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Symplectic current for the field perturbations in dilaton-axion gravity coupled
with Abelian fields

R. Cartas-Fuentevilla
Instituto de Fı´sica, Universidad Auto´noma de Puebla, Apartado Postal J-48 72570 Puebla, Puebla, Mexico

~Received 9 October 1997; published 24 February 1998!

Using the self-adjointness of the perturbation equations in the most general four-dimensional dilaton-axion
gravity coupled with Abelian fields, a covariantly conserved current associated with the coupled field pertur-
bations is obtained. By particular choices of the background quantities, the low-energy limit of the string
theory is covered and the part of the current corresponding to the purely Einstein-Maxwell perturbations is
fully consistent with that obtained previously by Burnett and Wald~by a different approach!. The possible
extensions of the present results are discussed.@S0556-2821~98!04206-4#

PACS number~s!: 04.40.Nr, 04.20.Jb
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I. INTRODUCTION

The more recent unification theories such as supergra
or superstrings predict the existence of long-range sc
partners to the usual tensor gravity of ordinary Einst
theory. The main feature of these scalar fields is that t
appear nonminimally coupled to the gravity and mat
fields. Although the presence of these scalar fields chan
radically the structure of the solutions, their implications a
the understanding of general aspects of the ordinary gra
some fundamental problems even persist. For example
usual concept of energy and momentum as conserved q
tities in special-relativistic theory does not exist when gra
ity is involved; it is not clear how to extend this concept
the setting of general relativity and, of course, to the m
general formulations mentioned above. However, in per
bation theory of black holes in the framework of the ordina
Einstein-Maxwell~EM! theory, some conservation laws a
known; in fact, it has been demonstrated that the existenc
a conserved current for the coupled gravitational and elec
magnetic perturbations, is a very general feature of the
theory @1#.

The aim of this paper is to demonstrate that in the m
general framework of the Einstein-Abelian fields interacti
with the scalar partners, namely, dilaton and axion fields
conserved quantity for coupled field perturbations can be
tained, generalizing in this manner the results reached in
@1#. In addition of giving the explicit expression for this con
served quantity~known as the symplectic current in the li
erature!, the main novelty of this work is the method o
derivating this expression, which has been used for the
time in Ref.@2#.

Our starting point is to consider the following generaliz
bosonic action on a curved space-time manifold:

S5E A2gd4xH R22~]mf!]mf2
1

2
z~f!~]mh!]mh

1j~f!FmnFmn1v~h!FmnF̃mn1V~f,h!J , ~1!

where R is the ~four dimensional! scalar curvature,Fmn

52¹ [mAn] is the Abelian gauge field, F̃mn
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5(1/A2g)emnlrFlr corresponds to the dual ofFmn . On the
other hand,f represents the dilaton~scalar! field andh the
axion ~pseudoscalar! field; the arbitrary functionsz(f),
j(f), andv(h) are collectively known as the coupling func
tions ~chosen arbitrary for generality!. The presence of thes
functions makes that the dilaton and axion appear nonm
mally coupled to the gravity and matter fields.V(f,h) rep-
resents the dilaton-axion potential, which is a~well-behaved!
function of the dilaton and the axion alone, and contains
derivatives of these fields.S covers a large family of non-
trivial actions for four-dimensional gravity appearing in th
modern literature; a specific choice of the coupling functio
and the dilaton-axion potential corresponds to a particu
gravity theory. For example, for the special choicez5e4f,
j5e22f, andv5h, the action~1! reduces to the usual low
energy effective action for the heterotic string theory.V may
be a Liouville-type dilaton potential,Lebf, i.e., a cosmologi-
cal constant term with dilaton coupling~see@3# and refer-
ences therein!. The factors –2 and2 1

2 appearing in the ac-
tion ~1! are introduced for future convenience.

Let us derive now the field equations from the action~1!.
Variation of S with respect to the gauge fieldAm gives the
modified Maxwell equations

¹m~vF̃mn1jFmn!50, ~2!

together with the Bianchi identities

¹mF̃mn50. ~3!

