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Decoherent histories approach to the arrival time problem
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~Received 24 June 1997; published 4 February 1998!

What is the probability of a particle entering a given region of space at any time betweent1 andt2? Standard
quantum theory assigns probabilities to alternatives at a fixed moment of time and is not immediately suited to
questions of this type. We use the decoherent histories approach to quantum theory to compute the probability
of a nonrelativistic particle crossingx50 during an interval of time. For a system consisting of a single
nonrelativistic particle, histories coarse grained according to whether or not they pass through spacetime
regions are generally not decoherent, except for very special initial states, and thus probabilities cannot be
assigned. Decoherence may, however, be achieved by coupling the particle to an environment consisting of a
set of harmonic oscillators in a thermal bath. Probabilities for spacetime coarse grainings are thus calculated by
considering restricted density operator propagators of the quantum Brownian motion model. We also show
how to achieve decoherence by replicating the systemN times and then projecting onto the number density of
particles that cross during a given time interval, and this gives an alternative expression for the crossing
probability. The latter approach shows that the relative frequency for histories is approximately decoherent for
sufficiently largeN, a result related to the Finkelstein-Graham-Hartle theorem.@S0556-2821~98!01404-0#

PACS number~s!: 03.65.Bz, 05.40.1j, 06.30.Ft
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I. INTRODUCTION

In nonrelativistic quantum mechanics, the probability
finding a particle between pointsx andx1dx at a fixed time
t is given by

p~x,t !dx5uC~x,t !u2dx, ~1.1!

where C(x,t) is the wave function of the particle. Mor
generally, the variety of questions one might ask abou
particle at a fixed moment of time may be represented b
projection operatorPa , and the probability of a particula
alternative is given by

p~a!5Tr~Par!, ~1.2!

wherer is the density operator of the system.
Equations~1.1! and ~1.2! refer to questions about th

properties of the particle at a fixed moment of time. Ho
ever, it is of interest to ask questions about the particle
do not refer to a particular moment of time. One could a
for example, for the probability that the particle entered
region betweenx andx1dx at anymoment of time between
t1 andt2 . That is, for the probability of finding the particle i
a region ofspacetime. What predictions does quantum m
chanics make for questions of this type?

This question is clearly a physically relevant one sin
time is measured by physical devices which are gener
limited in their precision. It is therefore never possible to s
that a physical event occurs at a precise value of time, o
that it occurs in some range of times. Furthermore, there
been considerable recent experimental and theoretical in
est in the question of tunneling times@1,2#. That is, the ques-
tion, given that a particle has tunneled through a barrier
gion, how much time did it spend inside the barrier?

The question of time in nonrelativistic quantum mecha
ics is also closely related to the so-called ‘‘problem of tim
570556-2821/98/57~6!/3351~14!/$15.00
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in quantum gravity. In quantum cosmology, the wave fun
tion of the universe satisfies not a Schro¨dinger equation, but
the Wheeler-DeWitt equation

HC@hi j ,f#50 ~1.3!

The wave functionC depends on the three-metrichi j and the
matter field configurationsf on a closed spacelike three
surface@3–5#. There is no time label. ‘‘Time’’ is somehow
already present amongst the dynamical variableshi j ,f. Al-
though a comprehensive scheme for interpreting the w
function is yet to be put forward, one possible view is th
the interpretation will involve treating all the dynamical var
ableshi j ,f on an equal footing, rather than trying to sing
out one particular combination of them to act as time. F
this reason, it is of interest to see if one can carry ou
similar exercise in nonrelativistic quantum mechanics. T
is, to see what the predictions quantum mechanics ma
aboutspacetimeregions, rather than regions of space at fix
moments of time.

Spacetime questions tend to be rather nontrivial.
stressed by Hartle, who has carried out a number of inve
gations in this area@6–8#, time plays a ‘‘peculiar and centra
role’’ in nonrelativistic quantum mechanics. It is not repr
sented by a self-adjoint operator and there is no obstruc
to assuming that it may be measured with arbitrary precis
It enters the Schro¨dinger equation as an external paramet
As such, it is perhaps best thought of as a label referring
classical, external measuring device, rather than as a fu
mental quantum observable. Yet time is measured by ph
cal systems, and all physical systems are believed to be
ject to the laws of quantum theory.

Given these features, means more elaborate that th
usually employed are required to define quantum-mechan
probabilities that do not refer to a specific moment of tim
and the issue has a long history@9#. One may find in the
literature a variety of attempts to define questions of time
3351 © 1998 The American Physical Society
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a quantum-mechanical way. These include attempts to de
time operators@10–12#, the use of internal physical clock
@6,7#, and path integral approaches@8,13–15#. The literature
on tunneling times is a particularly rich source of ideas
this topic @1#. Many of these attempts also tie in with th
time-energy uncertainty relations@16,17#.

The approach we shall use in this paper involves the
coherent histories approach to quantum theory@18–21#. This
is an approach to quantum theory suitable for genuin
closed systems. It was developed in part for quantum c
mology, but it has been very fruitful in enhancing unde
standing of non-relativistic quantum systems, especially
emergence of classical behavior.

For our purposes, the particular attraction of this appro
is that it assigns probabilities directly to the possible histor
of a system, rather than to events at a single moment of t
It is therefore very suited to the question of spacetime pr
abilities considered here. This is because the question
whether a particle did or did not enter a given region atany
time betweent1 and t2 clearly cannot be reduced to a que
tion about the state of the particle at a fixed moment of tim
but depends on the entire history of the system during
time interval.

The decoherent histories approach, for spacetime q
tions, turns out to be most clearly formulated in terms of p
integrals over paths in configuration space@14,8,4#. The de-
sired spacetime amplitudes are obtained by summ
eiS@x(t)#, whereS@x(t)# is the action, over pathsx(t) passing
through the spacetime region in question, and consistent
the initial state. The probabilities are obtained by squar
the amplitudes in the usual way. The decoherent histo
approach is not inextricably tied to path integrals, howev
Operator approaches to the same questions are also avai
but are often more cumbersome.

The decoherent histories approach brings a new elem
into the game which, it is clear from the literature, has so
only been partially appreciated. This new feature
decoherence—the destruction of interference between h
ries.

When computed according to the path integral sche
outlined above, the probability of entering a spacetime
gion added to the probability of not entering that region
not equal to 1, in general. This is because of interferen
The question of whether a particle enters a spacetime reg
when carefully broken down, is actually a quite complicat
combination of questions about the positions of the part
at a sequence of times. It is therefore, in essence, a com
cated combination of double slit situations. Not surprising
there is therefore interference and probabilities cannot be
signed.

This feature has been exhibited very clearly by the ext
sive work of Yamada and Takagi@14#. They considered a
number of spacetime coarse grainings for a free, nonrela
istic particle. They found that probabilities could be a
signed, in the decoherent histories approach, only for v
special initial states, and the probabilities were then rat
uninteresting, e.g., probability zero for entering the regi
and 1 for not entering it.

