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Colliding axisymmetric pp waves

B. V. Ivanov*
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~Received 22 May 1997; published 4 February 1998!

An exact solution is found describing the collision of a class of axisymmetricpp waves. They are impulsive
in character and their coordinate singularities become point curvature singularities at the boundaries of the
interaction region. The solution is conformally flat. Concrete examples are given involving an ultrarelativistic
black hole against a burst of pure radiation or two colliding beamlike waves.@S0556-2821~98!01306-X#

PACS number~s!: 04.20.Jb
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I. INTRODUCTION

The problem of colliding plane waves in general relativ
has been thoroughly investigated by now@1,2#. Even more
interesting and realistic is the collision of the more gene
class ofpp waves of finite extent and energy. One particu
example, the collision of ultrarelativistic black holes, h
been studied by approximate methods@3–5#. The main rea-
son for the lack of exact solutions is thatpp waves are writ-
ten easily in Brinkmann coordinates, but the analogue of
Rosen transformation has not been known. Recently, the
agonalization of axisymmetricpp waves was achieved@6#.
They are described by the line element in cylindrical coor
nates

ds252dudv2e2U~eVdr21e2Vdw2!, ~1!

whereu5 (1/&)(t2z), v5 (1/&)(t1z) andU, V depend
on u, r for a left-moving wave and onv, r for a right-
moving wave.

The standard description of a head-on collision of t
waves divides theu, v space into four regions@1#. Regions II
~u.0, v,0! and III ~u,0, v.0! are occupied by the ap
proaching waves with line element~1!. Region I ~u,0, v
,0! represents the flat spacetime between the waves. Re
IV ~u.0, v.0! describes their collision and interaction. W
suppose that in the interaction region the line element p
serves its axial symmetry and is described by functionsguv
5e2M, U and V which depend onu, v, r . In the present
paper we shall find all solutions withM50 in a manner
similar to the classification of diagonal plane waves w
M50 @7#.

In Sec. II the general solution withM50 is found in the
interaction region. It is extended to a global solution in S
III and its parameters are linked to the characteristics of
approaching waves. The structure of the solution is elu
dated further in Sec. IV by studying its invariants. In Sec.
two examples are given. Section VI contains some con
sions.

II. SOLUTION WITH M 50
IN THE INTERACTION REGION

The vacuum Einstein equations in the interaction reg
simplify when Eq.~1! is rewritten as
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ds252dudv2Q2dr22P2dw2. ~2!

Then they read

PQuu1QPuu50, ~3!

PQvv1QPvv50, ~4!

Quv50, ~5!

Puv50, ~6!

QvPr5QPvr , ~7!

QuPr5QPur , ~8!

Q2~PvQu1PuQv!2QPrr 1PrQr50. ~9!

When Pr5Qr50, Eqs.~7! and ~8! become trivial and the
others reduce to the equations for plane waves@7#.

Equations~7! and ~8! are easily integrated and giveQ
5eh(r )Pr with an arbitraryh(r ). However, whenu5v50
we are in region I with Minkowskian background an
P(0,0,r )5r , Q(0,0,r )51. This condition fixesh(r ) to zero
and the result is

Q5Pr ~10!

coinciding with the condition for a singlepp wave @6#. In
fact, the final conclusion drawn below does not depend
h(r ). Now Eqs.~3! and ~4! become

~PuuP!r50, ~11!

~PvvP!r50. ~12!

Equations~5! and ~6! show that theu and v dependence
separate:

P5 f ~u,r !1g~v,r !. ~13!

The remaining equation~9! may be written in two equivalen
forms:

~e2U!uv50, ~14!

~PuPv!r50. ~15!
3378 © 1998 The American Physical Society
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57 3379COLLIDING AXISYMMETRIC pp WAVES
The first form is well-known from the study of colliding
plane waves.

We want to prove that the solution of Eqs.~11!–~15! is

P5b0~r !2b1~r !u2b2~r !v ~16!

for some functionsbi(r ). If Puu5Pvv50, Eq.~16! immedi-
ately follows. Suppose thatPvvÞ0. Then Eqs.~11!, ~12! and
~13!–~15! give

S Puu

Pvv
D

r

50, ~17!

