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Arbitrarily deformed Kerr-Newman black hole in an external gravitational field
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An exact axisymmetric solution of the Einstein-Maxwell equations possessing two infinite sets of arbitrary
real parameters and able to describe a deformed Kerr-Newman black hole in an external gravitational field is
presented in a concise analytic form. The validity of Smarr’s mass formula is demonstrated for a Kerr-Newman
black hole surrounded by an external static gravitational field.@S0556-2821~98!05406-X#

PACS number~s!: 04.20.Jb, 97.60.Lf
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I. INTRODUCTION

Distorted black holes have been studied by different
thors. The distortion of a Schwarzschild black hole by int
nal deformations was first considered by Erez and Rosen@1#,
and in @2# it was shown that the quadrupole deformation
the Erez-Rosen solution makes the horizon completely
gular. However, the inner mass-multipole moments may a
cause the horizon to be singular only in a countable num
of points @3#, but the appearance of singularities on the h
rizon or in its vicinity is inevitable for the asymptotically fla
static vacuum Weyl solutions in view of Israel’s theorem@4#.
The most concise description of a Schwarzschild black h
possessing an arbitrary set of inner mass-multipole mom
provides the solution@5#, and its stationary generalization
representing the deformed Kerr@6# and Kerr-Newman@7#
black holes were obtained by Manko and Novikov@8# ~gen-
eralizations of the Kerr and Kerr-Newman metrics involvi
the asymptotically flat part of the Erez-Rosen solution a
background metric were constructed by Quevedo and Ma
hoon @9,10#!.

A black hole can also be distorted by an external grav
tional field, and until recently this type of distortion wa
analyzed with the aid of the outer mass-multipole mome
represented by the asymptotically nonflat part of the Er
Rosen solution. Doroshkevich, Zel’dovich, and Novikov@2#
were the first ones to consider the Schwarzschild black h
in an external~quadrupole! gravitational field. They con-
structed a whole metric corresponding to that spacetime
showed that the Schwarzschild horizon in the external qu
rupole field remains regular. In@11# Chandrasekhar obtaine
the equilibrium condition for a black hole in a static extern
gravitational field, and the global properties of spacetim
representing static distorted black holes obtained a deta
analysis in a paper by Geroch and Hartle@12#. It can be
remarked that in view of Chandrasekhar’s result, e.g.,
metric representing a Schwarzschild black hole in an exte
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dipole field@13# and its stationary generalizations@14,15# are
not satisfactory from the physical viewpoint since in all
them the upper or lower parts of the symmetry axis are
regular~it is precisely for guaranteeing the regularity of th
axis that the external field in@2# was chosen to have a quad
rupole character!. A Kerr black hole surrounded by an exte
nal static field was first studied by Tomimatsu@16# who ap-
plied the inverse scattering method@17# to the static potential
considered by Chandrasekhar@11#, the latter potential being
a particular case of the Erez-Rosen solution@1#. An impor-
tant fact established by Tomimatsu is that the well-kno
Smarr’s mass formula@18# for a black hole also holds in the
presence of an external gravitational field. It might be me
tioned that Tomimatsu’s stationary vacuum solution, as w
as the static one analyzed by Chandrasekhar, is constru
up to one metric function defined implicitly via first-orde
differential equations. The whole metric describing the K
black hole in an external field has been obtained in a con
explicit form in @19# thanks to the representation of the out
mass-multipole moments in a way different to that of Er
and Rosen.