There is an important lesson here. For a free, nonrela
istic particle, probabilities for whether or not the partic
enters a spacetime regioncannot be assigned in general, due
ne
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to the presence of interference. Physically, this may at fi
appear unreasonable, because one could imagine situat
measuring device in the spatial region in question, and t
asking whether it registers the presence of a particle durin
given time interval. The point, of course, is that introduci
a measuring device modifies the physical situation. A m
suring device typically has a large number of internal d
grees of freedom, and, from the point of view of the dec
herent histories approach, these provide an ‘‘environme
which produces the decoherence necessary for the as
ment of probabilities.~This is in keeping with the genera
point made by Landauer in the context of tunneling times
that time in quantum mechanics only makes sense if
mechanism by which it is measured is fully specified@2#.!

Generally, therefore, we might expect that by maki
suitable modifications to the basic physical situation, de
herence may be achieved and probabilities may be assig
to spacetime coarse grainings. In this paper, we will cons
two simple modifications which lead to decoherence
spacetime coarse grainings of a point particle.

The first modification consists of coupling the point pa
ticle to a bath of harmonic oscillators in a thermal state~the
quantum Brownian motion model@22,23#!. Interference is
destroyed as a result of the interaction with the bath, a
probabilities can be assigned for essentially arbitrary ini
states of the point particle. This modification is a model
continuous position measurements.

The second modification is to replicate the systemN
times, whereN is large, and then ask for the probability th
some fraction of the particlesf 5n/N enters the spacetim
region. Coarse grainingf over a small range, together wit
largeN statistics then ensures decoherence, and probabil
may then be assigned tof . The reason we expect decohe
ence here is that we are effectively projecting onto num
density, which is expected to be decoherent because
typically a slowly varying quantity@24#. This modification is
less obviously tied to a particular type of measurement, bu
can be shown that decoherent sets of histories correspon
a certain sense, tosomekind of measurement~not necessar-
ily a physically realizable one! @19,25#.

In Sec. II, we briefly review the decoherent histories a
proach. In Sec. III, we briefly review the work of Hartle an
of Yamada and Takagi on spacetime coarse grainings
Sec. IV we sketch our results on spacetime coarse grain
for quantum Brownian motion models. In Sec. V, we d
scribe the largeN case. We summarize and conclude in S
VI.

II. DECOHERENT HISTORIES APPROACH
TO QUANTUM THEORY

We give here a very brief summary of the decoher
histories approach to quantum theory. Far more exten
descriptions can be found in many other places@4,18–
21,26–29#.

In quantum mechanics, propositions about the attribu
of a system at a fixed moment of time are represented by
of projections operators. The projection operatorsPa effect a
partition of the possible alternativesa a system may exhibit
at each moment of time. They are exhaustive and exclus
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(
a

Pa51, PaPb5dabPa . ~2.1!

A projector is said to befine grainedif it is of the form
ua&^au, where$ua&% are a complete set of states. Otherwise
is coarse grained. A quantum-mechanical history~strictly, a
homogeneoushistory @28#! is characterized by a string o
time-dependent projectionsPa1

1 (t1),...,Pan

n (tn) together

with an initial stater. The time-dependent projections a
related to the time-independent ones by

Pak

k ~ tk!5eiH ~ tk2t0!Pak

k e2 iH ~ tk2t0!, ~2.2!

whereH is the Hamiltonian. The candidate probability fo
these homogeneous histories is

p~a1 ,a2 ,...,an!

5Tr@Pan

n ~ tn!•••Pa1

1 ~ t1!rPa1

1 ~ t1!•••Pan

n ~ tn!#. ~2.3!

It is straightforward to show that Eq.~2.3! is both non-
negative and normalized to unity when summed o
a1 ,•••an . However, Eq.~2.3! does not satisfy all the axi
oms of probability theory, and for that reason it is referred
as a candidate probability. It does not satisfy the requirem
of additivity on disjoint regions of sample space. More p
cisely, for each set of histories, one may construct coar
grained histories by grouping the histories together. T
may be achieved, for example, by summing over the pro
tions at each moment of time:

P̄ā5 (
aPā

Pa ~2.4!

~although this is not the most general type of coa
graining—see below!. The additivity requirement is then tha
the probabilities for each coarser-grained history should
the sum of the probabilities of the finer-grained histories
which it is comprised. Quantum-mechanical interferen
generally prevents this requirement from being satisfied. H
tories of closed quantum systems cannot in general be
signed probabilities.

There are, however, certain types of histories for wh
interference is negligible, and the candidate probabilities
histories do satisfy the sum rules. These histories may
found using the decoherence functional

D~aI ,aI 8!5Tr@Pan

n ~ tn!•••Pa1

1 ~ t1!rPa
18

1
~ t1!•••Pa

n8
n

~ tn!#.

~2.5!

HereaI denotes the stringa1 ,a2 ,...,an . Intuitively, the de-
coherence functional measures the amount of interfere
between pairs of histories. It may be shown that the addi
ity requirement is satisfied for all coarse grainings if a
only if

Re D~aI ,aI 8!50 ~2.6!

for all distinct pairs of historiesaI ,aI 8 @20#. Such sets of
histories are said to beconsistent, or weakly decoherent. The
consistency condition~2.6! is typically satisfied only for
t
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coarse-grained histories, and this then often leads to satis
tion of the stronger condition ofdecoherence

D~aI ,aI 8!50 ~2.7!

for aI ÞaI 8. The condition of decoherence is associated w
the existence of so-called generalized records, correspon
to the idea that information about the variables followed
stored in the variables ignored in the coarse graining pro
dure @19,25#.

For histories characterized by projections onto ranges
position at different times, the decoherence functional m
be represented by a path integral:

D~a,a8!5E
a
DxE

a8
Dy expS i

\
S@x#2

i

\
S@y# D r~x0 ,y0!.

~2.8!

The integral is over pathsx(t),y(t), starting atx0 ,y0 , and
both ending at the same final pointxf , wherexf , x0 , andy0
are all integrated over, and weighted by the initial sta
r(x0 ,y0). The paths are also constrained to pass thro
spatial gates at a sequence of times corresponding to
projection operators.

However, the path integral representation of the decoh
ence functional also points the way towards asking types
questions that are not represented by homogeneous hist
@8#. Consider for example the following question. Suppos
particle starts att50 in a state with nonzero support only i
x.0. What is the probability that the particle will eithe
cross or never crossx50 during the time interval@0,t#? In
the path integral of the form~2.8! it is clear how to proceed
One sums over paths that, respectively, either always c
or never crossx50 during the time interval.

How does this look in operator language? The opera
form of the decoherence functional is

D~a,a8!5Tr~CarCa8
†

!, ~2.9!

where

Ca5Pan
~ tn!•••Pa1

~ t1!, ~2.10!

The histories that never crossx50 are represented by takin
the projectors inCa to be onto the positivex axis, and then
taking the limit n→` and tk2tk21→0. The histories that
always crossx50 are then represented by the object

C̄a512Ca . ~2.11!

This is called aninhomogeneoushistory, because it canno
be represented as a single string of projectors. It can h
ever, be represented as asumof strings of projectors@8,28#.

The proper framework in which these operations, in p
ticular Eq. ~2.11!, are understood, is the so-called gener
ized quantum theory of Hartle@8# and Ishamet al. @28#. It is
called ‘‘generalized’’ because it admits inhomogeneous h
tories as viable objects, while standard quantum theory c
cerns itself entirely with homogeneous histories. We w
make essential use of inhomogeneous histories in what
lows.
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In practice, for point particle systems, decoherence
readily achieved by coupling to an environment. Here,
will use the much studied case of the quantum Brown
motion model, in which the particle is linearly couple
through position to a bath of harmonic oscillators in a th
mal state at temperatureT and characterized by a dissipatio
coefficientg. The details of this model may be found els
where@22,23,26,27#.