~PuuPvv!r50, ~18!

which are equivalent to

PuurPvv50, ~19!

PuuPvvr50. ~20!

There are two possibilities:Puur5Pvvr50 (PuuÞ0), or
Puu50. The first possibility combined with Eq.~13! means
that Pr50. Hence Eqs.~3!–~9! reduce to the plane wav
case, as was already mentioned, which is discussed in@7#.
The second possibility means thatf 5c1(r )u1c2(r ). Put-
ting this result into Eqs.~13!–~15! we getc1(r )gv5g1(v).
Equations~11! and ~12! become

g1vS u1
c21g

c1
D

r

50. ~21!

If g1v50 it easily follows thatP takes the form of Eq.~16!.
If g1vÞ0, g5c1g2(v)2c2 and Eqs.~17! and ~18! give
(c1

2g2v) r50. Again,P is of the form of Eq.~16!.
Suppose, at last, thatPvv50 but PuuÞ0. Since the equa

tions are symmetric with respect tou, v the same argumen
leads to the same conclusion. Inserting Eq.~16! into Eq.~15!
we obtain the constraint

b1~r !b2~r !5a, ~22!

whereaÞ0 is some constant.

III. GLOBAL SOLUTION WITH M 50

It is obtained by taking into account the Minkows
boundary condition and extending the solution from reg
IV to regions II and III with the help of the Penrose ansa

P5r 2b1~r !uu~u!2b2~r !vu~v !, ~23!

Q512b1ruu~u!2b2rvu~v !. ~24!

Going to region II or region III we see that the approac
ing waves are impulsive@6#:

bi~r !5Hi~r !r , ~25!

ds252duidwi12Hi~P!d~ui !dui
22dP22P2dw2,

~26!

where u15u, u25v. They are induced by some impuls
with energy density
n
:

-

r i~r ,ui !5
1

2r
„rH i~r !r…rd~ui ! ~27!

due to a beam of pure radiation@8#, light @9#, or a point
particle moving with the speed of light@10#. Then Eq.~22!
becomes

H2~r !r5
a

H1~r !r
. ~28!

It is clear that Eq.~28! prevents the study of two equal co
liding waves, e.g., two ultrarelativistic black holes. This is
consequence of the simplifying assumptionM50. Positive
energy-density induces positive and increasingHi , hence
bi.0, bir .0, a.0. Applying the constraint~22! to Eqs.
~23! and ~24! and changing notation tob1[b yields

P5r 2buu~u!2
a

b
vu~v !, ~29!

Q512bruu~u!1
abr

b2 vu~v !. ~30!

The change of the relative sign inQ is reminiscent of the
similar change in the Babala solution@11#, which is one of
the three diagonal vacuum plane waves withM50 @7#. Thus
Eqs.~29! and~30! may be considered as a one-function an
logue of the Babala solution, although they do not reduce
it when b is constant. Equations~29! and ~30! also give

e2U5r 2~rbr1b2bbru!uu~u!

1
a

b2 S rbr2b2
abr

b
v D vu~v !. ~31!

The presence of null matter at the boundaries is signalle
the coordinates~1! by the discontinuities inUu , which break
the O’Brien-Synge boundary conditions@1#. The terms linear
in u and v disappear from Eq.~31! when rbr6b50 and
these conditions are satisfied simultaneously only by a tri
b.

IV. STRUCTURE OF THE INVARIANTS

More information about the solution may be learned fro
its invariants. The only nontrivial Ricci scalars are

F225
1

2
Ruu52

1

2
eU~PuuP!r5reUr1~r ,u!, ~32!

