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Arbitrarily deformed Kerr-Newman black hole in an external gravitational field
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An exact axisymmetric solution of the Einstein-Maxwell equations possessing two infinite sets of arbitrary
real parameters and able to describe a deformed Kerr-Newman black hole in an external gravitational field is
presented in a concise analytic form. The validity of Smarr's mass formula is demonstrated for a Kerr-Newman
black hole surrounded by an external static gravitational f{860556-282198)05406-X

PACS numbg(s): 04.20.Jb, 97.60.Lf

I. INTRODUCTION dipole field[13] and its stationary generalizatiofis4,15 are
not satisfactory from the physical viewpoint since in all of

Distorted black holes have been studied by different authem the upper or lower parts of the symmetry axis are not
thors. The distortion of a Schwarzschild black hole by inter-regular(it is precisely for guaranteeing the regularity of the
nal deformations was first considered by Erez and Rgsgn  axis that the external field if2] was chosen to have a quad-
and in[2] it was shown that the quadrupole deformation inrupole character A Kerr black hole surrounded by an exter-
the Erez-Rosen solution makes the horizon completely sinral static field was first studied by Tomimatsi6] who ap-
gular. However, the inner mass-multipole moments may alsplied the inverse scattering methdd¥] to the static potential
cause the horizon to be singular only in a countable numbeconsidered by ChandrasekHard], the latter potential being
of points[3], but the appearance of singularities on the ho-a particular case of the Erez-Rosen solufi@th An impor-
rizon or in its vicinity is inevitable for the asymptotically flat tant fact established by Tomimatsu is that the well-known
static vacuum Weyl solutions in view of Israel’'s theorfth Smarr's mass formulfl8] for a black hole also holds in the
The most concise description of a Schwarzschild black hol@resence of an external gravitational field. It might be men-
possessing an arbitrary set of inner mass-multipole momentgoned that Tomimatsu’s stationary vacuum solution, as well
provides the solutiof5], and its stationary generalizations as the static one analyzed by Chandrasekhar, is constructed
representing the deformed Ke6] and Kerr-Newman 7] up to one metric function defined implicitly via first-order
black holes were obtained by Manko and Novik®&} (gen-  differential equations. The whole metric describing the Kerr
eralizations of the Kerr and Kerr-Newman metrics involving black hole in an external field has been obtained in a concise
the asymptotically flat part of the Erez-Rosen solution as axplicit form in[19] thanks to the representation of the outer
background metric were constructed by Quevedo and Mashmass-multipole moments in a way different to that of Erez
hoon[9,10). and Rosen.

A black hole can also be distorted by an external gravita- In [19] some possible straightforward extensions of the
tional field, and until recently this type of distortion was results obtained have been outlined, in particular to the case
analyzed with the aid of the outer mass-multipole moment®f a charged Kerr black hole in an external gravitational
represented by the asymptotically nonflat part of the Erezfield. The present paper aims at yet a more general objective:
Rosen solution. Doroshkevich, Zel'dovich, and NoviH@}]  We shall give concise expressions for all the metrical fields
were the first ones to consider the Schwarzschild black holevhich will represent a Kerr-Newman black hole possessing
in an external(quadrupolg gravitational field. They con- two arbitrary sets of mass-multipole moments, the set of in-
structed a whole metric corresponding to that spacetime ander multipoles describing the deformations of the black hole
showed that the Schwarzschild horizon in the external quaddue to internal perturbations and the set of outer multipoles
rupole field remains regular. 1] Chandrasekhar obtained standing for an arbitrary static and axisymmetric external
the equilibrium condition for a black hole in a static external gravitational field. In Sec. 1l we shall consider a static metric
gravitational field, and the global properties of spacetimesepresenting a deformed Schwarzschild particle in an exter-
representing static distorted black holes obtained a detailedal field, and in Sec. Ill we shall give its charged stationary
analysis in a paper by Geroch and Haile2]. It can be generalization describing a Kerr-Newman black hole dis-
remarked that in view of Chandrasekhar’s result, e.g., theéorted by internal deformations and by external gravitational
metric representing a Schwarzschild black hole in an externdleld. In Sec. IV we prove the validity of Smarr's mass for-

mula in the case when a black hole is surrounded by an
external gravitational field. Here, as an interesting auxiliary