We consider histories characterized only by the posit
of the particle and the environmental coordinates are tra
out. The path integral representation of the decohere
functional then has the form

D~a,a8!5E
a
DxE

a8
Dy expS i

\
S@x#2

i

\
S@y#

1
i

\
W@x,y# D r~x0 ,y0!, ~2.12!

whereW@x,y# is the Feynman-Vernon influence function
phase, and is given by

W@x,y#52mgE dt~x2y!~ ẋ1 ẏ!1 i
2mgkT

\

3E dt~x2y!2. ~2.13!

The first term induces dissipation in the effective classi
equations of motion. The second term is responsible for th
mal fluctuations. It is also responsible for suppressing c
tributions from pathsx(t) and y(t) that differ widely, and
produces decoherence of configuration space histories.

The corresponding classical theory is no longer the m
chanics of a single point particle, but a point particle coup
to a heat bath. The classical correspondence is now
stochastic process which may be described by eithe
Langevin equation, or by a Fokker-Planck equation fo
phase space probability distributionw(p,x,t):

]w

]t
52

p

m

]w

]x
12g

]~pw!

]p
1D

]2w

]p2 , ~2.14!

wherew>0 and

E dpE dxw~p,x,t !51.

When the mass is sufficiently large, this equation descri
near-deterministic evolution with small thermal fluctuatio
about it.

III. SPACETIME COARSE GRAININGS

We are generally interested in spacetime coarse grain
which consist of asking for the probability that a partic
does or does not enter a certain region of space durin
certain time interval. However, the essentials of this ques
boil down to the following simpler question: what is th
probability that the particle will either cross or not crossx
50 at any time in the time interval@0,t#? We will concen-
trate on this question.
is
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In this section we briefly review the result of Yamada a
Takagi@14#, Hartle@8,6,4#, and Micanek and Hartle@30#. We
will compute the decoherence functional using the path in
gral expression~2.8!, which may be written

D~a,a8!5E dxfC t
a~xf !@C t

a8~xf !#* , ~3.1!

whereC t
a(xf) denotes the amplitude obtained by summi

over paths ending atxf at time t, consistent with the restric
tion a and consistent with the given initial state, so we ha

C t
a~xf !5E

a
Dx~ t !expS i

\
S@x# DC0~x0!. ~3.2!

Suppose the system starts out in the initial stateC0(x) at
t50. The amplitude for the particle to start in this initia
state, and end up atx at time t, but without ever crossing
x50, is

C t
r~x!5E

2`

`

dx0gr~x,tux0,0!C0~x0!, ~3.3!

wheregr is the restricted Green function, i.e., the sum ov
paths that never crossesx50. For the free particle consid
ered here~and also for any system with a potential symm
ric about x50!, gr may be constructed by the method
images:

gr~x,tux0,0!5@u~x!u~x0!1u~2x!u~2x0!#@g~x,tux0,0!

2g~x,tu2x0,0!#, ~3.4!

whereg(x,tux0,0) is the unrestricted propagator.
The amplitude to crossx50 is

C t
c~x!5E

2`

`

dx0gc~x,tux0,0!C0~x0!, ~3.5!

wheregc(x,tux0,0) is the crossing propagator, i.e., the su
over paths which always crossx50. This breaks up into two
parts. Ifx andx0 are on opposite sides ofx50, it is clearly
just the usual propagatorg(x,tux0,0). If x andx0 are on the
same side ofx50, it is given byg(2x,tux0,0). This may be
seen by reflecting the segment of the path after last cros
aboutx50 @31#. ~Alternatively, this is just the usual propa
gator minus the restricted one.! Hence,

gc~x,tux0,0!5@u~x!u~2x0!1u~2x!u~x0!#g~x,tux0,0!

1@u~x!u~x0!1u~2x!u~2x0!#

3g~2x,tux0,0!. ~3.6!

The crossing propagator may also be expressed in term
the so-called path decomposition expansion, a form whic
sometimes useful@31–35#.

Inserting these expressions in the decoherence func
Yamada and Takagi found that the consistency condit
may be satisfied exactly by states which are antisymme
aboutx50. The probability of crossingx50 is then 0 and
the probability of not crossing is 1. What is happening in th
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case is that the probability flux acrossx50, which clearly
has nonzero components going both to the left and the ri
averages to zero.

Less trivial probabilities are obtained in the case wh
one asks for the probability that the particle remains alw
in x.0 or not, with an initial state with support along th
entirex axis@4#. The probabilities become trivial again, how
ever, in the interesting case of an initial state with supp
only in x.0.

Yamada and Takagi have also considered the case o
probability of finding the particle in a spacetime region@14#.
That is, the probability that the particle enters, or does
enter, the spatial intervalD, at any time during the time
interval @0,t#. Again the consistency condition is satisfie
only for very special initial states and the probabilities a
then rather trivial.

In an attempt to assign probabilities for arbitrary initi
states, Micanek and Hartle considered the above resul
the limit that the time interval@0,t# becomes very small@30#.
Such an assignment must clearly be possible in the limt
→0. They found that both the off-diagonal terms of the d
coherence functionalD and the crossing probabilityp are of
ordere5(\t/m)1/2 for small t, and the probabilityp̄ for not
crossing is of order 1. Hencep1 p̄'1. They therefore ar-
gued that probabilities can be assigned ift is sufficiently
small.

On the other hand, we have the exact relation

p1 p̄12 ReD51. ~3.7!

ReD represents the degree of fuzziness in the definition
the probabilities. Since it is of the same order asp̄, one may
wonder whether it is then valid to claim approximate cons
tency. Another condition that may be relevant is the con
tion

uDu2!pp̄ ~3.8!

which was suggested in Ref.@29# as a measure of approx
mate decoherence, and is clearly satisfied in this case.
mately, the question of which mathematical conditions b
characterize approximate decoherence or approximate
sistency can only be settled by examining the means
which the predicted probabilities could be tested experim
tally, and this has not yet been considered.

For a system consisting of a single point particle, the
fore, crossing probabilities can be assigned to histories o
in a limited class of circumstances. In the following sectio
we will see how probabilities may be assigned in a wid
variety of situations.

IV. DECOHERENCE OF SPACETIME COARSE-GRAINED
HISTORIES IN THE QUANTUM BROWNIAN

MOTION MODEL

In order to achieve decoherence for a wide class of ini
states, and hence assign probabilities to quantum-mecha
histories for spacetime regions, it is necessary to modify
point particle system in some way. In this section, we disc
a modification consisting of coupling the particle to a bath
harmonic oscillators in a thermal state. We are therefore c
sidering the quantum Brownian motion model, a model t
t,
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has been discussed very extensively in the decoherenc
erature@22#.

This explicit modification of the single particle syste
means that the corresponding classical problem~to which the
quantum results should reduce under certain circumstan!
is in fact a stochastic process described by either a Lang
equation or by a Fokker-Planck equation. It is therefore
propriate to first study the arrival problem in the correspon
ing classical stochastic process~see for example, Refs.@36–
40#, and references therein!.

