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Decoherent histories approach to the arrival time problem
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What is the probability of a particle entering a given region of space at any time betyaedt,? Standard
guantum theory assigns probabilities to alternatives at a fixed moment of time and is not immediately suited to
questions of this type. We use the decoherent histories approach to quantum theory to compute the probability
of a nonrelativistic particle crossing=0 during an interval of time. For a system consisting of a single
nonrelativistic particle, histories coarse grained according to whether or not they pass through spacetime
regions are generally not decoherent, except for very special initial states, and thus probabilities cannot be
assigned. Decoherence may, however, be achieved by coupling the particle to an environment consisting of a
set of harmonic oscillators in a thermal bath. Probabilities for spacetime coarse grainings are thus calculated by
considering restricted density operator propagators of the quantum Brownian motion model. We also show
how to achieve decoherence by replicating the systetimes and then projecting onto the number density of
particles that cross during a given time interval, and this gives an alternative expression for the crossing
probability. The latter approach shows that the relative frequency for histories is approximately decoherent for
sufficiently largeN, a result related to the Finkelstein-Graham-Hartle theof&0556-282(98)01404-0

PACS numbgs): 03.65.Bz, 05.40tj, 06.30.Ft

[. INTRODUCTION in quantum gravity. In quantum cosmology, the wave func-
tion of the universe satisfies not a Sallimger equation, but
In nonrelativistic quantum mechanics, the probability ofthe Wheeler-DeWitt equation
finding a particle between pointsandx+ dx at a fixed time
t is given by HW¥[hjj;,¢]=0 1.3

p(x,t)dx=|¥(x,1)|?dX, (1. The wave function? depends on the three-mettig and the
matter field configurationsp on a closed spacelike three-
where ¥ (x,t) is the wave function of the particle. More surface[3—5]. There is no time label. “Time” is somehow
generally, the variety of questions one might ask about already present amongst the dynamical variabless. Al-
particle at a fixed moment of time may be represented by ghough a comprehensive scheme for interpreting the wave
projection operatolP,, and the probability of a particular function is yet to be put forward, one possible view is that

alternative is given by the interpretation will involve treating all the dynamical vari-
ablesh;; ,¢ on an equal footing, rather than trying to single

p(a)=Tr(P,p), (1.2 out one particular combination of them to act as time. For

this reason, it is of interest to see if one can carry out a

wherep is the density operator of the system. similar exercise in nonrelativistic quantum mechanics. That

Equations(1.1) and (1.2) refer to questions about the is, to see what the predictions quantum mechanics makes
properties of the particle at a fixed moment of time. How-aboutspacetimeegions, rather than regions of space at fixed
ever, it is of interest to ask questions about the particle thatnoments of time.
do not refer to a particular moment of time. One could ask, Spacetime questions tend to be rather nontrivial. As
for example, for the probability that the particle entered thestressed by Hartle, who has carried out a number of investi-
region betweenx andx+dx atany moment of time between gations in this areg6—8|, time plays a “peculiar and central
t, andt,. Thatis, for the probability of finding the particle in role” in nonrelativistic quantum mechanics. It is not repre-

a region ofspacetime What predictions does quantum me- sented by a self-adjoint operator and there is no obstruction
chanics make for questions of this type? to assuming that it may be measured with arbitrary precision.

This question is clearly a physically relevant one sincelt enters the Schidinger equation as an external parameter.
time is measured by physical devices which are generalhAs such, it is perhaps best thought of as a label referring to a
limited in their precision. It is therefore never possible to sayclassical, external measuring device, rather than as a funda-
that a physical event occurs at a precise value of time, onlynental quantum observable. Yet time is measured by physi-
that it occurs in some range of times. Furthermore, there hasal systems, and all physical systems are believed to be sub-
been considerable recent experimental and theoretical inteject to the laws of quantum theory.

est in the question of tunneling timgk,2]. That is, the ques- Given these features, means more elaborate that those
tion, given that a particle has tunneled through a barrier reusually employed are required to define quantum-mechanical
gion, how much time did it spend inside the barrier? probabilities that do not refer to a specific moment of time,

The question of time in nonrelativistic quantum mechan-and the issue has a long histdi§]. One may find in the
ics is also closely related to the so-called “problem of time” literature a variety of attempts to define questions of time in
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a quantum-mechanical way. These include attempts to define the presence of interference. Physically, this may at first
time operatord10-12, the use of internal physical clocks appear unreasonable, because one could imagine situating a
[6,7], and path integral approachgg13—19. The literature  measuring device in the spatial region in question, and then
on tunneling times is a particularly rich source of ideas onasking whether it registers the presence of a particle during a
this topic[1]. Many of these attempts also tie in with the given time interval. The point, of course, is that introducing
time-energy uncertainty relatiof46,17). a measuring device modifies the physical situation. A mea-
The approach we shall use in this paper involves the desuring device typically has a large number of internal de-
coherent histories approach to quantum th¢@8~21. This  grees of freedom, and, from the point of view of the deco-
is an approach to quantum theory suitable for genuinehherent histories approach, these provide an “environment”
closed systems. It was developed in part for quantum coswhich produces the decoherence necessary for the assign-
mology, but it has been very fruitful in enhancing under-ment of probabilities(This is in keeping with the general
standing of non-relativistic quantum systems, especially th@oint made by Landauer in the context of tunneling times—
emergence of classical behavior. that time in quantum mechanics only makes sense if the
For our purposes, the particular attraction of this approaclechanism by which it is measured is fully specifigd)
is that it assigns probabilities directly to the possible histories Generally, therefore, we might expect that by making
of a system, rather than to events at a single moment of timguitable modifications to the basic physical situation, deco-
It is therefore very suited to the question of spacetime probherence may be achieved and probabilities may be assigned
abilities considered here. This is because the question @b spacetime coarse grainings. In this paper, we will consider
whether a particle did or did not enter a given regiom@y  two simple modifications which lead to decoherence for
time betweert; andt, clearly cannot be reduced to a ques- spacetime coarse grainings of a point particle.
tion about the state of the particle at a fixed moment of time, The first modification consists of coupling the point par-
but depends on the entire history of the system during thaicle to a bath of harmonic oscillators in a thermal st@be
time interval. guantum Brownian motion mod¢R2,23)). Interference is
The decoherent histories approach, for spacetime questestroyed as a result of the interaction with the bath, and
tions, turns out to be most clearly formulated in terms of pathprobabilities can be assigned for essentially arbitrary initial
integrals over paths in configuration sp4d4,8,4. The de-  states of the point particle. This modification is a model of
sired spacetime amplitudes are obtained by summingontinuous position measurements.
e'SXW1 whereS[x(t)] is the action, over pathg(t) passing The second modification is to replicate the systéim
through the spacetime region in question, and consistent wittimes, whereN is large, and then ask for the probability that
the initial state. The probabilities are obtained by squaringsome fraction of the particles=n/N enters the spacetime
the amplitudes in the usual way. The decoherent historiegegion. Coarse graininfj over a small range, together with
approach is not inextricably tied to path integrals, howeverjargeN statistics then ensures decoherence, and probabilities
Operator approaches to the same questions are also availabigay then be assigned fo The reason we expect decoher-
but are often more cumbersome. ence here is that we are effectively projecting onto number
The decoherent histories approach brings a new elemeglensity, which is expected to be decoherent because it is
into the game which, it is clear from the literature, has so fatypically a slowly varying quantity24]. This modification is
only been partially appreciated. This new feature isless obviously tied to a particular type of measurement, but it
decoherence—the destruction of interference between histean be shown that decoherent sets of histories correspond, in
ries. a certain sense, tsomekind of measuremer(hot necessar-
When computed according to the path integral schemgy a physically realizable ong19,25.
outlined above, the probability of entering a spacetime re- |n Sec. II, we briefly review the decoherent histories ap-
gion added to the probability of not entering that region isproach. In Sec. Ill, we briefly review the work of Hartle and
not equal to 1, in general. This is because of interferencesf Yamada and Takagi on spacetime coarse grainings. In
The question of whether a particle enters a spacetime regioec. IV we sketch our results on spacetime coarse grainings
when carefully broken down, is actually a quite complicatedfor quantum Brownian motion models. In Sec. V, we de-

