit expression for this con-
served quantitfknown as the symplectic current in the lit-
eraturg, the main novelty of this work is the method of
derivating this expression, which has been used for the fir
time in Ref.[2].
Our starting point is to consider the following generalized
bosonic action on a curved space-time manifold: £ ¢

1/ d 1d v
V.Viep+ - —F, F'—5—(d,mdn+

v, Frr=0. 3

S\t/ariation with respect to the dilaton field gives the following
equation with scalar and vector sources:

- :O
1 4ldg 2d¢ ap|
SIJ v—gd“X{R—Z(ﬁ#(b)&“sb—Eé(qﬁ)(ﬁw)&“n (4
, = similarly the axion field satisfies the equation with scalar and
+E&(P)F L F T o(n)F ,  FF+V(h, ) [, (1) pseudoscalaginvariant made out of vector fiellsources:
where R is the (four dimensional scalar curvaturef,,, V (£ +d—wF o ﬂ_o 5
=2V;,A,) is the Abelian gauge field, F*” ) dy » g
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Finally, the Einstein equations resulting from the variation of

— 1
the action with respect tg,,, read (F#)B= "B by~ sFHg,gh*P
-9
1 p—
RMV_EgILVR_TMV’ (6) 8 dé dé\B  d?%¢ B
. N “ap? |ldg) Tap? )
with the matter energy-momentum tensor containing scalar
and vector sources:
{P= de — ¢°,
1 do
T=200,9)0,¢+ 5L(9,m) 3,7
g_do
a 1 a @ :ﬁ
_g,uv (0" ¢)aa¢+zg(a 77)‘?&77
oV oV
. 1 N 1 \vB= ¢¢B _nB,
_25 F;L)\FV - Zg,u,VFp)\F + Eg/.wv- (7)
B 2 2

In Sec. Il we will focus in the perturbed versions of the (ﬂ) =ﬂ¢3+ Vv -~
equations of motior(2)—(7) around a general curved back- gl P Indd

ground. Section IIl presents the general relationship between

the adjoint character of the operators governing the field per- IV\B g2y 92V

turbations and the existence of the corresponding symplectic ( ) = 9 B+ = 7",

current; moreover, the purely EM field perturbations are K 97

compared with those given in Rdfl]. In Sec. IV we finish

with some concluding remarks and future extensions of the (T )B:lg)\p[v hy,+V,h,,~V,h,,] ®)
present work. v 2 wve wy

in these expression@nd in what follow$, the covariant de-
rivative V , is with respect to the background metdg,,,

In this section and throughout the superscript B denotesvhich raises and lowers the indices, for exampie:”
the corresponding first-order perturbations. In particular, the= g’“‘g"ﬁhaﬁ, that will be used implicitly below.
metric, gauge potential, dilaton and axion perturbations are In order to obtain the first of the equations governing the
represented by, b,,, ¢B, and »® respectively. perturbations, it is suitable to rewrite E@) in the form

In addition, one easily finds that

Il. PERTURBED FIELD EQUATIONS

Fr,0,0+0"V (¢F,,) =0,

(g,uV)B: _h,lLV,

5 and now taking linear perturbations around a general back-
9°=9g9,,h*", ground spacetime, using Eq8) and after a few rearrange-
B ments, the linearization of the modified Maxwell equations

Fo,=d.,b,—d,b,, takes the form
= de VH d¢ B KV P(EV VH( £V G pakpu b
4F V5/L d_ +4 _¢F/LV¢ +4 g9, (f p)_ (g v)+fggave (apw)a)\
1 - — 1
+44 (d,0) —Eg““FPVJrg“VFP“ —[Ve(EF*)]— §{F“ VE+gH FPOV — g““FP v, ]h =0, (9

where we have multiplied by a factor 4 for future convenieptle
Similarly, the dilaton equatiof¥) can be rewritten as

pa _TA _Eﬂ pa l_f payvB ﬂ
g [aaa,ud) Faﬂo—')\d)] 8 d¢g (07,L77)5a77+ 4 g97g F/,LVFE!B—’_

d J—
d¢ ) =0,

whose perturbed version {gfter multiplying by a factor -4
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% M 2V B_g1 1 F E_EE M 9 _|_VMV B_4§|:,w§ b
—45 —(VeVH )+E—d§ FAEa 4+ ! dg(ﬁ" )(0%n)—(V« )V“+ rHVPH)V, =0 (10
¢ 2 dé g M ¢ 59 ¢ :

Similarly, the linearized axion equation can be obtained from(kg.