A. The arrival time problem in classical Brownian motion

Classical Brownian motion may be described by t
Fokker-Planck equation~2.14! for the phase space probabi
ity distributionw(p,x,t). For simplicity we will work in the
limit of negligible dissipation, hence the equation is

]w

]t
52

p

m

]w

]x
1D

]2w

]p2 , ~4.1!

where D52mgkT. The Fokker-Planck equation is to b
solved subject to the initial condition

w~p,x,0!5w0~p,x!. ~4.2!

Consider now the arrival time problem in classic
Brownian motion. The question is this. Suppose the ini
state is localized in the regionx.0. What is the probability
that, under evolution according to the Fokker-Planck eq
tion ~4.1!, the particle either crosses or does not crossx50
during the time interval@0,t#?

A useful way to formulate spacetime questions of th
type is in terms of the Fokker-Planck propagat
K(p,x,tup0 ,x0,0). The solution to Eq.~4.1! with the initial
condition ~4.2! may be written in terms ofK as

w~p,x,t !5E
2`

`

dpE
2`

`

dxK~p,x,tup0 ,x0,0!w0~p,x!.

~4.3!

The Fokker-Planck propagator satisfies the Fokker-Pla
equation~4.1! with respect to its final arguments, and sat
fies delta function initial conditions:

K~p,x,0up0 ,x0,0!5d~p2p0!d~x2x0!. ~4.4!

For the free particle without dissipation, it is given explicit
by

K~p,x,tup0 ,x0,0!5N expF2a~p2p0!22bS x2x02
p0t

m D 2

1e~p2p0!S x2x02
p0t

m D G , ~4.5!

whereN, a, b, ande are given by

a5
1

Dt
, b5

3m2

Dt3 , e5
3m

Dt2 , N5S 3m2

4pD2t4D 1/2

.

~4.6!
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~with D52mgkT!. An important property it satisfies is th
composition law

K~p,x,tup0 ,x0,0!5E
2`

`

dp1E
2`

`

dx1K~p,x,tup1 ,x1 ,t1!

3K~p1 ,x1 ,t1up0 ,x0,0!, ~4.7!

wheret.t1.0.
For our purposes, the utility of the Fokker-Planck prop

gator is that it may be used to assign probabilities to in
vidual paths in phase space. Divide the time interval@0,t#
into subintervals,t050, t1 ,t2 ,...,tn21 , tn5t. Then in the
limit that the subintervals go to zero, andn→` but with t
held constant, the quantity

)
k51

n

K~pk ,xk ,tkupk21 ,xk21 ,tk21! ~4.8!

is proportional to the probability for a path in phase spa
The probability for various types of coarse grained pa
~including spacetime coarse grainings! can therefore be cal
culated by summing over this basic object.

We are interested in the probabilitywr(pn ,xn ,t) that the
particle follows a path which remains always in the regi
x.0 during the time interval@0,t# and ends at the pointxn
.0 with momentumpn . The desired total probabilities fo
crossing or not crossing can then be constructed from
object.wr is clearly given by

wr~pn ,xn ,t !

5E
0

`

dxn21•••E
0

`

dx1E
0

`

dx0E
2`

`

dpn21•••

3E
2`

`

dp1E
2`

`

dp0

3)
k51

n

K~pk ,xk ,tkupk21 ,xk21 ,tk21!w0~p0 ,x0! ~4.9!

in the continuum limit.
Now it is actually more useful to derive a differenti

equation and boundary conditions forwr(p,x,t), rather than
attempt to evaluate the above multiple integral. First of al
is clear from the properties of the propagator thatwr(p,x,t)
satisfies the Fokker-Planck equation~4.1! and the initial con-
dition ~4.2!. However, we also expect some sort of conditi
at x50. From the explicit expression for the propaga
~4.5!, ~4.6!, we see that in the continuum limit, the propag
tor betweenpn21 , xn21 and the final pointpn , xn becomes
proportional to the delta function

d~xn2xn212pnt/m!. ~4.10!

Since xn21>0, whenxn50 this d function will give zero
when pn.0, but could be nonzero whenpn,0. Hence we
deduce that the boundary condition onwr(p,x,t) is

wr~p,0,t !50 if p.0. ~4.11!
-
i-

.
s

is

t

r
-

This is the absorbing boundary condition usually given
the arrival time problem@39,41# ~although this argument fo
it does not seem to have appeared elsewhere!.

It is now convenient to introduce a restricted propaga
Kr(p,x,tup0 ,x0,0), which propagateswr(p,x,t). That is,Kr
satisfies the delta function initial conditions~4.4! and the
same boundary conditions aswr , Eq. ~4.11!. Since the origi-
nal Fokker-Planck equation is not invariant underx→2x,
we cannot expect that a simple method of images~of the type
used in Sec. III!, will readily yield the restricted propagato
Kr . Kr has recently been found@38#, using a modified
method of images technique due to Carslaw@42#, and we
briefly summarize those results.

Consider first the usual Fokker-Planck propagator~4.5!.
Introducing the coordinates

X5
p

m
2

3x

2t
, Y5

)x

2t
, ~4.12!

X052
p0

2m
2

3x0

2t
, Y05

)

2 S p0

m
1

x0

t D ,

~4.13!

the propagator~4.5! becomes

K5
)

2p t̃2
expS 2

~X2X0!2

t̃
2

~Y2Y0!2

t̃
D . ~4.14!

Here, t̃5Dt/m2. Now go to polar coordinates:

X5r cosu, Y5r sin u, ~4.15!

X05r 8 cosu8, Y05r 8 sin u8.
~4.16!

Then from Eq.~4.14!, it is possible to construct a so-calle
multiform Green function@42#

g~r ,u,r 8,u8!5
)

2p3/2t̃ 2

3expS 2
r 21r 8222rr 8 cos~u2u8!

t̃
D

3E
2`

a

dle2l2
, ~4.17!

where

a52S rr 8

t̃
D 1/2

cosS u2u8

2
D . ~4.18!

As with the original Fokker-Planck propagator, this object
a solution to the Fokker-Planck equation withd function
initial conditions, but differs in that it has the property that
is defined on a two-sheeted Riemann surface and has pe
4p. The desired restricted propagatorKr is then given by



d

e

s

tu
.

th

ou

he
cl

te
tly

arse

the

n

ily
for

a-

ver,

ere-

nt a
ob-
the

he
at

o-

h is
zed
e
s

ent
that
to

57 3357DECOHERENT HISTORIES APPROACH TO THE . . .
Kr~p,x,tup0 ,x0,0!5g~r ,u,r 8,u8!2g~r ,u,r 8,2u8!.
~4.19!

The pointx50 for p.0 is u50 in the new coordinates, an
the above object indeed vanishes atu50. Furthermore, the
second term in the above goes to zero att50, while the first
one goes to ad function as required.

The probability of not crossing the surface during the tim
interval @0,t# is then given by

pr5E
2`

`

dpE
0

`

dxE
2`

`

dp0

3E
0

`

dx0Kr~p,x,tup0 ,x0,0!w0~p0 ,x0!. ~4.20!

The probability of crossing must then bepc512pr ,
which can also be written

pc5E
2`

0

dpE
2`

`

dp0E
0

`

dx0

p

m

3Kr~p,x50,tup0 ,x0,0!w0~p0 ,x0!. ~4.21!

This completes the discussion of the classical stocha
problem.