*Email address: Nora.Breton@fis.cinvestav.mx result, we give a general expression for the magnetic poten-
"Email address: Alberto.Garcia@fis.cinvestav.mx tial Az involving an arbitrary static Weyl potentiat. Some
*Email address: VSManko@fis.cinvestav.mx concluding remarks are contained in Sec. V.
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Il. STATIC SEED SOLUTION obtained, and the only two particular solutions for whigh
. . . has been found in the explicit form afe p,#0, p,=0,
ingﬂﬁiigﬂ;ﬁ'\zymmet”c vacuum problem reduces to SolVi, 5" 1y oshkevich, Zel'dovich, and Noviko§2]) which

represents a Schwarzschild black hole in an external quadru-

2_ +T(1—v2 - pole field;(ii) p;#0, p,=0,n>1 (Kerns and Wild[13]) for
LD gt LAYy ]y=0 @ which the resultingy does not satisfy the elementary flatness
and condition on the symmetry axis. [i15] case(ii) was super-
posed with a set of],, terms, but again the respective func-
1-y? 5 ) o 12 tion v was not given there explicitly, the solution itself pos-
Yx= o S XOE= D) —x(1-y) &y, sessing the same inherent defect as the one considered by
y Kerns and Wild. Apparently, the metric functiop corre-
—Zy(Xz—l)'ﬁ,xi//,y], sponding to the general form @f in Eq. (5) must be by far
more complicated than its particular case involving only the
x2—1 constantsqg,,, and to our knowledge, no attempt has been
Yx= 5 2[y(xz—1)1/;,2)(—y(1—y2);b,2y made to obtain a general expression jor
-y On the other hand, the potenti@) admits an equivalent
+2X(1—Y2) ¢ iih ], (2)  representation, namely,
Eq. (1) being the integrability condition of the syste(®). 1 x—1 = a Xy
Here ¢/(x,y) and y(x,y) are the metric functions in Weyl's Y= =In——+ >, " +bpr" Pn<—),
line element 2 x+1 a1\t r
2 2
d<2=m2e 2% e27(x2—y2)( dx + dy ) r:= \/x7+y7—l, (6)
x2—1 1-y?

with the constantsa, describing the deformations of the
—e2¥dt? 3 source and constants, defining the external field. When
b,=0, the potentia(6) reduces to the solution considered by

) Manko[5] for which the corresponding metric coefficiept
(throughout the paper units are used such¢kaG=1), and ;a5 found in a concise analytic form, andaif=0, the po-

x andy are the prolate spheroidal coordinates first ir_ltrO(_:luceqemia| (6) goes over to the solution recently used by Breto

by Erez and Roseft] and related, e.g., to Weyl cylindrical ¢t 5] for a description of the Kerr black hole in an external

coordinates £,z) by the formulas gravitational field[19] for which the functiony is also de-
1 1 fined by a very concise formula.
X==—(r +r_), y==—(r,—r_), It is remarkable that the general case with nonzgrand
2m 2m b, can be treated almost as conveniently as the particular

cases mentioned above. Note that if the sum in &j.

e =y\p“+(ztm, started fromn=0, this sum would be just the representation
of the general Weyl solution considered by Hoenselp2t$

p=my(x*-1)(1-y?), z=mxy, m=const. (4  in which the Schwarzschild black hole solution is contained

] ] as an infinite series with the following choice of parameters
Were one wished to use the Erez-Rosen solution to dec-1n (b,=0):

scribe a deformed Schwarzschild particle in an external field,
one should have to choogein the form

