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The Bowen-York initial value data typically used in numerical relativity to represent a spinning black hole
are not those of a constant-time slice of the Kerr spacetime. If Bowen-York initial data are used for each black
hole in a collision, the emitted radiation will be partially due to the “relaxation” of the individual holes to Kerr
form. We compute this radiation by treating the geometry for a single hole as a perturbation of a Schwarzschild
black hole, and by using second order perturbation theory. We discuss the extent to which Bowen-York data
can be expected accurately to represent Kerr hp&3556-282(98)04506-§

PACS numbgs): 04.25.Nx, 04.25.Dm, 04.70.Bw

I. INTRODUCTION mal approach, in which one assumes that the spatial metric is
conformally flat, and the maximal slicing condition is chosen
The description of the collision of two black holes, in- for the extrinsic curvature. In the flat space, it is relatively
cluding the total energy radiated and the waveforms to b&mple to construct a conformally related extrinsic curvature
measured by observers far from the collision region, is at thigvhich guarantees that the momentum constraint is solved.
time one of the most active fields of research in generalhe Hamiltonian constraint is subsequently solved, either
relativity. Since the latter theory has a well posed initial Numerically[3] or via approximation$5,9]. In this construc-
value problem, a good deal of effort has been devoted t§on there is a series of simplifying assumptions and there is
finding solutions for the initial value problem, in the form of NO claim that a “generic” solution has been found. It is
initial data sets, that may represent slices of recognizablEherefore not clear that the particular solution generated is a
physical processes involving black holes. One of the firsifue representation of the physical problem in which one is
examples of this kind was given by Misng], who derived ~ interested. An example of this is the Bowen and YY)
an initial data set representing the moment of time symmetr{2] solution for a single spinning hole. It is known that this
in the head-on collision of two equal mass black holes!nitial data set represents a dynamical situation that evolves
placed at an arbitrary distance from each other. Further dd® & Kerr black hole asymptotically in the future. Initially,
velopments along this line have provided a fair number offowever, the spacetime is not a Kerr spacetime, but can be
interesting initial data setf2,3], that can be interpreted as thought(somewhat inappropriatelyo differ from a Kerr so-
representing isolated but boosted and/or rotating black holefution in that it has some “gravitational wave content,” the
or collisions involving two or more black holes. waves that WI|| be radiated as the spacetime evolves towards
Once one has the initial data, the next task is to study th&efr spacetime. _ o _
evolution and the consequent emission of gravitational One can argue that this “gravitational wave content” will
waves arising from the collision. Because of the complexity€ radiated in a short time, and that the initial data will
of the evolution equations of general relativity, numerical€VOIVve rapidly to a stationary Kerr black hole configuration,
solutions of the full Einstein equations are available atdnd therefore will not greatly affect the radiation produced in
present only for equal mass, nonspinning, holes undergoing@ black hole collision, as long as the holes are released far
head-on(i.e., zero impact parametecollision [4,5]. from each other. The question is important enough to de-
It has also been observed that for a restricted set of paa€rve a more careful answer. In addition, numerical relativity
rameters, the evolution can be well described by treating th60des cannot be accurately run for long evolution times, so
system as a perturbation of a single black hig¢ This initial data will have to be specified at fairly late times, with
method, called the “close approximation,” has produced re-noles fairly close together, and with the possibility that the
sults that are in remarkable agreement with the full numeri-'gravitational wave content” of the initial data is a major
cal results in the case where the latter are available. An agRart of the outgoing radiation. o
pealing feature of the perturbation method is the explicit The purpose of this paper is to analyze the radiation from
control over the parameters characterizing the perturbatiodh€ individual holes. More specifically, we use the theory of
This, together with the development of some form of “error perturbations of the_Schwarzsch_lld spacetime. We consider
bars,” as in[7,8], can make the method an important tool to that we have a family of spacetimes depending on the pa-
make predictions of physical processes or to provide comt@metere, and that, in appropriate coordinate systems, met-
parison cases to test the reliability of numerical methods. rics of the family can be expanded as
The initial data set that is usually considefé3] in the © WL 2
study of black hole collisions is generated using the confor- 9uv=0,, Teh, +eh i+ (1)
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Here g'?) the Schwarzschild metric() is called the first  ity, we choosel=Jk, wherek is a unit vector pointing along
order perturbation, anki(z,} is called the second order pertur- (the positive direction 9fthe polar axis of théR, 6, ¢ coor-
bation. To analyze the “Bowen and York spacetime,” the dinate system. With this choice, the only nonvanishing com-
spacetime that evolves from Bowen and York initial data forponents oK are

