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Perturbations in dilaton-axion gravity coupled with electromagnetic fields

R. Cartas-Fuentevilla
Instituto de Fı´sica, Universidad Auto´noma de Puebla, Apartado postal J-48 72570 Puebla, Puebla, Me´xico

~Received 4 September 1997; published 10 February 1998!

Explicit solutions of the perturbed Einstein-Maxwell-dilaton-axion theory are obtained by means of complex
scalar potentials in the case when the background geometry is the spacetime corresponding to plane waves in
the regions prior to the collision. These expressions are derived using Wald’s method of adjoint operators and
a decoupled system of equations; no gauge-fixing condition on the perturbed tetrad is imposed. Our results
cover the low energy limit of string theory for some fixed values of the dilaton coupling constants. The
existence of purely incoming perturbations is discussed.@S0556-2821~98!02304-2#

PACS number~s!: 04.40.Nr, 04.20.Jb
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I. INTRODUCTION

Dilaton-axion gravity coupled with matter fields has be
extensively studied in the last years. This gravity theo
arises in a natural way inN54 supergravity and in the low
energy limit of heterotic string theory after the compactific
tion of six of the ten dimensions of the string theory. Wh
the dilaton and axion fields are incorporated, the proper
of the solutions appearing in ordinary Einstein gravity can
drastically modified, for example, changes in the glo
causal structure of the solutions, new implications on
black-hole thermodynamics, solutions suggesting that P
rose’s conjecture on cosmic censorship may be violated@1–
3#, etc.

In particular, when the matter field is the electromagne
field, the four-dimensional field equations for the Einste
Maxwell ~EM! theory interacting with the dilaton and axio
fields are

¹m~hF̃mn1jFmn!50, ¹ [mFnl]50 ~Maxwell!, ~1!

¹m¹mf1
1

2
ajF22

1

2
bz~]mh!]mh50,

F2[FmnFmn ~dilaton! , ~2!

¹m~z]mh!2FmnF̃mn50,

F̃mn[
1

A2g
emnabFab ~axion! , ~3!

Rmn2
1

2
gmnR5Tmn ~Einstein! , ~4!

with the matter energy-momentum tensorTmn given by

Tmn52~]mf!]nf1
1

2
z~]mh!]nh2gmnF ~]af!]af

1
1

4
z~]ah!]ah G12jS FmlFn

l2
1

4
gmnF2D , ~5!
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wheref and h denote the dilaton and axion scalar field
respectively, and we definej[e22af and z[e4bf; the di-
mensionless parametersa andb correspond to the coupling
constants which govern the coupling of the dilaton to t
Maxwell field (Fmn) and to the axion field, respectively. I

addition,R is the scalar curvature,F̃mn is the dual ofFmn,
g5det(gmn), and m,n50,1,2,3. Special theories are co
tained in the field equations~1!–~5!, for example fora51
and b51; these equations are obtained from the boso
sector of the four-dimensional effective action obtained a
the compactification in the string theory.

Although there exists an extensive body of literature
the exact solutions of the field equations~1!–~5! and their
implications, no great progress has been made in the stud
their perturbations, which would provide us with a way
understanding the structure of such solutions. With this id
in mind, in this work we will focus our attention in the pe
turbed versions of Eqs.~1!–~5! around a general backgroun
solution. Therefore, in Sec. II we introduce the notation a
the full equations for the metric, electromagnetic field, di
ton, and axion field perturbations.

Various procedures have been applied in the study of s
tems of perturbation equations. A method usually employ
in this study, for example in the linearized EM theory@4–6#,
consists in trying to solve the set of equations for the co
plete perturbations directly. This procedure has so
disadvantages—for example, it involves a lot of different
equations to solve, in addition to the fact that in the pres
case, the situation becomes more complicated due to
presence of the dilaton and axion fields. Fortunately, th
are other procedures which permit massive reductions of
number of differential equations to solve and computatio
besides providing us with expressions for the perturbati
in terms of derivatives of complex scalar potentials, whi
automatically gives the correct relative normalization b
tween all the components of the perturbations. One of th
procedures is the Wald method of adjoint operators, wh
applies when we can obtain a decoupled set of equat
from the original set of equations for the perturbations, p
vided the self-adjointness of this system of equations
been established@7#. Therefore, in Sec. III the self-adjoin
character of the linearized Einstein-Maxwell-dilaton-axi
~EMDA! theory is discussed.
3433 © 1998 The American Physical Society
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3434 57R. CARTAS-FUENTEVILLA
Among all exact solutions of Eqs.~1!–~5!, the plane wave
solutions are especially important, since these geome
correspond to exact solutions of the string theory at all ord
of the string tension parameter@8# and in higher dimensions
lead to exact extreme black hole solutions when the dim
sional reduction is performed@9#. The perturbations of plane
wave geometries have been studied by Chandrasekhar
Xanthopoulos in the framework of the EM theory and th
conclusions showed the absence of purely incoming per
bations@5,6#; they believed that this fact would be connect
with some ‘‘no hair’’ theorem to gravitational waves waitin
to be discovered@6#. However, recently it has been demo
strated in the same framework of the EM theory that
existence of purely incoming perturbations is a property
the most general spacetime representing plane waves b
to collision @10,11#. With these preliminary ideas, in Sec. I
we shall study the perturbations of the spacetime corresp
ing to gravitational plane waves coupled to the electrom
netic waves, dilaton, and axion waves in the regions previ
to the collision in the scheme of the EMDA theory. Usin
the Newman-Penrose formalism, we find a decoupled sys
of equations for the perturbations without imposing a
gauge condition on the perturbed tetrad. In this manner,
complete perturbations for the metric, electromagnetic po
tial, dilaton, and axion fields are expressed in terms of co
plex scalar potentials. These expressions allow us in Se
to demonstrate the existence of purely incoming pertur
tions even in the more general framework of the EMD
theory. The Newman-Penrose formulation of the fie
equations~1!–~5! is summarized in the Appendix, which i
useful in Sec. IV and for future reference.