combination of questions about the positions of the particlescribe the largé\ case. We summarize and conclude in Sec.
at a sequence of times. It is therefore, in essence, a comphy|.

cated combination of double slit situations. Not surprisingly,

there is therefore interference and probabilities cannot be as-

signed. - Il. DECOHERENT HISTORIES APPROACH

_ This feature has been exhibited very clearly by the exten- TO QUANTUM THEORY

sive work of Yamada and TakagiL4]. They considered a

number of spacetime coarse grainings for a free, nonrelativ- We give here a very brief summary of the decoherent

istic particle. They found that probabilities could be as-histories approach to quantum theory. Far more extensive

signed, in the decoherent histories approach, only for verglescriptions can be found in many other pladdsl8—

special initial states, and the probabilities were then rathe21,26—29.

uninteresting, e.g., probability zero for entering the region, In quantum mechanics, propositions about the attributes

and 1 for not entering it. of a system at a fixed moment of time are represented by sets
There is an important lesson here. For a free, nonrelativef projections operators. The projection opera®gseffect a

istic particle, probabilities for whether or not the particle partition of the possible alternativesa system may exhibit

enters a spacetime regieannot be assigned in generadlue  at each moment of time. They are exhaustive and exclusive:
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coarse-grained histories, and this then often leads to satisfac-
> P.=1, P.Pg=0upPa- (2.D)  tion of the stronger condition afecoherence

A projector is said to bdine grainedif it is of the form D(a,2')=0 2.7

|@)(al, where{|a)} are a complete set of states. Otherwise it

is coarse grainedA quantum-mechanical historgtrictly, a for a# a'. The condition of decoherence is associated with

: : : ; the existence of so-called generalized records, corresponding
homogeneousistory [28)) is characterized by a string of to the idea that information about the variables followed is

. . . 1 n
tlr.ne—dep.erjfjent prOjectlon\fPal(tl),...,Pan(tn) ,together stored in the variables ignored in the coarse graining proce-
with an initial statep. The time-dependent projections are gyre[19,25.

related to the time-independent ones by For histories characterized by projections onto ranges of
position at different times, the decoherence functional may

k — aiH(tg—tg) pk a—iH(tx—tg)
Pak(tk)_el (Wt Pake o), (2.2 be represented by a path integral:
whereH is the Hamiltonian. The candidate probability for i i
these homogeneous histories is D(a,a')=f Dxf Dy exp(% SR iy S[Y])P(Xo,)m)-
(2.9

p(al,az,...,an)

=T P" (tn)”'Pi (tl)ppi (t)---P? (t)]. (2.3 The integral is over paths(t),y(t), starting atxy,yq, and
" ! ! " both ending at the same final poiyt, wherex;, X, andyg
It is straightforward to show that Eq2.3) is both non- are all integrated over, and weighteql by the initial state
negative and normalized to unity when summed over(Xo.Yo). The paths are also constrained to pass through
aq, - a,. However, Eq.(2.3 does not satisfy all the axi- Spa_tlal'gates at a sequence of times corresponding to the
oms of probability theory, and for that reason it is referred toPr0J€ction operators. _
as a candidate probability. It does not satisfy the requirement However, the path integral representation of the decoher-
of additivity on disjoint regions of sample space. More pre-ence functional also points the way towards asking types of
cisely, for each set of histories, one may construct coarsefduestions that are not represented by homogeneous histories
grained histories by grouping the histories together. Thi¢8]- Consider for example the following question. Suppose a

may be achieved, for example, by summing over the projecParticle starts at=0 in a state with nonzero support only in
tions at each moment of time: x>0. What IS the pI’Obablllty that the part|C|e will EIther

cross or never cross=0 during the time interval0,7]? In
— the path integral of the forr2.8) it is clear how to proceed.
Pi=2, P, (2.4 one sums over paths that, respectively, either always cross
“ea or never crosx=0 during the time interval.

(although this is not the most general type of coarse How does this look in operator language? The operator
graining—see below The additivity requirement is then that form of the decoherence functional is
the probabilities for each coarser-grained history should be "
the sum of the probabilities of the finer-grained histories of D(a,a’)=Tr(C,pC,), 2.9
which it is comprised. Quantum-mechanical interference
generally prevents this requirement from being satisfied. Hiswhere
tories of closed quantum systems cannot in general be as-
signed probabilities. Co=P, (1) Py (1), (2.10
There are, however, certain types of histories for which
interference is negligible, and the candidate probabilities foiThe histories that never crogs-0 are represented by taking
histories do satisfy the sum rules. These histories may bthe projectors irC, to be onto the positive axis, and then
found using the decoherence functional taking the limitn—o andt,—t,_;—0. The histories that
always crosx=0 are then represented by the object
D(a,a)=TIP, (t) - Pg (t)pP,,(t) -], (t)]. _
" ! " 25 Cc,=1-C,. (2.1D

Here @ denotes the stringy, a5, ...,a,. Intuitively, the de- This is called annhomogeneousistory, because it cannot

coherence functional measures the amount of interferend@® represented as a single string of projectors. It can how-
between pairs of histories. It may be shown that the additiveVver, be represented asamof strings of projector$s, 28|.

ity requirement is satisfied for all coarse grainings if and The proper framework in which these operations, in par-
only if ticular Eqg.(2.12), are understood, is the so-called general-

ized quantum theory of Hartle8] and Isharret al.[28]. It is
ReD(a,a')=0 (2.6)  called “generalized” because it admits inhomogeneous his-
tories as viable objects, while standard quantum theory con-
for all distinct pairs of historiesy,a’ [20]. Such sets of cerns itself entirely with homogeneous histories. We will
histories are said to beonsistentor weakly decoherenfThe = make essential use of inhomogeneous histories in what fol-
consistency condition2.6) is typically satisfied only for lows.
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In practice, for point particle systems, decoherence is In this section we briefly review the result of Yamada and
readily achieved by coupling to an environment. Here, weTakagi[14], Hartle[8,6,4], and Micanek and Hartlg80]. We
will use the much studied case of the quantum Browniarwill compute the decoherence functional using the path inte-
motion model, in which the particle is linearly coupled gral expressiori2.8), which may be written
through position to a bath of harmonic oscillators in a ther-
mal state at temperatufieand characterized by a dissipation
coefficienty. The details of this model may be found else-
where[22,23,26,27.