a single spinning hole, we choose as the expansion parameter

the angular momenturd, and we analyze both the Kerr so- R —K —Esinze 7
lution and the BY spacetime to second ordedinThe sec- Re™ M¢RTR2 '
ond order expansions are then compared and we find that we .
need only to evolve the difference between the BY spacetim¥Ve then find
and the Kerr spacetime. 72

The organization of this paper is as follows. In Sec. Il we R”Rij = 18=4Sir?0. (8)
give a perturbation analysis of the BY initial data. The R

method of evolving this initial data is described in Sec. lll. In
Sec. IV the results for radiation emitted are presented anﬂ1i
discussed. In the Appendix we show how the Kerr metric can
be written as an expansion, in angular momentum, about thgxpansion in powers of is appropriate. The zeroth order
Schwarzschild spacetime. equation is '

When it is useful to specify orders of expansion, and/or
multipole indices, we shall use a leading subscript to denote V2y=0, (9)
the multipole index/, and a superscript, in parenthesis, to ) o i .
the right of a perturbation variable, to indicate orderJin and the solution that satisfies the boundary conditions is
The quantity,y(?), for example, is a monopole perturbation, yO=1+alR. (10)
second order in.

We now need to solve Ed3). For general values df,
s can only be done numerically. However, we are really
erested in solutions nedr=0 (“slow rotation”) and an

The lowest order correction % may now be constructed
Il. THE BOWEN-YORK SINGLE ROTATING by linearizing abouty(? in Eq. (3). If we formally write

BLACK HOLE
Y= ¢(0)+J2¢(2)+ - (11
The Bowen-York{ 2] construction of initial data assumes
that space-time contains (@onstantt) slice, where the 3-
metric can be written in the form;; = cp“fij , Wheref;; is the 9
metric for the flat background ds’=dR?+ R?(d6? V22 = — ﬁgsinzﬁ

+sinfed¢?), while the extrinsic curvature is given big;;
=y~ 2K;;, and satisfie|=0. With these assumptions the and the sifg factor may be expanded in Legendre polyno-
initial value constraint equations take the form mials, as 2P(cost) —P;(cosh) |/3.

We next writey?)(R, 6) as

the resulting equation is
-7

l-l-a 12
= (12

=0, @ DR 0= (RIPy(cos) + 0P (R)Py(cO®)  (13)
and and we find tha?(R) and ,?)(R) satisfy the equations
1. ..
V2= gKyKIy T, &) dPloy®] 2dlep®]_ 3

a\~7
R R drR 2R6\1+§) (19
where the Laplacian, and the covariant differentiatide-

noted by a vertical barare taken with respect to the flat and

space metric. The problem is not fully specified until appro- .

priate boundary conditions are imposed gnThe Bowen-  d“[2¢'*1 2 d[,¢'*] 6 yo— 3 142 15
York prescription for a single black hole is that, given a (R2 R dR R?2 2R R

certain constana, Eq. (3) holds forR=a, and
The solutions of these equations, satisfying the boundary

d 1 iti
oY L 4=0 for R-a (4  conditions are
JR 2R - 2
(2.2 +R*+5aR(R+a) (16)
and o= 40a%(R+a)®
R—x
2
The particular solution we are interested in corresponds to P =— R—S (17)
[2] 20a(R+a)
3 With Eq. (16) we see that the conformal factor has the
K=$[(J/\R)®R+R®(J/\R)], (6) form
2
where R is the “position” vector in the flat space back- P=1+ 3+ £+O(1/R2)+O(J3)_ (18)
ground, and] is a vector constant. Without loss of general- R 40a%R
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FIG. 1. Comparison of approximate solutions to the initial value problem with a full numerical integration performed with a multigrid
method. Our code uses a square grid in compactified coordipat&¥(a+ R), 6 with 200X 200 grid points. It achieves an accuracy similar
to the test runs of Choptuik and Unr{ih0]. The figure at the left compares the ADM mass of approximate and numerical solutions. The two
approximations are described in the text. The figure on the right shows the percentile difference between the full numerical salution for
and the second order approximation, 86a2=4, as a function op, 6. We see that the approximation works very well.

