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Perturbations in dilaton-axion gravity coupled with electromagnetic fields
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Explicit solutions of the perturbed Einstein-Maxwell-dilaton-axion theory are obtained by means of complex
scalar potentials in the case when the background geometry is the spacetime corresponding to plane waves in
the regions prior to the collision. These expressions are derived using Wald's method of adjoint operators and
a decoupled system of equations; no gauge-fixing condition on the perturbed tetrad is imposed. Our results
cover the low energy limit of string theory for some fixed values of the dilaton coupling constants. The
existence of purely incoming perturbations is discusg86556-282(98)02304-3

PACS numbd(s): 04.40.Nr, 04.20.Jb

I. INTRODUCTION where ¢ and % denote the dilaton and axion scalar fields,
respectively, and we define=e22¢ and (=e*"?; the di-
Dilaton-axion gravity coupled with matter fields has beenmensionless parameteasandb correspond to the coupling
extensively studied in the last years. This gravity theoryconstants which govern the coupling of the dilaton to the
arises in a natural way iN=4 supergravity and in the low- Maxwell field (F,,) and to the axion field, respectively. In
e e o o ey 20, he scaler v s e dul fF
. . ) . 9 Y. en =det(g,,), and u,v=0,1,2,3. Special theories are con-
the dilaton and axion fields are incorporated, the propeme? . e . i _
of the solutions appearing in ordinary Einstein gravity can beamed in the field equa_tlonSl)—(S), fo_r example fora=1 .
drastically modified, for example, changes in the globaland b=1; these equatlons are obtfamed from the_z bosonic
causal structure of the solutions, new implications on theoector of the_f_our_—dlm_ensmnal_ effective action obtained after
black-hole thermodynamics, solutions suggesting that Perf€ compactification in the string theory. _
rose’s conjecture on cosmic censorship may be violfted Although there exists an extensive body of literature on
3], etc. the exact solutions of the field equatiof®—(5) and their
In particular, when the matter field is the electromagnetidmplications, no great progress has been made in the study of
field, the four-dimensional field equations for the Einstein-their perturbations, which would provide us with a way of
Maxwell (EM) theory interacting with the dilaton and axion understanding the structure of such solutions. With this idea
fields are in mind, in this work we will focus our attention in the per-
turbed versions of Eq$1)—(5) around a general background
VM(,]EWJF EFP)=0, V,F,=0 (Maxwel), (1) solution. Therefore, in Sec. Il we introduce the notation and
the full equations for the metric, electromagnetic field, dila-
1 1 ton, and axion field perturbations.
vV, Vip+ Eang— Ebi(ﬂﬂﬂ)ﬁ‘WFO, Various procedures have been applied in the study of sys-
tems of perturbation equations. A method usually employed
in this study, for example in the linearized EM theddy-6],

F?=F,,F* (dilaton) , (2)  consists in trying to solve the set of equations for the com-
plete perturbations directly. This procedure has some
V,({a"n)— FMVEHVZO' disadvantages—for example, it involves a lot of differential

equations to solve, in addition to the fact that in the present

case, the situation becomes more complicated due to the

Ewv 1 ehvaBE (axion) ) presence of the dilaton and axion fields. Fortunately, there
aB y . . . .

\/__g are other procedures which permit massive reductions of the
number of differential equations to solve and computations,
besides providing us with expressions for the perturbations

R=T,, (Einstein, (4) in terms of derivatives of complex scalar potentials, which
automatically gives the correct relative normalization be-
_ . tween all the components of the perturbations. One of these
with the matter energy-momentum tensqr, given by procedures is the Wald method of adjoint operators, which
applies when we can obtain a decoupled set of equations

(%) 3. fr_om the original set of equations for the perturbatio_ns, pro-
a vided the self-adjointness of this system of equations has
L been establishefi7]. Therefore, in Sec. lll the self-adjoint

N 2 character of the linearized Einstein-Maxwell-dilaton-axion
+2§(F’”‘FV 49w F ) © (EMDA) theory is discussed.