We consider histories characterized only by the positiorwhereW{(x;) denotes the amplitude obtained by summing
of the particle and the environmental coordinates are tracedver paths ending a¢; at timet, consistent with the restric-
out. The path integral representation of the decoherencéon « and consistent with the given initial state, so we have
functional then has the form

D(aa’)= f AV (x0T, (3

| | WE(xy) = f Dx(t)exp(,'; S[x])wouo). (32
D(a,a’)=fDxf Dy exp<g8[x]—%8[y] a

Suppose the system starts out in the initial sthtgx) at
p(Xo,Yo), (2.12 t=0. The amplitude for j[he particle _to start in this |n|t|al
state, and end up at at timet, but without ever crossing

x=0, is
whereW[ x,y] is the Feynman-Vernon influence functional

phase, and is given by

+ 2 Wixy)

\I'{(X)zfx dXo0: (X,t[X0,0) W o(Xo), (3.3
... 2mykT -
W[x,y]=—myf dt(X—y)(X+y)+i 7

whereg, is the restricted Green function, i.e., the sum over
paths that never crosses=0. For the free particle consid-

X f dt(x—y)2. (2.13 ered hergand also for any system with a potential symmet-
ric aboutx=0), g, may be constructed by the method of

The first term induces dissipation in the effective classicalMages:
equations of motion. The second term is responsible for ther-
mal fluctuations. It is also responsible for suppressing con- 9r(%:t/X0.0)=[0(X) 8(Xo) + 6(—X) 6(—X0) ILG(X,t|X0,0)
tributions from pathsx(t) and y(t) that differ widely, and —g(x,t| =%0,0)], (3.4)
produces decoherence of configuration space histories.

The corresponding classical theory is no longer the mewhereg(x,t|xo,0) is the unrestricted propagator.
chanics of a single point particle, but a point particle coupled The amplitude to cross=0 is
to a heat bath. The classical correspondence is now to a
stochastic process which may be described by either a . o
Langevin equation, or by a Fokker-Planck equation for a ‘I’t(x):fﬁmdxogc(X,ﬂXo,O)‘I’o(Xo), (3.9
phase space probability distributiev(p,x,t):

W D ow (pw) 2w wheregc(x,t|xp,0) is the crossing prqpagator, ie., the sum
— = — — 42y +D —, (2.14  over paths which always crogs=0. This breaks up into two
ot m dx ap J parts. Ifx andx, are on opposite sides af=0, it is clearly

just the usual propagatg(x,t|x,,0). If x andx, are on the
same side ok=0, it is given byg(—x,t|Xo . This may be
seen by reflecting the segment of the path after last crossing

f dpf dxw(p,x,t)=1. aboutx=0 [31]. (Alternatively, this is just the usual propa-
gator minus the restricted onddence,

When the mass is sufficiently large, this equation describes _
near-deterministic evolution with small thermal fluctuations Ge(X,t[X0,0)=[ 8(X) 6 —Xo) + 0(—X) 8(X0) 19 (%, t|X0,0)

about it. +[6(x) 0(Xo) + O(—X) 6(—Xo)]

wherew=0 and

lIl. SPACETIME COARSE GRAININGS X g(—X,t%0,0). (3.6

We are generally interested in spacetime coarse grainingehe crossing propagator may also be expressed in terms of
which consist of asking for the probability that a particle the so-called path decomposition expansion, a form which is
does or does not enter a certain region of space during sometimes usefyl31-33.
certain time interval. However, the essentials of this question Inserting these expressions in the decoherence function,
boil down to the following simpler question: what is the Yamada and Takagi found that the consistency condition
probability that the particle will either cross or not cross may be satisfied exactly by states which are antisymmetric
=0 at any time in the time intervglD,t]? We will concen- aboutx=0. The probability of crossing=0 is then 0 and
trate on this question. the probability of not crossing is 1. What is happening in this
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case is that the probability flux across-0, which clearly has been discussed very extensively in the decoherence lit-
has nonzero components going both to the left and the righgrature[22].
averages to zero. This explicit modification of the single particle system

Less trivial probabilities are obtained in the case wheremeans that the corresponding classical problenwhich the
one asks for the probability that the particle remains alwaysjuantum results should reduce under certain circumstances
in x>0 or not, with an initial state with support along the is in fact a stochastic process described by either a Langevin
entirex axis[4]. The probabilities become trivial again, how- equation or by a Fokker-Planck equation. It is therefore ap-
ever, in the interesting case of an initial state with supporpropriate to first study the arrival problem in the correspond-
only in x>0. ing classical stochastic procesee for example, Refg36—

Yamada and Takagi have also considered the case of th#], and references thergin
probability of finding the particle in a spacetime regdd].
That is, the probability that the particle enters, or does not A The arrival time problem in classical Brownian motion
enter, the spatial intervah, at any time during the time
interval [Ot]. Again the consistency condition is satisfied
only for very special initial states and the probabilities are
then rather trivial.

In an attempt to assign probabilities for arbitrary initia
states, Micanek and Hartle considered the above results in oW 2

“>1 o p ow J*w

the limit that the time intervdl0,t] becomes very smaBQ]. —=———+D —, 4.7
Such an assignment must clearly be possible in the limit Jt m Jx ap
—0. They found that both the off-diagonal terms of the de-
coherence functiondd and the crossing probability are of
ordere= (#%t/m)*? for smallt, and the probability for not
crossing is of order 1. Hence+p~1. They therefore ar-
gued that probabilities can be assigned ifs sufficiently
small.