II. LINEARIZATION OF THE EMDA THEORY

In this section and throughout the superscript ‘‘B’’ d
notes the corresponding first-order perturbations. In part
lar, the metric, electromagnetic potential, dilaton, and ax
perturbations are represented byhmn , bm , fB, andhB, re-
spectively.

In addition, one easily can demonstrate that

~gmn!B52hmn,

gB5ggmnhmn,

Fmn
B 5]mbn2]nbm ,

~ F̃mn!B5
2

A2g
emnab]abb2

1

2
F̃mngabhab,

jB[~e22af!B522ajfB,

zB[~e4bf!B54bzfB,

~Gmn
l !B5

1

2
glr@¹mhnr1¹nhmr2¹rhmn#,

RB5gmnRmn
B 2Rmnhmn, ~6!

where the covariant derivative¹m is with respect to the
background metricgmn , which raises and lowers the indice
es
rs
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r
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for examplehmn5gmagnbhab , that will be used below. The
explicit form of Rmn

B in terms ofhmn is not required, since its
properties are well known in other references@7#.

In order to linearize the Maxwell equation~1!, it is suit-
able to write this equation in the form

F̃m
n]mh1gma¹a~jFmn!50,

and now considering linear perturbations around a gen
background solution, using Eqs.~6! and grouping suitably,
the linearization of the preceding equation takes the form

24F̃m
n]mhB18a¹ajFa

nfB24H gn
m¹r~j¹r!2¹m~j¹n!

1
2

A2g
ganeralm~]rh!]lJ bm14H ~]rh!F1

2
gmaF̃r

n

2ga
nF̃rmG1@¹a~jFm

n!#1jFFa
n¹m1gm

nFra¹r

2
1

2
gmaFr

n¹rG J hma50, ~7!

where we have multiplied by a factor of –4 for future co
venience@7#.

Similarly, we can write the dilaton equation~2! as

gma@]a]mf2Gam
l ]lf#2

1

2
bzgma~]mh!]ah1

1

2
ajF250,

now taking linear perturbations and multiplying by a fact
of 4, the linearized dilaton equation is

4bz~]mh!]mhB14@a2jF212b2z~]mh!~]mh!2¹m¹m#fB

28ajFmn¹mbn14H ~¹a¹mf!1ajFmlFa
l

2
1

2
bz~]mh!~]ah!1~¹af!¹m2

1

2
gma~¹rf!¹rJ

3hma50. ~8!

By the same procedure we can obtain the linearized ax
equation from Eq.~3! ~multiplying by a factor of –1!:

2¹mz]mhB24b@FmnF̃mn1z~]mh!]m#fB14F̃mn¹mbn

2H 1

2
gmn@z~]ah!¹a1FagF̃ag#2z~]nh!¹m

2@¹m~z]nh!#J hmn50. ~9!

In order to linearize the Einstein equations~4!, we first
derive the perturbed energy-momentum tensor of ma
given in Eq.~5!. It is not difficult to find that the linearized
first and second terms are given by
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2@~]mf!]nf#B1
1

2
@z~]mh!]nh#B

52@2~]~mf!]n)1bz~]mh!~]nh)]fB

1z~]~mf!]n)h
B. ~10!

