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Evolving the Bowen-York initial data for spinning black holes
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The Bowen-York initial value data typically used in numerical relativity to represent a spinning black hole
are not those of a constant-time slice of the Kerr spacetime. If Bowen-York initial data are used for each black
hole in a collision, the emitted radiation will be partially due to the ‘‘relaxation’’ of the individual holes to Kerr
form. We compute this radiation by treating the geometry for a single hole as a perturbation of a Schwarzschild
black hole, and by using second order perturbation theory. We discuss the extent to which Bowen-York data
can be expected accurately to represent Kerr holes.@S0556-2821~98!04506-8#

PACS number~s!: 04.25.Nx, 04.25.Dm, 04.70.Bw
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I. INTRODUCTION

The description of the collision of two black holes, in
cluding the total energy radiated and the waveforms to
measured by observers far from the collision region, is at
time one of the most active fields of research in gene
relativity. Since the latter theory has a well posed init
value problem, a good deal of effort has been devoted
finding solutions for the initial value problem, in the form o
initial data sets, that may represent slices of recogniza
physical processes involving black holes. One of the fi
examples of this kind was given by Misner@1#, who derived
an initial data set representing the moment of time symm
in the head-on collision of two equal mass black hol
placed at an arbitrary distance from each other. Further
velopments along this line have provided a fair number
interesting initial data sets@2,3#, that can be interpreted a
representing isolated but boosted and/or rotating black ho
or collisions involving two or more black holes.

Once one has the initial data, the next task is to study
evolution and the consequent emission of gravitatio
waves arising from the collision. Because of the complex
of the evolution equations of general relativity, numeric
solutions of the full Einstein equations are available
present only for equal mass, nonspinning, holes undergoi
head-on~i.e., zero impact parameter! collision @4,5#.

It has also been observed that for a restricted set of
rameters, the evolution can be well described by treating
system as a perturbation of a single black hole@6#. This
method, called the ‘‘close approximation,’’ has produced
sults that are in remarkable agreement with the full num
cal results in the case where the latter are available. An
pealing feature of the perturbation method is the expl
control over the parameters characterizing the perturbat
This, together with the development of some form of ‘‘err
bars,’’ as in@7,8#, can make the method an important tool
make predictions of physical processes or to provide co
parison cases to test the reliability of numerical methods

The initial data set that is usually considered@2,3# in the
study of black hole collisions is generated using the con
570556-2821/98/57~6!/3401~7!/$15.00
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mal approach, in which one assumes that the spatial metr
conformally flat, and the maximal slicing condition is chos
for the extrinsic curvature. In the flat space, it is relative
simple to construct a conformally related extrinsic curvatu
which guarantees that the momentum constraint is solv
The Hamiltonian constraint is subsequently solved, eit
numerically@3# or via approximations@5,9#. In this construc-
tion there is a series of simplifying assumptions and ther
no claim that a ‘‘generic’’ solution has been found. It
therefore not clear that the particular solution generated
true representation of the physical problem in which one
interested. An example of this is the Bowen and York~BY!
@2# solution for a single spinning hole. It is known that th
initial data set represents a dynamical situation that evo
to a Kerr black hole asymptotically in the future. Initially
however, the spacetime is not a Kerr spacetime, but can
thought~somewhat inappropriately! to differ from a Kerr so-
lution in that it has some ‘‘gravitational wave content,’’ th
waves that will be radiated as the spacetime evolves tow
Kerr spacetime.

One can argue that this ‘‘gravitational wave content’’ w
be radiated in a short time, and that the initial data w
evolve rapidly to a stationary Kerr black hole configuratio
and therefore will not greatly affect the radiation produced
a black hole collision, as long as the holes are released
from each other. The question is important enough to
serve a more careful answer. In addition, numerical relativ
codes cannot be accurately run for long evolution times,
initial data will have to be specified at fairly late times, wi
holes fairly close together, and with the possibility that t
‘‘gravitational wave content’’ of the initial data is a majo
part of the outgoing radiation.