B. The arrival time problem in quantum Brownian motion

We now consider the analagous problem in the quan
case. We therefore attempt to repeat the analysis of Sec
but using instead of Eq.~3.1!, the decoherence function

D~a,a8!5E
a
DxE

a8
Dy expS i

\
S@x#2

i

\
S@y#

1
i

\
W@x,y# D r0~x0 ,y0!. ~4.22!

Here, W@x,y# is the influence functional phase~2.13!, but
with the dissipation term neglected. The sum is over all pa
x(t), y(t) which are consistent with the coarse graininga,
a8. Hartle has discussed how this case might be carried
and we follow his discussion@8#.

Let the initial density operator have support only on t
positive axis, and we ask for the probability that the parti
either crosses or never crossesx50 during the time interval
@0,t#. The history labela takes two values, which we deno
a5c anda5r . The decoherence functional is convenien
rewritten

D~a,a8!5Tr~raa8!, ~4.23!

where

^xf uraa8uyf&[raa8~xf ,yf !

5E
a
DxE

a8
Dy expS i

\
S@x#2

i

\
S@y#

1
i

\
W@x,y# D r0~x0 ,y0!, ~4.24!
tic

m
III,

s

t,

e

where here the sum is over paths consistent with the co
graining, but they end at fixed final pointsxf , yf . This ob-
ject actually obeys a master equation:

i\
]r

]t
52

\2

2m S ]2r

]x22
]2r

]y2D2
i

\
D~x2y!2r. ~4.25!

This is the usual master equation for the evolution of
density operator of quantum Brownian motion@22#.

The objectsraa8 are then found by solving this equatio
subject to matching the initial stater0 , and also to the fol-
lowing boundary conditions~which follow from the path in-
tegral representation!:

r rr ~x,y!50 for x<0 and y<0, ~4.26!

r rc~x,y!50 for x<0, ~4.27!

rcr~x,y!50 for y<0. ~4.28!

Given r rr , r rc , rcr , the quantityrcc may be calculated
from the relation

r rr 1r rc1rcr1rcc5r. ~4.29!

In the unitary case, this problem was solved very eas
using the method of images. From the results of Sec. III,
example, it can be seen that in the unitary case

r rr ~x,y!5u~x!u~y!@r~x,y!2r~2x,y!2r~x,2y!

1r~2x,2y!#, ~4.30!

wherer(x,y) is the unrestricted solution to the master equ
tion matching the prescribed initial condition.

The problem in the nonunitary case treated here, howe
is that the master equation isnot invariant underx→2x ~or
undery→2y!, hencer(2x,y) and r(x,2y) are not solu-
tions to the master equation: The method of images is th
fore not applicable in this case~contrary to the claim in Ref.
@8#!. As far as an analytic approach goes, this represe
very serious technical problem. Restricted propagation pr
lems are very hard to solve analytically in the absence of
method of images.

We will pursue an approximate analytic solution to t
problem. First, we will make use of the well-known fact th
evolution according to the master equation~4.25! forces ev-
ery initial density operator to become approximately diag
nal in position on a very short time scale@43–46#. ~More
generally, the density operator approaches a form whic
approximately diagonal in a set of phase space locali
states@47#.! Therefore, all density operators will satisfy th
conditionr(x,0)505r(0,y) approximately, except perhap
whenx andy are close to zero. So forr rc andrcr the only
solution satisfying the boundary conditions~4.26!, ~4.27!, in
this approximation, is

r rc~x,y!'0, rcr~x,y!'0. ~4.31!

This is actually not surprising, since these terms repres
the interference between histories, and the mechanism
makes the density operator diagonal is also known
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strongly suppress interference between histories. Forr rr we
still need to satisfy the boundary condition~4.25! close to
x5y.

To proceed further, we make use of the Wigner repres
tation of the density operator@48#:

W~p,x!5
1

2p\ E
2`

`

dje2~ i /\!pjrS x1
j

2
,x2

j

2D ,

~4.32!

r~x,y!5E
2`

`

dpe~ i /\!p~x2y!WS p,
x1y

2 D .

~4.33!

The Wigner representation is very useful in studies of
master equation, since it is similar to a classical phase sp
distribution function. Indeed, for quantum Brownian motio
model with a free particle, the Wigner function obeys t
same Fokker-Planck equation~4.1! as the analagous classic
phase space distribution function. What makes it fail to b
classical phase space distribution is that it can take nega
values. However, it can be shown that the Wigner funct
becomes positive after a short time~typically the decoher-
ence time!, and numerous authors have discussed its us
an approximate classical phase space distribution, un
these conditions.

These properties suggest that we can get an approxim
solution to the quantum problem by taking the solution to
classical stochastic problemwr(p,x,t), and regarding it as
the Wigner function of the density operator. The desired d
sity operator is then obtained from the Wigner transfo
~4.33!. The main issue is to demonstrate the connection
tween the quantum and classical boundary conditions~4.26!
and ~4.11!.

The quantityr rr (xf ,yf) is given by the path integral ex
pression

r rr ~xf ,yf !5E
r
DxE

r
Dy expF im

2\ E dt~ ẋ22 ẏ2!

2
2mgkT

\2 E dt~x2y!2Gr0~x0 ,y0!,

~4.34!

where the subscriptr denotes the fact that the path integral
over pathsx(t), y(t) that lie in x.0, y.0. This path inte-
gral is the exact solution to the master equation~4.25! and
the boundary conditions~4.26!. Now introduce X5 1

2 (x
1y), j5x2y. Then the path integral becomes

r rr ~xf ,yf !5E
r
DXE

r
Dj expS 2

im

\ E dtjẌ1
im

\
j f Ẋf

2
im

\
j0Ẋ02

2mgkT

\2 E dtj2D
3r0S X01

1

2
j0 ,X02

1

2
j0D , ~4.35!

where an integration by parts has been performed in the
ponent.
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The ranges of integration ofX and j are now unfortu-
nately not so simple. The regionx.0, y.0 translates into
X.0, 2X,j,X. However, we may exploit the fact that th
constant 2mgkT/\2 is typically very large1 ~it is this that
gives decoherence! so the integral overj is strongly concen-
trated aroundj50. This means that the range ofj may be
extended to (2`,`) and the Gaussian integral overj may
be carried out. Furthermore, the integral overj0 effectively
performs a Wigner transform of the initial state, and we o
tain

r rr ~xf ,yf !5E
r
DX expS im

\
j f Ẋf

2
m

8gkT E dtẌ2DW0~mẊ0 ,X0!, ~4.36!

where in the functional integral overX, Xf is fixed.~A simi-
lar trick was used in Ref.@19#.! Denoting the Wigner trans
form of r rr by Wrr , this equation is readily rewritten as

Wrr ~mẊf ,Xf !5E
r
DX expS 2

m

8gkT E dtẌ2D
3W0~mẊ0 ,X0!, ~4.37!

where the functional integral overX(t) is over paths which
lie in X.0, and matchXf and Ẋf at the final time.