On the other hand, we have the exact relation

Classical Brownian motion may be described by the
Fokker-Planck equatiof2.14) for the phase space probabil-

ity distributionw(p,X,t). For simplicity we will work in the
 limit of negligible dissipation, hence the equation is

where D=2mvykT. The Fokker-Planck equation is to be
solved subject to the initial condition

w(p,X,0)=wgy(p,X). (4.2

Consider now the arrival time problem in classical
Brownian motion. The question is this. Suppose the initial
p+p+2ReD=1. (3.7) state is localized in the region>0. What is the probability

that, under evolution according to the Fokker-Planck equa-
ReD represents the degree of fuzziness in the definition ofion (4.1), the particle either crosses or does not cros$)
the probabilities. Since it is of the same ordepa®ne may during the time interva] Ot]?
wonder whether it is then valid to claim approximate consis- A useful way to formulate spacetime questions of this
tency. Another condition that may be relevant is the conditype is in terms of the Fokker-Planck propagator
tion K(p,X,t|pg,X0,0). The solution to Eq(4.1) with the initial

o condition (4.2 may be written in terms oK as
[D[?><pp (3.9

which was suggested in R4R9] as a measure of approxi- W(D,X,t)ZJ dpf dxK(p,x,t|pg,Xo,0)Wo(p,X).
mate decoherence, and is clearly satisfied in this case. Ulti- o o 4.3
mately, the question of which mathematical conditions best '

characterize approximate decoherence or approximate CoRpe Eokker-Planck propagator satisfies the Fokker-Planck

sistency can only be settled by examining the means by ation(4.1) with respect to its final arguments, and satis-
which the predicted probabilities could be tested experimeng.q qelta function initial conditions:

tally, and this has not yet been considered.

For a system consisting of a single point particle, there- K(P,%,0Pg.,X0,0) = 8(P— Po) S(X—Xo). (4.4)
fore, crossing probabilities can be assigned to histories only
in a limited class of circumstances. In the following sections,zqr the free particle without dissipation, it is given explicitly
we will see how probabilities may be assigned in a Wlderby
variety of situations.

t 2
IV. DECOHERENCE OF SPACETIME COARSE-GRAINED K(p,X,t|po,X0,0)=N exr{ —a(p— Do)Z—B( X—Xo— pﬁo)
HISTORIES IN THE QUANTUM BROWNIAN
MOTION MODEL Pot
, , o +€(p—po)(X—Xo——) , (4.5
In order to achieve decoherence for a wide class of initial m
states, and hence assign probabilities to quantum-mechanical .
histories for spacetime regions, it is necessary to modify thé/hereN, a, B, ande are given by
point particle system in some way. In this section, we discuss ) » 12
a modification consisting of coupling the particle to a bath of ~  _ 1 B= 3m = 3m N= 3m
harmonic oscillators in a thermal state. We are therefore con- Dt’ D3’ Dt?’ 47D%*

sidering the quantum Brownian motion model, a model that (4.6
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(with D=2mvykT). An important property it satisfies is the This is the absorbing boundary condition usually given for
composition law the arrival time problenii39,41 (although this argument for
it does not seem to have appeared elsewhere
o * It is now convenient to introduce a restricted propagator
K(p,x.t|po.,X0,0)= f_wdplf_mdle(p’X'”pl'Xl’tl) K,(p,X.t|Po.X0.0), Which propagates,(p,x,t). That is,K,
satisfies the delta function initial conditiorig.4) and the
XK(p1,X1,t1|Po.X0,0), 4.7 same boundary conditions &5, Eq.(4.11). Since the origi-
nal Fokker-Planck equation is not invariant under — X,
wheret>t;>0. we cannot expect that a simple method of ima@déshe type
For our purposes, the utility of the Fokker-Planck propa-used in Sec. I, will readily yield the restricted propagator
gator is that it may be used to assign probabilities to indiK,. K, has recently been founf38], using a modified
vidual paths in phase space. Divide the time intef\@t] method of images technique due to Carslgd], and we
into subintervalsty=0, t{,t,,...t,_1, t,=t. Then in the briefly summarize those results.

limit that the subintervals go to zero, amd-o but with t Consider first the usual Fokker-Planck propagdthb).
held constant, the quantity Introducing the coordinates
" p 3x V3X
k[[l K (P Xt P 15Xk 15 tk-1) (4.9 X= m 2t Y= ot (4.12
is proportional to the probability for a path in phase space. Po  3Xo V3 [po X
The probability for various types of coarse grained paths on—ﬁ—ﬁ, T i mTt)
(including spacetime coarse grainingsn therefore be cal- (4.13

culated by summing over this basic object.

We are interested in the probability,(p,,X,,t) that the e propagatof4.5) becomes
particle follows a path which remains always in the region
x>0 during the time intervalO,t] and ends at the poin,

>0 with momentump,,. The desired total probabilities for K = 3 exp( _(X=X9® (Y-Yo)* . (414
crossing or not crossing can then be constructed from this 27t? T T
object.w, is clearly given by
Here,t=Dt/m?. Now go to polar coordinates:
Wr(pn vXn 1t)
- - - - X=r cosf, Y=r siné, (4.19
:f dxn_l---f dxlf def dp._ -
0 0 0 o Xo=r' cosf', Yo=r'sing'.
B . (4.1
xf dmf dpg o :
—o —o Then from Eq.(4.14), it is possible to construct a so-called

n multiform Green functiorf42]

X TT K(piXitd P 1% 1t 1)Wo(Po.Xo)  (4.9)
k=1 V3

3/2{'2

r,or',0')=
g( ) oo

in the continuum limit.
Now it is actually more useful to derive a differential
equation and boundary conditions fey(p,x,t), rather than XeXp( —
attempt to evaluate the above multiple integral. First of all, it
is clear from the properties of the propagator tWwa¢p,x,t)
satisfies the Fokker-Planck equati@hl) and the initial con- > fa dre M 4.17
dition (4.2). However, we also expect some sort of condition —» ' '
at x=0. From the explicit expression for the propagator
(4.5), (4.6), we see that in the continuum limit, the propaga-where
tor betweerp,_;, X,—; and the final poinp,, X, becomes
proportional to the delta function rr | M2 09— o'
SERE

r2+r'2—2rr’ cog 60— 0’))
t

(4.18
O(Xn—Xp—1— Ppt/m). (4.10

Sincex,_1=0, whenx,=0 this § function will give zero  As with the original Fokker-Planck propagator, this object is
when p,>0, but could be nonzero whep,<0. Hence we a solution to the Fokker-Planck equation wighfunction
deduce that the boundary condition wn(p,Xx,t) is initial conditions, but differs in that it has the property that it
is defined on a two-sheeted Riemann surface and has period
w,(p,0t)=0 if p>0. (4.1 4. The desired restricted propagatéy is then given by
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K (p,X,t|pg.X0,0)=g(r,6,r',0")—g(r,6,r',— 6"). where here the sum is over paths consistent with the coarse
(4.19 graining, but they end at fixed final points, y;. This ob-
ject actually obeys a master equation:
The pointx=0 for p>0 is =0 in the new coordinates, and
the above object indeed vanishes#at 0. Furthermore, the . dp 72
second term in the above goes to zerv-a0, while the first ™ " om
one goes to & function as required.
The probability of not crossing the surface during the timeThis is the usual master equation for the evolution of the

Pp  Pp
x>y’