R,uv_ Eg,uv

1
T;LV: 2(&/.L¢)(9V¢+ Eé’(ﬂ,uﬂ)aﬂl_ g,u,V

1
+Z§(c7 7)d47m
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Among all exact solutions of Eqél)—(5), the plane wave for exampleh’”zg““g”/’haﬁ, that will be used below. The
solutions are especially important, since these geometriesxplicit form of Riv in terms ofh,, is not required, since its
correspond to exact solutions of the string theory at all orderproperties are well known in other referend@s
of the string tension parametg8] and in higher dimensions In order to linearize the Maxwell equatiofi), it is suit-
lead to exact extreme black hole solutions when the dimenable to write this equation in the form
sional reduction is performd®]. The perturbations of plane
wave geometries have been studied by Chandrasekhar and
Xanthopoulos in the framework of the EM theory and their
conclusions showed the absence of purely incoming pertur- L . .
bations[5,6]; they believed that this fact would be connectedand now conS|de_r|ng Im_ear perturbations ar_ound a general
with some “no hair” theorem to gravitational waves waiting back_ground _SOIUt'On' using quﬁ) and grouping suitably,
to be discovered6]. However, recently it has been demon- the linearization of the preceding equation takes the form
strated in the same framework of the EM theory that the
existence of purely incoming perturbations is a property of =4 B o 4B P u
the most general spacetime representing plane waves bound 4F*10um"+8aV EF,¢7— 41 9,4 VP(EV,) —VH(EV,)
to collision[10,11]. With these preliminary ideas, in Sec. IV

Fr,0,m+ 9"V (éF ,,)=0,

we shall study the perturbations of the spacetime correspond- 2 1

ing to gravitational plane waves coupled to the electromag- +—gayef’““”((9pn)(?x} b,+41(d,7m) Eg““FPV
netic waves, dilaton, and axion waves in the regions previous \/__9

to the collision in the scheme of the EMDA theory. Using

the Newman-Penrose formalism, we find a decoupled system — —g? FrP#|+[V¥(£F~ )]+ & Fo VA + g“,Frev,

of equations for the perturbations without imposing any

gauge condition on the perturbed tetrad. In this manner, the 1

complete perturbations for the metric, electromagnetic poten- — Eg““FPVVp ]hwzo, )

tial, dilaton, and axion fields are expressed in terms of com-
plex scalar potentials. These expressions allow us in Sec. V o
to demonstrate the existence of purely incoming perturbaWhere we have multiplied by a factor of —4 for future con-
tions even in the more general framework of the EMDA Venience(7]. _ _ _
theory. The Newman-Penrose formulation of the field Similarly, we can write the dilaton equatiof2) as
equations(1)—(5) is summarized in the Appendix, which is
useful in Sec. IV and for future reference. a 1 N 1

0"“[ 900, =T, 01 b1 = 5DLG (3, m) a0+ 58EF?=0,
II. LINEARIZATION OF THE EMDA THEORY

. . A now taking linear perturbations and multiplying by a factor
In this section and throughout the superscript “B” de- of 4, the linearized dilaton equation is

notes the corresponding first-order perturbations. In particu-

lar, the metric, electromagnetic potential, dilaton, and axion B 5D 5 B
perturbations are represented by, , b,, ¢& and 75, re- 4bf(d%n)d,m°+AlaeF +2b70(d" ) (9, m) = VHV ,]¢

spectively.
In addition, one easily can demonstrate that —8a¢F*'V b, +4 (VEVH )+ aéF*Fe,
(g/u;)B: _h/uz' 1 1
= 5bl(#n) (%) +(Vp)VE=5g**(VFP)V,
B_ h#v 2 2
9°=99,,h™",

B _ X h a=0. (8)
Fo,=d.b,—d,b,, "

) 1 By the same procedure we can obtain the linearized axion
(E#r)B= Eyvaﬁo—,abﬁ_zﬁﬂvgaﬁhaﬂ, equation from Eq(3) (multiplying by a factor of -1

_ B_ T uv B = uv
(e 55— _ 2054 VELd, nP—Ab[F v+ (94 )a,] 48+ 4FHY b,

1 ~
gBE(e4b¢)B:4b§¢B' — {EgMV[g(&dn)Va+ FayFa'y]_é,(ayn)V,u
1 , B
(FZV)BZEQA”[VMthﬁ—VVhMp—VPhW], —[V¥(¢o n)]]h#,,—o. 9
RBngVREV—RWhW, (6) In order to linearize the Einstein equatio®, we first

derive the perturbed energy-momentum tensor of matter

where the covariant derivativ¥ , is with respect to the given in Eq.(5). It is not difficult to find that the linearized