The purpose of this paper is to analyze the radiation fr
the individual holes. More specifically, we use the theory
perturbations of the Schwarzschild spacetime. We cons
that we have a family of spacetimes depending on the
rametere, and that, in appropriate coordinate systems, m
rics of the family can be expanded as

gmn5gmn
~0!1ehmn

~1!1e2hmn
~2!1•••. ~1!
3401 © 1998 The American Physical Society
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Here gmn
(0) the Schwarzschild metric,hmn

(1) is called the first
order perturbation, andhmn

(2) is called the second order pertu
bation. To analyze the ‘‘Bowen and York spacetime,’’ t
spacetime that evolves from Bowen and York initial data
a single spinning hole, we choose as the expansion param
the angular momentumJ, and we analyze both the Kerr so
lution and the BY spacetime to second order inJ. The sec-
ond order expansions are then compared and we find tha
need only to evolve the difference between the BY spacet
and the Kerr spacetime.

The organization of this paper is as follows. In Sec. II w
give a perturbation analysis of the BY initial data. Th
method of evolving this initial data is described in Sec. III.
Sec. IV the results for radiation emitted are presented
discussed. In the Appendix we show how the Kerr metric c
be written as an expansion, in angular momentum, about
Schwarzschild spacetime.

When it is useful to specify orders of expansion, and
multipole indices, we shall use a leading subscript to den
the multipole indexl , and a superscript, in parenthesis,
the right of a perturbation variable, to indicate order inJ.
The quantity0c (2), for example, is a monopole perturbatio
second order inJ.

II. THE BOWEN-YORK SINGLE ROTATING
BLACK HOLE

The Bowen-York@2# construction of initial data assume
that space-time contains a~constantt) slice, where the 3-
metric can be written in the formgi j 5c4f i j , wheref i j is the
metric for the flat background ds25dR21R2(du2

1sin2udf2), while the extrinsic curvature is given byKi j

5c22K̂ i j , and satisfiesKi
i50. With these assumptions th

initial value constraint equations take the form

K̂ i j
u j50, ~2!

and

¹2c52
1

8
K̂ i j K̂

i j c27, ~3!

where the Laplacian, and the covariant differentiation~de-
noted by a vertical bar! are taken with respect to the fla
space metric. The problem is not fully specified until app
priate boundary conditions are imposed onc. The Bowen-
York prescription for a single black hole is that, given
certain constanta, Eq. ~3! holds forR>a, and

]c

]R
1

1

2R
c50 for R5a, ~4!

and

c.0, lim
R→`

c51. ~5!

The particular solution we are interested in correspond
@2#

K̂5
3

R3 @~J`R! ^ R1R^ ~J`R!#, ~6!

where R is the ‘‘position’’ vector in the flat space back
ground, andJ is a vector constant. Without loss of genera
r
ter

we
e

d
n
he

r
te
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ity, we chooseJ5Jk, wherek is a unit vector pointing along
~the positive direction of! the polar axis of theR,u,f coor-
dinate system. With this choice, the only nonvanishing co
ponents ofK̂ are

K̂Rf5K̂fR5
3J

R2sin2u, ~7!

We then find

K̂ i j K̂
i j 518

J2

R6sin2u. ~8!

We now need to solve Eq.~3!. For general values ofJ,
this can only be done numerically. However, we are rea
interested in solutions nearJ50 ~‘‘slow rotation’’ ! and an
expansion in powers ofJ is appropriate. The zeroth orde
equation is

¹2c50, ~9!

and the solution that satisfies the boundary conditions is

c~0!511a/R. ~10!

The lowest order correction toc may now be constructed
by linearizingc aboutc (0) in Eq. ~3!. If we formally write

c5c~0!1J2c~2!1•••, ~11!

the resulting equation is

¹2c~2!52
9

4R6sin2uS 11
a

RD 27

, ~12!

and the sin2u factor may be expanded in Legendre polyn
mials, as 2@P0(cosu)2P2(cosu)#/3.