In @19# some possible straightforward extensions of t
results obtained have been outlined, in particular to the c
of a charged Kerr black hole in an external gravitation
field. The present paper aims at yet a more general objec
We shall give concise expressions for all the metrical fie
which will represent a Kerr-Newman black hole possess
two arbitrary sets of mass-multipole moments, the set of
ner multipoles describing the deformations of the black h
due to internal perturbations and the set of outer multipo
standing for an arbitrary static and axisymmetric exter
gravitational field. In Sec. II we shall consider a static met
representing a deformed Schwarzschild particle in an ex
nal field, and in Sec. III we shall give its charged stationa
generalization describing a Kerr-Newman black hole d
torted by internal deformations and by external gravitatio
field. In Sec. IV we prove the validity of Smarr’s mass fo
mula in the case when a black hole is surrounded by
external gravitational field. Here, as an interesting auxilia
result, we give a general expression for the magnetic po
tial A3 involving an arbitrary static Weyl potentialc. Some
concluding remarks are contained in Sec. V.
3382 © 1998 The American Physical Society
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II. STATIC SEED SOLUTION

The static axisymmetric vacuum problem reduces to so
ing the equations

@~x221!cx# ,x1@~12y2!cy# ,y50 ~1!

and

g ,x5
12y2

x22y2
@x~x221!c ,x

2 2x~12y2!c ,y
2

22y~x221!c ,xc ,y#,

g ,x5
x221

x22y2
@y~x221!c ,x

2 2y~12y2!c ,y
2

12x~12y2!c ,xc ,y#, ~2!

Eq. ~1! being the integrability condition of the system~2!.
Herec(x,y) andg(x,y) are the metric functions in Weyl’s
line element

ds25m2e22cFe2g~x22y2!S dx2

x221
1

dy2

12y2D
1~x221!~12y2!dwG2e2cdt2 ~3!

~throughout the paper units are used such thatc5G51), and
x andy are the prolate spheroidal coordinates first introdu
by Erez and Rosen@1# and related, e.g., to Weyl cylindrica
coordinates (r,z) by the formulas

x5
1

2m
~r 11r 2!, y5

1

2m
~r 12r 2!,

r 6 :5Ar21~z6m!2,

r5mA~x221!~12y2!, z5mxy, m5const. ~4!

Were one wished to use the Erez-Rosen solution to
scribe a deformed Schwarzschild particle in an external fi
one should have to choosec in the form

c5
1

2
ln

x21

x11
1 (

n51

`

@pnPn~x!1qnQn~x!#Pn~y!, ~5!

where the first term on the right-hand side of Eq.~5! is the
Schwarzschild solution,Pn() are the Legendre polynomials
and Qn() are Legendre functions of the second kind. Th
the real constantsqn would describe the deformations of th
source, while the real parameterspn would describe the ex
ternal static gravitational field. We mention that the ca
pn50, qnÞ0 was considered by Quevedo@20# who obtained
the corresponding metric functiong by integrating the sys-
tem ~2!, the resultingg being defined by very cumbersom
expressions. The caseqn50, pnÞ0 was considered by
Chandrasekhar@11# and it was used by Tomimatsu@16# as a
static seed solution for the construction of his stationary m
ric. A general expression forg in this case has not yet bee
-

d

e-
d,

n

e

t-

obtained, and the only two particular solutions for whichg
has been found in the explicit form are~i! p2Þ0, pn50,
nÞ2 ~Doroshkevich, Zel’dovich, and Novikov@2#! which
represents a Schwarzschild black hole in an external qua
pole field;~ii ! p1Þ0, pn50,n.1 ~Kerns and Wild@13#! for
which the resultingg does not satisfy the elementary flatne
condition on the symmetry axis. In@15# case~ii ! was super-
posed with a set ofqn terms, but again the respective fun
tion g was not given there explicitly, the solution itself po
sessing the same inherent defect as the one considere
Kerns and Wild. Apparently, the metric functiong corre-
sponding to the general form ofc in Eq. ~5! must be by far
more complicated than its particular case involving only t
constantsqn , and to our knowledge, no attempt has be
made to obtain a general expression forg.