+(xX*=1)(1-y*)de

1
1 x-1 2T T grr fanm0 =0 )
=5t 7+ 2 [PaPa(¥)+8Qu(X)IPu(Y),  (5)
n=1

so that after cutting off the sum the solution would lose the
where the first term on the right-hand side of E5). is the  black hole limit. On the other hand, since in the potert@l
Schwarzschild solution?,() are the Legendre polynomials, the Schwarzschild solution is introduced explicitly as the
and Q,() are Legendre functions of the second kind. Thensimplest physical case, one is able to restrict one’s consider-
the real constantg,, would describe the deformations of the ation by any desired number of multipole moments in accor-
source, while the real parametgys would describe the ex- dance with a concrete problem. Of course, the apparent ad-
ternal static gravitational field. We mention that the casevantage of having the spherically symmetric solution as the
p,=0, g,# 0 was considered by Quevefl20] who obtained leading term in Eq(6) causes some additional technical dif-
the corresponding metric functiop by integrating the sys- ficulties for the integration of Eq42) compared to the rep-
tem (2), the resultingy being defined by very cumbersome resentation used by Hoenselaers since now Schwarzschild-
expressions. The case,=0, p,#0 was considered by multipole cross terms appear; however, fortunately the input
Chandrasekhdr 1] and it was used by Tomimat$@6] as a  of these terms into the expression fpican be written in an
static seed solution for the construction of his stationary metelegant way. The result of the integration of the syst@n
ric. A general expression foy in this case has not yet been for the potential(6) is the following:
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1 x2—1 = n To conclude this section, let us write out a particular so-
v= ElnﬁJr > lan Y {[(—1)" Kx+y)+x—y] lution which represents a Schwarzschild black hole possess-
X“—y® n=1 k=0 ing an arbitrary mass-quadrupole moment which is sur-
Xt k1P, — 1+ (—1)™1) rounded by a quadrupole external field! both q_uadrupole
moments, the inner and outer, being the first physically non-
n-1 trivial ones in the respective multipole sdise denotea,
+bn|20 [(—1)" " Y x+y)—x+y]r'P, =a andb,=b):
o | (n+1)(p+1)asa, 1 x-1 1fa yo o
- =zIn——+ 5| —+Db | (3xy*—r7),
e [ (n+p+2)rntprt2 (Pn+1Pps1=PaPy) =31 2 rs (3y"=r)
npbyb,r"*P 2
e — 1 x-1 3
n+p (PPp=Pn-1Pp-1)+ Ynp ® yqq=§|n—2 2—(x2—1)(1—y2)(gaz[rz(rz—mxzyz)
X“—y
where Jr25)(4y4]r712_ 3ab(r2+x2y2)r’5
Ynp 1
2n(p Lacb +Zb2(9x2y2—r2) —x(1-y?)[a(5x>—3)r 5+ 2b]
p¥n

= (p—n+1)rp_“+1(Pan_ Pn—1Pp+1), p#n—1,

nzan—lbn(Pn'”'n—l_Pn—177n): p=n—1.

+2a(x°r °-1). (13

As far as we know, solutiofil3) is the first static solution
€) which might be interesting from the astrophysical point of
view as describing a black hole distorted by both internal and

Hoenselaers’ functionsr, which are defined as deriva- s )
external gravitational fields.

tives of the Legendre polynomialB,, with respect to the
indexn are completely determined by the first two functions
7 and 74 via the recursion formulg21] Ill. DEFORMED KERR-NEWMAN BLACK HOLE

IN AN EXTERNAL FIELD
(n+ Vw1 —(2n+ D) ém,+nm,_ ) ]
Now we are turning to the construction of an exact solu-

=—Pni1+2€P,— Py, tion of the Einstein-Maxwell equations describing a de-
formed Kerr-Newman black hole in an external static axi-
1 . symmetric gravitational field. The stationary axially
WO_E(lﬂﬁ)’ m=Pimote—1, é=xylr. (10 symmetric electrovac problem reduces to solving the Ernst
equationq 22]

The regularity of the static metri®),(8) on the symmetry
axis implies the vanishing of wheny=*1. This leads us ol —
to the following two conditions: (REF QDAL= (VEF 2DV D)V,

S S ReS+ DD)AD = (VE+ 2DV D) VD, 14
IZ;l bok-1=0, ;2 na,-1b,=0, (11) ( ) ( ) 14
where the complex potentials and ® are defined via the

symmetry axis outside the Schwarzschild black hole; Egs.

(11) are also the equilibrium condition for a deformed black

hole in the external field. Note that the regularity axis con- E=f-0d+iQ, D=As+iAg,
dition will be automatically fulfilled if the potentia(6) is
symmetric with respect to the equatorial playe=0) which Agy=wA t m(y?— 1)f*1A§,y,
means that all the parametera,.,; and by, Kk
=0,1, ...,with odd indices are zeros. _ 2 —1p7
The interior mass multipoles described by cause the Asy= @Agy T MO DT Agy,
Schwarzschild horizon to be singular at the equd@l; (15
whereas the horizon remains completely regular if &gl
=0 and, besides, Chandrasekhar's equilibrium condition o =m(y>—1)f2[Q +2Im(dD )7,
[11] holds, i.e., ’ i Y
- o, =mx>=1)f Q4+ 2Im(dd,)],
S, by 10 12 y=MOC= D20+ 2im( D,

f and w being the metric coefficients in the Papapetrou sta-
which is a particular case of the conditioisl). tionary axisymmetric line elemef23]
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dx2 dy? ¢, andc, can assume arbitrary real values, and these should
ds’=m?*f 1 (x>~ y?)| —+ 5 be chosen in such a way that the elementary flathess condi-
x*=1 1-y tion of the symmetry axis is preserved. In formu{as) we

assume the charge paramegeto be a real constant which
_ _ 2 means the absence of a magnetic monopole moment. We
f(dt-wde)®,  (16) . : \
mention, however, that the magnetic charge can be intro-
. . . ~ duced trivially in the above superposition relations by con-
andA, andA; being, respectively, the electric and magneticsidering8 as a complex constant and by formally substitut-
components of the electromagnetic four-potential. ing | 82= B8 instead ofs2.