But by the definition of the Arnowitt-Deser-MisnéADM)  this expansion is unclear. For that reason we now convert our
mass(see for instancg2]), =1+ Mo /(2R)+O(1/R?),  result to an expansion in the paramelék 2. (Here, and in

and hence the ADM mass, to second orded,iris subsequent expressions, we drop the “ADM” subscript on
72 M. The symbolM will always represent the ADM mags.
Mapy=2a+ —. (199  We then consider in the expressions we gave for the confor-
0a® mal factor,
. : . a
This dependence dfl 5p), On J, for constant, is plotted in =1+ §+J2(0¢2+2¢§P2(c039)), (22)

Fig. 1 as the dashed curve. Two other computatiorid gfy

are also plotted, based on the intedialL0], ] )
that the parametea is really given bya(M,J). One can

1 kijkij afn obtain explicit formulas for this by considering the expres-
MADM:EJ s du+ §f ysingde. (200 sion fora(M,J) obtained by inverting the approximate ex-
=a ¢ 0 pression Eq(19). Alternatively, one can keep the implicit
: - dependence d on J, and can replace it in the last step of a
The solid curve shows the result of substitutingto second ) : i
order inJ, into the integrals in Eq(20). The result agrees calculation, using tabulated values f(M,J) obtained from

with Eqg.(19) to second order id, but is significantly smaller the T_ulﬂgnd numerical cade. !n this case the "second order
for largeJ. (The difference is due to terms higher ordedin part |szthe part ofys that remains after the part zeroth order
the expressions are identical up to second oydehe dark In ‘IJf“Ylh IS slutk_Jtractid. 43 is taken f Ea(19. th
points show the result of a multigrid numerical code we . 'tef reallon ora atnt IS ade” rom Eq.(19), the
wrote to solve the fully nonlinear initial value problem of €XPlicit formulas(correct to second ordgare,

general relativity with axisymmetry, similar to that used by _ (0 21240 (2)
Choptuik and Unruf10]. Y=+ (IIM)W
The results presented to this point are formally expansions =V O 4 (JM2)2(¥ @ +,72P,(cos)), (22

to second order in the dimensionless paraméataf, but a
itself is not a physical parameter, so the physical meaning ofvith

vO=1+M/2R (23

oM LH(BM2R)(1+ M/2R)?+ (M/2R)* — (14 M/2R)® "
’ R 5(1+M/2R)®

M/R)3
= _ (MR _ (25
10(1+M/2R)°®
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To obtain the background metric in the usual Schwarzturbation in Eq.(32) be the first order perturbation for all

schild form we introduce the radial coordinatevith

R=(r—M+ \/rz—ZMr)/Z.

(26)

Since the conformal factor, up to second order, can be Writf0

ten as
2
J\ v
4_ (\p(0))4 N
W= a2l 27
the 3-geometry to second order is given by
M\ G Ges [, (9 2@
T T e | W) o)
(28)
and, in terms of the variable, we may write
p2) M3
ECET s @9

lll. PERTURBATIVE EVOLUTION
OF THE BOWEN-YORK INITIAL DATA

We adopt the notation of Regge and Whe¢let] for the

time. This is equivalent to the statement that we are choosing
coordinates, to first order id, so that the BY and the Kerr
spacetimes agree, at all times, to first ordedin

In principle, the radiation in the BY spacetime would be
und from the quadrupolar part of Einstein’s equations to
second order id/M?. These equations contain terms linear
in the /=2 second order metric perturbations, and quadratic
in the first order perturbations. The general structure of these
equations is discussed in Rdf7]. In that reference it is
shown how these second order equations can be combined
into an equation like that of Zerillf12,13 for first order
equations. The second order equivalent of the Zerilli equa-
tion differs only in that it has “source” terms quadratic in
the first order perturbations. Since we know the first order
perturbations, for all time, for the BY spacetime, we know
the source term. The wave equation can therefore be solved
numerically and the radiation signal found from the solution
for the wave variable at large radius.