Variation with respect to the dilaton field gives the followin
equation with scalar and vector sources:

¹m¹mf1
1

4F dj

df
FmnFmn2

1

2

dz

df
~]mh!]mh1

]V

]f G50,

~4!

similarly the axion field satisfies the equation with scalar a
pseudoscalar~invariant made out of vector fields! sources:

¹m~z]mh!1
dv

dh
FmnF̃mn1

]V

]h
50. ~5!
3443 © 1998 The American Physical Society
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Finally, the Einstein equations resulting from the variation
the action with respect togmn read

Rmn2
1

2
gmnR5Tmn , ~6!

with the matter energy-momentum tensor containing sc
and vector sources:

Tmn52~]mf!]nf1
1

2
z~]mh!]nh

2gmnF ~]af!]af1
1

4
z~]ah!]ah G

22jS FmlFn
l2

1

4
gmnFrlFrlD1

1

2
gmnV. ~7!

In Sec. II we will focus in the perturbed versions of th
equations of motion~2!–~7! around a general curved bac
ground. Section III presents the general relationship betw
the adjoint character of the operators governing the field p
turbations and the existence of the corresponding symple
current; moreover, the purely EM field perturbations a
compared with those given in Ref.@1#. In Sec. IV we finish
with some concluding remarks and future extensions of
present work.

II. PERTURBED FIELD EQUATIONS

In this section and throughout the superscript B deno
the corresponding first-order perturbations. In particular,
metric, gauge potential, dilaton and axion perturbations
represented byhmn , bm , fB, andhB respectively.

In addition, one easily finds that

~gmn!B52hmn,

gB5ggmnhmn,

Fmn
B 5]mbn2]nbm ,
f

ar

en
r-
tic
e

e

s
e
re

~ F̃mn!B5
2

A2g
emnab]abb2

1

2
F̃mngabhab,

jB5
dj

df
fB, F S dj

df D B

5
d2j

df2
fBG ,

zB5
dz

df
fB,

vB5
dv

dh
hB,

VB5
]V

]f
fB1

]V

]h
hB,

S ]V

]f D B

5
]2V

]2f
fB1

]2V

]h]f
hB,

S ]V

]h D B

5
]2V

]f]h
fB1

]2V

]2h
hB,

~Gmn
l !B5

1

2
glr@¹mhnr1¹nhmr2¹rhmn#, ~8!

in these expressions~and in what follows!, the covariant de-
rivative ¹m is with respect to the background metricgmn ,
which raises and lowers the indices, for example,hmn

5gmagnbhab , that will be used implicitly below.
In order to obtain the first of the equations governing t

perturbations, it is suitable to rewrite Eq.~2! in the form

F̃m
n]mv1gma¹a~jFmn!50,

and now taking linear perturbations around a general ba
ground spacetime, using Eqs.~8! and after a few rearrange
ments, the linearization of the modified Maxwell equatio
takes the form
4F̃m
n]mS dv

dh
hBD14¹mS dj

df
FmnfBD14H gn

m¹r~j¹r!2¹m~j¹n!1
2

A2g
ganeralm~]rv!]lJ bm

14H ~]rv!F2
1

2
gmaF̃r

n1ga
nF̃rmG2@¹a~jFm

n!#2jFFa
n¹m1gm

nFra¹r2
1

2
gmaFr

n¹rG J hma50, ~9!

where we have multiplied by a factor 4 for future convenience@4#.
Similarly, the dilaton equation~4! can be rewritten as

gma@]a]mf2Gam
l ]lf#2

1

8

dz

df
gma~]mh!]ah1

1

4F dj

df
gmagnbFmnFab1

]V

]fG50,

whose perturbed version is~after multiplying by a factor –4!
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H dz

df
~]mh!]m2

]2V

]f]hJ hB24H 1

4FFmnFmn
d2j

d2f
2

1

2

d2z

d2f
~]mh!~]mh!G1¹m¹mJ fB24

dj

df
Fmn]mbn

24H 2~¹a¹mf!1
1

2

dj

df
FlmFa

l1
1

8

dz

df
~]mh!~]ah!2~¹af!¹m1

1

2
gma~¹rf!¹rJ hma50. ~10!

Similarly, the linearized axion equation can be obtained from Eq.~5!,

2H z¹m]m1~]mz!]m1
d2v

dh2
FmnF̃mn1

]2V

]2h
J hB2H F¹mS dz

df
]mh D G1

dz

df
~]ah!]a1

]2V

]h]fJ fB24
dv

dh
F̃mn]mbn

1H zF ~¹a]mh!1~]ah!¹m2
1

2
gma~]rh!¹rG1~]mz!~]ah!1

1

2

dv

dh
FrgF̃rggmaJ hma50, ~11!

where we have multiplied by a factor –1.
Similarly, writing the perturbations of the left-hand side of Einstein equation~6! asRmn