Now the point is that the path integral~4.37! is in fact
exactly the same as the continuum limit of the express
~4.9! for classical Brownian motion~with, of course, the
classical phase space distribution function replaced by
Wigner function!. To prove this assertion, consider first th
case of unrestricted propagation. Denote the path inte
occuring in Eq.~4.37! by K̃, so

K̃~Ẋf ,X0 ,tuẊ0 ,X0,0!5E DX expS 2
m

8gkT E
0

t

dtẌ2D ,

~4.38!

where the integral is over all pathsX(t) satisfying X(0)
5X0 , Ẋ(0)5X0 , X(t)5Xf , Ẋ(t)5Xf . This path integral
is readily evaluated. The integral is dominated by paths
isfying d4X/dt450 and the above boundary condition
These paths may be written

1On dimensional grounds, ‘‘large’’ here means much greater t
t21s22, for some time scalet and length scales. t may be taken
to be the time scale of the entire history~the range of thet integra-
tion in the action!. Another choice might be the localization tim
(\/gkT)1/2 @47#. The only possible choice fors is the width of the
initial state. More detailed calculations are required to confirm th
order of magnitude estimates, but experience suggests that for
roscopic values of the various parameters~order 1 in cgs units!, the
constant in question is indeed very large.
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X~ t !5X01tẊ01
~Xf2X02tẊ0!

t2 t2

1S ~Ẋf2Ẋ0!

t2 22
~Xf2X02tẊ0!

t3 D t2~ t2t!.

~4.39!

Inserting this in the exponent and evaluating, it is read
shown thatK̃ is in fact exactly the same as the Fokke
Planck propagator~4.5!, with p5mẊf , x5Xf , p05mẊ0 ,
x05X0 . Therefore Eq.~4.38! is a path integral representa
tion of the Fokker-Planck propagator, in the unrestricted c
@49#.

In the restricted case, the restricted path integral~4.37!
may be written as a composition of propagators over a la
number of successive small time intervals, withX(t) inte-
grated over a positive range on each time slice. Howeve
the limit that the small time intervals go to zero, theunre-
strictedpropagator may be used to describe the propaga
between neighboring slices. In this way we see that the
stricted path integral~4.37! for the Wigner function~4.37!
coincides with our previous expression~4.9! for the classical
phase space distribution.

What we have shown may therefore be summarized
follows. We have assumed that the parameters of the m
are such that the factor 2mgkT/\2 is very large. This en-
sures decoherence of histories and/or density matrices. It
allows us to approximately evaluate the integral overj in the
path integral~4.36!, leading to the expression~4.37!. It then
follows that, in this approximation, the probabilities for n
crossing and for crossingx50 are given by the expression
~4.20!, ~4.21!, with the classical phase space distributi
functionw0 replaced by the initial Wigner functionW0 in the
quantum case. This is the main result of this section.

C. Properties of the solution

The properties of the expressions~4.20!, ~4.21! are not
readily seen because the form~4.17!–~4.19! of the restricted
propagator is not particularly transparent. However, so
simple properties of our results may be seen by examin
the path integral form~4.37! or ~4.38!.

It is of interest to consider the motion of a wave pack
That is, we take an initial state consisting of a wave pac
concentrated at somex.0, and moving towards the origin
We are interested in the probability of whether it will cro
x50 or not during some time interval, under the evoluti
by the path integral~4.37! or ~4.38!.

The integrand in Eq.~4.37! is peaked about the uniqu
path for whichẌ50 with the prescribed values ofX0 and
Ẋ0 . This is of course the classical path with the prescrib
initial data. From Eq.~4.37! @or the unrestricted propagato
~4.5!#, the spatial width (DX)2 of the peak is of order
gkT/(mt3), wheret is the total time interval. If the classica
path does not crossx50 and approachesx50 no closer than
a distanceDX during the time interval, then it will lie well
within the integration rangeX.0, and the propagation i
essentially the same as unrestricted propagation, since
dominant contribution to the integral comes from the reg
X.0. It is then easy to see, from the normalization of t
y
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Wigner function, that the probability of not crossing is a
proximately 1, the intuitively expected result.

If the classical path crossesx50 during the time interval,
it will lie outside the integration range ofX(t) for time slices
after the time at which it crossed. If it crosses sufficien
early that an entire wave packet of widthDX may enterx
,0 before timet, then the functional integration will sampl
only the exponentially small tail of the integrand, soWrr will
be very small. The probability of not crossing will therefo
be close to zero, again the intuitively expected result.

These results are, as stated, intuitively expected, but
of interest to contrast them with the unitary case describe
Sec. III, which has a slightly surprising feature. Consid
again, therefore, a wave packet that starts atx0.0 moving
towards the origin. The amplitude for not crossing is giv
by the restricted amplitude~3.4! and the restricted propagato
~3.5!. However, in the case where the centre of the wa
packet reaches the origin during the time interval, it is eas
seen from the propagator~3.5! that after hitting the origin
there is a piece of the wave packet which is reflected b
into x.0 ~this is the image wave packet that has come fr
x,0!. This means that we have the counterintuitive res
that the probability for remaining inx.0 is not in fact close
to zero@8,50#.

Although counterintuitive, it is not particularly disturbing
since with this initial state, the histories for crossing and n
crossing do not satisfy the consistency condition~2.6!, so we
should not expect them to agree with our physical intuitio
Furthermore, as we have just shown, intuitively sensible
sults are obtained when the particle is coupled to an envir
ment to produce decoherence. In particularly, there is no
flection of wave packets off the origin.

The nonunitary case also gives sensible results in the
of an initial state consisting of a superposition of wave pa
ets. For example, let the initial state be of the form

uc&5auc1&1buc2&, ~4.40!

where uc1& is a wave packet concentrated at some point
x.0 heading towards the origin, anduc2& is also concen-
trated in x.0 but is heading away from the origin. Th
Wigner function of this state has the form

W~p,x!5uau2W1~p,x!1ubu2W2~p,x!1 interference terms,
~4.41!

whereW1 , W2 are the Wigner functions ofuc1&,uc2&. On
inserting this in Eq.~4.38!, we find the following. First, the
interference terms are strongly suppressed@this is a well-
known property of evolution according to Eq.~4.1!#. Sec-
ondly, using the above results on a single wave packet,
easy to see that the probabilities for crossing and not cr
ing are uau2 and ubu2, respectively, again the expected r
sults.

In the above simple examples, the crossing probabili
are independent of the details of the environment, at le
approximately. It is clear that more generally, the cross
probabilities will in fact depend on the features of the en
ronment~e.g., its temperature!. One might find this slightly
unsettling, at least in comparison to quantum-mechan
probabilities at a fixed moment of time, which depend on
on the state at that time and not on the details of where
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property in question might be measured. This possible
pendence on the decoherence mechanism, however,
keeping with the point made by Landauer and mentioned
the Introduction—that to specify time in quantum mechan
one has to specify the physical mechanism by which i
measured. Furthermore, one can then expect that the re
obtained might depend to some degree on the choice
mechanism.

V. HISTORIES OF CROSSING DENSITIES

We now consider a very different type of modification
the original situation of Sec. III, which leads to decoheren
and hence to the assignment of probabilities for histo
which cross or do not crossx50. We consider a system ofN
noninteracting free particles, and consider histories of imp
cisely specified values of number density. That is, we ask
the probability that betweenn2Dn and n1Dn particles
crossx50 during the time interval@0,t#, for 0<n<N, and
Dn typically much smaller thann. As we shall see, such
histories are generally decoherent, essentially as a resu
largeN statistics. This modification was inspired by the r
sults of Ref. @24# on hydrodynamic histories, in which
similar feature was observed.