On the other hand, the potential~5! admits an equivalen
representation, namely,

c5
1

2
ln

x21

x11
1 (

n51

` S an

r n11
1bnr nD PnS xy

r D ,

r :5Ax21y221, ~6!

with the constantsan describing the deformations of th
source and constantsbn defining the external field. When
bn50, the potential~6! reduces to the solution considered b
Manko @5# for which the corresponding metric coefficientg
was found in a concise analytic form, and ifan50, the po-
tential ~6! goes over to the solution recently used by Bret´n
et al. for a description of the Kerr black hole in an extern
gravitational field@19# for which the functiong is also de-
fined by a very concise formula.

It is remarkable that the general case with nonzeroan and
bn can be treated almost as conveniently as the partic
cases mentioned above. Note that if the sum in Eq.~6!
started fromn50, this sum would be just the representati
of the general Weyl solution considered by Hoenselaers@21#
in which the Schwarzschild black hole solution is contain
as an infinite series with the following choice of paramet
an (bn50):

a2k52
1

2k11
, a2k1150, k>0, ~7!

so that after cutting off the sum the solution would lose t
black hole limit. On the other hand, since in the potential~6!
the Schwarzschild solution is introduced explicitly as t
simplest physical case, one is able to restrict one’s consi
ation by any desired number of multipole moments in acc
dance with a concrete problem. Of course, the apparent
vantage of having the spherically symmetric solution as
leading term in Eq.~6! causes some additional technical d
ficulties for the integration of Eqs.~2! compared to the rep
resentation used by Hoenselaers since now Schwarzsc
multipole cross terms appear; however, fortunately the in
of these terms into the expression forg can be written in an
elegant way. The result of the integration of the system~2!
for the potential~6! is the following:
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g5
1

2
ln

x221

x22y2
1 (

n51

` S an(
k50

n

$@~21!n2k~x1y!1x2y#

3r 2k21Pk211~21!n11%

1bn(
l 50

n21

@~21!n2 l 11~x1y!2x1y#r l Pl D
1 (

n,p51

` H ~n11!~p11!anap

~n1p12!r n1p12
~Pn11Pp112PnPp!

1
npbnbpr n1p

n1p
~PnPp2Pn21Pp21!1gn,pJ , ~8!

where

gn,p

5H 2n~p11!apbn

~p2n11!r p2n11
~PnPp2Pn21Pp11!, pÞn21,

n2an21bn~Pnpn212Pn21pn!, p5n21.

~9!

Hoenselaers’ functionspn which are defined as deriva
tives of the Legendre polynomialsPn with respect to the
indexn are completely determined by the first two functio
p0 andp1 via the recursion formula@21#

~n11!pn112~2n11!c”pn1npn21

52Pn1112c” Pn2Pn21 ,

p05
1

2
~11c” !, p15P1p01c”21, c” :5xy/r . ~10!

The regularity of the static metric~6!,~8! on the symmetry
axis implies the vanishing ofg wheny561. This leads us
to the following two conditions:

(
k51

`

b2k2150, (
n52

`

nan21bn50, ~11!

which should be satisfied to guarantee the regularity of
symmetry axis outside the Schwarzschild black hole; E
~11! are also the equilibrium condition for a deformed bla
hole in the external field. Note that the regularity axis co
dition will be automatically fulfilled if the potential~6! is
symmetric with respect to the equatorial plane (y50) which
means that all the parametersa2k11 and b2k11, k
50,1, . . . ,with odd indices are zeros.

The interior mass multipoles described byan cause the
Schwarzschild horizon to be singular at the equator@5#,
whereas the horizon remains completely regular if allan
50 and, besides, Chandrasekhar’s equilibrium condit
@11# holds, i.e.,

(
k51

`

b2k2150, ~12!

which is a particular case of the conditions~11!.
e
s.