B 2 1
2 gmnRB2 1

2 Rhmn , the perturbed
version of this equation can be written in the form

2H z~]~mh!]a)2
1

2
zgma~]rh!]r1

1

2
gma

]V

]hJ hB2H 4~]~mf!]a)22gma~]rf!]r1
1

2

dz

dfF ~]mh!~]ah!2
1

2
gma~]rh!~]rh!G

1
1

2
gma

]V

]f
2

dj

df
Tma

M J fB22j$gmaFlg]l12@Fg
~m]a)1gg

~mFa)
l]l#%bg1@~EV1ES!hrg#am50, ~12!
s
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Tmn
M 52FFmlFn

l2
1

4
gmnFrlFrlG ,

where the metric perturbations coming from perturbed ten
of matter ~plus that coming from the term2 1

2 Rhmn) have
been represented by the operatorES , which only is a func-
tion ~and contains no differential operators!. The explicit
form of this function is not important, as will be seen belo
where we will discuss the concept of the adjoint of an o
erator. EV ~coming from the perturbed termsRmn

B

2 1
2 gmnRB) is the operator describing gravitational perturb

tions of vacuum space-times, i.e., it is that given in Eq.~3! of
Ref. @4#.

The complete set of coupled equations for the field p
turbations~9!–~12! can be expressed in compact form in t
following matrix form:

F EA EAD EAE EAG

EDA ED EDE EDG

EEA EED EE EEG

EGA EGD EGE EG

GF hB

fB

~bm!

~hmn!

G50, ~13!

where the first, second, third and fourth rows correspond
the equations~11!, ~10!, ~9! and~12!, respectively, and from
these equations, the explicit forms of theE’s ~linear partial
differential operators involving the background fields! can be
read.

Note that the presence of matter fields nonminima
coupled to gravity makes that all field perturbations appea
each of the perturbation equations~9!–~12!. As will be seen
in the next section, in spite of the very complicated appe
or

-

-

r-

to

in

r-

ance of these equations, they possess the self-adjoint ch
ter, which will allow us to establish the existence of a sy
plectic current for the coupled field perturbations.

III. SELF-ADJOINTNESS AND THE SYMPLECTIC
CURRENT

In accordance with Wald’s definition@4#, if E corresponds
to a linear partial differential operator@such as the matrix
operator of Eqs.~13!# which mapsm-index tensor fields into
n-index tensor fields, then, the adjoint operator ofE, denoted
by E†, is that linear partial differential operator mappin
n-index tensor fields intom-index tensor fields such that

f rs . . . @E~gmn . . . !#rs . . . 2@E†~ f rs . . . !#mn . . . gmn . . . 5¹mJm,
~14!

whereJm is some vector field, and similarly for any othe
operator. From this definition, ifA andB are any two linear
operators, one obtains that

~AB!†5B†A†, ~A1B!†5A†1B†. ~15!

In the case of a functionf @for example, the operatorES
appearing in Eq.~12!#,

f †5 f . ~16!

From Eq.~14! we can easily see that this definition aut
matically guarantees that, if the fieldsf andg are two inde-
pendent solutions of the linear systemE( f )505E(g) and
the operatorE is self-adjoint~i.e. E†5E, or antiself-adjoint,
E†52E), thenJm is a covariantly conserved quantity~which
depends on the fieldsf andg) @2#. This fact means that ther
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exists an intrinsic connection between self-adjointness
the existence of a conserved quantity.

In this manner, the goal of this paper is to demonstr
that the operator governing the field perturbations in Eq.~13!
is self-adjoint. For this purpose, let us consider the first
agonal elementEA which can be read from Eq.~11!, it is that
acting onhB, and mapping scalar fields into themselves. U
ing the identity

¹m~c2z]mc1![c2¹mz]mc12c1¹mz]mc2

1¹m~zc1]mc2!,

wherec1 andc2 are any two scalar fields, it is straightfo
ward to show that

c2EAc15c1EAc21¹mz~c1]mc22c2]mc1!,

this expression has the form~14! and allows us to identify
that

EA
†5EA . ~17!