We next writec (2)(R,u) as

c~2!~R,u!50c~2!~R!P0~cosu!12c~2!~R!P2~cosu! ~13!

and we find that0c (2)(R) and 2c (2)(R) satisfy the equations

d2@0c~2!#

dR2
1

2

R

d@0c~2!#

dR
52

3

2R6S 11
a

RD 27

, ~14!

and

d2@2c~2!#

dR2
1

2

R

d@2c~2!#

dR
2

6

R2 2c~2!5
3

2R6S 11
a

RD 27

. ~15!

The solutions of these equations, satisfying the bound
conditions are

0c~2!5
a41R415aR~R1a!2

40a3~R1a!5 ~16!

and

2c~2!52
R2

20a~R1a!5 . ~17!

With Eq. ~16! we see that the conformal factor has t
form

c511
a

R
1

J2

40a3

1

R
1O~1/R2!1O~J3!. ~18!
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FIG. 1. Comparison of approximate solutions to the initial value problem with a full numerical integration performed with a mu
method. Our code uses a square grid in compactified coordinatesr5R/(a1R), u with 2003200 grid points. It achieves an accuracy simil
to the test runs of Choptuik and Unruh@10#. The figure at the left compares the ADM mass of approximate and numerical solutions. Th
approximations are described in the text. The figure on the right shows the percentile difference between the full numerical solutc
and the second order approximation, forJ/a254, as a function ofr,u. We see that the approximation works very well.
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But by the definition of the Arnowitt-Deser-Misner~ADM !
mass~see for instance@2#!, c511MADM /(2R)1O(1/R2),
and hence the ADM mass, to second order inJ, is

MADM52a1
J2

20a3
. ~19!

This dependence ofMADM on J, for constanta, is plotted in
Fig. 1 as the dashed curve. Two other computations ofMADM
are also plotted, based on the integral@2,10#,

MADM5
1

32pEr>a

K̂ i j K̂ i j

c7
dv1

a

2E0

p

csinudu. ~20!

The solid curve shows the result of substitutingc, to second
order in J, into the integrals in Eq.~20!. The result agrees
with Eq. ~19! to second order inJ, but is significantly smaller
for largeJ. ~The difference is due to terms higher order inJ;
the expressions are identical up to second order.! The dark
points show the result of a multigrid numerical code w
wrote to solve the fully nonlinear initial value problem o
general relativity with axisymmetry, similar to that used
Choptuik and Unruh@10#.

The results presented to this point are formally expansi
to second order in the dimensionless parameterJ/a2, but a
itself is not a physical parameter, so the physical meanin
s

of

this expansion is unclear. For that reason we now convert
result to an expansion in the parameterJ/M2. ~Here, and in
subsequent expressions, we drop the ‘‘ADM’’ subscript
M . The symbolM will always represent the ADM mass.!
We then consider in the expressions we gave for the con
mal factor,

c511
a

R
1J2

„0c212c2
2P2~cosu!…, ~21!

that the parametera is really given bya(M ,J). One can
obtain explicit formulas for this by considering the expre
sion for a(M ,J) obtained by inverting the approximate e
pression Eq.~19!. Alternatively, one can keep the implic
dependence ofa on J, and can replace it in the last step of
calculation, using tabulated values fora(M ,J) obtained from
the multigrid numerical code. In this case the ‘‘second ord
part’’ is the part ofc that remains after the part zeroth ord
in J/M2 is subtracted.

If the relation of a and J is taken from Eq.~19!, the
explicit formulas~correct to second order! are,

c5C~0!1~J/M2!2C~2!

5C~0!1~J/M2!2
„0C~2!12C~2!P2~cosu!…, ~22!

with
C~0!511M /2R ~23!

0C~2!5
M

R

11~5M /2R!~11M /2R!21~M /2R!42~11M /2R!5

5~11M /2R!5
~24!

2C~2!52
~M /R!3

10~11M /2R!5
. ~25!
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To obtain the background metric in the usual Schwa
schild form we introduce the radial coordinater with

R5~r 2M1Ar 222Mr !/2. ~26!