background metrig,,, , which raises and lowers the indices, first and second terms are given by
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1 1
2[(0,$) 3,1+ 540,10, 7] 459 M o= (9um) | n°
=2[2(d;,$)d+bi(d,7)(9, B 1
[ ( (,u¢) v) g( ,u,n)( 7])]4) +2 agT%V+§b§gMV(aa7])(aa7])
+ (0, $) 9y 7°. (10
The third term can be suitably written as +gﬂy(&“¢)5a—2(ﬁ(ﬂ¢)%)—b((%ﬂ)(ﬁm)} #°
1 _2§[29a FV y_29y( Fv a_g VFDK’Y]Vab
= 0,u| (0" $)3u+ 3 L") 0 e ’
1 + SG'+gﬁg$[<aﬂ¢)(ap¢)+Z§<apn><apn)}
:_guvg}\a[(a}\(ﬁ)aad’—’—Zg(a}\n)aan}; 1
~Ou (ﬁ”¢)(ﬁ“¢)+zé(&*n)(«9“n)}]hax=0, (14
then,
N 1. B where the operators acting on the metric perturbatiops
1 9| (9°P) 0t 7 L(9“ M) dan coming from the linearization of the first member of E4)
L RS, — %(gthRLB, tarl]nd those tlé:é?minrg]; from Eclq_lr_st) fhave'beerl
_ PNV IYD) + = (P ) (8% represented by the operatég’, whose explicit form is no
|g’” (¢)(3°¢) 45( 2 7’)} important, because it is essentially the same are appearing in

1 the framework of the EM theorysee the paragraph after
POVNI )+ = (3P ) (9 hyo Egs.(6) and(13)] and is well known7].
(774)(9p®)+ 7 (0" ,ﬂ?)“ » The complete set of perturbed EMDA equatiof¥, (8),
(9), and(14) can be expressed in the following matrix form
for future convenience:

- gv)\g,ua

~ 0, 2(8°$) 90+ DL(9 ) (90m) 1$°

1
~ 59, .7 (1D
27 En Eap EaE Gnc 778
B
The linearized third term can be expressed as fon & o fos|| ¢ -0, (15)
Ean b & Eeol| (bL)
(fT;'\fV)B: T,’\fva*' é(T,'\fv)B7 (12) Een &b Eee Eo (h,u.v)

where where thef's are linear partial differential operators involv-

ing the background fields, whose explicit forms can be read
from Egs. (7), (8), (9), and (14), which correspond to the
third, second, first, and fourth rows, respectively.

1
F FV)‘—ZgWFZ

M _
T,,,=2

J7aN

is the usual energy-momentum tensor of the electromagnetic

field. Using the formulag6), the expressiofil2) can be writ- ll. SELF-ADJOINTNESS
ten as follows: OF THE PERTURBED EMDA THEORY

In order to find expressions for the complete solutions of
systems of linear partial differential equations in terms of
scalar potentials, Wald introduced a method which makes
use of the concept of the adjoint of a linear oper@i@r If £
EMYEa }h corresponds to a linear partial differential operator which

N ey mapsm-index tensor fields intm-index tensor fields then,
the adjoint operator of, denoted by¢', is the linear partial
_Zg[ZFy(MFB _I_%gMVFayFCB”/} (13) differential operator mappingn-index tensor fields into

(£TM,)B=—2a¢T)!, ¢°—2¢

apE vy 1 2N any Y
F.F, +ZF 9.%9,
1
+§g,4.w

Y m-index tensor fields such that

The metric perturbations coming from E(L3) are the
same that appear in the case when the only matter fiel
present is the electromagnetic figld|, except for the phase
factor &; in this manner, the overall factor acting dn,,
continues to be a function. wherev* is some vector field, and similarly for any other

Finally, from Eqgs.(4), (10)—(13) the linearized Einstein operator. For example, in the Newman-Penrose formalism
equations are given by we have that

dtp""'[5(f,w...)],m...=[5T(t"”"')]“”"'fw.__+V,Lv“,
(16)



3436 R. CARTAS-FUENTEVILLA 57

D'=—(D+e+e—p—p), AT=—(A—y—y+pu+pn), the other hand, the operator corresponding to the usual free
massless field equations of spin greater than one is not self-

st= —(5+B—;— T+;)’ ST= _(§+ E-a-?—f- ), adjoint on a curved spacetime.