We first summarize the one-particle case. LetC be the
class operator for histories crossingx50 during the time
interval @0,t#, and C̄ the class operator for not crossing,
C1C̄51. The~candidate! probabilities for crossing and no
crossing are

p5Tr~CrC†!, p̄5Tr~C̄rC̄†!, ~5.1!

respectively, and the off-diagonal term of the decohere
functional is

D5Tr~CrC̄†!. ~5.2!

These quantities satisfy the relation

p1 p̄12 ReD51. ~5.3!

Consider the two particle case. There are three class
erators, corresponding to zero, one or two particles cros
x50 during the time interval@0,t#. These are given by, re
spectively,

C05C̄^ C̄, ~5.4!

C15C̄^ C1C^ C̄, ~5.5!

C25C^ C, ~5.6!

and clearlyC01C11C251. The expressions for the case
three or more particles rapidly become complicated, but
are saved by a useful trick, used in Ref.@24# ~and similar to
a trick used in studies of random walks@51#!. In the N par-
ticle case, the class operator corresponding ton particles
crossing is given by

Cn5
1

2p E
2p

p

dle2 iln~C̄1eilC! ^ ~C̄1eilC! ^ ••• ,

~5.7!
e-
in

in
s
s
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e
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where there areN terms in the tensor product. How thi
expression works is that in tensor product terms, the coe
cient of e2 iln consists of all possible combinations of term
consisting ofn C’s and (N2n) C̄’s. Eventually we will be
interested in a coarse graining overn, which consists of
binning n into ranges of width 2Dn, labeled byn̄,

Cn̄5(
nPn̄

Cn . ~5.8!

We will not carry this out explicitly, since the result of doin
this is intuitively clear. Explicit coarse grainings of this typ
in a related problem were carried out in Ref.@24#.

The decoherence functional for histories of precis
specified values ofn is

D~n,n8!5Tr~Cnr ^ r ^ ••• ^ rCn8
†

!, ~5.9!

where we have assumed a factored initial state for theN
particle system. Inserting the above expression forCn , this
may be written

D~n,n8!5
1

~2p!2 E
2p

p

dlE
2p

p

dl8e2 iln1 il8n8~ei ~l2l8!p

1eilD1e2 il8D* 1 p̄!N. ~5.10!

Using the binomial expansion to expand the integrand,
integral overl may be carried out, with the result,

D~n,n8!5
1

2p
S N

n D E
2p

p

dl8eil8n8~ p̄1e2 il8D* !N2n

3~D1e2 il8p!n. ~5.11!

Further use of the binomial theorem permits the remain
integral to be done, with the result

D~n,n8!5S N
n D p̄N2n2n8~D* !n8Dn(

k50

n S N2n
n82kD S n

kD S pp̄

uDu2D k

.

~5.12!

for n<n8. For n>n8, on the other hand, one obtains

D~n,n8!5S N
n D p̄N2npn8Dn2n8 (

k50

N2n S N2n
k D S n

n82kD
3S uDu2

pp̄ D k

. ~5.13!

It is useful in Eq.~5.11! to rewrite the integral as a com
plex contour integral. Letz5e2 il8. Then we obtain

D~n,n8!5
1

2p i S N
n D E dz

zn811
~ p̄1D* z!N2n~D1pz!n,

~5.14!

where the integral is along any closed contour about the
gin. Now performing the rescalingz→( p̄/D* )z, this be-
comes
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D~n,n8!5
1

2p i S N
n D p̄N2n2n8~D* !n8DnE dz z2n821

3~11z!N2n~11az!n, ~5.15!

wherea5pp̄/uDu2.
The discrete sums in Eqs.~5.12! and~5.13! can be evalu-

ated in terms of a hypergeometric functionF. For example,
Eq. ~5.12! yields

D~n,n8!5S N
n D S N2n

n8 D p̄N2n2n8~D* !n8

3DnF~2n,2n8;N2n2n811,a!.

~5.16!

However, the hypergeometric function is of the degener
type~and can be written as a finite hypergeometric series! for
which asymptotic forms are not easily found, although t
exact expression may be of use for computer plots. We
instead therefore consider asymptotic forms of the exp
sions~5.12!, ~5.13!, and~5.15!.

Consider first the case of very largea. This is the case in
which there is some degree of decoherence of the one
ticle system, but perhaps not sufficient to assign probabili
defined to satisfactory precision. We shall see that this
exponentially enhanced in theN particle case.

Taking N, n, n8 to be of the same order~although not
necessarily large!, for a@N2, the discrete sum~5.12! is
dominated by thek5n term, and we find

D~n,n8!5
N!

n! ~N2n8!! ~n82n!!
p̄N2n2n8~D* !n8Dnan

3F11OS N2

a D G . ~5.17!

A reasonable measure of approximate decoherence is the
of the decoherence functional in comparison to its diago
terms. Here, this is given by

e[
uD~n,n8!u2

D~n,n!D~n8,n8!
'

1

an82n

n8! ~N2n!!

n! ~N2n8!! @~n82n!! #2 .

~5.18!

Sincea@N2, the dominant term is the term depending ona.
For n82n reasonably large~recall that this is the casen8
.n!, the degree of decoherence of theN particle case is
exponentially enhanced compared to the one particle ca

Of course,n8 andn may differ by a small number, suc
as 1 or 2, in which case the degree of decoherence w
then not be very good. The point is, however, that we
envisaging the further coarse graining~5.8!. As can be seen
from similar calculations in Ref.@24#, this would have the
effect of replacingn and n8 by coarse grained variablesn̄
and n̄8. These can differ by no less than the coarse grain
parameter 2Dn, which is taken to be large. The degree
decoherence is therefore of ordera22Dn, which will be very
small.

Given decoherence for the case of largea, we may now
assign probabilities. These are given by
te

s
ill
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ar-
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e

g

p~n!5S N
n D pnp̄N2nS 11

~N2n!n

a
1••• D . ~5.19!

For largeN, n, this becomes, to leading order,

p~n!;expF2
N

2n~N2n! S n2
pN

~p1 p̄! D
2G . ~5.20!

Inserting the most probable value ofn in the width, this
becomes

p~n!;expF2
N~p1 p̄!2

2pp̄ S n

N
2

p

~p1 p̄! D
2G . ~5.21!

Note that we cannot takep1 p̄51 since these are not con
sistent probabilities.

This is a gratifying result. It shows that the relative fr
quency with which the particles cross is strongly peak
about the valuep/(p1 p̄). Also notice that

S n

N
2

p

~p1 p̄! D
2

5S N2n

N
2

p̄

~p1 p̄! D
2

~5.22!

which is consistent with the notion that the relative fr
quency of not crossing isp̄/(p1 p̄). These results are tanta
mount to taking the probabilities for crossing and not cro
ing in the single particle case to be notp and p̄, but p/(p
1 p̄) and p̄/(p1 p̄) ~which clearly add to 1, as required!.
Again we should be considering coarse grained values on
but it is clear that this will effect only the width of the pea
and not the configurations about which the distribution
peaked.

Another case which is amenable to straightforward ana
sis is the casea51. This might not be exactly reachable
practice, but it represents the extreme case in which the
coherence of the one particle case is as bad as it can pos
get. From either Eq.~5.12! or Eq. ~5.15!, we find

D~n,n8!5S N
n D S N

n8 D p̄N2n2n8~D* !n8Dn. ~5.23!