The third term can be suitably written as

2gmnF ~]af!]af1
1

4
z~]ah!]ah G

52gmnglaF ~]lf!]af1
1

4
z~]lh!]ah G ;

then,

2H gmnF ~]af!]af1
1

4
z~]ah!]ah G J B

5H gmnF ~]lf!~]af!1
1

4
z~]lh!~]ah!G

2gn
lgm

aF ~]rf!~]rf!1
1

4
z~]rh!~]rh!G J hla

2gmn@2~]af!]a1bz~]ah!~]ah!#fB

2
1

2
gmnz~]ah!]ahB. ~11!

The linearized third term can be expressed as

~jTmn
M !B5Tmn

M jB1j~Tmn
M !B, ~12!

where

Tmn
M 52FFmlFn

l2
1

4
gmnF2G

is the usual energy-momentum tensor of the electromagn
field. Using the formulas~6!, the expression~12! can be writ-
ten as follows:

~jTmn
M !B522ajTmn

M fB22jFFm
aFn

g1
1

4
F2gm

agn
g

1
1

2
gmnFlgFa

lGhag

22jF2Fg
~mFn)g

B 1
1

2
gmnFagFag

B G . ~13!

The metric perturbations coming from Eq.~13! are the
same that appear in the case when the only matter
present is the electromagnetic field@7#, except for the phase
factor j; in this manner, the overall factor acting onhag
continues to be a function.

Finally, from Eqs.~4!, ~10!–~13! the linearized Einstein
equations are given by
tic

ld

zF1

2
gmn~]ah!]a2~]~mh!]n)GhB

12H ajTmn
M 1

1

2
bzgmn~]ah!~]ah!

1gmn~]af!]a22~]~mf!]n)2bz~]mh!~]nh!J fB

22j@2ga
~mFn)

g22gg
~mFn)

a2gmnFag#¹abg

1H EG81gm
agn

lF ~]rf!~]rf!1
1

4
z~]rh!~]rh!G

2gmnF ~]lf!~]af!1
1

4
z~]lh!~]ah!G J hal50, ~14!

where the operators acting on the metric perturbationshmn

coming from the linearization of the first member of Eq.~4!

Rmn
B 2 1

2 (gmnR)B, and those coming from Eq.~13! have been
represented by the operatorEG8, whose explicit form is not
important, because it is essentially the same are appearin
the framework of the EM theory@see the paragraph afte
Eqs.~6! and ~13!# and is well known@7#.

The complete set of perturbed EMDA equations~7!, ~8!,
~9!, and~14! can be expressed in the following matrix for
for future convenience:

F EA EAD EAE EAG

EDA ED EDE EDG

EEA EED EE EEG

EGA EGD EGE EG

GF hB

fB

~bm!

~hmn!

G50, ~15!

where theE’s are linear partial differential operators involv
ing the background fields, whose explicit forms can be re
from Eqs. ~7!, ~8!, ~9!, and ~14!, which correspond to the
third, second, first, and fourth rows, respectively.

III. SELF-ADJOINTNESS
OF THE PERTURBED EMDA THEORY

In order to find expressions for the complete solutions
systems of linear partial differential equations in terms
scalar potentials, Wald introduced a method which ma
use of the concept of the adjoint of a linear operator@7#. If E
corresponds to a linear partial differential operator wh
mapsm-index tensor fields inton-index tensor fields then
the adjoint operator ofE, denoted byE†, is the linear partial
differential operator mappingn-index tensor fields into
m-index tensor fields such that

trs . . . @E~ f mn . . . !#rs . . . 5@E†~ trs . . . !#mn . . . f mn . . . 1¹mvm,
~16!

wherevm is some vector field, and similarly for any othe
operator. For example, in the Newman-Penrose formal
we have that
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D†52~D1«1 «̄2r2 r̄ !, D†52~D2g2ḡ1m1m̄ !,

d†52~d1b2ā2t1p̄ !, d̄†52~ d̄1b̄2a2 t̄1p!,
~17!

which will be useful below. In the case of a functionf ,

f †5 f . ~18!

Furthermore, ifA andB are any two linear operators, the
from the definition~16! one obtains that

~AB!†5B†A†, ~A1B!†5A†1B†. ~19!

For more details of Wald’s method, see for example@7#.
With the aim of demonstrating the self-adjointness of

matrix operator governing the perturbations in Eqs.~15!, we
will determine the adjoint operator of each of the operat
appearing in that equation.

The first diagonal elementEA can be read from Eq.~9!; it
is that acting onhB,

EA52¹mz]m ,

which maps scalar fields into themselves. Using the iden

¹m~c2z]mc1![c2¹mz]mc12c1¹mz]mc2

1¹m~zc1]mc2!,

wherec1 andc2 are any two scalar fields, it is straightfo
ward to show that

c2EAc15c1EAc21¹mz~c1]mc22c2]mc1!.

This expression has the form~16! and allows us to identify
that

EA
†5EA . ~20!