17 The self-adjointness shown in E@22) for linearized
EMDA theory (for any coupling constanta and b) is not
which will be useful below. In the case of a functién sufficient to find solutions of this set of equations in terms of
scalar potentials in some particular cases, since one requires
fr=f. (18 also that the corresponding decoupled system of equations be

found. In the next section, such a decoupled system from
Egs. (15) is obtained when the background solution is the
spacetime corresponding to plane waves bound to a collision,
(AB)'=B'A!, (A+B)T=At+B". (19) which can also be expressed in matrix fofsee Eq.(47)].

Furthermore, ifA and B are any two linear operators, then
from the definition(16) one obtains that

For more details of Wald’s method, see for examplg IV. INCOMING WAVES AND THEIR PERTURBATIONS
With the aim of demonstrating the self-adjointness of the

matrix operator governing the perturbations in Ed%), we

will determine the adjoint operator of each of the operators The spacetime corresponding to the colliding plane waves

appearing in that equation. in the regions prior to the collisiofwhich contains one of
The first diagonal elemerdt, can be read from Eq9); it  the approaching wavgsan be specified bj13]

is that acting ony®,
g oy ds?=2e Mdudy—e V[e V(dx®)2+e(dx})?], (23)

A. Background solution to be perturbed

EA: - V"{a y
# whereu=x%+x3 andv=x°—x3, and with the metric com-
which maps scalar fields into themselves. Using the identitponents, electromagnetic, dilaton, and axion fields depending

only onuv:
VAL d, 1) = VELD i — 4 VLD, 4

u Y M A _
Y (L0, (), V@), M@), Awv), ¢W), n(v)(24)

wherey; and ¢, are any two scalar fields, it is straightfor- The giagonal line elemeri23) can be described by the null
ward to show that

tetrad
UoEpth1 = 1 EAho +V L1 0" thy— tho 0" 1), 2 V2
D=—2d,, A=—3d,,
This expression has the forfd6) and allows us to identify N U N
that
1
EAT=Ep. (20) 5= @( x Y20,1+i xY0,2),

Similarly, using the definitior(16), the propertieg18) and
(19), and assuming that the background fields satisfy Egs. 1 s 1
(1)—(5), one can demonstrate that 5—\/ﬁ(x dy1—ix"0y2), (25

t_ t_
&=, =&, fe=C, where we have defined, for simplicity,

5EE:€ED1 55025601 533E:5Eea N?=2e ™M H=e Y, y=e"
SLD=SDA, SLG=5GA, ELE=€EA, 1 In addition, the only nonvanishing spin coefficients are
then, from Eqs(20)—(21) we have found that the adjoint of (v)=—— iInN, u(v)=-— 1 iInH
the matrix operator appearing in E@.5) is given by [12] V2N dv V2N dv
gA 5AD 8AE gAG ' gA gAD 5AE gAG d
éba b Epe pe éoa b o pe Mo)=2N \/— dv (26)

SEA SED SE SEG - EEA gED gE 5EG ,

Eea fep Cee o Eea Eep Eee  &o
(22)

which means that this matrix operator is self-adjoint. It is
important to point out that, on a curved background, the
operators corresponding to the Weyl neutrino equation andhe incoming regions are filled with Petrov type-N gravita-
the linearized Yang-Mills equations are also self-adjoint. Ortional fields, radiation fields, and null electromagnetic fields;

the only nonvanishing component of the spinor Weyl is

(27)

4=

d2v dV(dU dM
dv dv\dv dv
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therefore, if we take the tetrad vectidt along the principal where we also have included an additional source for the
null direction of the background electromagnetic field, thengravitational perturbationd, ,, [10]. Applying the same pro-
we have that cedure used in Eq$30) and (31) to eIiminatecp?, we can
cancel the terms witﬂff of Egs.(35) and(36) and we get

©o=0=¢y, (28) o
Vo+2£0,D2p5=4mSe(T
¢»(v) being the only nonvanishing component. Using Eq. OcWot+26¢2D 00 =4mSe(T ), 37
(28), from Eqgs.(A9) the Einstein field equations reduce t0 \yhere
1 _— — 14 14 NI 14
®p=—(Ah)?~ ZL(AM 426000, (29 SelTun)=DLAIMMTT,,) =DM, ) = \ATT,,]

+[D#*m"T,,)— o(1#1"T ) 1,
sinceA ¢ and A » are the only nonvanishing derivatives of o
dilaton and axion fields. Oc=D(A—4y+u)— 6. (39

B. Decoupled equations and master equations In order to complete the system of E¢83) and(37) and
to avoid the appearence of undesirable perturbed quantities