Similarly, using the definition~14!, the properties~15! and
~16! and assuming that the background fields satisfy E
~2!–~7!, one can demonstrate that

c2EDAc15c1EADc21¹mF dz

df
c1c2]mhG ~EDA

† 5EAD!,

c1~EAEBn!5Bn~EEAc1!n

1¹mF4
dv

dh
F̃nmBnc1G ~EAE

† 5EEA!,

Ama~EGAc1!ma5c1~EAGAma!1¹mzc1F1

2
Aa

a]mh

2Amn]nh G ~EAG
† 5EGA!,

c2EDc15c1EDc21¹m4~c1]mc22c2]mc1! ~ED
† 5ED!,

c1~EDEBn!5Bn~EEDc1!n

1¹mS 4
dj

df
FnmBnc1D ~EDE

† 5EED!,

c1~EDGAma!5Ama~EGDc1!ma1¹m2c1@2Am
a]af

2Aa
a]mf# ~EDG

† 5EGD!,

An~EEBm!n5Bn~EEAm!n1¹m8H j[Ar¹@mBr]1Br¹@rAm] ]

1
1

A2g
eramlAaBl]rhJ ~EE

†5EE!,

Ama~EGEBn!ma5Bn~EEGAma!n1¹m2j$4BnFa
@nAm]a

2Aa
aBnFmn% ~EGE

† 5EEG!, ~18!
d

e

i-

-

s.

where Am and Bm are any two vector fields andAmn any
2-index ~symmetric! tensor field. Finally, sinceEG5EV
1ES , taking the expression forEV given in Ref.@4# @see the
paragraph after Eq.~12!# and the property~16!, one finds that

Amn~EGBar!mn5Bar~EGAmn!ar1¹mSmablrg

3~Aab¹lBrg2Bab¹lArg! ~EG
† 5EG!,

~19!

whereBmn is another 2-index~symmetric! tensor field and
@1#

Smablrg5gm~rgg)~agb)l2
1

2
gmlga~rgg)b2

1

2
gm~agb)lgrg

2
1

2
gabgm~rgg)l1

1

2
gabgmlgrg. ~20!

Then, from Eqs.~17!–~19! we have found that the adjoin
of the matrix operator appearing in Eq.~13! is given by@5#

F EA EAD EAE EAG

EDA ED EDE EDG

EEA EED EE EEG

EGA EGD EGE EG

G †

5F EA EAD EAE EAG

EDA ED EDE EDG

EEA EED EE EEG

EGA EGD EGE EG

G ,

~21!

which means that this operator is self-adjoint. It is worth
point out that any operator appearing in physics is not n
essarily self-adjoint. For example, the operator correspo
ing to the usual free massless field equations of spin gre
that one is not self-adjoint on a curved spacetime; althou
those corresponding to the Weyl neutrino equation and
linearized Yang-Mills are self-adjoint on a curved bac
ground.

With the purpose of obtaining the symplectic current f
the coupled field perturbations, letS1 and S2 be any two
solutions of the system~13! given by

~S1!5S h1
B

f1
B

~bm!

~hmn!

D , ~S2!5S h2
B

f2
B

~Bm!

~Hmn!

D , ~22!

and from definition~14!

S2~ES1!2S1~E†S2!5¹mJm, ~23!

whereE is the matrix operator of Eq.~13!. In this manner,
from Eqs.~17!–~23! we can easily find the explicit form fo
the symplectic current,

Jm5J
A

m1J
AD

m1J
AE

m1J
AG

m1J
D

m1J
DE

m1J
DG

m1J
E

m

1J
EG

m1J
G

m, ~24!

where
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J
A

m5z~h1
B]mh2

B2h2
B]mh1

B!,

J
AD

m5
dz

df
~]mh!@h1

Bf2
B2f1

Bh2
B#,

J
AE

m54
dv

dh
F̃mr@Brh1

B2brh2
B#,

J
AG

m5zF ~]rh!@hmrh2
B2Hmrh1

B#1
1

2
~]mh!@Hh1

B2hh2
B#G ,

J
D

m54@f1
B]mf2

B2f2
B]mf1

B#,

J
DE

m54
dj

df
Fmr@Brf1

B2brf2
B#,

J
DG

m52†2~]rf!@hm
rf2

B2Hm
rf1

B#1~]mf!@Hf1
B2hf2

B#‡,

J
E

m58H j[Br¹@mbr] ] 2br¹@mBr]

1
1

A2g
eraml~]rh!BablJ ,

J
EG

m52j$2Fr
m@hrlBl2Hrlbl#12Frl@Hmrbl2hmrBl#

1Fmr~hBr2Hbr!%,

J
G

m5Smablrg~Hab¹lhrg2hab¹lHrg!, ~25!

whereH5gmnHmn , h5gmnhmn and the subscripts just de
note the types of field perturbations involved, for examp
J

DG

m involves dilaton and gravitational perturbations.