Similarly, using the definition~16!, the properties~18! and
~19!, and assuming that the background fields satisfy E
~1!–~5!, one can demonstrate that

ED
† 5ED , EE

†5EE , EG
† 5EG ,

EDE
† 5EED , EDG

† 5EGD , EGE
† 5EEG ,

EAD
† 5EDA , EAG

† 5EGA , EAE
† 5EEA ,

~21!

then, from Eqs.~20!–~21! we have found that the adjoint o
the matrix operator appearing in Eq.~15! is given by @12#

F EA EAD EAE EAG

EDA ED EDE EDG

EEA EED EE EEG

EGA EGD EGE EG

G †

5F EA EAD EAE EAG

EDA ED EDE EDG

EEA EED EE EEG

EGA EGD EGE EG

G ,

~22!

which means that this matrix operator is self-adjoint. It
important to point out that, on a curved background,
operators corresponding to the Weyl neutrino equation
the linearized Yang-Mills equations are also self-adjoint.
e

s

ty

s.

e
d

n

the other hand, the operator corresponding to the usual
massless field equations of spin greater than one is not
adjoint on a curved spacetime.

The self-adjointness shown in Eq.~22! for linearized
EMDA theory ~for any coupling constantsa and b) is not
sufficient to find solutions of this set of equations in terms
scalar potentials in some particular cases, since one req
also that the corresponding decoupled system of equation
found. In the next section, such a decoupled system fr
Eqs. ~15! is obtained when the background solution is t
spacetime corresponding to plane waves bound to a collis
which can also be expressed in matrix form@see Eq.~47!#.

IV. INCOMING WAVES AND THEIR PERTURBATIONS

A. Background solution to be perturbed

The spacetime corresponding to the colliding plane wa
in the regions prior to the collision~which contains one of
the approaching waves! can be specified by@13#

ds252e2Mdudv2e2U@e2V~dx2!21eV~dx1!2#, ~23!

whereu5x01x3 andv5x02x3, and with the metric com-
ponents, electromagnetic, dilaton, and axion fields depend
only on v:

U~v !, V~v !, M ~v !, Am~v !, f~v !, h~v !.
~24!

The diagonal line element~23! can be described by the nu
tetrad

D5
A2

N
]u , D5

A2

N
]v ,

d5
1

A2H
~x21/2]x11 ix1/2]x2!,

d̄5
1

A2H
~x21/2]x12 ix1/2]x2!, ~25!

where we have defined, for simplicity,

N2[2e2M, H[e2U, x[eV.

In addition, the only nonvanishing spin coefficients are

g~v !52
1

A2N

d

dv
lnN, m~v !52

1

A2N

d

dv
lnH,

l~v !5
1

A2N

d

dv
lnx, ~26!

the only nonvanishing component of the spinor Weyl is

C452
1

2Fd2V

dv2
2

dV

dv S dU

dv
2

dM

dv D G . ~27!

The incoming regions are filled with Petrov type-N gravit
tional fields, radiation fields, and null electromagnetic field
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therefore, if we take the tetrad vectorl m along the principal
null direction of the background electromagnetic field, th
we have that

w0505w1 , ~28!

w2(v) being the only nonvanishing component. Using E
~28!, from Eqs.~A9! the Einstein field equations reduce to

F2252~Df!22
1

4
z~Dh!212jw2w2, ~29!

sinceDf and Dh are the only nonvanishing derivatives
dilaton and axion fields.

B. Decoupled equations and master equations

From the Maxwell equations~A1! and ~A3! and from
Eqs.~24!, ~26!, and~28! we obtain

d̄w0
B2Dw1

B2w2kB52pj21l m j m , ~30!

@D22g1m2a~Df!2 i j21~Dh!#w0
B2dw1

B2w2sB

1aw 2̄ ~Df!B2w2j21~Dh!B52pj21mm j m ,
~31!

where j m represents a source for the electromagnetic per
bations~see Ref.@10# and references cited therein!. Note that
the components of the perturbed tetrad do not appear, s
they are acting onw0 andw1 and these background quan
ties vanish according to Eq.~28!.

Moreover, from the Ricci identities and Eqs.~24! and~26!
one finds that

DsB2dkB5C0
B, D r̄B2dk̄B50. ~32!

Applying d to Eq. ~30! and D to Eq. ~31!, subtracting and
considering the left-hand side of Eqs.~32! ~and that
@D,d#50), we obtain that

OEw0
B2w2C0

B1aw2D~Df!B2w 2̄j21D~Dh!B

52pSE~ j m!, ~33!

with

OE5D@D22g1m2a~Df!2 i j21~Dh!#2dd̄,

SE~ j m!5j21@D~mm j m!2d~ l m j m!#. ~34!

On the other hand, from the Bianchi identities and by co
sidering that the only nonvanishing spinor Weyl compon
is given in Eq.~27! we obtain that

d̄C0
B2DC1

B54p@d~ l ml nTmn!2D~ l mmnTmn!#, ~35!