[14], before considering the perturbations, we afdplio Eq.
(A5) (dilaton equationand we obtain

From the Maxwell equation§Al) and (A3) and from
Egs.(24), (26), and(28) we obtain

966Dl eak™=2mE N4, (30 D(A+u—y- 3D pDAS(Ad)Dp+D(756)

A=2y+p—a(Ad)—ié Y (An)]eE— 88— @0 — — 1

[ ytu—a(Ae)—ié& (An)]eg—op;— o0 +D(—5+a—B+7)5¢+ZaD(§F2)
+ag, (D¢)®— ot HAm)P=2mE ), L N
(3Y) ~ 5bD{(DNAn—(8m) 7]} =0. (39)
wherej , represents a source for the electromagnetic pertur- _ . .

bations(see Ref[10] and references cited thergimote that ~ Using the commutation relations the fifth term can be ex-

the components of the perturbed tetrad do not appear, singgessed as
they are acting orpy and ¢, and these background quanti-

ties vanish according to E§28). D(—8+a—pB+1)5¢
Moreover, from the Ricci identities and Ed24) and(26) o o .
one finds that =—(6—a—B+m)(6—a—B+m)D¢
DoB— 6kB=WE, DpB— 6xB=0. (32) +(8—a—B+m kA p—(6—a—f+m)
Applying § to Eq. (30) and D to Eq. (31), subtracting and X[(pte—e)dp+aid]

considering the left-hand side of Eqg$32) (and that LT \<R
[D,5]=0), we obtain that TrAdp—(pte—e)did
— — ~08°¢+D[(a—B+17)5¢], (40
Ocpg— ¢2¥5+agD(D $)°— g6 'D(D7)®

and now using Eq924) and(26) it is very easy to demon-

=27Se(] ), (33 strate that
with [D(— 8+ a—B+7)5¢]2=— 56(D )P+ A p kP,
_ 41
Oc=D[A-2y+ u—a(Ad)- i€ (An)]- 55, @D
Furthermore, the linearization of nonvanishing remaining
SE(jM)zg‘l[D(m“j W~ 0% )] (34  terms of Eq.(39) is given by

On the other hand, from the Bianchi identities and by con- [D(A+u—7y—y)Dp|B=D(A+pu—y—7y) (D)8,
sidering that the only nonvanishing spinor Weyl component
is given in Eq.(27) we obtain that —[(A¢)Dp]B=—(A$)Dp",

SVE=DVE=An (1T, DM TL)L (39 [D{g[(Dy)An-(5m)5ul} P={(AnDD 7P,

(A—4y+p)Wi—oVi+2£0,Deg [D(£F2)1B=4¢ 0,D 0B+ ¢,D 0],
o (42
=4a[s(1*m"T ,,) —NH“"T,, . .
then, from Egs(41) and(42) and the right-hand side of Egs.
—D(M*m"T )], (36) (32), the perturbed version of E¢39) takes the form
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1 - where
Ob(D¢)®= 5bL(A7)D(D7)®+aé ¢:D 05+ 92D o]

=27D ¢+ 4m(AP)IH"T,,, (43) Op={[D(A+p—2y+2bAg)— 5], (46)

where
_ and 7, represents a source for the axion field perturbations.
Op=D(A+p—y—7y)— 939, (44) The set of four equationé33), (37), (43), and (45) in-
_ _ __volves actually five unknowndX¢)®, (D 7)&, ¢f, ¥5, and
and ¢ represents a source for the dilaton field perturbations:—g . o .
The procedure emploved in order to obtain the orecedind?® - In order to rectify this situation, we must consider the
P ploy b omplex conjugates of Eq$33) and (37) to obtain two ad-

equa_ltion from the d”aFO” equat?on can be strai_ghtforwardlyditional equations, which complete our linear system for six
applied on Eq(A7) (axion equatioly and to obtain unknownsithe five ones mentioned abOmﬂus\II_OB [(D$)®

and (D 5)® are real quantitigs Note that the complex con-

OA(D7)B+2bZ(A7)D(D¢)B+4i[ @D 05— ©,D ¢o°
A(D7) {(AmD(D¢) [¢2D¢o¢2Deo] jugates of Eqs(43) and(45) are themselves. This system of