)— +D(x=y)%p. (4.29

interval [0,t] is then given by density operator of quantum Brownian motif#2].
The objectsp,,+ are then found by solving this equation
b.— f“’ dpfmdxfm dp subject to matching the initial stage,, and also to the fol-
r)a 0 e 10 lowing boundary conditionéwhich follow from the path in-
tegral representation
Xfo dxoK (P, X,t|Po,X0,0)Wo(Pg,Xo)-  (4.20 pr(X,y)=0 for x<0 andy=<0, (4.26
The probability of crossing must then hg=1-p,, pre(X,y)=0 for x<0, (4.27)
which can also be written
per(X,y)=0 for y<O. (4.28
0 ) ) p
Pc= J_mdpf_xdpofo dxo Given p,, pres Per. the quantityp.. may be calculated

from the relation
XK (p,x=0t|pg,X0,.0)Wo(Pg.X0).  (4.21)

Pret Pret Pert pec=p- (4.29
This completes the discussion of the classical stochastic
problem. In the unitary case, this problem was solved very easily
using the method of images. From the results of Sec. lll, for
B. The arrival time problem in quantum Brownian motion example, it can be seen that in the unitary case

We now consider the analagous problem in the quantum — , (x v)y=a(x)8(y)[p(X,y) — p(—X,y) — p(X,—Y)
case. We therefore attempt to repeat the analysis of Sec. Il
but using instead of Eq3.1), the decoherence function +p(=Xx,—y)], (4.30

) | I wherep(x,y) is the unrestricted solution to the master equa-
D(a,a’)= JanL/Dy EXp(ﬁ Sx]=7 8yl tion mggch)i/r:g the prescribed initial condition. !
The problem in the nonunitary case treated here, however,
i is that the master equation et invariant undetx— —x (or
7 V\/[x,y]) Po(Xo.Yo)- (422 yndery— —y), hencep(—x,y) and p(x,—y) are not solu-
tions to the master equation: The method of images is there-
Here, W[x,y] is the influence functional phag@.13, but  fore not applicable in this cageontrary to the claim in Ref.
with the dissipation term neglected. The sum is over all path$§8]). As far as an analytic approach goes, this represent a
x(t), y(t) which are consistent with the coarse grainiag Vvery serious technical problem. Restricted propagation prob-
a'. Hartle has discussed how this case might be carried outems are very hard to solve analytically in the absence of the
and we follow his discussiof8]. method of images.

Let the initial density operator have support only on the We will pursue an approximate analytic solution to the
positive axis, and we ask for the probability that the particleproblem. First, we will make use of the well-known fact that
either crosses or never crosses0 during the time interval €volution according to the master equati@n25 forces ev-
[0,t]. The history labek takes two values, which we denote €ry initial density operator to become approximately diago-

a=c anda=r. The decoherence functional is conveniently hal in position on a very short time scglé3—46§. (More
rewritten generally, the density operator approaches a form which is

approximately diagonal in a set of phase space localized
D(a,a")=Tr(pya), (4.23  states[47].) Therefore, all density operators will satisfy the
conditionp(x,0)=0=p(0,y) approximately, except perhaps
where whenx andy are close to zero. So fgr,, andp, the only
solution satisfying the boundary conditio%26), (4.27), in
(Xtlpaar Y1) =Paar (Xt Y1) this approximation, is

= J;DX]QI'Dy exp{%— S[X]— Iﬁ— Sy] Prc(X,Y)=0, pc(X,y)=0. (4.31

This is actually not surprising, since these terms represent
the interference between histories, and the mechanism that

i
+%W[x,y])po(x0,yo), (424 akes the density operator diagonal is also known to
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strongly suppress interference between histories.powe The ranges of integration of and ¢ are now unfortu-
still need to satisfy the boundary conditidd.25 close to  nately not so simple. The regior>0, y>0 translates into
X=Y. X>0, — X<¢&<X. However, we may exploit the fact that the
To proceed further, we make use of the Wigner represeneonstant 2nykT/42 is typically very largé (it is this that
tation of the density operat¢48]: gives decoherengeo the integral oveg is strongly concen-
trated arounc=0. This means that the range éfmay be
W(p,x)= N dge(Ipe,| x4 § X— E) extended to ¢ »,) and the Gaussian integral ovémay
' 27h ) _w 2 2) be carried out. Furthermore, the integral oggreffectively
(4.32  performs a Wigner transform of the initial state, and we ob-
tain
p(x,y)=J dpe‘”’”p“‘y)w(p, X;—y :
- im .
(4.33 Pre(Xs, Y1) = frDX ex;{? E¢X¢
The Wigner representation is very useful in studies of the m
master equation, since it is similar to a classical phase space _ 2 \
distribution function. Indeed, for quantum Brownian motion 8ykT dix )WO(mXO'XO)’ (4.39

model with a free particle, the Wigner function obeys the
same Fokker-Planck equati¢f.1) as the analagous classical
phase space distribution function. What makes it fail to be
classical phase space distribution is that it can take negati
values. However, it can be shown that the Wigner functio
becomes positive after a short tinfiypically the decoher-
ence timg, and numerous authors have discussed its use as , m .
an approximate classical phase space distribution, under W, (mX; ,Xf)szX exp( T 8KT f th2>
these conditions. r Y

These properties suggest that we can get an approximate
solution to the quantum problem by taking the solution to the
classical stochastic problem,(p,x,t), and regarding it as
the Wigner function of the density operator. The desired denwhere the functional integral ovét(t) is over paths which
sity operator is then obtained from the Wigner transformjie jn x>0, and matchX; andX; at the final time.
(4.33. The main issue is to demonstrate the connection be- Now the point is that the path integréd.37) is in fact
tween the quantum and classical boundary conditiérd  exactly the same as the continuum limit of the expression

here in the functional integral ové4, X; is fixed. (A simi-
gr trick was used in Ref19].) Denoting the Wigner trans-
form of p,, by W,,, this equation is readily rewritten as

X Wo(mM Xy, Xo), (4.37)

and(4.1). o _ (4.9 for classical Brownian motior(with, of course, the
The quantityp(X¢,ys) is given by the path integral ex- c|assical phase space distribution function replaced by the
pression Wigner function. To prove this assertion, consider first the
. case of unrestricted propagation. Denote the path integral
im o o =
prr (X ,yf):fijDy exp{% f dt(x*>—y?) occuring in Eq.(4.37) by K, so
r r
2mykT 2 —_ . . m T .
- fdt(x—y) po(X0.Yo), K(Xf,XO,T|XO,XO,0)=JDX ex;{—m Jodtx2>,
(4.34 (4.39

where the subscript denotes the fact that the path integral is ) ) o

over pathsx(t), y(t) that lie inx>0, y>0. This path inte- Where the integral is over all paths(t) satisfying X(0)

gral is the exact solution to the master equatidr?5 and ~ =Xo, X(0)=Xo, X(7)=X;, X(7)=X;. This path integral

the boundary conditiong4.26. Now introduce X=13(x Is readily evaluated. The integral is dominated by paths sat-