~D24g1m!C0
B2dC1

B12jw2Dw0
B

54p@d~ l mmnTmn!2l̄ l ml nTmn

2D~mmmnTmn!#, ~36!
n

.

r-

ce

-
t

where we also have included an additional source for
gravitational perturbations,Tmn @10#. Applying the same pro-
cedure used in Eqs.~30! and ~31! to eliminatew1

B , we can
cancel the terms withC1

B of Eqs.~35! and ~36! and we get

OGC0
B12jw2D2w0

B54pSG~Tmn!, ~37!

where

SG~Tmn!5D@d~ l mmnTmn!2D~mmmnTmn!2l̄ l ml nTmn#

1d@D~ l mmnTmn!2d~ l ml nTmn!#,

OG5D~D24g1m!2dd̄. ~38!

In order to complete the system of Eqs.~33! and~37! and
to avoid the appearence of undesirable perturbed quant
@14#, before considering the perturbations, we applyD to Eq.
~A5! ~dilaton equation! and we obtain

D~D1m2g2ḡ !Df2 r̄DDf2~Df!D r̄1D~ t̄df!

1D~2d1ā2b1t!d̄f1
1

4
aD~jF2!

2
1

2
bD$z@~Dh!Dh2~dh!d̄h#%50. ~39!

Using the commutation relations the fifth term can be e
pressed as

D~2d1ā2b1t!d̄f

52~d2ā2b1p̄ !~ d̄2a2b̄1p!Df

1~d2ā2b1p̄ !k̄Df2~d2ā2b1p̄ !

3@~r1 «̄2«!d̄f1s̄df#

1kDd̄f2~ r̄1 «̄2«!dd̄f

2sd̄ 2f1D@~ ā2b1t!d̄f#, ~40!

and now using Eqs.~24! and ~26! it is very easy to demon-
strate that

@D~2d1ā2b1t!d̄f#B52dd̄~Df!B1Dfdk̄B.
~41!

Furthermore, the linearization of nonvanishing remaini
terms of Eq.~39! is given by

@D~D1m2g2ḡ !Df#B5D~D1m2g2ḡ !~Df!B,

2@~Df!D r̄ #B52~Df!D r̄B,

@D$z@~Dh!Dh2~dh!d̄h#%#B5z~Dh!D~Dh!B,

@D~jF2!#B54j@w2Dw0
B1w2Dw0

B#,
~42!

then, from Eqs.~41! and~42! and the right-hand side of Eqs
~32!, the perturbed version of Eq.~39! takes the form
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OD~Df!B2
1

2
bz~Dh!D~Dh!B1aj@w2Dw0

B1w2Dw0
B#

52pDfs14p~Df!l ml nTmn , ~43!

where

OD5D~D1m2g2ḡ !2dd̄, ~44!

andfs represents a source for the dilaton field perturbatio
The procedure employed in order to obtain the preced

equation from the dilaton equation can be straightforwar
applied on Eq.~A7! ~axion equation!, and to obtain

OA~Dh!B12bz~Dh!D~Df!B14i @w2Dw0
B2w 2̄Dw 0̄

B#

58pDhs14pz~Dh!l ml nTmn , ~45!
s.
g
y

where

OA5z@D~D1m22g12bDf!2dd̄#, ~46!

andhs represents a source for the axion field perturbatio
The set of four equations~33!, ~37!, ~43!, and ~45! in-

volves actually five unknowns (Df)B, (Dh)B, w0
B , C0

B , and
w0

B. In order to rectify this situation, we must consider t
complex conjugates of Eqs.~33! and ~37! to obtain two ad-
ditional equations, which complete our linear system for
unknowns~the five ones mentioned above! plusC0

B @(Df)B

and (Dh)B are real quantities#. Note that the complex con
jugates of Eqs.~43! and~45! are themselves. This system o
six equations can be expressed in the following matrix for
S OG 2jw2D2 0 0 0 0

2w2 OE 0 0 aw2D 2 iw 2̄j21D

0 0 ŌG 2jw2D2 0 0

0 0 2w2 ŌE aw2D iw2j21D

0 ajw2D 0 ajw2D OD 2
1

2
bz~Dh!D

0 4iw2D 0 24iw2D 2bz~Dh!D OA

D S C0
B

w0
B

C0
B

w0
B

~Df!B

~Dh!B

D 54p1
SGTmn

1

2
SEj m

S̄GTmn

1

2
S̄Ej m

1

2
Dfs1~Df!l ml nTmn

2Dhs1z~Dh!l ml nTmn

2 ,

~47!

where the operatorsS̄E and S̄G correspond to the complex conjugates of those of Eqs.~34! and ~38!. The right-hand side
corresponds to

SF ~Tmn!