In practice, this computation can be made much simpler.
Since the first order perturbations in the BY and the Kerr
spacetimes are identical, the source terms will be identical in
the second order Einstein equations for BY and for Kerr. We
can exploit this, by evolving only the difference between the
second order BY and Kerr perturbations, following the tech-
nique used by Cunninghast al.[14]. To do this, we take as

separation into parities and the multipole decomposition obyr second order'= 2 variable the Moncrief15] wave vari-
the perturbations. Because we are considering axisymmetrigy|e

situations, all multipole decompositions are given in terms of

Legendre polynomial® (cos). On the initial constant- _ ®) (2)
hypersurface of the BY spacetime, we can read off the per- . (r,t)=2 (r—2Mm) /_ rzﬁ[ZK ]+6r28[2G |
turbations of the 3-geometry from E(8). The perturba- (2r+3M)\ ar ar

tions are purely second order even parity, and in the Regge-

Wheeler notation, are +2r,HP —12,h(? | +4r,K? (33

HEY=,KBY=4(J/IM?2)2,0 2¢O =—432/(10Mr3),
in which ,K®, ,G®, ,h{? and,H{? are second order
/=2 perturbations. This Moncrief wave variable has two
very useful features. Firsgyy is constructed only from per-
turbations in the 3-geometry on the initial hypersurfaces.
Second, it is invariant under second order coordinate trans-
formations, that is, under transformations of form*)"e"
33 P =(x*)°19+ ¢ in which & is secondKorder. This is why we
R=———SiIr o, will use Egs.(34)—(38) to evaluate,x,s", and Eq.(30) for
’ r2V1-2M/r ZX,\BAY, though the second order metric perturbations used
(3D will be clearly in different gauges. The point is that we know
and is identical to the extrinsic curvature given in E410)  that the second order perturbations can be brought into the
for the Kerr geometry. The explicit form of the metric per- Same second order gauge with second }?err(rjer gaugeBtJansfor-
turbations, to first order id, depends on the gaudérst

GBY=hB"=0. (30)

The first order perturbations contained in the BY space
time are those specified by the extrinsic curvature in(E2y.
which can be reexpressed as

25 ,[dR
quS:l// Krdz:‘r/f a K

mations, and that this has no effect ggy~ oOr on >xy

order coordinate fixingwe choose. Let us choose the coor- and hence no effect opx'®". It should be realized thayy
dinates to first order so that the initial BY metric is the sameiS notinvariant under a first order change of coordinates. If
as the first order Kerr metric given by E(A6) of the Ap- ~ We were to perform, say, a first order change in the coordi-

pendix. That is, let us choose nates used in the Appendix, then the value .0t we

would compute would change. It is important, therefore, that
no first order change in coordinates is needed for the Kerr
expansion in the Appendix, or the BY spacetime in Sec. Il.
They are already in the same first order gauge.

to be the only nonvanishing first order initial perturbation. We are using here the same normalization for our wave
Since this perturbation is purely= 1, the Einstein equations function as in Ref[7]. This normalization is formally the
require that there be no gauge independent time variation iname as that of Zerillf12], except that we expand iR,

this perturbation. Let us choose, therefore, to have the perather thar¥ ,,,; as a result oupy), is related to the variable

J d
Oty =2-sing—P;

r a0 (32
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Koy of Zerilli [12] by ,xm= B/4mK.y, . For a discussion BY initial data is given to all orders by E@6). The second

of the relationship of the Moncrief and Zerilli variables, and order perturbations in the conformal factor mean that the

various normalizations, see RgL6]. It is straightforward to  extrinsic curvaturdl;; = z//*ZKij will contain perturbations of

generalize the analysis to arbitrary>2. odd orders inJ, due to the perturbations of even order con-
We use the Moncrief wave functiong g’ to describe the tained iny. Since there are no second order contributions to

Bowen York spacetime, ang,(,\KAe” for Kerr. The initial value  the extrinsic curvature, of either BY or Kerr, it follows that

for ,xy' are taken from Eq(30) and the value ofxy",

initially and for all time, are taken from the expansion in the dg(zxrad) =0. (44)
t
t

