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Colliding axisymmetric pp waves
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An exact solution is found describing the collision of a class of axisymmpiwaves. They are impulsive
in character and their coordinate singularities become point curvature singularities at the boundaries of the
interaction region. The solution is conformally flat. Concrete examples are given involving an ultrarelativistic
black hole against a burst of pure radiation or two colliding beamlike wd&&656-282198)01306-X]

PACS numbd(s): 04.20.Jb

I. INTRODUCTION d52=2dudv—Q2dr2—P2d¢>2. )

The problem of colliding plane waves in general relativity
has been thoroughly investigated by ngpWw?2]. Even more
interesting and realistic is the collision of the more general PQ,,+QP,,=0 3)
class ofpp waves of finite extent and energy. One particular uu uus
example, the collision of ultrarelativistic black holes, has
been studied by approximate methd8s-5]. The main rea-
son for the lack of exact solutions is thap waves are writ-

Then they read

PQ,, +QP,,=0, 4

ten easily in Brinkmann coordinates, but the analogue of the Qu,=0, )

Rosen transformation has not been known. Recently, the di- P -0 6

agonalization of axisymmetripp waves was achievel®]. uy (6)

They are described by the line element in cylindrical coordi-

nateys d Y Q,Pr=QP,, (7)
ds?’=2dudv—e~Y(e¥dr?+e Vdg?), (1) QuPr=QPy, G

whereu= (1nV2)(t—2), v= (1M2)(t+2) andU, V depend Q*P,Q,+P,Q,)—QP, +P,Q,=0. 9)

on u, r for a left-moving wave and omw, r for a right-

moving wave. When P,=Q,=0, Egs.(7) and (8) become trivial and the

The standard description of a head-on collision of twoopthers reduce to the equations for plane wgwds
waves divides the, v space into four regiond]. Regions Il Equations(7) and (8) are easily integrated and giv@

(u>0, v<0) and Ill (u<0, v>0) are occupied by the ap- =e"("p_ with an arbitraryh(r). However, wheru=v =0
proaching waves with line elemefit). Region 1(U<0,v  we are in region | with Minkowskian background and
< 0) represents the flat spacetime between the waves. Regi®0,0r)=r, Q(0,0r)=1. This condition fixes(r) to zero

IV (u>0,v>0) describes their collision and interaction. We and the result is

suppose that in the interaction region the line element pre-

serves its axial symmetry and is described by functigns Q=P, (10)
=e M U andV which depend on, v, r. In the present

paper we shall find all solutions witM=0 in a manner coinciding with the condition for a singlpp wave [6]. In
similar to the classification of diagonal plane waves withfact, the final conclusion drawn below does not depend on

M=0 [7]. h(r). Now Egs.(3) and(4) become
In Sec. Il the general solution withl =0 is found in the
interaction region. It is extended to a global solution in Sec. (PuP)r=0, (11)
Ill and its parameters are linked to the characteristics of the
approaching waves. The structure of the solution is eluci- (Py,P)=0. (12

dated further in Sec. IV by studying its invariants. In Sec. V i
two examples are given. Section VI contains some concluEguations(5) and (6) show that theu and v dependence
sions. separate:

Il. SOLUTION WITH M=0 P=f(u,r)+g(v,r). (13

IN THE INTERACTION REGION . . . . .
The remaining equatiof®) may be written in two equivalent

The vacuum Einstein equations in the interaction regiorforms:
simplify when Eq.(1) is rewritten as
(e"%)w=0, (14

*Email address: boyko@inrne.acad.bg (PyP,)=0. (19
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The first form is well-known from the study of colliding

plane waves.
We want to prove that the solution of Eq4.1)—(15) is

P=by(r)—by(r)u—by(r)v (16)

for some functiond;(r). If P,,=P,,=0, Eq.(16) immedi-
ately follows. Suppose th#t,,#0. Then Eqgs(11), (12) and
(13)—(15) give

PUU
( Pw)r‘o' an
(PUUPUU)rZOl (18
which are equivalent to
PuurPuy =0, (19
PuuPyyr=0. (20)

There are two possibilitie®,,,=P,,,=0 (P,,#0), or
P,.=0. The first possibility combined with Eq13) means

that P,=0. Hence Eqs(3)—(9) reduce to the plane wave

case, as was already mentioned, which is discuss¢d]in
The second possibility means thiétc,(r)u+c,(r). Put-
ting this result into Eqs(13)—(15) we getc,(r)g,=94(v).
Equations(11) and(12) become

Ctg —0

r

glv(u+ (21)

C1
If g;,=0 it easily follows thatP takes the form of Eq(16).
If 94,#0, g=c19-(v)—c, and Egs.(17) and (18) give

(cfgzv),=0. Again, P is of the form of Eq.(16).
Suppose, at last, th&t,,=0 butP,,# 0. Since the equa-

tions are symmetric with respect tp v the same argument

leads to the same conclusion. Inserting Bd) into Eq. (15)
we obtain the constraint
b1(r)by(r)=a, (22)

wherea#0 is some constant.

Ill. GLOBAL SOLUTION WITH M=0

It is obtained by taking into account the Minkowski

3379

1
pi(r,u) =5 (rHi(r) o) 6(ui) (27)

due to a beam of pure radiatid], light [9], or a point
particle moving with the speed of lighi0]. Then Eq.(22)
becomes

a
H2(r)r=Hl(r)r .