Since the conformal factor, up to second order, can be w
ten as

c45~C~0!!4F114S J

M2D 2
C~2!

C~0!G , ~27!

the 3-geometry to second order is given by

S 12
2M

r Dgrr 5
guu

r 2
5

gff

r 2sin2u
5F114S J

M2D 2
C~2!

C~0!G ,

~28!

and, in terms of ther variable, we may write

2C~2!

C~0! 52
M3

10r 3 . ~29!

III. PERTURBATIVE EVOLUTION
OF THE BOWEN-YORK INITIAL DATA

We adopt the notation of Regge and Wheeler@11# for the
separation into parities and the multipole decomposition
the perturbations. Because we are considering axisymm
situations, all multipole decompositions are given in terms
Legendre polynomialsPl (cosu). On the initial constant-t
hypersurface of the BY spacetime, we can read off the p
turbations of the 3-geometry from Eq.~28!. The perturba-
tions are purely second order even parity, and in the Reg
Wheeler notation, are

2H2
BY52KBY54~J/M2!2

2C~2!/C~0!524J2/~10Mr 3!,

GBY5h1
BY50. ~30!

The first order perturbations contained in the BY spa
time are those specified by the extrinsic curvature in Eq.~7!,
which can be reexpressed as

Krf5c22K̂rf5c22S dR

dr D K̂Rf5
3J

r 2A122M /r
sin2u,

~31!

and is identical to the extrinsic curvature given in Eq.~A10!
for the Kerr geometry. The explicit form of the metric pe
turbations, to first order inJ, depends on the gauge~first
order coordinate fixing! we choose. Let us choose the coo
dinates to first order so that the initial BY metric is the sa
as the first order Kerr metric given by Eq.~A6! of the Ap-
pendix. That is, let us choose

gtf
BY52

J

r
sinu

]

]u
P1 ~32!

to be the only nonvanishing first order initial perturbatio
Since this perturbation is purelyl 51, the Einstein equation
require that there be no gauge independent time variatio
this perturbation. Let us choose, therefore, to have the
-

t-

f
ric
f

r-

e-

-

e

.
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r-

turbation in Eq.~32! be the first order perturbation for a
time. This is equivalent to the statement that we are choos
coordinates, to first order inJ, so that the BY and the Ker
spacetimes agree, at all times, to first order inJ.

In principle, the radiation in the BY spacetime would b
found from the quadrupolar part of Einstein’s equations
second order inJ/M2. These equations contain terms line
in the l 52 second order metric perturbations, and quadra
in the first order perturbations. The general structure of th
equations is discussed in Ref.@7#. In that reference it is
shown how these second order equations can be comb
into an equation like that of Zerilli@12,13# for first order
equations. The second order equivalent of the Zerilli eq
tion differs only in that it has ‘‘source’’ terms quadratic i
the first order perturbations. Since we know the first ord
perturbations, for all time, for the BY spacetime, we kno
the source term. The wave equation can therefore be so
numerically and the radiation signal found from the soluti
for the wave variable at large radius.

In practice, this computation can be made much simp
Since the first order perturbations in the BY and the K
spacetimes are identical, the source terms will be identica
the second order Einstein equations for BY and for Kerr. W
can exploit this, by evolving only the difference between t
second order BY and Kerr perturbations, following the tec
nique used by Cunninghamet al. @14#. To do this, we take as
our second orderl 52 variable the Moncrief@15# wave vari-
able

2xM~r ,t !52
~r 22M !