-

n

To conclude this section, let us write out a particular s
lution which represents a Schwarzschild black hole poss
ing an arbitrary mass-quadrupole moment which is s
rounded by a quadrupole external field, both quadrup
moments, the inner and outer, being the first physically n
trivial ones in the respective multipole sets~we denotea2
5a andb25b):

cqq5
1

2
ln

x21

x11
1

1

2S a

r 5
1bD ~3x2y22r 2!,

gqq5
1

2
ln

x221

x22y2
2~x221!~12y2!H 3

8
a2@r 2~r 2214x2y2!

125x4y4#r 21223ab~r 21x2y2!r 25

1
1

4
b2~9x2y22r 2!J 2x~12y2!@a~5x223!r 2512b#

12a~x5r 2521!. ~13!

As far as we know, solution~13! is the first static solution
which might be interesting from the astrophysical point
view as describing a black hole distorted by both internal a
external gravitational fields.

III. DEFORMED KERR-NEWMAN BLACK HOLE
IN AN EXTERNAL FIELD

Now we are turning to the construction of an exact so
tion of the Einstein-Maxwell equations describing a d
formed Kerr-Newman black hole in an external static a
symmetric gravitational field. The stationary axial
symmetric electrovac problem reduces to solving the Er
equations@22#

~ReE1FF̄!DE5~¹E12F̄¹F!¹E,

~ReE1FF̄!DF5~¹E12F̄¹F!¹F, ~14!

where the complex potentialsE and F are defined via the
relations~an overbar denotes complex conjugation!

E5 f 2FF̄1 iV, F5A41 iA38 ,

A3,x5vA4,x1m~y221! f 21A3,y8 ,

A3,y5vA4,y1m~x221! f 21A3,x8 ,

~15!

v ,x5m~y221! f 22@V ,y12Im~F̄Fy!#,

v ,y5m~x221! f 22@V ,x12Im~F̄Fx!#,

f andv being the metric coefficients in the Papapetrou s
tionary axisymmetric line element@23#
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ds25m2f 21Fe2g~x22y2!S dx2

x221
1

dy2

12y2D
1~x221!~12y2!dwG2 f ~dt2vdw!2, ~16!

andA4 andA3 being, respectively, the electric and magne
components of the electromagnetic four-potential.

To generalize the metric considered in the previous s
tion to the stationary electrovac case we shall use the gen
formulas representing a nonlinear superposition of the K
Newman solution with an arbitrary static vacuum Weyl fie
obtained in@8#. In order to make our further consideratio
most illustrative, we choose the simplest way of carrying
such a superposition, and below we write out the respec
formulas for the Ernst complex potentials and correspond
metric functions in the form most convenient for concre
applications:

E5e2cA2 /A1 , F5bB/A1 ,

f 5~12b2!2e2cA/D, e2g5c1e2g8A/~x221!,

v5~2me22cCA211c2!/~12b2!2,

A6 :5~12b2e62c!@x~11ab!1 iy~b2a!#6~1

1b2e62c!~12 ia !~12 ib !,
~17!

A:5~x221!~11ab!22~12y2!~b2a!2,

B:5~12e2c!@x~11ab!1 iy~b2a!#

1~11e2c!~12 ia !~12 ib !,

C:5~x221!~11ab!@~b2a!~b4e4c11!1y~a1b!

3~b4e4c21!#1~12y2!~b2a!@~11ab!~b4e4c11!

2x~12ab!~b4e4c21!#,

D:5@x~11ab!~12b2e2c!1~12ab!~11b2e2c!#2

1@y~a2b!~12b2e2c!1~a1b!~11b2e2c!#2.

In the above formulas the potentialc is any solution of
Laplace’s equation~1!, g8 is a functiong of the static solu-
tion c85 1

2 ln@(x21)/(x11)#1c, the functionsa andb corre-
sponding to a givenc should be found from the first-orde
differential equations

~x2y!a,x52a@~xy21!c ,x1~12y2!c ,y#,

~x2y!a,y52a@2~x221!c ,x1~xy21!c ,y#,
~18!