=8wD nst+4m{(Anp)IH'T,,, (45) six equations can be expressed in the following matrix form:
|
N SGT/.LV
Oc 2¢¢,D2 O 0 0 0 e 1
¢, Oe 0 0 agD  —igg'D . 2%l
_ ®o _
0 0 OG 2§(PZD2 0 0 GB SGT/LV
J— _ 0
0 0 -, Ok ap,D i@,6 1D —s =4 1—. ,
®o ESE],u
_ 1 8
0 ate,D 0  agp,D Opb —5bZ(An)D (Dg) 1
, — (Dn)B 5Dt (APIHT,,
2D s+ {(ApI#1" T,
47

where the operator§TE andge correspond to the complex conjugates of those of E84. and (38). The right-hand side
corresponds to

(Tun)
(Ju)

N ,
bs

7s

whereS is given by the following 6<4 matrix:

0 S 0 0
Se 0O 0 o©0

S= 1— . (48
0 >Se 0 o0

(API#Y 0 %D 0

(Apl#Y 0 0 2D

O being the matrix operator appearing on the left-hand side and using Efs(34), (38), (44), and(46), we find that
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oL — ¢, 0 0 0 0
2¢0,02  OF 0 0 —aég,D — 4i p,D
0 0 )8 — ¢, 0 0
o'= 0 0 2¢,D? oL —aép,D 4i p,D , (49)
0 —ap,D 0 —agp,D o} —2b¢(A5)D
0 i & 1D 0 —ig¢™'D %bg’(A 7)D Oh

where
OL=(A+2y+u)D— 55,
OLl=[A+u+a(Ap)+ié L(An)]D— 85,
OL=(A+u)D— 55,
OL={[D(A+ u+2bA¢)— 58],
(50)
and also
S 0 SLO0 (ApIMT {(AaplHY
1
0 S5 0 & 0 0
St= ,
0 0 0 o0 1D 0
2
0O 0 0 © 0 -2D
(51)
where
SL=—1#"6°>~\D]—m*m’D?+21»m" 6D,
St=¢ [1*5—m*D]. (52)

In this manner, if the matrix potential¢{) satisfies
O'()=0 with

(= — |, (53

(wG 1‘//E !l//Dv and lsz have types{—4,0},{— 210}1{_ 11_ 1}1

O&c— e20e=0,

2£0,D2y+ OLpe—age,D yip—4i ;D Y4 =0,
—ag,Dye—a@,D et Ohihp—2bL(A7)Dya=0,
@JG_;ZEE: 0,

2£0,D2P+ OLpe—ate,D yip+4i D Y4 =0,

_ — 1
1026 Db —igot Dyt 5bL(A7)D Y+ Opiha=0.
(54

Then the metric, vector potential, axion, and dilaton field
perturbations are given Hy]

=S"(¢)

SLve+Shet 1, [(AP) o+ L(A7) YAl

1 1.
ESE¢E+§§E¢E

1
- EDl/fD
—2Dyp
(55

where the last equality follows from Eq&1) and(53). Us-
ing Egs.(52), we have finally that theeal perturbations are

h,,=—2{,1,[82>~AD]+m,m,D2—2l,m, D g

wvo

LA Yo+ L(An)Yalte.c.,

1
b,= Eg‘l(lﬂé— m,D)ye+c.c.,

1
¢B:_§D‘//D,

and{—1,— 1}, respectively, in the sense of the Geroch-Held-

Penrose formalisin it means, using Eq46), that

7°=—2Dy,. (56)
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In this manner, the perturbations given in E§6) are de- whered,, is given by Eq.(29). Since the field perturbations
fined completely algebraically by means of the six scalamgiven by Egs.(57) and (58) are completely defined by the
potentialsys, ¥, Ye, ¥e, ¥p, andy, which satisfy the — quantities given in Eq956), they have the same gauge in-
six coupled equation4), calledthe master equationd 1]. dependencgsee the paragraph after E§6)], which allows
Before closing this section, let us recall that these expresds, for example, to define appropriately fluxes of energy
sions for the perturbations have been obtained without fixing15], and to study the matching conditions between the dif-
any gauge condition on the perturbed null tetrad. They argerent regions occurring in the collision of plane way&§].
independent on the six degrees of perturbed tetrad gauge On the other hand, from the definitian= —n*I “V,m,,
freedom, contrary to other approaches which make use Qfsing the fact that the only nonvanishing spin coefficients are

this gauge freedom in order to simplify the equations for thethose given in Eq(26) and the formula foh,,, given in Eq.
perturbationg5,6]. On the other hand, explicit forms of the (56) we can find that

background quantities have not been required, only the de-
pendence on the coordinate of these quantitiesee Eq.
(24)], which is a more general property of the incoming
waves.