Appendix, from which we have -0

Kerr 4J? The wave equation of Eq$40)—(42), with the Cauchy
2Ho T T 3Mr(r—2m)’ (34 data of Egs.(43),(44), is simply solved numerically for
-x"(t,r), and from the solution we can find
Hi®"=0 35
s (39 G0 =) + o), (45
2
SHKer= 2‘]2 5 (36)  Where 2X(r) is the known, time independent, Kerr solu-
3M“r tion. The radiative powefsee Ref[7]) contained in the BY
) spacetime is then given by
cor 232(AM+T)
K==z — 37 5 3(d 4 2_ 3(d |2 4o
ower= 10 dtZXM - 10 dtZX ) ( )
e JA(2M+T)
G = (38  and this is the gravitational radiation power emitted as the

BY solution settles into its Kerr final form. The energy radi-
We now define a “radiative” Moncrief wave function by ated is the time integral of this expression.

X 0= BY — e (39 IV. RESULTS AND DISCUSSION
Since the first order perturbations, and therefore the source In Fig. 2 we show the radiated waveform, as a function of
terms, for,xBY and for ,xi" are the same,x"™ satisfies a  t. for fixed, larger, from which we may infer the effective
homogeneous Zerilli function time for the decay of the Bowen-York rotating black hole
into its final Kerr state. It is clear that the wave form is
PLox4t, )] [xt,r)] dominated by quasinormal ringing. This means that the “ini-
22 - 2 —V(r*),xqt,r)=0, tial burst” of energy generated as the hole relaxes to Kerr
or Jt form can contaminate the evolution for some time.
(40 In Fig. 3 we show the total energy radiated as a function
where of J/M?. Whatever choice we make for tledependence of
the ADM mass, our perturbation calculation fef?® is for-
r*=r+2MIn[r/(2M)—1], (41) mally correct only to second order iHM?2. Since the radi-
) o ) ated energy is quadratic jf?%, the energy results displayed
and whereV is the /=2 Zerilli potential in Fig. 3 are formally correct only to fourth order HiM?2,
M\ 4134 4r2M + 6rM 2+ 3M3 the lowest nontrivial ordezr. The results in Fi_g. 3 pannot
V(r)ZG( 1—-2— 3 5 (42)  therefore be trusted fal/M“ near the astrophysically inter-
r r*(2r+3M) esting limitJ/M?~1. We suspect that the curve correspond-

ing to the numerical ADM mass is reliable within a factor of
two or so up toJ/M?=0.8. A more accurate evaluation will
require either fully nonlinear numerical relativity, or a calcu-
lation using second order perturbations around the Kerr so-

The initial ,x) for this equation is simply the known

difference between the initial forms gf g’ and ,xk", and

turns out to be

232 [ —5r3—7Mr2+25M?r + 60M3 lution.
X o= { r r r _ According to Fig. 3, the “BY relaxation energy,” the
=0 5Mm2r3) 2r+3Mm energy emitted as a single BY hole relaxes to a Kerr hole

(43 appears to be small. It should be kept in mind, however, that
) o the total radiation in a black hole coalescence can be com-
There are no second order perturbations to the extrinsic CUsaraply small. For a head on collision of nonspinning holes

vature of a constant time slice of Kerr, or in the BY initial the total radiated energy is of order T0of the total ADM
data. The first of these conclusions follows from an explicityass. Head-on collisions, of course, are not of primary as-

computation based on the metric in the Appendix. One findgrophysical interest. For the “merger” phase of equal mass
the direction of] should reverse the sign of extrinsic curva- small. It would, furthermore, be emitted within a few quasi-
ture) The conformally related extrinsic curvatukg; for the  normal periods of a single hole, while the merger and ring-
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0.05

that Brandt and Seid¢lL8] have a numerical code for study-
—— Numerical M, ing the full evqut_lon of distortions of a spinning black hol_e,
Perturbative M,y and results for higher values of the spins could be obtained
with this code.