~ j m!

fs

hs

G ,

whereS is given by the following 634 matrix:

S51
SG 0 0 0

0
1

2
SE 0 0

S̄G 0 0 0

0
1

2
S̄E 0 0

~Df!l ml n 0
1

2
D 0

z~Dh!l ml n 0 0 2D

2 . ~48!

O being the matrix operator appearing on the left-hand side and using Eqs.~17!, ~34!, ~38!, ~44!, and~46!, we find that



O†5S OG
† 2w2 0 0 0 0

2jw2D2 OE
† 0 0 2ajw2D 24iw2D

0 0 ŌG
† 2w2 0 0

0 0 2jw2D2 ŌE
† 2ajw2D 4iw2D

0 2aw2D 0 2aw2D OD
† 22bz~Dh!DD , ~49!

57 3439PERTURBATIONS IN DILATON-AXION GRAVITY . . .
0 iw2j21D 0 2 iw2j21D
1

2
bz~Dh!D OA

†

ld

ld
where

OG
† 5~D12g1m!D2 d̄d,

OE
†5@D1m1a~Df!1 i j21~Dh!#D2 d̄d,

OD
† 5~D1m!D2 d̄d,

OA
†5z@D~D1m12bDf!2 d̄d#,

~50!

and also

S†5S SG
† 0 S̄G

† 0 ~Df!l ml n z~Dh!l ml n

0
1

2
SE

† 0
1

2
S̄E

† 0 0

0 0 0 0 2
1

2
D 0

0 0 0 0 0 22D

D ,

~51!

where

SG
† 52 l ml n@d22l̄D#2mmmnD212l ~mmn)dD,

SE
†5j21@ l md2mmD#. ~52!

In this manner, if the matrix potential (c) satisfies
O†(c)50 with

~c!5S cG

cE

c̄G

c̄E

cD

cA

D , ~53!

(cG ,cE ,cD, andcA have types$24,0%,$22,0%,$21,21%,
and$21,21%, respectively, in the sense of the Geroch-He
Penrose formalism!, it means, using Eq.~46!, that
-

OG
† cG2w2cE50,

2jw2D2cG1OE
†cE2ajw2DcD24iw2DcA50,

2aw2DcE2aw2Dc̄E1OD
† cD22bz~Dh!DcA50,

ŌG
† c̄G2w2c̄E50,

2jw2D2c̄G1ŌE
† c̄E2ajw2DcD14iw2DcA50,

iw2j21DcE2 iw2j21DcE1
1

2
bz~Dh!DcD1OA

†cA50.

~54!

Then the metric, vector potential, axion, and dilaton fie
perturbations are given by@7#

S hmn

bm

fB

hB

D 5S†~c!

5S SG
† cG1S̄G

† c̄G1 l ml n@~Df!cD1z~Dh!cA#

1

2
SE

†cE1
1

2
S̄E

† c̄E

2
1

2
DcD

22DcA

D ,

~55!

where the last equality follows from Eqs.~51! and~53!. Us-
ing Eqs.~52!, we have finally that thereal perturbations are

hmn522$ l ml n@d22l̄D#1mmmnD222l ~mmn)dDcG

1 l ml n@~Df!cD1z~Dh!cA#1c.c.,

bm5
1

2
j21~ l md2mmD !cE1c.c.,

fB52
1

2
DcD ,

hB522DcA . ~56!
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In this manner, the perturbations given in Eq.~56! are de-
fined completely algebraically by means of the six sca
potentialscG , c̄G , cE , c̄E , cD , andcA which satisfy the
six coupled equations~54!, calledthe master equations@11#.
Before closing this section, let us recall that these exp
sions for the perturbations have been obtained without fix
any gauge condition on the perturbed null tetrad. They
independent on the six degrees of perturbed tetrad ga
freedom, contrary to other approaches which make use
this gauge freedom in order to simplify the equations for
perturbations@5,6#. On the other hand, explicit forms of th
background quantities have not been required, only the
pendence on the coordinatev of these quantities@see Eq.
~24!#, which is a more general property of the incomin
waves.

C. Gauge-independent field perturbations

We can derive the expressions for the components of
electromagnetic field perturbations using the second of E
~56!, the formulaFmn

B 5]mbn2]nbm , and the following defi-
nitions:

w 0̄
B[ l mm̄nFmn

B 5
1

2
j21D2cE,

w 1̄
B[

1

2
~ l mnn1mmm̄n!Fmn

B 5
1

2
j21dDcE,

w 2̄
B[mmnnFmn

B 5
1

2
j21$~d22l̄D !cE

2@~D1m12a~Df!!D2dd̄#c̄E%. ~57!