It is straightforward to show that, in this case,

uD~n,n8!u25D~n,n!D~n8,n8!, ~5.24!

hence the decoherence in theN particle case is just as bad a
the one particle case.

Now we consider the somewhat harder and more gen
case ofa.1 but not arbitrarily large. Here we resort to som
more sophisticated techniques to expand the contour inte
~5.15! in the limit of largeN,n,n8.

The integral~5.15! may be written

D~n,n8!5S N
n D p̄N2n2n8~D* !n8DnJ, ~5.25!

where

J5
1

2p i E dzz2n821@ f ~z!#N ~5.26!

and
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f ~z!5~11z!12n/N~11az!n/N. ~5.27!

This integral, for largeN, has the asymptotic form

J;
~ f ~r!!N

@2pNk2~r!#1/2rn8 F11OS 1

ND G . ~5.28!

Here,r is the unique positive solution to the equation

Nr
f 8~r!

f ~r!
5n8, ~5.29!

which, in this case, reads

a~N2n8!r21@N2n2n81a~n2n8!#r2n850
~5.30!

and

k2~r!5r
f 8~r!

f ~r!
1r2F f 9~r!

f ~r!
2S f 8~r!

f ~r! D 2G , ~5.31!

The origin of this formula is as follows@52,53#. The in-
tegration contour in Eq.~5.26! is any closed contour abou
the origin. Letz5reiu, wherer is arbitrary. The idea is to
take a circular contour whose radius is chosen in such a
that the dominant contribution to the integral for largeN
comes from the immediate neighborhood ofu50. In terms
of r andu the integral becomes

J5
1

2prn8 E2p

p

due2 in8u@ f ~reiu!#N. ~5.32!
ec

r-
s

ay

Now expand the integrand aboutu50. We have

@ f ~reiu!#N5exp@N ln f ~reiu!#5@ f ~r!#N expS iNur

f 8~r!

f ~r!

2
1

2
Nu2k2~r!1O~Nu3! D , ~5.33!

wherek2 is given by Eq.~5.32!. Now clearly if r, which is
so far arbitrary, is chosen to satisfy Eq.~5.29!, the linear
term in the exponent in the whole integrand vanishes.
largeN the integral overu is then a Gaussian strongly con
centrated aroundu50, and may be done with the desire
result ~5.28!.

„Note that it was not necessary to use this more elabo
asymptotic expansion technique in Ref.@24#. There, the in-
tegral analogous to Eq.~5.10! has the property that the
modulus of the integrand is less than 1 and equal to 1 w
the l parameters are zero, so it was possible to evaluate
large N by expanding about zero. Here, the norm of t
integrand~5.10! does not have this property.…

The decoherence functional is therefore given by E
~5.25! with, to leading order,

J5Jnn85~11rnn8!
N2n~11arnn8!

nrnn8
2n8 ~5.34!

and
rnn85
2N1n1n82a~n2n8!1$@N2n2n81a~n2n8!#214an8~N2n8!%1/2

2a~N2n8!
. ~5.35!
ar-
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The candidate probabilities for the histories are

p~n!5S N
n D p̄N22nuDu2n~11rn!N2n~11arn!nrn

2n ,

~5.36!

where

rn5
2N12n1@~N22n!214an~N2n!#1/2

2a~N2n!
. ~5.37!

The probabilities may be assigned when the degree of d
herence

e5
uD~n,n8!u2

D~n,n!D~n8,n8!
5

n8! ~N2n8!!

n! ~N2n!!

uJnn8u
2

JnnJn8n8
~5.38!

is small. Equations~5.34!–~5.37! give the degree of decohe
ence and the expressions for the probabilities for all value
o-

of

a whenN,n,n8 are large. Since these are not very transp
ent, it is useful to examine them in more detail for spec
cases.

Above we extracted the leading order for very largea
~essentiallya@N2!. We may now improve on this by ex
panding Eqs.~5.34!–~5.37! for the casea@1, if we also
assume thatun82nu is about the same order of magnitude
N,n,n8. A straightforward but tedious calculation shows th
the degree of decoherence is

e;a2un2n8u. ~5.39!

to leading order, which will be very small. Furthermore, t
probabilities are given by Eq.~5.21!. Hence the result ob-
tained for the casea@N2 above also hold fora@1.

Another case easily handled is the casea511d, where
0,d!1. Recall that fora51 there is no decoherence@Eq.
~5.24!#, so it is interesting to see how largea needs to be
before decoherence is achieved. Again a straightforward
culation shows that, to leading order, the degree of deco
ence is
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e;expS 2
~n2n8!2

N
d D . ~5.40!

Assuming again thatn2n8 and N are of about the
same order, approximate decoherence is achievedd
@1/un2n8u. Hencea does not have to be very much grea
than 1 in order to achieve approximate decoherence.
probabilities in this case are, to leading order,

p~n!;S N
n D 2

p̄N2npn expS d
n2

N D ~5.41!

For largeN, n, and recalling thatd!1, this has the asym
potic form

p~n!;expF2
N

n~N2n! S n2
p1/2N

~p1/21 p̄1/2! D
2G . ~5.42!

@This is easily seen by noting that Eq.~5.41! is the square of
the leading order term in Eq.~5.19! with p, p̄ replaced by
p1/2, p̄1/2.# This case therefore corresponds to regarding
expressionsp1/2/(p1/21 p̄1/2) and p̄1/2/(p1/21 p̄1/2) as the
probabilities for crossing and not crossing in the one part
case.

Finally, we note that all of the analysis of this sectio
does not in fact specifically concern the crossing time pr
lem. It would apply to any situation in which the origina
system consists of a coarse graining into just two histor
the system is replicatedN times, and projections onto th
relative frequencyf 5n/N, suitably coarse grained, are co
sidered. This is not unrelated to the Finkelstein-Graha
Hartle theorem@54#, which shows that the conventiona
probabilistic interpretation of quantum theory can arise fr
consideration of the eigenstates of relative frequency op
tor of the entire closed system. Here, we have shown tha
relative frequency for histories is typically decoherent
largeN ~in this connection, see also Ref.@55#!.
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VI. SUMMARY AND CONCLUSIONS

For the closed system consisting of a single point part
in nonrelativistic quantum mechanics, probabilities genera
cannot be assigned to histories partitioned according
whether or not they crossx50 during a fixed time interval.
We have shown in this paper, however, that by mak
modifications to this basic physical situation, decohere
may be achieved and probabilities assigned for arbitrary
tial states.

The first modification we considered was to couple t
particle to a thermal environment. This corresponds to c
tinuous imprecise measurements of the particle’s posit
The desired probabilities are given by Eqs.~4.20!, ~4.21!,
wherew0 is taken to be the initial Wigner function.

The second modification consisted of replicating the s
tem N times, and then considering the number density
particles crossingx50 in the limit of large N. This less
obviously corresponds to a particular type of measurem
but on general grounds, since there is decoherence~rather
than just consistency!, there is a correspondence with som
kind of measurement~although not necessarily a physical
realizable one!. The probabilities in a regime of interest a
given by Eq. ~5.21!. In each case, when decoherence
achieved, the resultant probabilities depend, at least to s
degree, on the mechanism producing decoherence, and t
to be expected.
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