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Renormalization group approach to the Einstein equation in cosmology
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The renormalization group method has been adapted to the analysis of the long-time behavior of the
nonlinear partial differential equation and has demonstrated its power in the study of critical phenomena of
gravitational collapse. In the present work we apply the renormalization group to the Einstein equation in
cosmology and carry out a detailed analysis of renormalization group flow in the vicinity of the scale invariant
fixed point in the spherically symmetric and inhomogeneous dust filed universe model.
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[. INTRODUCTION study of the structure formation of the universd. These
suggest that the present universe has some self-similarity and

Recently the renormalization groufRG) idea was ap- that the scale-invariant solution plays an important role in
plied to study the long-time asymptotics of nonlinear partialcosmology.
differential equationg1,2]. The RG transformation there is  In this paper we apply the renormalization group method
the integration of the equation up to a finite time followed byto the Einstein equations in the cosmological context. In Sec.
a rescaling of the dependent and independent variables. The We illustrate the application of the RG method to the heat
RG transformation together with the original differential €quation with a nonlinear term. In Sec. Ill, we apply the RG
equation gives a RG equation' Using the RG transformatiormethOd to the ElnSteln equations. Section IV is devoted to a
the problem at infinite time is reduced to the problem at finiteSummary and discussion.
time. A fixed point of the RG transformation corresponds to
a scale-invariant solution of the differential equation. We can Il. RENORMALIZATION GROUP TRANSFORMATION:
obtain the long-time behavior of the equation by studying the HEAT EQUATION WITH A NONLINEAR TERM
flow around fixed points.

As an application of this RG method to the system of
gravity, Koike, Hara, and AdacHhi3] analyzed the Einstein
equation to understand the problem of the critical behavior of
the black hole mass in gravitational collapse found by nu- au(x,t)
merical study[4]. A pedagogical exposition of the RG =
method in the deterministic system is given by Tag&kiin

a simple but very illustrative example of the motion of a, here the prime denotes the spatial derivative ani a

point particle in the Newtonian gravity. . coupling constant. Equatiof2.1) has scale invariance under
Here we apply the RG to the Einstein equations in thegpe following scale transformation:

cosmological situation. For simplicity, we shall consider

In this section, we review the RG method for nonlinear
partial differential equationgl]. First we consider the heat
guation with a nonlinear term as a simple example:

1
o = Sl FAUEX D], 2.9

only two cases. One is a homogeneous and isotropic universe Xx—LX,

filled with a perfect fluid and the other is a spherically sym-

metric universe filled with dust. We shall study the flow near t—L2t,

the fixed points of the RG equations, which have self-

similarity. u(x,t)—L%u(Lx,L?t), (2.2

The astronomical observations indicate that the present
universe has a hierarchical structure such as galaxies, clugtherelL is a parameter of the scale transformation and is
ters of galaxies, and superclusters, and that the two-poiriéken to be larger than 1. Namely,u{x,t) is a solution of
correlation function of the galaxies and of the clusters ofEQ. (2.1), the scaled function
galaxies can be expressed roughly by a single powef&w L
The scale-invariant Harrison-Zel'dovichi spectrum for the u(x,t)=L2u(Lx,L?t) 23
primordial density perturbation has been successful in the
is also a solution of Eq(2.1). We can thus obtain a one-
parameter family of solutions, provided thagx,t) is a so-

*Email address: osamu@th.phys.titech.ac.jp lution.
"Email address: ahosoya@th.phys.titech.ac.jp Here we define the RG transformati®) of a function of
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@)
R,_u(x,l):(ﬁ)(x,l)_ (2.4  where ou is assumed small. Substituting £g.13) into Eq.

(L
(2.8 and neglecting the second-order tergu?, we obtain

In short, theR, is a map from one set of initial data to the linearized equation foréﬂ:
another. It is convenient to take the initial time to tel.