Similarly, the components of the Weyl spinor perturbatio
can be obtained from the first of Eqs.~56! making use of the
formula

CACDE
B 5

1

2
¹R8

~A¹S8
ChDE)R8S81

1

2
h~AC

R8S8FDE)R8S8.

Then, we find that

C̄0
B52D4cG,

C̄1
B52dD3cG,

C̄2
B52~d22l̄D !D2cG

1
1

6
D2@~Df!cD1z~Dh!cA#,

C̄3
B52~d223l̄D !dDcG

1
1

4
dD@~Df!cD1z~Dh!cA# ,

C̄4
B52~d223l̄D !~d22l̄D !cG2d2~ d̄22lD !c̄G

1F1

2
F222~D12g1m!~D1m!GD2c̄G

1~ d̄22l̄D !@~Df!cD1z~Dh!cA#

1@2~D12g12m!d1l̄ d̄ #d̄Dc̄G, ~58!
r

s-
g
re
ge
of
e

e-

e
s.

s

whereF22 is given by Eq.~29!. Since the field perturbation
given by Eqs.~57! and ~58! are completely defined by th
quantities given in Eqs.~56!, they have the same gauge in
dependence@see the paragraph after Eq.~56!#, which allows
us, for example, to define appropriately fluxes of ene
@15#, and to study the matching conditions between the d
ferent regions occurring in the collision of plane waves@16#.

On the other hand, from the definitiont52nnl m¹nmm ,
using the fact that the only nonvanishing spin coefficients
those given in Eq.~26! and the formula forhmn given in Eq.
~56! we can find that

tB52 d̄D2c̄G2~D22g!l mmm
B , ~59!

wherel mmm
B corresponds to one of six degrees of freedom

the perturbed tetrad@6,11#.

V. EXISTENCE OF PURELY INCOMING
PERTURBATIONS

The purely incoming perturbations correspond to t
u-independent perturbations. We will demonstrate that
existence of purely incoming perturbations found in Re
@10,11# in the scheme of the EM theory~contrary to the
findings of Chandrasekhar and Xanthopoulos in Refs.@5,6#!
is a property that persists in the more general framework
the EMDA theory and, for this purpose it is convenient
define the complex variable

z[
1

A2
@x1/2x11 ix21/2x2#, ~60!

and its complex conjugate to replace the real coordinatex1

andx2. With this definition, the relevant components of th
null tetrad ~25! can be rewritten asd̄51/AH]z and
d51/AH] z̄ . A direct way to obtainu-independient field per-
turbations is to assume that the potentialscE , cG , cD, and
cA do not depend onu, then the master equations~54! re-
duce to

1

H
]z] z̄cG1w2cE50, ]z] z̄cE50,

~61!

]z] z̄cD50, ]z] z̄cA50,

whose solutions are

cE52
1

w2
H]zF~v,z!,

cG5H2@ z̄F~v,z!1G~v,z!#,

cD5JD~v,z!,

cA5JA~v,z!, ~62!

whereF(v,z), G(v,z), JD(v,z), and JA(v,z) are arbitrary
functions and the factors 1/w2H and H are introduced for
convenience. The only nonvanishing field perturbations
be obtained from Eqs.~56!–~58! and ~62!:



.
lt-
es
io

e
be

th
th
is
o
e

s-

ry
on

y

uld

a-
al
he
he

ad
ns

p
,
he
.
d
g
ti
n

m
g

e
to
n

in
en

tur-
on-

n of
e

ny
jas

-

57 3441PERTURBATIONS IN DILATON-AXION GRAVITY . . .
w2
B52

1

2w2
j21]z

3F~v,z!,

C4
B52]z

4$ z̄F~v,z!1G~v,z!%

1
1

H
]z

2@~Df!JD~v,z!

1z~Dh!JA~v,z!#, ~63!

and from Eq.~59!, choosingl mmm
B equal to zero,

tB50, ~64!

and sinceF and G are arbitrary functions, Eqs.~63! imply
the existence of nontrivial~type-N! incoming perturbations
Equation~64! implies that in this particular case, the resu
ing spacetimeg1h corresponds to plane waves. The expr
sions~63! and~64! have been obtained under the assumpt
that the scalar potentials do not depend onu, but it is not the
only way to obtainu-independent perturbations. In fact, th
more general solution for this kind of perturbation can
obtained from Eqs.~56!–~58! assumingu-independent func-
tions on the left-hand sides of these equations, provided
the potentials appearing on the right-hand side satisfy
master equations~54!; but in this general case, the solution
not necessarily type-N, nor corresponds, in general, t
plane wave geometry. However, the particular solution giv
in Eqs. ~63! and ~64! is sufficient to demonstrate the exi
tence of a nontrivial one.