+y), £&=x—vy. Then the path integral becomes isfying d*X/dt*=0 and the above boundary conditions.
These paths may be written

im . im .
Prr(vayf):frprrpg exF{ _? f dtgX+ 7 & Xy

10n dimensional grounds, “large” here means much greater than

_ ﬂ ¢ X _ 2mykT dt§2 7 102, for some time scale and length scale. = may be taken
f 5070 h? to be the time scale of the entire histdtiie range of the integra-
1 tion in the action. Another choice might be the localization time

X po

ot E £0 Xo— = £ (4.35 (21 ykT)¥2[47]. The only possible choice far is the width of the
07 250070 590 ) initial state. More detailed calculations are required to confirm these
order of magnitude estimates, but experience suggests that for mac-
where an integration by parts has been performed in the eXescopic values of the various paramet@nsier 1 in cgs units the
ponent. constant in question is indeed very large.
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. (X¢—Xo— TXO) Wigner function, that the probability of not crossing is ap-
X(t)=Xo+tXg+ ———— 2 proximately 1, the intuitively expected result.
T If the classical path crossas=0 during the time interval,
(Xi=Xo) _ (X¢—Xo—7Xo) it will lie outside the integration range o€(t) for time slices
- 3 t2(t— 7). after the time at which it crossed. If it crosses sufficiently

2
T early that an entire wave packet of widhX may enterx
(4.39 <0 before timer, then the functional integration will sample
only the exponentially small tail of the integrand,\86, will

Inserting this in the exponent and evaluating, it is readilybe very small. The probability of not crossing will therefore
shown thatK is in fact exactly the same as the Fokker- be close to zero, again the intuitively expected result.
Planck propagatof4.5), with p=me, x=X;, pozm'XO, These results are, as stated, intuitively expected, but it is
Xo=Xo. Therefore Eq(4.38 is a path integral representa- Of interest to contrast them with the unitary case described in
tion of the Fokker-Planck propagator, in the unrestricted cas&€ec. lll, which has a slightly surprising feature. Consider
[49]. again, therefore, a wave packet that startg@t0 moving

In the restricted case, the restricted path inte¢4a3? towards the origin. The amplitude for not crossing is given
may be written as a composition of propagators over a larg8y the restricted amplitudg.4) and the restricted propagator
number of successive small time intervals, wiiit) inte-  (3.5. However, in the case where the centre of the wave
grated over a positive range on each time slice. However, ifacket reaches the origin during the time interval, it is easily
the limit that the small time intervals go to zero, there-  Seen from the propagatd8.5 that after hitting the origin
stricted propagator may be used to describe the propagatiothere is a piece of the wave packet which is reflected back
between neighboring slices. In this way we see that the rento x>0 (this is the image wave packet that has come from
stricted path integrai4.37) for the Wigner function(4.37) x<0). This means that we have the counterintuitive result
coincides with our previous expressioh9) for the classical that the probability for remaining ir>0 is not in fact close
phase space distribution. to zero[8,50].

What we have shown may therefore be summarized as Although counterintuitive, it is not particularly disturbing,
follows. We have assumed that the parameters of the modeince with this initial state, the histories for crossing and not
are such that the factorn2ykT/4? is very large. This en- crossing do not satisfy the consistency conditi@r6), so we
sures decoherence of histories and/or density matrices. It al§$ould not expect them to agree with our physical intuition.
allows us to approximately evaluate the integral ofar the Furthermore, as we have just shown, intuitively sensible re-
path integra4.36), leading to the expressio@.37). It then  sults are obtained when the particle is coupled to an environ-
follows that, in this approximation, the probabilities for not ment to produce decoherence. In particularly, there is no re-
crossing and for crossing=0 are given by the expressions flection of wave packets off the origin.

(4.20, (4.21), with the classical phase space distribution ~The nonunitary case also gives sensible results in the case
functionw, replaced by the initial Wigner functiow, in the ~ of an initial state consisting of a superposition of wave pack-
quantum case. This is the main result of this section. ets. For example, let the initial state be of the form

=a + , 4.4
C. Properties of the solution |l/j> lwl) 'Bllh) (4-49

The properties of the expressiof4.20, (4.21) are not Where|¢1>_is a wave packet _cqncentrateq at some point in
readily seen because the fof17)—(4.19 of the restricted X>0 heading towards the origin, arig,) is also concen-
propagator is not particularly transparent. However, somdated inx>0 but is heading away from the origin. The
simple properties of our results may be seen by examinindVigner function of this state has the form
the path integral forni4.37) or (4.38.

It is of interest to consider the motion of a wave packet. (4.41)
That is, we take an initial state consisting of a wave packet ’
concentr_ated at so_me>0, and mqving towards t_he _origin. whereW;, W, are the Wigner functions dfy;),|#,). On
We are mterest_ed in the p_roba_blllty of whether it will Cross inserting this in Eq(4.38, we find the following. First, the
x=0 or not _dunng some time interval, under the evolutionnierference terms are strongly suppres§is is a well-
by the path integraf4.37) or (4.38. _ known property of evolution according to E¢.1)]. Sec-

The integrand in Eq(4.37) is peaked about the unique onqly using the above results on a single wave packet, it is
path for whichX=0 with the prescribed values o, and  easy to see that the probabilities for crossing and not cross-
Xo. This is of course the classical path with the prescribedng are|«|? and |B|?, respectively, again the expected re-
initial data. From Eq{(4.37) [or the unrestricted propagator sults.

(4.5)], the spatial width £X)? of the peak is of order In the above simple examples, the crossing probabilities
ykT/(m73%), whereris the total time interval. If the classical are independent of the details of the environment, at least
path does not cross=0 and approaches=0 no closer than approximately. It is clear that more generally, the crossing
a distanceA X during the time interval, then it will lie well probabilities will in fact depend on the features of the envi-
within the integration rangeX>0, and the propagation is ronment(e.g., its temperatuyeOne might find this slightly
essentially the same as unrestricted propagation, since thmsettling, at least in comparison to quantum-mechanical
dominant contribution to the integral comes from the regionprobabilities at a fixed moment of time, which depend only
X>0. It is then easy to see, from the normalization of theon the state at that time and not on the details of where the