(5,0 (@00, 2, o TV e (d’:au + Za, &ZV]¢B do Fb,
" a2 “ 2|7 dé dé T
VagH @\ YH 1,uap \ " @ 1 do Errgrath =
LY (V@ (@ V= Sg PV, |+ (D@ )+ 5 5 FonFP78 Rua=0, (12)

where we have multiplied by a factor —1.
Similarly, writing the perturbations of the left-hand side of Einstein equaiasR®,—3g,,,R®—3Rh,,, the perturbed
version of this equation can be written in the form

1 oV 1d¢
—[5((9<M7l)t9a)—§§9w(0”77)3p+ 3907, }n —[4<aﬂ¢>aa) 20, )0, 5 gl (um)(0a0) 29 P 0)(3,)

LoV dE, ] e . X
+§g,u,aa¢ d¢ ,u,uz (vb Zg{g,ua': ’}’a)\+2[|:‘y aa)+gyp a) ak]}by—i_[(gv—'_gS)hpy]a,u:Ol (12)

with ance of these equations, they possess the self-adjoint charac-
ter, which will allow us to establish the existence of a sym-

™ _> plectic current for the coupled field perturbations.
my

A 1 [2
FM)\FV _Zg,lLVFp)\F '
Il. SELF-ADJOINTNESS AND THE SYMPLECTIC

where the metric perturbations coming from perturbed tensor CURRENT
of matter (plus that coming from the term%RhW) have _ o _
been represented by the operafir which only is a func- In accordance with Wald's definitigmt], if £ corresponds

tion (and contains no differential operatprsThe explicit  to a linear partial differential operatgsuch as the matrix
form of this function is not important, as will be seen below operator of Egs(13)] which mapsm-index tensor fields into
where we will discuss the concept of the adjoint of an op-n-index tensor fields, then, the adjoint operato€ptienoted
erator. & (coming from the perturbed termsRB by £, is that linear partial differential operator mapping

_ %gﬂvRB) is the operator describing gravitational perturba-n -index tensor fields intan-index tensor fields such that
tions of vacuum space-times, i.e., it is that given in & .of
Ref. [4]. 7 (8 Gun. Mpo. . —[E(FP7 )] gy, =V I,
The complete set of coupled equations for the field per- (14
turbations(9)—(12) can be expressed in compact form in the . i o
following matrix form: where J* is some vector field, and similarly for any other
operator. From this definition, il and B are any two linear
En Enp Epr Enc 7® operators, one obtains that
B
éoa & foe oo ¢ ~0 13 (AB)TZBT.AT, (.A+B)T=.AT+BT. (15)
Eean &b & ko (bﬂ) '
Eon Eop Eoe Eoll(hL) In the case of a functiori [for example, the operatafs

appearing in Eq(12)],
where the first, second, third and fourth rows correspond to

the equationg11), (10), (9) and(12), respectively, and from fT=f. (16)
these equations, the explicit forms of thes (linear partial

differential operators involving the background figldan be From Eq.(14) we can easily see that this definition auto-
read. matically guarantees that, if the fieldsandg are two inde-

Note that the presence of matter fields nonminimallypendent solutions of the linear syst@ﬁf) 0=¢&(g) and
coupled to gravity makes that all field perturbations appear ithe operato is self-adjoint(i.e. E'=¢, or antiself-adjoint,
each of the perturbation equatiof®—(12). As will be seen £'=—¢), thenJ* is a covariantly conserved quantitwhich
in the next section, in spite of the very complicated appeardepends on the fieldsandg) [2]. This fact means that there
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exists an intrinsic connection between self-adjointness andhhere A, and B, are any two vector fields and,, any

the existence of a conserved quantity.

2-index (symmetri¢ tensor field. Finally, sincefg=¢&y

In this manner, the goal of this paper is to demonstratet £, taking the expression fdf, given in Ref.[4] [see the

that the operator governing the field perturbations in(Eg)

paragraph after Eq12)] and the property16), one finds that

is self-adjoint. For this purpose, let us consider the first di-

agonal elemenf, which can be read from E@11), it is that
acting onz®, and mapping scalar fields into themselves. Us-

ing the identity

VE(280,01) = VLD, h — VLD, i,
+V ({10 ),

where s, and ¢, are any two scalar fields, it is straightfor-

ward to show that

Yolpth1= I Eaho+V L(10" o= b 1),

this expression has the forfi4) and allows us to identify

that

EAT=E,. 17

Similarly, using the definitior(14), the propertieg15) and
(16) and assuming that the background fields satisfy Egs.