It is clear that Eq{(28) prevents the study of two equal col-
liding waves, e.g., two ultrarelativistic black holes. This is a
consequence of the simplifying assumptibh=0. Positive
energy-density induces positive and increaskhg hence
b;>0, b;,>0, a>0. Applying the constrain{22) to Egs.
(23) and(24) and changing notation tb;=b yields

(28)

P=r—bu0(u)—%v0(v), (29
ab,
Q=1-b,ub(u)+ Ez—va(v). (30)

The change of the relative sign @ is reminiscent of the
similar change in the Babala solutipfl], which is one of
the three diagonal vacuum plane waves wWith-0 [7]. Thus
Egs.(29) and(30) may be considered as a one-function ana-
logue of the Babala solution, although they do not reduce to
it whenb is constant. Equation®9) and (30) also give

e Y=r—(rb,+b—bb,u)ub(u)

ab,
rb,—b———v|vé(v).

b (31)

a
T2

The presence of null matter at the boundaries is signalled in
the coordinategl) by the discontinuities itJ,,, which break

the O’Brien-Synge boundary conditiops]. The terms linear

in u andv disappear from Eq(31) whenrb,=b=0 and
these conditions are satisfied simultaneously only by a trivial
b.

IV. STRUCTURE OF THE INVARIANTS

More information about the solution may be learned from

boundary condition and extending the solution from regionits invariants. The only nontrivial Ricci scalars are

IV to regions Il and Il with the help of the Penrose ansatz:

P=r—by(r)ud(u)—b,(r)vé(v), (23

Q=l—b1ru0(u)—b2rvl9(v). (24)

Going to region Il or region Il we see that the approach-

ing waves are impulsivgs]:

1 1, u
qDZZZERUu:_Ee (Puup)r:re pl(r,U), (32)

1 1, u
Poo=5 R == 5€"(P,,P) =re"py(rv), (33

from which one can deduce the energy-momentum tensor:

bi(r)=H;i(r),, (25)
' n T..=2re%(pyl 0, +pon,n,), (34
d?=2du;dw; + 2H;(P) 8(u;)du?— d P?— P2d ¢?, ,
(26) wherel ,, n, are the first two vectors of the usual NP tetrr_:\d
for Eq. (2) [1]. There are two planes of null dust with vari-
whereu;=u, u,=v. They are induced by some impulse able energy densities. In regions Il, lll they coincide with Eq.

with energy density

(27), but along the boundaries of 1V they become dependent
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on the other null coordinate because’ p;+ p;. The factor 8u38(r)d(u)

eV in Egs.(32)—(34) is well known in plane wave solutions ‘1)22:[4 —av0(0) 2’ (47)
with thin shells of null mattef11,12. Equation(29) shows #

that in regions Il and Il the singlpp waves have coordinate 5

singularitiesP = 0. Equationg32) and(33) tell that they turn g2 ug(u)d(v) 49)
into curvature singularities on the boundaries of the interac- 0 r4—16,u7u70(u) ’

tion region at pointy =0, u=r/b andu=0, v=rb/a.

The only nontrivial Weyl scalars are 8u2s(u) wd(r) 2
\1’42 _ _ 2 (49)
PLu b2s(u) du—avb(v) \du—avé(v) r
Wa=—p5 +Pyp=— erq)zz, (39
where u is the momentum of the null point particle. The
p as(v) wave arriving from region Il is induced by a pure radiation
xpozﬂ +Pgp=— -+ Dy (36) burst of constant density across the wavefront. In fact, this is
P b{r—bué(u)] a plane wavd6]. Speaking loosely, this example describes

From Eqs.(27), (32), (33), (35), and(36) it is clear that the the collision of an almost pure exterior solution with the

interaction region is conformally flat. The Weyl scalars con-s'mpleSt |'nter|or solut|on.. . . . .
firm that the approaching waves are impulsive. They, like the There IS another solution with positiyg Wh'Ch. are finite
Ricci scalars, become singular whBrvanishes. These point on the axisr =0 and decrease wher-c. Itis given by
curvature singularities are generic and cannot be avoided by

a careful choice ob. In regions Il and 11l Eqs(35) and(36) b= }In(c+r2) (50)
coincide with the expressions derived[i#. r '

V. SOME EXAMPLES 1

3 | _ p1=c7r28(U), (51)
The energy densities may be given as function$ dfy c+r
Egs.(22), (25), and(27): ,
a r
(rb) p2= 7| 1- 2 7| 6(v), (52
plzTr(g(u)' (37) In(c+r~) (c+r9In(c+r?)
with c>e. One can say that the waves are beam like, i.e.,
pzzi r 8(v). (39) they have .finite transverse extent, but .th'eir energy diverges.
2r \b r It seems impossible to arrange for finite energy of both

waves wherM =0. We omit the lengthy expressions for the

The second density is positive whefb is an increasing metric and its invariants because the solution possesses the
function. One possible solution includes an ultrarelativisticgeneral features established above.

black hole approaching from region Il and is given by

4u VI. CONCLUSION
b=, (39 . . o
r The assumptioM =0 in the case of colliding axisymmet-
ric pp waves is almost as restrictive as in the case of collid-
Hi=4ulnr, (400 ing plane waves, although the freedom in the solution ex-
) tends to an arbitrary functiom instead of arbitrary constants.
H _ar The solution in the interaction region is still conformally flat
2= (41 . : e
8u and linear inu andv. This indicates the presence of null
matter along the boundaries; however, igr waves the dis-
M tinction between pure gravitational and matter field compo-
P1=% &(r)é(u), (42) nents is not so clean cut in view of relations such as(Ed.

The mechanism by which the coordinate singularities turn

a into curvature singularities is the same as for plane waves
Pzzmts(v), (43)  and has its roots in Eq14). The constraini22) does not

allow us to study the simplest possible case of two equiva-

lent approaching waves. Obviously, more exact solutions are

4 ar
P=r— —'uua(u) ~ v o(v), (44  necessary and nontrivial interactions betwggmwaves of
r m finite energy should be possible when the condifibrs-0 is
relaxed.
4u a
Q:l+r—2U0(U)_4—00(U), (45)
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