8= — 6D%Yg— (A—2y)1#mg, (59)

wherel“m® corresponds to one of six degrees of freedom of
C. Gauge-independent field perturbations the perturbed tetrafb,11].

We can derive the expressions for the components of the
electromagnetic field perturbations using the second of Egs. V. EXISTENCE OF PURELY INCOMING
(56), the formulaF® = g,b,—a,b,,, and the following defi- PERTURBATIONS

nitions: The purely incoming perturbations correspond to the

- 1 u-independent perturbations. We will demonstrate that the

<pOBEIMmVFEV=§§*lD21/;E, existence of purely incoming perturbations found in Refs.
[10,17 in the scheme of the EM theorfcontrary to the

1 . 1 findings of Chandrasekhar and Xanthopoulos in Rg$))

(plBEE(l'“nV-I— m“m”)FﬁvzszléD Ve, is a property that persists in the more general framework of
the EMDA theory and, for this purpose it is convenient to

o s 1 , — define the complex variable

B_ v — -1
¢ =mtn F’”’_Eg {(6°=AD) ¢
1/2X1

T~ =i i, —12,,2
—[(A+p+2a(Ad))D - 5]} (57) 2= Gl T, (60)

Similarly, the components of the Weyl spinor perturbations . ; et
can be obtained from the first of Eq$6) making use of the and its complex conjugate to replace the real coordingtes
formula andx?. With this definition, the relevant components of the
null tetrad (25) can be rewritten asé=1/\JHd, and
5=1/\JHd;. A direct way to obtairu-independient field per-
turbations is to assume that the potentials, ¢, ¥p, and
¢ do not depend omi, then the master equatioris4) re-

B ! ! ’ U
\PACDEZEVR (AVS choprrs + Eh(ACR s Ppeyrrsr-

Then, we find that

duce to
¥5=—D*yg, 1
Y , ﬁaza?l/fe"‘ e20e=0, 9,0, =0,
Po=—6D3%yg, (61
\17*23=—(52—)\_D)D2<//G 3,079p=0, d,9;¢p=0,

1 whose solutions are
"‘6 DA (A¢)yp+L{(An)ial,

1
— =——Hd,F(v,2),
VB=—(82~3\D)dD g ve= ok w.2)

+% SD[(Ad)yp+ L(AR)al, Ye=HzF(v,2)+G(v,2)],
WB= — (82— 3\D)(82— D) dhg— 62— \D) i ¥o=Jo(v.2),
1 — wA:JA(le)! (62)
+ §®22_(A+27+M)(A+,U«) Dy
whereF(v,2), G(v,2), Jp(v,2), andJx(v,z) are arbitrary
+(§2—)\_D)[(A¢) Yo+ L(AD) YAl functions and the factors ¢4H and H are introduced for

_ convenience. The only nonvanishing field perturbations can
+[2(A+2y+2u)5+NS5]16D g, (58 be obtained from Eq$56)—(58) and(62):
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—s 1 13 and Fhe junction cqnditions with those found in 'Fhis work in
®2 =—2—¢2§ 9;F(v,2), the incoming regions. Futhermore, recently it has been

pointed out that the self-adjoint character of a set of pertur-
bation equations is connected with the existence of a con-

—5 a4
Va=-0,{zF(v,2)+G(v,2)} served current for such perturbatidis]; works along these

1 lines are in progress and a more detailed demonstration of
+ﬁ &f[(Aqﬁ)JD(v,z) the self-adjointness of the perturbed EMDA theory will be
given.
+{(An)da(v,2)], (63)
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and sinceF and G are arbitrary functions, Eq$63) imply
the existence of nontrivialtype-N) incoming perturbations.
Equation(64) implies that in this particular case, the result-
ing spacetime+ h corresponds to plane waves. The expres-
sions(63) and(64) have been obtained under the assumption APPENDIX: THE NEWMAN-PENROSE FORMULATION
that the scalar potentials do not dependugbut it is not the OF THE EMDA FIELD EQUATIONS
only way to obtainu-independent perturbations. In fact, the L —
more general solution for this kind of perturbation can be Projecting on the null tetral,, n,, m,, andm, as usual,
obtained from Eqs(56)—(58) assumingu-independent func- the Maxwell field equationsl) take the form
tions on the left-hand sides of these equations, provided that o
the potentials appearing on the right-hand side satisfy thé&{(5+7—2a)@y—(D—2p)@1— k@,—a[ pgd+ @b
master equation&4); but in this general case, the solution is _ _ _ _
not necessarily type-N, nor corresponds, in general, to a —(@1+¢1)D]d}+i(@ed—¢oé+¢1D—9D)7=0,
plane wave geometry. However, the particular solution given (A1)
in Egs. (63) and (64) is sufficient to demonstrate the exis-
tence of a nontrivial one.