The expression forJm is not gauge invariant with respec
to either gauge transformation ofBm andbm or transforma-
tions fB→fB1const andhB→hB1const. Of course, the
last two transformations are not gauge transformations, s
the zero modes of the dilaton and of the axion are physic
meaningful.

It is important to stress that the existence of the conser
quantity ~24! is a direct consequence of the self-adjointne
shown in Eq.~21!, and in the demonstration of this proper
only the assumption that the background fields satisfy E
~2!–~7! has been required.

In order to compare the purely Einstein-Maxwell curre1

given by J
E

m1J
GE

m1J
G

m, with that given in Eq.~3.12! of
Ref. @1#, it is convenient to note that the linear variations
the electromagnetic field and of the metric appearing in t
reference can be rewritten according to our notations as

d1Am5bm ,

d2Am5Bm ,

1In this point the Abelian gauge field must be considered as
standard electromagnetic field.
,

ce
ly

d
s

s.

f
at

d1gmn5hmn ,

d2gmn5Hmn ,

and then

d1Fmn5¹mbn2¹nbm12Fr@mhn]
r ,

d2Fmn5¹mBn2¹nBm12Fr@mHn]
r , ~26!

in this manner, from Eqs.~25!, ~26!

J
E

m1J
EG

m1J
G

m5Smablrg~Hab¹lhrl2hab¹lHrg!

14j$Brd1Fnr2brd2Fmr%

12jFmr~hBr2Hbr!

1
8

A2g
eramlBabl]rh, ~27!

which reduces exactly to the expression~3.12! given in Ref.
@1# when j52k ~gravitational constant! and h50 in the
background geometry. Of course, one must be very carefu
choosing consistently some background fields since, usu
some restrictions are imposed on the remaining backgro
fields through the field equations. However, we can con
tently set

f50,

h50,

j52k,

v50,

V50,

~since, for example, in the low-energy limit of the strin
theoryj is of the forme22f andv5h), without imposing
any restriction on the remaining electromagnetic field in
background, according to Eqs.~4!, ~5!.

Similarly with Fmn505h5V, the sumJ
D

m1J
DG

m1J
G

m

should correspond to the symplectic current for field pert
bations in the ordinary Einstein-Klein-Gordon theory@2#.

In this manner, the current~24! can be considered as th
generalization of that of Ref.@1# when the low-energy de
grees of freedom most characteristic of string theory, dila
and axion fields, are incorporated. However, it is worth n
ing that the present results have been obtained by an
proach completely different from that used in Ref.@1#.

IV. CONCLUDING REMARKS

Unfortunately, not many solutions of the perturbed equ
tions ~9!–~12! ~for nontrivial background fields! have been
obtained in order to evaluate the symplectic current and
study its physical meaning and implications; however,
shown by Chandrasekhar and Ferrari~see@1# and references
cited therein!, the current for the Einstein-Maxwell perturba
tions, in the case of the Reissner-Nordstro¨m solution leads to
the conservation of energy for the perturbations. On the o
e
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hand, in the framework of the Einstein-Maxwell-dilato
axion theory, when the background geometry is the spa
time for colliding plane waves, some explicit solutions ha
been obtained for the Eqs.~9!–~12! @6,7#, and the corre-
sponding symplectic current will be studied in more detail
subsequent works. Furthermore, the self-adjointness of
~9!–~12! opens a way of finding particular solutions of the
equations provided that the corresponding decoupled sys
of equations is found@4#. In addition, one may avoid the
imposition of any gauge condition in the perturbed tetrad@6#,
which would be a great advantage when the current is ev
ated.

Because of the generality of the action~1! considered in
this paper, our results can be applied to the study of
perturbations of a great amount of solutions appearing in
literature. Some interesting cases would be the nonstatic
lutions for the extremal electrically charged black holes
Einstein-Maxwell-dilaton theory~which suggest the possibl
int
e-

s.

m

u-

e
e
o-

violation of the cosmic censorship! @8#, solutions corre-
sponding to black holes which carry both electric and m
netic charge@9#, etc. On the other hand, in the present pap
it has been considered the dilaton-axion gravity coupled o
with one Abelian gauge field; however, our results can
easily generalized for coupling to Abelian vector multiple
which arise in toroidally compactified string theory@10#.

Finally, since it has been shown that our approach
obtaining the symplectic current gives the same result as
tained by the Burnett-Wald approach, the possible conn
tion between both methods is an open question.
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