~x1y!b,x522b@~xy11!c ,x1~12y2!c ,y#,

~x1y!b,y522b@2~x221!c ,x1~xy11!c ,y#,

and from Eqs.~18! it follows that botha andb are defined
up to an arbitrary constant factor. The integration consta
c-
ral
r-

t
e
g

ts

c1 andc2 can assume arbitrary real values, and these sho
be chosen in such a way that the elementary flatness co
tion of the symmetry axis is preserved. In formulas~17! we
assume the charge parameterb to be a real constant which
means the absence of a magnetic monopole moment.
mention, however, that the magnetic charge can be in
duced trivially in the above superposition relations by co
sideringb as a complex constant and by formally substit
ing ubu2[bb̄ instead ofb2.

To have the metric~6!,~8! as a static vacuum limit for ou
stationary electrovac solution, we choosec in the form

c5 (
n51

` S an

r n11
1bnr nD PnS xy

r D . ~19!

This choice ofc means that the functiong8 in Eqs.~17! is
simply the functiong defined by Eq.~8!.

The next step in the construction of the solution is to fi
expressions of the corresponding functionsa andb by inte-
grating Eqs.~18!; the result of the integration is

a52aexpH 2(
n51

` S 2anF ~x2y!(
k50

n

r 2k21Pk21G
1bn~x2y! (

l 50

n21

r l Pl D J ,

b5aexpH 2(
n51

` S anF ~x1y!(
k50

n

~21!n2k11r 2k21Pk

1~21!nG1bn~x1y! (
l 50

n21

~21!n2 l r l Pl D J , ~20!

where the integration constants are chosen in such a way
the solution is asymptotically flat in the absence of an ex
nal field (bn50).

Now we can find the explicit form of the real paramete
c1 and c2 in Eqs. ~17! by demanding the regularity of th
functionsg andv on the symmetry axis outside the horizo
assuming that the conditions~11! hold, the resulting expres
sions forc1 andc2 are

c15
1

~12a2!2
, c252

4ma~11b4s2!

~12a2!s
,

s:5expH 2(
k51

`

b2kJ . ~21!

Formulas~17!,~19!–~21! together with the expression fo
g8 defined by Eqs.~8!,~9! fully describe a deformed Kerr
Newman black hole in an external static gravitational fie
The main limiting cases of this electrovac solution are
following.

~a! When an50, bnÞ0, we have the case of a Kerr
Newman black hole distorted only by an external gravi
tional field.

~b! In the case ofbn50, anÞ0, one arrives at the asymp
totically flat solution constructed in Ref.@8# which represents
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the exterior field of a charged stationary rotating mass p
sessing the whole set of the inner mass-multipole mome

~c! The deformed Kerr@6# or Reissner-Nordstro¨m @24#
black holes in the external field correspond to the caseb
50 or a50, respectively. When both parametersa and b
are equal to zero, we come to the static vacuum solu
considered in Sec. II.

~d! The well-known Kerr-Newman solution@7# for a
charged rotating black hole is contained in our formulas
the simplest stationary electrovac casean5bn50.

It is worth mentioning that the general superposition f
mulas from Ref.@8# also include a different possibility to
construct a generalization of the Kerr-Newman metric due
the presence of an arbitrary Newman-Unti-Tambur
~NUT! parameter@25#, and this requires additional know
edge of the functionp̂ satisfying the first-order differentia
equations~see Ref.@8# for more details!

p̂,x52~y221!c ,y , p̂,y52~x221!c ,x . ~22!

To make the results of this section to be fully applicable
other situations, below we give the form of this functionp̂
whenc is defined by Eq.~19!:

p̂522(
n51

` S an

r n
1

nbn

n11
r n11D S xy

r
Pn2Pn21D . ~23!

At the same time, since for our purposes we only need
simplest solution above considered, we shall not anal
here other possibilities of carrying out the nonlinear sup
position of the Kerr-Newman and Weyl solutions.