On the other hand, in the framework of the EM theoryg{_(a_" 2B= 1) @2t (A+21) 01~ o

(where only electromagnetic and gravitational perturbations LT oA s
are present if the electromagnetic field vanishe@.e., (@1t e1)A =020~ 02014}
#3F=0) in Eq. (63, the remaining nonvanishing purely +i[ (91— @1) A+ 98— 9,8] 7=0, (A2)

gravitational perturbations not only would correspond to a
solution of the linearized EM equations but they also would _ e _
correspond to aexactsolution of the EM equationsl7]. In A2y ) go=(0-27) @1~ 0,

the present casgsince the dilaton and axion field perturba- —a[ @A+ (91— 1) 5— @,D]d}
tions vanish, would the nonvanishing purely gravitational
perturbation(63) also correspond to an exact solution of the +i[— @A+ (@1 + ¢1) 05— @,D]5=0, (A3)

EMDA theory? The establishment of a similar result for the
EMDA theory to the one given in Refl7] for the EM —
theory would allow us to answer this open question. In adél—(D—p+2e) o+ (5+2m) 1~ Mo
dition, it may allow us to consider gravitational perturbations — — =
Y ) P —a[goA + (@1~ 1) ¢,D] 4}

without perturbing the matter fields.
+i[poA— (@1t ¢1) 0+ @D ]5=0. (A4)
VI. CONCLUDING REMARKS

Our approach based on the self-adjointness and decoupled Writing the operatoV#V , in the Newman-Penrose for-
systems is very general and it can be applied, in principle, ténalism, the dilaton field equatiof2) takes the form
the whole of solutions of the EMDA theory, as long as the
corresponding decoupled system of equations is found. In [(A+p—y—y)D—pA+ 76+ (— 6+ a—B+1)5]¢
addition, one may avoid the imposition of any gauge condi-
tion on the perturbed tetrad, which is a great advantage.
Some interesting perturbation cases to study are the solution
corresponding to black holes which carry both electric and
magnetic charge, and no static solutions for the extremg}nere
electrically charged black holes in EMD theory, which sug-
gest the possible violation of the cosmic censorgBip On 5 — , —
the other hand, the finding of the perturbations in the inter- Fo=4lpop2t @op2— ¢1~ ¢17]. (A6)
action regions for colliding plane waves will allow us to
study the stability of singularities emerging in these regionsSimilarly, the axion equatio3) is given by

1 — 1
— 5 b(DmAn—(8n)dn]+ Za§F2=0, (A5)
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{(A+u—y=y)D—pA+75+(—8+a—p+1)d]y Bl D, = — S[(Dd)A b+ (56) 5]
my 2

1 - _

~ 5 Fu P +20{[(Dd)An+(A¢)D7—(5¢)on 1 _ _

~gl(DMAn+(57)dn]+ 28101,

—(8¢) 571 =0, (A7)

1 _
where d)zzznﬁn”d)M:—(A@Z—Zg(An)2+2§<p2<p2,

F,waW:_8i(<P0§02_900<P2_4’§+9012)- (A8)

1 _
o =1"m"®,,,= (D $) 3¢~ 7LD ) 60+ 2001,

Moreover, from ®,,=-3(R,,—39,,R) and from the

. . 1 I
Ricci tensor given by Po=mm'd = —(8¢)%— Zg(g,?)2+ 280005,

1
Run=200u @106 50w 0 Dug= M, =~ (M) 56— 7 L(An) 7+ 260102

1
+2¢& FMF,}—ZgWFZ ,

1 1 _
A=5,R=5(DP)AP—(5¢)54]
the Ricci scalars can be expressed in the form

1 _
+ 528l (DmAn=(57) 5], (A9)

l JR—
(I)OOEI’U'l VCD”V: - (Dd))z_ Zg(D 77)2+ 2§‘PO‘PO'

with @;;=®;; (i,j=0,1,2).
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