~2r 13M !S 22r 2
]@2K ~2!#

]r
16r 2

]@2G~2!#

]r

12r 2H2
~2!2122h1

~2!D 14r 2K ~2! ~33!

in which 2K (2), 2G(2), 2h1
(2) , and 2H2

(2) are second orde
l 52 perturbations. This Moncrief wave variable has tw
very useful features. First,2xM is constructed only from per
turbations in the 3-geometry on the initial hypersurfac
Second, it is invariant under second order coordinate tra
formations, that is, under transformations of form (xm)new

5(xm)old1jm, in which jm is second order. This is why we
will use Eqs.~34!–~38! to evaluate2xM

Kerr , and Eq.~30! for

2xM
BY , though the second order metric perturbations u

will be clearly in different gauges. The point is that we kno
that the second order perturbations can be brought into
same second order gauge with second order gauge tran
mations, and that this has no effect on2xM

Kerr or on 2xM
BY ,

and hence no effect on2x rad. It should be realized that2xM
is not invariant under a first order change of coordinates
we were to perform, say, a first order change in the coo
nates used in the Appendix, then the value of2xM

Kerr we
would compute would change. It is important, therefore, t
no first order change in coordinates is needed for the K
expansion in the Appendix, or the BY spacetime in Sec.
They are already in the same first order gauge.

We are using here the same normalization for our wa
function as in Ref.@7#. This normalization is formally the
same as that of Zerilli@12#, except that we expand inPl

rather thanYl m ; as a result our2xM is related to the variable
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K̂2M of Zerilli @12# by 2xM5A5/4pK̂2M . For a discussion
of the relationship of the Moncrief and Zerilli variables, an
various normalizations, see Ref.@16#. It is straightforward to
generalize the analysis to arbitraryl .2.

We use the Moncrief wave functions2xM
BY to describe the

Bowen York spacetime, and2xM
Kerr for Kerr. The initial value

for 2xM
BY are taken from Eq.~30! and the value of2xM

Kerr ,
initially and for all time, are taken from the expansion in t
Appendix, from which we have

2H0
Kerr52

4J2

3Mr 2~r 22M !
, ~34!

2H1
Kerr50 ~35!

2H2
Kerr5

2J2

3M2r 2 ~36!

2KKerr52
2J2~4M1r !

3M2r 3 ~37!

2GKerr52
J2~2M1r !

3M2r 3 . ~38!

We now define a ‘‘radiative’’ Moncrief wave function b

2x rad[2xM
BY22xM

Kerr . ~39!

Since the first order perturbations, and therefore the so
terms, for 2xM

BY and for 2xM
Kerr are the same,2x rad satisfies a

homogeneous Zerilli function

]2@2x rad~ t,r !#

]r * 2
2

]2@2x rad~ t,r !#

]t2
2V~r * !2x rad~ t,r !50,

~40!

where

r * [r 12M ln@r /~2M !21#, ~41!

and whereV is the l 52 Zerilli potential

V~r !56S 122
M

r D4r 314r 2M16rM 213M3

r 3~2r 13M !2 . ~42!

The initial 2xM for this equation is simply the known
difference between the initial forms of2xM

BY and 2xM
Kerr , and

turns out to be

2x radu t505
2J2

5M2r 3S 25r 327Mr 2125M2r 160M3

2r 13M D .

~43!

There are no second order perturbations to the extrinsic
vature of a constant time slice of Kerr, or in the BY initi
data. The first of these conclusions follows from an expl
computation based on the metric in the Appendix. One fi
that the extrinsic curvature contains only odd powers ofJ.
~This conforms to the intuition that suggests that revers
the direction ofJ should reverse the sign of extrinsic curv
ture.! The conformally related extrinsic curvatureK̂ i j for the
ce

r-

t
s

g

BY initial data is given to all orders by Eq.~6!. The second
order perturbations in the conformal factor mean that
extrinsic curvatureK̂ i j 5c22K̂ i j will contain perturbations of
odd orders inJ, due to the perturbations of even order co
tained inc. Since there are no second order contributions
the extrinsic curvature, of either BY or Kerr, it follows tha

d

dt
~2x rad!U

t50

50. ~44!