W(p,x)=|a|?W,(p,x)+|B|*W,(p,x) + interference terms,
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property in question might be measured. This possible dewhere there aréN terms in the tensor product. How this
pendence on the decoherence mechanism, however, is @xpression works is that in tensor product terms, the coeffi-
keeping with the point made by Landauer and mentioned irtient ofe™'*" consists of all possible combinations of terms
the Introduction—that to specify time in quantum mechanicsconsisting oin C's and N—n) C's. Eventually we will be

one has to specify the physical mechanism by which it iSnterested in a coarse graining over which consists of
measured. Furthermore, one can then expect that the resulianing n into ranges of width n, labeled byn,

obtained might depend to some degree on the choice of

mechanism.
Ci=>, Cy. (5.8
nen

V. HISTORIES OF CROSSING DENSITIES

We now consider a verv different t f modification fWe will not carry this out explicitly, since the result of doing
th ?i ig ICS sti en afse y i ew?ﬂ h);pedo i % C? ? no this is intuitively clear. Explicit coarse grainings of this type
€ original situation ot sec. 1, ch ieads 1o deconerence, , -, o 5ted problem were carried out in REZ4].

anql hence to the assignment of probgbilities for histories The decoherence functional for histories of precisely
which cross or do not cross=0. We consider a system bf e :
X i . . Y . specified values of is

noninteracting free particles, and consider histories of impre-
cisely specified values of number density. That is, we ask for
the probability that betweem—An and n+An particles
crossx=0 during the time intervalOt], for 0O<n=<N, and
An typically much smaller tham. As we shall see, such
histories are generally decoherent, essentially as a result
large N statistics. This modification was inspired by the re-
sults of Ref.[24] on hydrodynamic histories, in which a 1 - - o A
similar feature was observed. D(n,n")=5— J d)\f d\ /e TN (@A)

We first summarize the one-particle case. Gete the (2m)* )= -
class operator for histories crossixg=0 during the time

interval [0t], andC the class operator for not crossing, so

C+C=1. The(candidatg probabilities for crossing and not Using the binomial expansion to expand the integrand, the
crossing are integral overA may be carried out, with the result,

D(n,n")=Tr(Crp@p&@---@pC,,), (5.9

where we have assumed a factored initial state for Nhe
rticle system. Inserting the above expressiondgr this
ay be written

+eé*D+e N Dp*+p)N. (5.10

p=Tr(CpC"), pP=Tr(CpCh, (5.1)

1 N ™ x'n!,—/ i/’
D(n’”’)zﬁ(n fﬁ d\’eld'n (p_’_efl)\ D*)an

respectively, and the off-diagonal term of the decoherence

functional is X (D+e N p)n. (5.11
_ ot
D=Tr(CpC"). (52 Further use of the binomial theorem permits the remaining
These quantities satisfy the relation integral to be done, with the resilt
p+p+2ReD=1. (5.3

N\ . < [N=n\(n\[ pp\¥
o[t 18
Consider the two particle case. There are three class op- k=0 (5.12

erators, corresponding to zero, one or two particles crossing
x=0 during the time intervalOt]. These are given by, re- ¢, Forn=n’, on the other hand, one obtains

spectively,
- N—n
S o oS
C,=C®C+Ca&C, (5.5) D
ey
C,=C®C, (5.9 pp

and clearlyC,+ C;+ C,=1. The expressions for the case of It is useful in Eq.(5.1]) to rewrite the integral as a com-
three or more particles rapidly become complicated, but weplex contour integral. Lek=e~ "™ . Then we obtain
are saved by a useful trick, used in Rgf4] (and similar to

a trick used in studies of random walls1]). In theN par- .. 1 [N dz N
ticle case, the class operator correspondingn tparticles Dinn)=5—=1n ol (p+D*2)"(D+p2)",
crossing is given by (5.14)
Cn:i f” dxe‘i“‘(c—:+ ei)\C)®(E+ )@ where the integral.is along any c!osed contour abqut the ori-
2w ) x gin. Now performing the rescaling— (p/D*)z, this be-

(5.7) comes
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1 (N , , , N (N=n)n
A AN—Nn—n *3\Nn n —n'—1 — nAN—nN
D(n,n") o (n)p (D*)"D jdzz p(n) (n>p p (14— - + (5.19
X(1+2)N " (1+az)", (5.19  For largeN, n, this becomes, to leading order,
wherea=pp/|D|?. pN |2
The discrete sums in Eq.12 and(5.13 can be evalu- p(n)~exyg — aniN=m | " prpy) | (5.20
ated in terms of a hypergeometric functibn For example,
Eq. (5.12) yields Inserting the most probable value aof in the width, this
NN becomes
r — -n ~N—n—n’ ! —
D(n,n )_(I’])( n’ >p n n(D*)n (n)wex%_N(p_’_p)z (E_ p 2 5.21
P 2pp  \N (p+p) '

XD"F(—n,—n";N—n—n’+1,a).

(5.16 Note that we cannot take+p=1 since these are not con-

sistent probabilities.

However, the hypergeometric function is of the degenerate This is a gratifying result. It shows that the relative fre-
type (and can be written as a finite hypergeometric s¢fms quency with which the particles cross is strongly peaked
which asymptotic forms are not easily found, although thisabout the valug/(p+p). Also notice that

exact expression may be of use for computer plots. We will ) _

instead therefore consider asymptotic forms of the expres- nnp ) _(N—n_ p
N (p+p) N (p+p)

sions(5.12, (5.13, and(5.15.
Consider first the case of very large This is the case in

which there is some degree of decoherence of the one pawhich is consistent with the notion that the relative fre-

ticle system, but perhaps not sufficient to assign probabilitiesjuency of not crossing ip/(p+p). These results are tanta-

defined to satisfactory precision. We shall see that this ignount to taking the probabilities for crossing and not cross-

exponentially enhanced in th¢ particle case. ing in the single particle case to be nptandp, but p/(p
Taking N, n, n’ to be of the same orddrlthough not +p) and p/(p+p) (which clearly add to 1, as required

necessarily large for a>N?, the discrete sum5.12) is  Again we should be considering coarse grained valugs of

2

(5.22

dominated by thé&=n term, and we find but it is clear that this will effect only the width of the peak
and not the configurations about which the distribution is
" — N! AN-n—n’*x\n'Qn n peaked.
D(n,n")= N (N—n")I(n' —ny! P (D*)" D Another case which is amenable to straightforward analy-

sis is the caser=1. This might not be exactly reachable in
practice, but it represents the extreme case in which the de-

' (5.1 coherence of the one particle case is as bad as it can possibly
get. From either Eq(5.12 or Eq. (5.15, we find

A reasonable measure of approximate decoherence is the size

of the decoherence functional in comparison to its diagonal D(n,n/):(’;l>(r’]\|,)_Nnn’(D*)n’Dn_ (5.23

N2
X

1oof

o

terms. Here, this is given by P
|D(n,n")|? 1 n’1(N—n)! It is straightforward to show that, in this case,
€= ’ ! ~ ’ ! ! .
D(n,n)D(n",n") 4" =n nI(N—n")![(n _n)!(]5218) |D(n,n")|?=D(n,n)D(n’,n’), (5.24