(2)—(7), one can demonstrate that

a“w o
d¢¢1¢2 n

Ulppth1= bEapthatV, (Eba=Enp).

1(EaeB,) =B"(Eepth),

dw~v 1
+VM 4HF B,y (Eae=EeN)s
1
AM&(‘S‘GA‘//I)M&: wl(SAGAp,a)_FV;Lg‘r//l EAaa&un
~AM3,m|  (Erc=Ecn);
Ualp = Ep o+ V AP0 by — Prpd* 1) (&h=&p),
1(EpeB,) =B"(Eepthr),
dg m | -
+V,LL 4%F BV‘//]. (5DE_8ED)1
U1(EpcAua) = A (Ecpt) pat V 201 [ 2A% 0% h
~AS bl (Epe=Eop),

A"(&eB,),=B"(EA,),+V 81 A, VIFBA+ B VIPAH]

+ epaﬂ)\AaB)\ap 77] (SEZEE)v

-9
A*(EGEB,) ua=B"(EecALa) v+ V ,26{4B F L"AH«
—ASBFM) (Ehe=Eee),  (19)

AMV(gGBap),uV: Bap(gGA,u,V)ap—’_ VILSMC“B)\P‘}’
X(AapViB,y=BapViA (E6=E),

(19

py)

whereB,,, is another 2-indexsymmetrig tensor field and

(1]

1 1
Sﬂ“ﬁkp'}’: g#(ﬁgy)(agﬁ))\_ Egﬂ)‘ga(ﬂgwﬁ_ Eg/’«(agﬁ))‘gﬂy

_ %gaﬁgﬂ(pgyﬂ+ %g“ﬁg/‘”gpy. (20)

Then, from Eqs(17)—(19) we have found that the adjoint
of the matrix operator appearing in E4.3) is given by[5]

gA gAD 5AE 5AG f EA gAD EAE gAG
gDA 5D SDE EDG . EDA ED 5DE 5DG
5EA EED gE gEG - gEA EED EE gEG ’
SGA SGD gGE 5(3 gGA gGD gGE SG

(21)

which means that this operator is self-adjoint. It is worth to
point out that any operator appearing in physics is not nec-
essarily self-adjoint. For example, the operator correspond-
ing to the usual free massless field equations of spin greater
that one is not self-adjoint on a curved spacetime; although,
those corresponding to the Weyl neutrino equation and the
linearized Yang-Mills are self-adjoint on a curved back-
ground.

With the purpose of obtaining the symplectic current for
the coupled field perturbations, I1& and S, be any two
solutions of the systertiL3) given by

Ui 75
(b,) (B,)
(hy.) (Hy.)

and from definition(14)

S:(ES)) ~S,(£78,) =V ,I#, (23
where £ is the matrix operator of Eq13). In this manner,
from Egs.(17)—(23) we can easily find the explicit form for
the symplectic current,

JH= B4+ KA+ K] A4 J 4] B By K
A AD AE AG D DE DG E

Y3 rran (24)
EG G

where
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3, F=L(nid" my— mz0" ), 819,,=h,.,.

52g,u1/: H,uv ’

d¢
J M= __— (9# B B_ 2 B’
o d(l)( M nid;— d1m2] and then

do_ 5 5 51F"“’=V”“b”—V”b”-I—ZF”[“h"]p,
JAEM: 4ﬁFﬁp[ B,m1—b,72],

S FHY=VHB"—V"Br+2FARH" (26)

1 o
JAGﬂzg (apn)[hﬂpng_Hﬂpn?]_’_i(aﬂn)[Hn?_hng] 1 in this manner, from Eq925), (26)