F005
1

2
Rvv52

1

2
eU~PvvP!r5reUr2~r ,v !, ~33!

from which one can deduce the energy-momentum tenso

Tmn52reU~r1l ml n1r2nmnn!, ~34!

wherel m , nm are the first two vectors of the usual NP tetr
for Eq. ~2! @1#. There are two planes of null dust with var
able energy densities. In regions II, III they coincide with E
~27!, but along the boundaries of IV they become depend
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on the other null coordinate becausereUr iÞr i . The factor
eU in Eqs.~32!–~34! is well known in plane wave solution
with thin shells of null matter@11,12#. Equation~29! shows
that in regions II and III the singlepp waves have coordinat
singularitiesP50. Equations~32! and~33! tell that they turn
into curvature singularities on the boundaries of the inter
tion region at pointsv50, u5 r /b andu50, v5 rb/a.

The only nontrivial Weyl scalars are

C45
Puu

P
1F2252

b2d~u!

rb2avu~v !
1F22, ~35!

C05
Pvv

P
1F0052

ad~v !

b@r 2buu~u!#
1F00. ~36!

From Eqs.~27!, ~32!, ~33!, ~35!, and~36! it is clear that the
interaction region is conformally flat. The Weyl scalars co
firm that the approaching waves are impulsive. They, like
Ricci scalars, become singular whenP vanishes. These poin
curvature singularities are generic and cannot be avoide
a careful choice ofb. In regions II and III Eqs.~35! and~36!
coincide with the expressions derived in@6#.

V. SOME EXAMPLES

The energy densities may be given as functions ofb by
Eqs.~22!, ~25!, and~27!:

r15
~rb !r

2r
d~u!, ~37!

r25
a

2r S r

bD
r

d~v !. ~38!

The second density is positive whenr /b is an increasing
function. One possible solution includes an ultrarelativis
black hole approaching from region II and is given by

b5
4m

r
, ~39!

H154m lnr , ~40!

H25
ar2

8m
, ~41!

r15
m

2
d~r !d~u!, ~42!

r25
a

4m
d~v !, ~43!

P5r 2
4m

r
uu~u!2

ar

4m
vu~v !, ~44!

Q511
4m

r 2 uu~u!2
a

4m
vu~v !, ~45!

F005
ar4d~v !

4m@r 4216m2u2u~u!#
, ~46!
c-

-
e

by

c

F225
8m3d~r !d~u!

@4m2avu~v !#2 , ~47!

C052
ar2uu~u!d~v !

r 4216m2u2u~u!
, ~48!

C45
8m2d~u!

4m2avu~v ! S md~r !

4m2avu~v !
2

2

r 2D , ~49!

where m is the momentum of the null point particle. Th
wave arriving from region III is induced by a pure radiatio
burst of constant density across the wavefront. In fact, thi
a plane wave@6#. Speaking loosely, this example describ
the collision of an almost pure exterior solution with th
simplest interior solution.

There is another solution with positiver i which are finite
on the axisr 50 and decrease whenr→`. It is given by

b5
1

r
ln~c1r 2!, ~50!

r15
1

c1r 2 d~u!, ~51!

r25
a

ln~c1r 2! F12
r 2

~c1r 2!ln~c1r 2!Gd~v !, ~52!

with c.e. One can say that the waves are beam like, i
they have finite transverse extent, but their energy diverg
It seems impossible to arrange for finite energy of bo
waves whenM50. We omit the lengthy expressions for th
metric and its invariants because the solution possesse
general features established above.

VI. CONCLUSION

The assumptionM50 in the case of colliding axisymmet
ric pp waves is almost as restrictive as in the case of col
ing plane waves, although the freedom in the solution
tends to an arbitrary functionb instead of arbitrary constants
The solution in the interaction region is still conformally fl
and linear inu and v. This indicates the presence of nu
matter along the boundaries; however, forpp waves the dis-
tinction between pure gravitational and matter field comp
nents is not so clean cut in view of relations such as Eq.~27!.
The mechanism by which the coordinate singularities t
into curvature singularities is the same as for plane wa
and has its roots in Eq.~14!. The constraint~22! does not
allow us to study the simplest possible case of two equi
lent approaching waves. Obviously, more exact solutions
necessary and nontrivial interactions betweenpp-waves of
finite energy should be possible when the conditionM50 is
relaxed.
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