The wave equation of Eqs.~40!–~42!, with the Cauchy
data of Eqs.~43!,~44!, is simply solved numerically for
2x rad(t,r ), and from the solution we can find

2xM
BY~ t,r !52x rad~ t,r !12xM

Kerr~r !, ~45!

where 2xM
Kerr(r ) is the known, time independent, Kerr solu

tion. The radiative power~see Ref.@7#! contained in the BY
spacetime is then given by

Power5
3

10S d

dt2
xM

BYD 2

5
3

10S d

dt2
x radD 2

, ~46!

and this is the gravitational radiation power emitted as
BY solution settles into its Kerr final form. The energy rad
ated is the time integral of this expression.

IV. RESULTS AND DISCUSSION

In Fig. 2 we show the radiated waveform, as a function
t, for fixed, larger , from which we may infer the effective
time for the decay of the Bowen-York rotating black ho
into its final Kerr state. It is clear that the wave form
dominated by quasinormal ringing. This means that the ‘‘i
tial burst’’ of energy generated as the hole relaxes to K
form can contaminate the evolution for some time.

In Fig. 3 we show the total energy radiated as a funct
of J/M2. Whatever choice we make for theJ dependence of
the ADM mass, our perturbation calculation forx rad is for-
mally correct only to second order inJ/M2. Since the radi-
ated energy is quadratic inx rad, the energy results displaye
in Fig. 3 are formally correct only to fourth order inJ/M2,
the lowest nontrivial order. The results in Fig. 3 cann
therefore be trusted forJ/M2 near the astrophysically inter
esting limitJ/M2'1. We suspect that the curve correspon
ing to the numerical ADM mass is reliable within a factor
two or so up toJ/M250.8. A more accurate evaluation wi
require either fully nonlinear numerical relativity, or a calc
lation using second order perturbations around the Kerr
lution.

According to Fig. 3, the ‘‘BY relaxation energy,’’ the
energy emitted as a single BY hole relaxes to a Kerr h
appears to be small. It should be kept in mind, however, t
the total radiation in a black hole coalescence can be c
parably small. For a head on collision of nonspinning ho
the total radiated energy is of order 1023 of the total ADM
mass. Head-on collisions, of course, are not of primary
trophysical interest. For the ‘‘merger’’ phase of equal ma
holes, radiated energy is expected to be several percent@17#.
In this case, the BY relaxation energy would be negligib
small. It would, furthermore, be emitted within a few quas
normal periods of a single hole, while the merger and rin
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3406 57GLEISER, NICASIO, PRICE, AND PULLIN
down of the final hole formed would require a time an ord
of magnitude longer. However, the last consideration
only be considered as speculative: the results of@17# involve
large amounts of energy because they deal with n
extremal black holes, a situation that is beyond the realm
applicability of our calculations. It is worthwhile noticin

FIG. 2. The radiated waveform for a single spinning Bowen a
York black hole, computed treating the spacetime as a perturba
of Schwarzschild. The waveform, extracted atr 520M , is domi-
nated by quasinormal ringing which persists long enough to c
taminate radiation coming out from a head on collision of bla
holes. We display the waveforms corresponding to the differ
choices of background mass used in perturbation theory. The
nificant differences among these curves illustrates the importanc
the choice of the background mass in perturbative calculations,
on the way in which the ADM massM is taken to depend onJ, for
a given value ofa. The bold curve uses the ‘‘correct’’ ADM mas
computed numerically with the multigrid code. The thin curve w
computed with expressionM52a1J2/(20a3) ~see text! which is
correct to second order inJ. The dashed curve usesM52a, and
ignores the influence ofJ on M , for given a. Previous experience
with perturbation calculations for which numerical relativity com
parisons were available strongly suggests that the curve with
numerically computed ADM mass is the most accurate.

FIG. 3. The total radiated energy computed for ‘‘BY rela
ation.’’ The method is formally correct only to lowest~fourth! order
in the expansion parameterJ/MADM

2 . For a description of the vari-
ous ADM masses involved, see the caption of Fig. 2.
r
n

r-
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that Brandt and Seidel@18# have a numerical code for study
ing the full evolution of distortions of a spinning black hol
and results for higher values of the spins could be obtai
with this code.