T ———
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nificant differences among these curves illustrates the importance of OF A SCHWARZSCHILD BLACK HOLE

the choice of the background mass in perturbative calculations, i.e., The Kerr metric in Boyer-Lindquist coordinates takes the
on the way in which the ADM magll is taken to depend od, for

-0.05
0.0 100.0

M

ADM

orm

a given value ofa. The bold curve uses the “correct” ADM mass
computed numerically with the multigrid code. The thin curve was A—(J/M)Zsinzb’
computed with expressioNl =2a+J%/(20a%) (see text which is d2=——————dt?—2(J/IM)
correct to second order id. The dashed curve uséd=2a, and p>
ignores the influence of on M, for givena. Previous experience 2, (JIM )2—A
with perturbation calculations for which numerical relativity com- Xsir?&p—dtdqb
parisons were available strongly suggests that the curve with the 2
numerically computed ADM mass is the most accurate. (p2+ (JIM)?)2— A(JIM)2SirPo

, o + 2 Sir2gd 2
down of the final hole formed would require a time an order by
of magnitude longer. However, the last consideration can s
only be considered as speculative: the resulfsl@f involve + de2+gd92 (A1)

large amounts of energy because they deal with near-
extremal black holes, a situation that is beyond the realm of

applicability of our calculations. It is worthwhile noticing WhereX =p?+(J/M)*cos'6 and,A = p*+ (J/M)?—2Mp.
If we assumelJ<M?, Eq. (A1) is defined only forp

80-04 . . ; . >M+MZ=(JIM)?, since A=0 for p=M
Numerical M, +VM = (J/M)~.
— Perturbative M, / The metric(Al) reduces to the Schwarzschild metric, in
- MADM=2a / =
se-04 | , the rangep>2M, for J=0. It seems reasonable, therefore,
to try to find an expansion ofAl), in powers ofJ, as a
perturbation of a Schwarzschild black hole. This expansion,
z however, would fail neap=2M, because the metric coeffi-
z e-04 1 I cientg,, does not have the required analyticity properties.
w To avoid this problem we introduce a new coordinatsuch
that
2e-04 | B
r2—2Mr=p?+(JIM)?>—2Mp. (A2)
08400 With this definition we have thatA=0 corresponds to
0.0 L 10 r=2M. We may invert(A2) to
FIG. 3. The total radiated energy computed for “BY relax- p=M +\/(V_M)2_(\]/M)2- (A3)

ation.” The method is formally correct only to lowegourth) order
in the expansion paramet&M2,,,, . For a description of the vari- Then, forr>2M, and J<M?, the right-hand side may be
ous ADM masses involved, see the caption of Fig. 2. expanded in powers of. The leading terms are
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= r A4 Frr2m) & P,+O([JIM?]* A8
P OMZr=M) (Ad) ~ama® ggzPet ol 1 (A8)

In fact, one can easily check that all the metric coefficients ) J2(2M2+r?) 2J%(4M +r)
admit a convergent power series expansiod.iTo leading gyg=r7sir’o 1_3M2r3(r— M) 0 amZ3 2

order we have

J(r+2m) g -
2M Jz(r—|—2|\/|) —W00t0—0P2+O([J/M ™1, (A9)
Ou={1-— —1+ 2 Po ' J
r 3Mre(r—=M)(r—2M)
5 wherePy=1, P,=cos, and P,=(3/2)cog6—1/2 are Leg-
4 endre polynomials
- 214 .
3Mr3(r—2M) P2 OIMTT ], (A5) From this metric it is straightforward to compute, to first
order inJ, the extrinsic curvature of &= constant surface. If
J . 4 we letn be the future directed normal totas constant hy-
o 7 293 y
Gtp=2SING 25 P+ O(LIIMTT), (A6) persurface, then, the extrinsic curvature Kg;=—ny);,
where the bar denotes covariant differentiation with respect
2M\ ! J2(Mr+r2+M?) to the 3-geometry. The normal has only a single covariant
9 =|1- T + 3MZrZ(r—Mm)2 Po component n; which, to first order inJ, is n=
5 —1/J1-2M/r. With this, a straightforward computation
214 shows that the only nonvanishing first order components of
+ 3M2r2 P2+O([J/M ] ))i (A7) KIJ are
J2(2M?+r?) 2J%(4M +r) 3J .
—r21— - K=K gy = ———=sir?4. A10
oo=T {1 IMZ(r—M) 0T aMET 2 ST TV (A0
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