To generalize the metric considered in the previous sec- "1 have the metri¢6),(8) as a static vacuum limit for our

tion to the stationary electrovac case we shall use the ge”eréﬂationary electrovac solution, we choageén the form
formulas representing a nonlinear superposition of the Kerr- '

+(xX*=1)(1-y*)de

Newman solution with an arbitrary static vacuum Wey! field o a Xy
obtained in[8]. In order to make our further consideration = ( 21+bnr“ Pn(_)- (19
most illustrative, we choose the simplest way of carrying out n=1|r" r

such a superposition, and below we write out the respective ) o, _
formulas for the Ernst complex potentials and correspondingd his choice ofy means that the functioy’ in Egs.(17) is
metric functions in the form most convenient for concreteSimply the functiony defined by Eq(8).

applications: The next step in the construction of the solution is to find
expressions of the corresponding functienandb by inte-
E=e*’A_IA,, ®=pBIA,, grating Egs.(18); the result of the integration is
% n
f=(1-p2)%?AID, e?’=c.e?” Al(x?-1), a=- aexp[ 2>, ( —ay (x—y) 2, 1P 1}
n=1 k=0
w=(2me 2'CA 1+c,)/(1- B?)? no1
_ |
A.:=(1- B2 24 [x(1+ab) +iy(b—a)]* (1 Hon(x-y) 2w P')]'

+ pB%e?%)(1—ia)(1—ib),

n

17 bzaexp{zZl a, (x+y)k20 (-1 KLk ipy
A:=(x2—1)(1+ab)2— (1—y?)(b—a)?, ) )
ne
B:=(1—e?))[x(1+ab)+iy(b—a)] +(=1)" +bn(x+y)l§‘,0 (—1)“'r'P|)J, (20)
+(1+e*’)(1—-ia)(1—ib),
where the integration constants are chosen in such a way that
C:=(x*-1)(1+ab)[(b—a)(B**+1)+y(a+tb) the solution is asymptotically flat in the absence of an exter-
nal field (b,=0).
X(B*e"—1)]+(1-y?)(b—a)[(1+ab)(B*e*+1) Now we can find the explicit form of the real parameters
—x(1—ab)(B%*"—1)] ¢, andc, in Egs. (17) by demanding the regularity of the
' functionsy andw on the symmetry axis outside the horizon;
D:=[x(1+ab)(1— B%?%)+(1—ab)(1+ g2%e*")]? assuming that the conditiori$1) hold, the resulting expres-
sions forc, andc, are
+[y(a—b)(1- %)+ (a+b)(1+p%*")]%.
o _ 1 Ama(1+ B*o?)
In the above formulas the potentigl is any solution of C1=———>, Cp=————————
Laplace’s equatioifl), y’ is a functiony of the static solu- (1-a%) (1-ao
tion ¢’ = 3In[(x—1)/(x+1)]+ ¢, the functionsa andb corre-
sponding to a giveny should be found from the first-order -
differential equations o =exp{ 22,1 bZKJ- (21
(x=y)a,=2a[(xy= 1)t (1=y?) iy, Formulas(17),(19)—(21) together with the expression for

v' defined by Eqs(8),(9) fully describe a deformed Kerr-
Newman black hole in an external static gravitational field.
(18 The main limiting cases of this electrovac solution are the

(x=y)ay=2a[— (= 1)+ (xy—1)¢,],

x+y)b ,=—2b[(xy+1) ¢, +(1-y?) ], following.
(x+¥)b. Lo+ gt (=Y 9] (@ When a,=0, b,#0, we have the case of a Kerr-
(x+y)by=—2b[—(x2—1)¢x+(xy+ Dy, Newman black hole distorted only by an external gravita-
’ ' ' tional field.
and from Eqs(18) it follows that botha andb are defined (b) In the case ob,=0, a,#0, one arrives at the asymp-

up to an arbitrary constant factor. The integration constantotically flat solution constructed in Rd#8] which represents
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the exterior field of a charged stationary rotating mass pos- 1 9y Ny
sessing the whole set of the inner mass-multipole moments. M= EKS‘F 2073+ 07Q, (25
(c) The deformed Kerf6] or Reissner-Nordsira [24]

black holes in the external field correspond to the cdse whereM, J, andQ are, respectively, the total mass, total
=0 or a=0, respectively. When both parametersand 8 angular momentum, and total charge of a black hole, while
are equal to zero, we come to the static vacuum solutionr, 5 O and®" defined on the horizon are, respectively,
considered in Sec. Il. the surface gravity, area of the horizon, its angular velocity,