An important characteristic feature of our stationary el
trovac metric is the existence of an event horizon defined
the hypersurfacex51 @26#. The horizon inevitably contains
singular points if any of the constantsan describing the de-
formations of a massive source are not equal to zero@8#. On
the other hand, when allan are zeros, the horizon is regula
for any nonzero parametersbn , provided Chandrasekhar’
condition~12! holds. However, in this latter case some nak
ring singularities may appear in the region exterior to
horizon, and similar to the solution representing a Kerr bla
hole in the external gravitational field@19# a sufficient con-
dition of the regularity of our solution outside the horizo
~save, of course, the points at infinity! can be formulated as
(uau,1, ubu,1)

an50, b2k2150, b2k<0, n,k51,2, . . . . ~24!

As a nontrivial, significant application of the metric pr
sented in this section one could consider the verification
the general Smarr’s mass formula for black holes@18#, and in
the next section we shall demonstrate the validity of t
formula in the presence of an external gravitational field.

IV. SMARR’S MASS FORMULA AND THE MAGNETIC
POTENTIAL

Smarr’s mass formula@18# discovered for the case of a
isolated Kerr-Newman black hole is an elegant relation
tween several quantities characterizing a black hole, an
reads
s-
s.

n

s

-

o

e
e

r-

-
y

d
e
k

f

s

-
it

M5
1

4p
kS12VHJ1FHQ, ~25!

where M , J, and Q are, respectively, the total mass, tot
angular momentum, and total charge of a black hole, wh
k, S, VH, andFH defined on the horizon are, respective
the surface gravity, area of the horizon, its angular veloc
and electric potential. The general analysis of Smarr’s f
mula and its generalization to the case of nonzero elec
current and matter contributions were given by Carter@26#,
and Tomimatsu verified its validity for different axisymme
ric problems@16,27#. Thus, in@16# Tomimatsu showed tha
Smarr’s formula holds for a Kerr black hole in the presen
of an external static gravitational field, and in his paper@27#,
devoted to the analysis of equilibrium states in a binary s
tem of charged rotating black holes, he demonstrated that
~25! is not valid for each black hole because of some spec
features of the charging transformation@22,28# he used. An
important ‘‘technical’’ contribution of Tomimatsu is the ad
justment of the Ernst formalism@22# to the calculation of the
quantities entering Eq.~25! that simplifies considerably the
verification of Smarr’s formula. In what follows we shall us
the results of the Ref.@27# to show that relation~25! does
hold for a Kerr-Newman black hole in an external gravit
tional field ~we shall put allan equal to zero to avoid singu
larities on the horizon!.

However, for achieving this goal, besides the formu
obtained in the previous section, we still need, as will
seen later on, an expression for the magnetic potentialA3
which can be found by integrating the respective first-or
differential equations in Eq.~15!. The integration can be fa
cilitated by introducing Yamazaki’s ansatz@29# and finally
leads to the expression

A35vA42
b

~12b2!2
~2me22cFA211c3!, ~26!

where

A45ReF5bE/D,

E:5~12e2c!~12b2e2c!@x2~11ab!21y2~a2b!2#

12~12b2e4c!@x~12a2b2!1y~a22b2!#

1~11e2c!~11b2e2c!~11a2!~11b2!,
~27!

F:5~x221!~11ab!@~b2a!~b2e4c11!1y~a1b!

3~b2e4c21!#1~12y2!~b2a!@~11ab!~b2e4c11!

2x~12ab!~b2e4c21!#,

c3 :52
4ma~11b2s2!

~12a2!s

~the above choice of the integration constantc3 guarantees
the regularity of the potentialA3 on the symmetry axis out
side the horizon!.

Now we can write down Tomimatsu’s formulas, slight
changing them for our particular coordinate system~note that



ow

ex

tis
a
i

w
ex
ck

r-

th

the
he
rr-
g

ld
al

n

pa-
izes
n-
ich
rior
f a
ise
te
s is
est
ng

of
red

eral
rr-
ore

m

n

ts.