On the other hand, in the framework of the EM theo
~where only electromagnetic and gravitational perturbati
are present!, if the electromagnetic field vanishes~i.e.,
]z

3F50) in Eq. ~63!, the remaining nonvanishing purel
gravitational perturbations not only would correspond to
solution of the linearized EM equations but they also wo
correspond to anexactsolution of the EM equations@17#. In
the present case~since the dilaton and axion field perturb
tions vanish!, would the nonvanishing purely gravitation
perturbation~63! also correspond to an exact solution of t
EMDA theory? The establishment of a similar result for t
EMDA theory to the one given in Ref.@17# for the EM
theory would allow us to answer this open question. In
dition, it may allow us to consider gravitational perturbatio
without perturbing the matter fields.

VI. CONCLUDING REMARKS

Our approach based on the self-adjointness and decou
systems is very general and it can be applied, in principle
the whole of solutions of the EMDA theory, as long as t
corresponding decoupled system of equations is found
addition, one may avoid the imposition of any gauge con
tion on the perturbed tetrad, which is a great advanta
Some interesting perturbation cases to study are the solu
corresponding to black holes which carry both electric a
magnetic charge, and no static solutions for the extre
electrically charged black holes in EMD theory, which su
gest the possible violation of the cosmic censorship@3#. On
the other hand, the finding of the perturbations in the int
action regions for colliding plane waves will allow us
study the stability of singularities emerging in these regio
-
n

at
e

a
n

s

a

-

led
to

In
i-
e.
on
d
al
-

r-

s

and the junction conditions with those found in this work
the incoming regions. Futhermore, recently it has be
pointed out that the self-adjoint character of a set of per
bation equations is connected with the existence of a c
served current for such perturbations@18#; works along these
lines are in progress and a more detailed demonstratio
the self-adjointness of the perturbed EMDA theory will b
given.
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APPENDIX: THE NEWMAN-PENROSE FORMULATION
OF THE EMDA FIELD EQUATIONS

Projecting on the null tetradl n , nn , mn , andm̄n as usual,
the Maxwell field equations~1! take the form

j$~ d̄1p22a!w02~D22r!w12kw22a@w0d̄1w0d

2~w11w1!D#f%1 i ~w0d2w0d̄1w1D2w1D !h50,

~A1!

j$2~d12b2t!w21~D12m!w12nw0

2a@~w11w1!D2w2d2w2d̄ #f%

1 i @~w12w1!D1w2d2w2d̄ #h50, ~A2!

j$~D22g1m!w02~d22t!w12sw2

2a@w0D1~w12w1!d2w2D#f%

1 i @2w0D1~w 1̄1w1!d2w 2̄D#h50, ~A3!

j$2~D2r12«!w21~ d̄12p!w12lw0

2a@w0D1~w12w1!d̄2w2D#f%

1 i @w0D2~w11w1!d̄1w2D#h50. ~A4!

Writing the operator¹m¹m in the Newman-Penrose for
malism, the dilaton field equation~2! takes the form

@~D1m2g2ḡ !D2 r̄D1 t̄ d1~2d1ā2b1t!d̄#f

2
1

2
bz@~Dh!Dh2~dh!d̄h#1

1

4
ajF250, ~A5!

where

F254@w0w21w0w22w1
22w 1̄

2#. ~A6!

Similarly, the axion equation~3! is given by
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z[(D1m2g2ḡ)D2 r̄D1 t̄ d1(2d1ā2b1t) d̄]h

2
1

2
FmnF̃mn12bz[(Df)Dh1(Df)Dh2(df) d̄h

2( d̄f)dh] 50, ~A7!

where

FmnF̃mn528i ~w0w22w0w22w1
21w1

2!. ~A8!

Moreover, from Fmn[2 1
2 (Rmn2 1

4 gmnR) and from the
Ricci tensor given by

Rmn52~]mf!]nf1
1

2
z~]mh!]nh

12jS FmlFn
l2

1

4
gmnF2D ,

the Ricci scalars can be expressed in the form

F00[ l ml nFmn52~Df!22
1

4
z~Dh!212jw0w0,
D

o

F11[ l mnnFmn52
1

2
@~Df!Df1~df!d̄f#

2
1

8
z@~Dh!Dh1~dh!d̄h#12jw1w1,

F22[nmnnFmn52~Df!22
1

4
z~Dh!212jw2w2,

F01[ l mmnFmn52~Df!df2
1

4
z~Dh!dh12jw0w1,

F02[mmmnFmn52~df!22
1

4
z~dh!212jw0w2,

F12[mmnnFmn52~Df!df2
1

4
z~Dh!dh12jw1w2,

L[
1

24
R5

1

6
@~Df!Df2~df!d̄f#

1
1

24
z@~Dh!Dh2~dh!d̄h#, ~A9!

with F i j 5F j i ( i , j 50,1,2).
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