(d) The well-known Kerr-Newman solution7] for a  and electric potential. The general analysis of Smarr’s for-
charged rotating black hole is contained in our formulas asnula and its generalization to the case of nonzero electric
the simplest stationary electrovac cage=b,=0. current and matter contributions were given by Caf&$],

It is worth mentioning that the general superposition for-and Tomimatsu verified its validity for different axisymmet-
mulas from Ref[8] also include a different possibility to ric problems[16,27. Thus, in[16] Tomimatsu showed that
construct a generalization of the Kerr-Newman metric due tasmarr’s formula holds for a Kerr black hole in the presence
the presence of an arbitrary Newman-Unti-Tamburinoof an external static gravitational field, and in his paj&f],
(NUT) parameter{25], and this requires additional knowl- devoted to the analysis of equilibrium states in a binary sys-
edge of the functiorp satisfying the first-order differential tem of charged rotating black holes, he demonstrated that Eq.

equationgsee Ref[8] for more detaily (25) is not valid for each black hole because of some specific
A A features of the charging transformatif2®,2§ he used. An
Px=2(Y =1 hy, Py=2(x~1)thy. (220 important “technical” contribution of Tomimatsu is the ad-

justment of the Ernst formalisfi22] to the calculation of the
To make the results of this section to be fully applicable toquantities entering Eq25) that simplifies considerably the
other situations, below we give the form of this functif)n verification of Smarr’'s formula. In what follows we shall use
when y is defined by Eq(19): the results of the Ref.27] to show that relatior(25) does
hold for a Kerr-Newman black hole in an external gravita-
. " [a, nb, Xy tional field (we shall put alla, equal to zero to avoid singu-
p=—2> |-+ 01 et (Tpn_ Pnl)- (23 larities on the horizon
n=LAT However, for achieving this goal, besides the formulas
At the same time, since for our purposes we only need thgbtained in the previous gection, we still negd, as Wi.” be
geen later on, an expression for the magnetic poteAtial

simplest solution above considered, we shall not ar]alyzwhich can be found by integrating the respective first-order
here other possibilities of carrying out the nonlinear super- Y g 9 P

position of the Kerr-Newman and Weyl solutions. d_llf.ftertegtll;a)l e.qtjagon.s m\l(Ec{.lS). -:;h,e mtegragon Cc??’ be”fa-
An important characteristic feature of our stationary elec-f”ge ﬁ' Introducing yamazaxi's ansa29] and finally
trovac metric is the existence of an event horizon defined byea S to the expression
the hypersurfac&=1 [26]. The horizon inevitably contains B
singular points if any of the constanas describing the de- Ag=wA,— ————(
formations of a massive source are not equal to g&foOn (1—/32)2
the other hand, when &dl,, are zeros, the horizon is regular
for any nonzero parametets,, provided Chandrasekhar’s
qond|t]on(12)_holds. However, in this Iatter_ case some naked A,=Reb=BE/D,

ring singularities may appear in the region exterior to the

horizon, and similar to the solution representing a Kerr black _ 20 2 2unrv? s o )
hole in the external gravitational fie[d9] a sufficient con-  E:=(1—e"")(1—pg%e™")[x*(1+ab)*+y*(a—b)]

2me 2FA " 1+cy), (26

where

dition of the regularity of our solution outside the horizon +2(1— BRett 1—a2p?)+v(a2—p?
(save, of course, the points at infinitgan be formulated as (1= p7eMiIx(1-ab) +y(a )]
(la[<1,[8l<1) +(1+e?)(1+ %) (1+a%)(1+b?),
2
an=0, b2k71:01 b2k$07 nk=12,.... (24) ( 7)

F:=(x*-1)(1+ab)[(b—a)(B%*+1)+y(a+b)

As a nontrivial, significant application of the metric pre- 2 4y ) 2 4y
sented in this section one could consider the verification of X(B%e™=1)]+(1-y*)(b—a)[(1+ab)(B€*"+1)
the general Smarr s mass formula for black hcﬁlﬁﬁ, gnd in —x(1—ab)(B2e*—1)],
the next section we shall demonstrate the validity of this
formula in the presence of an external gravitational field.