ACKNOWLEDGMENTS

We were able to write our multigrid code by studying
code of the NCSA/Potsdam group. We wish to thank Pe
Anninos for help with this. Using the ADM mass instead
thea parameter was an idea that arose in various discuss
that initially involved John Baker and Steve Brandt. Th
work was supported in part by grants NSF-INT-951289
NSF-PHY-9423950, NSF-PHY-9507719, by funds of t
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APPENDIX: THE KERR METRIC AS A PERTURBATION
OF A SCHWARZSCHILD BLACK HOLE

The Kerr metric in Boyer-Lindquist coordinates takes t
form

ds25
D2~J/M !2sin2u

S
dt222~J/M !

3sin2u
r21~J/M !22D

S
dtdf

1
„r21~J/M !2

…

22D~J/M !2sin2u

S
sin2udf2

1
S

D
dr21Sdu2 ~A1!

whereS5r21(J/M )2cos2u and,D5r21(J/M )222Mr.
If we assumeJ,M2, Eq. ~A1! is defined only forr

.M1AM22(J/M )2, since D50 for r5M
1AM22(J/M )2.

The metric~A1! reduces to the Schwarzschild metric,
the ranger.2M , for J50. It seems reasonable, therefor
to try to find an expansion of~A1!, in powers ofJ, as a
perturbation of a Schwarzschild black hole. This expansi
however, would fail nearr52M , because the metric coeffi
cient grr does not have the required analyticity propertie
To avoid this problem we introduce a new coordinater , such
that

r 222Mr 5r21~J/M !222Mr. ~A2!

With this definition we have thatD50 corresponds to
r 52M . We may invert~A2! to

r5M1A~r 2M !22~J/M !2. ~A3!

Then, for r .2M , and J,M2, the right-hand side may be
expanded in powers ofJ. The leading terms are

d
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r5r 2
J2

2M2~r 2M !
. ~A4!

In fact, one can easily check that all the metric coefficie
admit a convergent power series expansion inJ. To leading
order we have

gtt5S 12
2M

r D S 211
J2~r 12M !

3Mr 2~r 2M !~r 22M !
P0

2
4J2

3Mr 2~r 22M !
P21O~@J/M2#4! D , ~A5!

gtf52
J

r
sinu

]

]u
P11O~@J/M2#3!, ~A6!

grr 5S 12
2M

r D 21S 11
J2~Mr 1r 21M2!

3M2r 2~r 2M !2 P0

1
2J2

3M2r 2 P21O~@J/M2#4! D , ~A7!

guu5r 2F12
J2~2M21r 2!

3M2r 3~r 2M !
P02

2J2~4M1r !

3M2r 3 P2
D

el

n,

, J

tum

et
s

2
J2~r 12M !

3M2r 3

]2

]u2 P21O~@J/M2#4!G , ~A8!

gff5r 2sin2uF12
J2~2M21r 2!

3M2r 3~r 2M !
P02

2J2~4M1r !

3M2r 3 P2

2
J2~r 12M !

3M2r 3 cotu
]

]u
P21O~@J/M2#4!G , ~A9!

whereP051, P15cosu, andP25(3/2)cos2u21/2 are Leg-
endre polynomials.

From this metric it is straightforward to compute, to fir
order inJ, the extrinsic curvature of at5constant surface. If
we let nW be the future directed normal to at5constant hy-
persurface, then, the extrinsic curvature isKi j 52ni u j ,
where the bar denotes covariant differentiation with resp
to the 3-geometry. The normal has only a single covari
component nt which, to first order in J, is nt5
21/A122M /r . With this, a straightforward computatio
shows that the only nonvanishing first order components
Ki j are

Krf5Kfr5
3J

r 2A122M /r
sin2u. ~A10!
rk
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@17# É. É. Flanagan and S. A. Hughes, report gr-qc/9701039.
@18# S. Brandt and E. Seidel, Phys. Rev. D52, 870~1995!; see also

54, 1403 ~1996! where the difference between Bowen-Yo
and Kerr is interpreted as a ‘‘Brill wave.’’