— afN _
J H=4[ pBorpB— ¢pBo# 7] I3 3= S (HagVahp —hagVaHyy)
i A +4¢£{B,6,F""—b,5,F#}

dé¢ +2&F*P(hB,—Hb,)
JDE"=4%FW[BP¢?—bP¢§], P P
+ e’ ““ B b, d,7, (27
3, =202 p)[h*,p5—HH ,¢T1+ (0" ) [H AT~ hp51], NE| M
which reduces exactly to the expressi@il2? given in Ref.
J #=81 ¢[B VIkprl] —p VI#BP! [1] when £=—k (gravitational constaptand »=0 in the
E g g background geometry. Of course, one must be very careful in
choosing consistently some background fields since, usually,
N parh(y B b some restrictions are imposed on the remaining background
\/__ge (JpmBaby, fields through the field equations. However, we can consis-
tently set
JEG"=2§{2FP*’“[hP*BA—Hp”bh]+2pr[H“Pb”—h“PB”] $=0,
+F"P(th—pr)}, 7n=0,
‘JGM: Sﬂaﬁ)\py(HaﬁV)\hpy_ haﬁv)\pr)v (25) §= - k,
whereH=g*"H,,,, h=g*"h,, and the subscripts just de- w=0,
note the types of field perturbations involved, for example,
JDG" involves dilaton and gravitational perturbations. V=0,

The expression fod” is not gauge invariant with respect (since, for example, in the low-energy limit of the string
tp eltheE[ gauBge transformagon B;f{u andb, or transforma- theory ¢ is of the forme™2¢ and w= %), without imposing
tions ¢"— ¢~ +const andy”— »7”+const. Of course, the any restriction on the remaining electromagnetic field in the
last two transformations are not gauge transformations, singgackground, according to Eq&l). (5).

the zero modes of the dilaton and of the axion are physically Similarly with F,,=0= 5=V, the sumJ #+J_ #+J #
meaningful. mr L b _Dbe G

It is important to stress that the existence of the conserveségg(u):ssﬁﬁr[ﬁzp;g?ng)r;h;nségﬁ[iﬁgfn_cégrecjrgnf%ggg pertur-
quantity (24) is a direct consequence of the self-adjointnes In this manner, the curreN®4) can be considered és the

shown in Eq.(21), and in the demonstration of this property o
only the assumption that the background fields satisfy Eqsgenerallzatmn of that of Ref1] when the low-energy de-
grees of freedom most characteristic of string theory, dilaton

(&—(7) has been required. and axion fields, are incorporated. However, it is worth not-
In order to compare the purely Einstein-Maxwell curfent ’ P : S
: : . : ing that the present results have been obtained by an ap-
given byJ #+J #+J # with that given in Eq.(3.12 of . g
“e Ve e _ o proach completely different from that used in Rgf].
Ref.[1], it is convenient to note that the linear variations of
the electromagnetic field and of the metric appearing in that

. . . IV. CONCLUDING REMARKS
reference can be rewritten according to our notations as

Unfortunately, not many solutions of the perturbed equa-

61A,=b,, tions (9)—(12) (for nontrivial background fielgshave been
obtained in order to evaluate the symplectic current and to
0,A,=B,, study its physical meaning and implications; however, as

shown by Chandrasekhar and Feri@ee[1] and references
cited therein, the current for the Einstein-Maxwell perturba-
Yn this point the Abelian gauge field must be considered as théions, in the case of the Reissner-Nordsirsolution leads to
standard electromagnetic field. the conservation of energy for the perturbations. On the other
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hand, in the framework of the Einstein-Maxwell-dilaton- violation of the cosmic censorshid8], solutions corre-
axion theory, when the background geometry is the spacesponding to black holes which carry both electric and mag-
time for colliding plane waves, some explicit solutions havenetic chargd 9], etc. On the other hand, in the present paper
been obtained for the Eq$9)—(12) [6,7], and the corre- it has been considered the dilaton-axion gravity coupled only
sponding symplectic current will be studied in more detail inwith one Abelian gauge field; however, our results can be
subsequent works. Furthermore, the self-adjointness of Eqeasily generalized for coupling to Abelian vector multiplets,
(9)-(12) opens a way of finding particular solutions of thesewhich arise in toroidally compactified string thedri0].
equations provided that the corresponding decoupled system Finally, since it has been shown that our approach for
of equations is found4]. In addition, one may avoid the obtaining the symplectic current gives the same result as ob
imposition of any gauge condition in the perturbed tef®ld  tained by the Burnett-Wald approach, the possible connec-
which would be a great advantage when the current is evaluion between both methods is an open question.

ated.

Because of the generality of the acti@l) considered in
this paper, our results can be applied to the study of the
perturbations of a great amount of solutions appearing in the This work was supported in part by CONACYMexico)
literature. Some interesting cases would be the nonstatic sand the Sistema Nacional de Investigadoféexico). The
lutions for the extremal electrically charged black holes inauthor wishes to thank Dr. G. F. Torres del Castillo for many
Einstein-Maxwell-dilaton theorywhich suggest the possible comments and suggestions.
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