C3: = 2

IV. SMARR’'S MASS FORMULA AND THE MAGNETIC (1-a%o

POTENTIAL

B Ama(1+ B%0?)

(the above choice of the integration constaptguarantees
Smarr's mass formulfl8] discovered for the case of an the regularity of the potentiad; on the symmetry axis out-
isolated Kerr-Newman black hole is an elegant relation beside the horizon
tween several quantities characterizing a black hole, and it Now we can write down Tomimatsu’'s formulas, slightly
reads changing them for our particular coordinate sys{emte that
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in our notations), A, Ag, Az, andA; are Tomimatsu'sp, 40 (1) 20 (ii)
—Ai Ay, A(’ﬁ, andA,, respectively, taking into account
that all the potentials and functions which are coming below 20 10
should be evaluated for=1, we have
0 0
1
M=-Zo[Q(y=1)-Q(y=-1)], 20 10
S=4mm(-w? )2 k=(-0%®)" QM=0t G50 2% 10 o 10 20
1 1 (iii) (iv)
J:Zw —2m—§w[Q(y=1)—Q(y=—1)] 20 20f7 <
-, ) 10 10
TAA3(y=1)—As(y=—-1];, (28)
0 0
dH=—QHA;=-QN(A;— wA,), 10 ~10
1 ’ ’ -20 20 £
Q:Ew[Ag(yzl)—Ag(yz—l)], -20 -10 0 10 20 -20 -10 0 10 20

FIG. 1. The magnetic lines of force are plotted fora nondis-

Q and A; being the imaginary parts of the Ernst complex torted Kerr-Newman black holgii) for a black hole possessing an
potentials€ and®, respectively {) should not be confused additional internal mass-quadrupole moméiit) for a black hole

with QH).
In the case of our solution with ali,, set equal to zero
formulas(28) yield
M m(1+a?)(1+ %)
(1-a?)(1-p7)

167mA(1+ a?)(1+ a?B*c?)
S:
(1-a*)*(1- %0

 (1-a?2(1- )%
T am(1+ ad)(1+ a2p%0?)’

_a(1- a?)(1- B%)2%0
2m(1+a?)(1+a?B%?)’

H_

(29

~ 2m2a(1+a?)(1- B*o?)
(1-a*)*(1- %0

@H_5(1+a23202) . 2mB(1+a?)
C 1t+a?Be? T T (1A (1-pY)]

and a simple inspection shows that these quantities satis
identically Eq.(25). Therefore, Smarr’s mass formula for a
Kerr-Newman black hole is also valid when the black hole is
distorted by an external static gravitational field, and we
have demonstrated what intuitively might have been ex
pected after Tomimatsu’'s work on a distorted Kerr black

hole[16].

Additional technical difficulties which one has to over-

come in the electrovac case to prove form{#8) have their

in an external quadrupole gravitational field, afid) for a black
hole distorted by both internal and external quadrupole moments.

effect of the internal and external mass multipoles on the
black hole’s magnetic field. In the four diagrams of Fig. 1 the
magnetic lines of force are plotted for a nondistorted Kerr-
Newman black holgFig. 1(i)], for a black hole possessing
an additional internal mass-quadrupole momiéfig. 1(ii)],

for a black hole in an external quadrupole gravitational field
[Fig. 1(iii)], and for a black hole distorted by both internal
and external quadrupole momenEg. 1(iv)]. For large ab-
solute values oh, andb, the magnetic lines of force can
have a very exotic aspect.

V. CONCLUSIONS

The family of electrovac spacetimes presented in this pa-
per has several interesting features. First of all, it generalizes
the well-known Kerr-Newman black hole solution and in-
volves two infinite sets of arbitrary real parameters which
have a clear physical interpretation as describing an exterior
static axisymmetric gravitational field and deformations of a
massive source. The whole metric is defined by very concise
explicit formulas that make it suitable for use in concrete
applications. The relevance of our results to astrophysics is
evident since they permit one to study the motion of test

articles in the vicinities of charged stationary rotating

asses, taking into account the external gravitational field of
surrounding matter. Last, the electrovac solutions considered
in this paper have clearly demonstrated that the general
Smarr’s mass formula originally derived for an isolated Kerr-
Newman black hole is even more important and has more
applications than has been previously thought.
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