57 3387ARBITRARILY DEFORMED KERR-NEWMAN BLACK HOLE . . .
in our notationsV, A4, A3, A38 , andÃ3 are Tomimatsu’sw,

2At , Af , Af8 , and Āf , respectively!; taking into account
that all the potentials and functions which are coming bel
should be evaluated forx51, we have

M52
1

4
v@V~y51!2V~y521!#,

S54pm~2v2e2g!1/2, k5~2v2e2g!21/2, VH5v21,

J5
1

4
vH 22m2

1

2
v@V~y51!2V~y521!#

1Ã3@A38~y51!2A38~y521!#J , ~28!

FH52VHÃ352VH~A32vA4!,

Q5
1

2
v@A38~y51!2A38~y521!#,

V and A38 being the imaginary parts of the Ernst compl
potentialsE andF, respectively (V should not be confused
with VH).

In the case of our solution with allan set equal to zero
formulas~28! yield

M5
m~11a2!~11b2!

~12a2!~12b2!
,

S5
16pm2~11a2!~11a2b4s2!

~12a2!2~12b2!2s
,

k5
~12a2!2~12b2!2s

4m~11a2!~11a2b4s2!
,

VH52
a~12a2!~12b2!2s

2m~11a2!~11a2b4s2!
, ~29!

J52
2m2a~11a2!~12b4s2!

~12a2!2~12b2!2s
,

FH5
b~11a2b2s2!

11a2b4s2
, Q5

2mb~11a2!

~12a2!~12b2!
,

and a simple inspection shows that these quantities sa
identically Eq.~25!. Therefore, Smarr’s mass formula for
Kerr-Newman black hole is also valid when the black hole
distorted by an external static gravitational field, and
have demonstrated what intuitively might have been
pected after Tomimatsu’s work on a distorted Kerr bla
hole @16#.

Additional technical difficulties which one has to ove
come in the electrovac case to prove formula~25! have their
own positive side since now, for instance, having at hand
explicit expression for the potentialA3, we can illustrate the
fy

s
e
-

e

effect of the internal and external mass multipoles on
black hole’s magnetic field. In the four diagrams of Fig. 1 t
magnetic lines of force are plotted for a nondistorted Ke
Newman black hole@Fig. 1~i!#, for a black hole possessin
an additional internal mass-quadrupole moment@Fig. 1~ii !#,
for a black hole in an external quadrupole gravitational fie
@Fig. 1~iii !#, and for a black hole distorted by both intern
and external quadrupole moments@Fig. 1~iv!#. For large ab-
solute values ofa2 and b2 the magnetic lines of force ca
have a very exotic aspect.

V. CONCLUSIONS

The family of electrovac spacetimes presented in this
per has several interesting features. First of all, it general
the well-known Kerr-Newman black hole solution and i
volves two infinite sets of arbitrary real parameters wh
have a clear physical interpretation as describing an exte
static axisymmetric gravitational field and deformations o
massive source. The whole metric is defined by very conc
explicit formulas that make it suitable for use in concre
applications. The relevance of our results to astrophysic
evident since they permit one to study the motion of t
particles in the vicinities of charged stationary rotati
masses, taking into account the external gravitational field
surrounding matter. Last, the electrovac solutions conside
in this paper have clearly demonstrated that the gen
Smarr’s mass formula originally derived for an isolated Ke
Newman black hole is even more important and has m
applications than has been previously thought.
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FIG. 1. The magnetic lines of force are plotted for~i! a nondis-
torted Kerr-Newman black hole,~ii ! for a black hole possessing a
additional internal mass-quadrupole moment,~iii ! for a black hole
in an external quadrupole gravitational field, and~iv! for a black
hole distorted by both internal and external quadrupole momen
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