) ) ) ) hence the decoherence in tReparticle case is just as bad as
Sincea>N?, the dominant term is the term dependinga@n  the one particle case.
For n’—n reasonably largérecall that this is the case’ Now we consider the somewhat harder and more general
>n), the degree of decoherence of tNeparticle case is case ofa>1 but not arbitrarily large. Here we resort to some

exponentially enhanced compared to the one particle case more sophisticated techniques to expand the contour integral
Of course,n’ andn may differ by a small number, such (5 15 in the limit of largeN,n,n’.

as 1 or 2, in which case the degree of decoherence would The integral(5.15 may be written
then not be very good. The point is, however, that we are
envisaging the further coarse grainif8). As can be seen . N P
from similar calculations in Ref{24], this would have the D(n,n")= n)p (D*)" D", (5.29
effect of replacingn andn’ by coarse grained variables
andn’. These can differ by no less than the coarse grainingvhere
parameter An, which is taken to be large. The degree of
decoherence is therefore of order 22", which will be very
small.
Given decoherence for the case of lakgewe may now
assign probabilities. These are given by and

1 ’
szjdzz‘” “fz)N (5.26
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f(z2)=(1+2)*""N(1+ az)"N. (5.27)
This integral, for largeN, has the asymptotic form
f N 1
) +o(—) . (528
[27N () ]M2p" N
Here, p is the unique positive solution to the equation
f'(p)
—=n’, 5.2
T (5.29
which, in this case, reads
a(N—n")p?+[N—n—n'+a(n—n")]p—n'=0
(5.30
and
f'(p)  [f"(p) (f’(p)ﬂ
= + — , 5.3
e TP T R TP N B

The origin of this formula is as followg52,53. The in-
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Now expand the integrand aboét 0. We have

. j f,
[f(pe')IN=exdN In f(pe'®)]=[f(p)]" eXP(‘NHP f((Fi)))
1 5 3
— 5 NPPuyp)+ O(NEP) |, (5.33

wherek, is given by Eq.(5.32. Now clearly if p, which is

so far arbitrary, is chosen to satisfy E(.29, the linear
term in the exponent in the whole integrand vanishes. For
largeN the integral ovem is then a Gaussian strongly con-
centrated around=0, and may be done with the desired
result(5.29.

(Note that it was not necessary to use this more elaborate
asymptotic expansion technique in RE24]. There, the in-
tegral analogous to Eq5.10 has the property that the
modulus of the integrand is less than 1 and equal to 1 when
the A parameters are zero, so it was possible to evaluate for
large N by expanding about zero. Here, the norm of the

tegration contour in Eq(5.26) is any closed contour about integrand(5.10 does not have this proper}y.

the origin. Letz=pe'?, wherep is arbitrary. The idea is to

The decoherence functional is therefore given by Eq.

take a circular contour whose radius is chosen in such a wagb.25 with, to leading order,

that the dominant contribution to the integral for larlye
comes from the immediate neighborhood£0. In terms

of p and @ the integral becomes J:Jnn,:(l_kpnn,)an(l_i_apnn’)np;nn/’ (5.34
1 ™ -, .
J= f doe " U f(pe'?)]N. 5.3
Py [f(pe'")] (5.32 and
|
—N+n+n"—a(n—n")+{{N-n—n’+a(n—n")]>+4an’(N—n")}*2
Pnn’ = (5.39

The candidate probabilities for the histories are

N _
pVT2DP( 1+ p )N (L + apn)pn ",

p(n=|,
(5.36

where

~ —N+2n+[(N-2n)>+4an(N—n)]*?
P 2a(N—n)

. (.39

The probabilities may be assigned when the degree of dec

herence

_ D)2 ' IN=n)! Iy |?
" D(mmD(n’,n’)  nl(N=n)! J. 3.
(5.39

2a(N—n")

a whenN,n,n’ are large. Since these are not very transpar-
ent, it is useful to examine them in more detail for special
cases.

Above we extracted the leading order for very large
(essentiallya>N?). We may now improve on this by ex-
panding Egs.(5.34—(5.37) for the casea>1, if we also
assume thain’ —n| is about the same order of magnitude as
N,n,n’. A straightforward but tedious calculation shows that
the degree of decoherence is

e~a ", (5.39
% leading order, which will be very small. Furthermore, the
probabilities are given by Eq5.21). Hence the result ob-
tained for the case>N? above also hold for>1.

Another case easily handled is the case 1+ 5, where
0< 6<1. Recall that fora=1 there is no decoheren¢Eqg.
(5.29)], so it is interesting to see how large needs to be
before decoherence is achieved. Again a straightforward cal-

is small. Equation$5.34)—(5.37) give the degree of decoher- culation shows that, to leading order, the degree of decoher-
ence and the expressions for the probabilities for all values ofnce is
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(n— n/)Z VI. SUMMARY AND CONCLUSIONS
e~ex;{ TN 5) (5.40

For the closed system consisting of a single point particle
_ . o in nonrelativistic quantum mechanics, probabilities generally
Assuming - again ‘h"’?t“ n’ and N are Qf abqut the. cannot be assigned to histories partitioned according to
same order, approximate decoherence is achieved if . ' o
, whether or not they cross=0 during a fixed time interval.
>1/ln—n’|. Hencea does not have to be very much greater e have shown in this paper. however. that by makin
than 1 in order to achieve approximate decoherence. Th\év dificat o this b P ph ' | sit t q y h 9
probabilities in this case are, to leading order, modriications to this basic pnysical situation, deconherence
may be achieved and probabilities assigned for arbitrary ini-

2 n2 tial states.
p(n)N( n) pN"p" eXF{ 5ﬁ) (5.41 The first modification we considered was to couple the
particle to a thermal environment. This corresponds to con-
For largeN, n, and recalling thatb<1, this has the asym- tinuous imprecise measurements of the particle’s position.

potic form The desired probabilities are given by Ed4.20, (4.21),
o ) wherewy is taken to be the initial Wigner function.
p(n)~exg — N (n— p ) (5.42 The second modification consisted of replicating the sys-
n(N—n) (p2+p? ) | tem N times, and then considering the number density of

. . , . particles crossingk=0 in the limit of largeN. This less
[This is easily seen by noting that E&.41) is the square of  gpyiously corresponds to a particular type of measurement,
the leading order term in Ed5.19 with p, p replaced by byt on general grounds, since there is decoherérather
p*% pY2] This case therefore corresponds to regarding thehan just consistengythere is a correspondence with some
expressionsp'%/(p'?+p?) and p*¥(p"*+p*?) as the kind of measurementalthough not necessarily a physically
probabilities for crossing and not crossing in the one particlgeglizable ong The probabilities in a regime of interest are
case. _ _ ~given by Eq.(5.21). In each case, when decoherence is

Finally, we note that all of the analysis of this section achieved, the resultant probabilities depend, at least to some

does not in fact specifically concern the crossing time probgegree, on the mechanism producing decoherence, and this is
lem. It would apply to any situation in which the original to pe expected.

system consists of a coarse graining into just two histories,

the system is replicatetl times, and projections onto the
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