The RG transformatiof®, has a semigroup property: N 2SU+XSU +8U"  (u*=0),
déu
Run=Rur-soy . @9 dr | —28U+x8u’ + su” (U* == E) o
A

Lettingt=1 and thenL?=t in Egs. (2.3 and(2.4), we can
express an arbitrary solutian(x,t) as an initial datai(-,1)  We require the boundary condition
ions: (L
transformed by RG transformations: SU—0  (|X|—). (2.19

1/2
ux =t (xt-¥2,1). (2.6) , _ ,
We are going to find the normal modes with the ansatz
The largeL means late time. Repeating the RG transforma-
tion (2.4), we can see the long-time behavior of the solution
u(x,t) in Eq. (2.2).
DenotingL =e”, we have from Eq(2.3) that wheref(x) is a function to be determined below andis a
constant. From Eqg2.14 and(2.16), we have

L)
Su="f(x)e ¥12+or (2.16

(L (L (L
du du o o _du f"—xf'—(w—1)f=0 (u*=0)
E—LI—ZU'FXU +25. (2.7 ,

Using the original partial differential equatid@.1) we have f'—xf'—(w+3)f=0 (U* =- X)' (217
d(ﬁ) L L. LWL The regularity ak=0 and the boundary condition gt/ =
—=2u+Au?+xu’'+u”. (2.8 imply
dr

(L) =

This is the equation satisfied by the scaled functigiwhich FOO=Hn(x), (218

we call the RG equation. We note that EQ.8) has no 1-n (u*=0),

explicit scaleL dependence because of the scale invariance w= . 2 (2.19

of the original equatior2.1). 8N jur=—o,

We investigate the fixed point of the RG equati@8).
The fixed pointu* is defined by whereH(x) is the Hermite polynomial and=0,1,2 . ...
From Eq.(2.19, u*=—2/\ is an attractor because all
R u* =u* (2.9  ’s are negative. On the other hanat; =0 has only one

relevant mode r§=0).
for any L>1. This condition means that the field profile is /& can discuss the long-time behavior of a solution of the

unchanged after time evolution followed by a suitable rescal—nlOnIinear ﬁifoSil?n .eqluatiomzf:ll),*if E(X’l)EiS s;f{iciently
ing. In general this condition is equivalent to close to the seli-similar profil@™. From g.( N 2) we
obtain the t(vao self-similar profiles. Suppose the initial spatial

dt)* profile of ou is expressed as a superposition of the normal
dr =0. (2.10 modeane"‘z’Z. As we have seen from E¢.19, if u(x,1)
is sufficiently close to the fixed point* = —2/\, the solu-
From Eq.(2.8), u* satisfies the following equation: tion approaches- 2t~ /X in the course of time because all
modes of perturbation are irrelevant. On the other hand, there
2u* +AU* 2+ xu* ' +u*"=0. (2.12 is only one growing moden=0) of perturbation around the

fixed pointu*=0. As time goes on, the behavior of the

In the homogeneous case, we can easily obtain the fixegP!ution near this fixed point is dominated by the relevant
points moden=0. This relevant mode corresponds to a Gaussian

distributiont ~ 12 **/(20),
From this instructive example, we see that if the pertur-
(2.12  bation around the fixed point has a finite number of relevant
modes or no relevant modes, we have some prediction power

for the long-time behavior of the nonlinear partial differen-
To investigate the character of the fixed point, Ej12), tial equation.

we consider a linear perturbation around the fixed point,
L
Eq. (2.12. The perturbed quantitysu is defined by

* _
u*=0 and X

IIl. RENORMALIZATION GROUP FOR THE EINSTEIN
EQUATIONS

() In this section, we apply the RG method, which is ex-
u=u*+ ou, (213 plained in the previous section, to the Einstein equations.
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Take a synchronous reference frame where the line ele- a=aH (3.9
ment is '
- oy . 2k 2-T
ds’=g,,,dx*dx H=—3H?-—+ Kp, (3.10
a 2
= —dt?+ y; (x ) dx'dX. (3.2 _
k=0, (3.11

Throughout this paper Latin letters will denote spatial indi-

ces and Greek letters spacetime indices. The matter is taken K
to be a perfect fluid characterized by the energy-momentum kp=3| H*+ — (3.12
2 L
tensor a
T,=(p+pP)u,u,+pg,,, (3.2  whereH is the Hubble parameter. From the conservation law
of the energy density, we have
wherep, p, andu, are pressure, energy density, and four-
velocity, respectively. We assume that the equation of state kp=Ma 3", 3.13
of the fluid is
whereM is an arbitrary constant.
p=(I'=1)p, (3.3 First, we consider the following scale transformation:
wherel is a constant. The Einstein equations are t—Lt,
vo=2K.: (8]
¥i = 2K, (3.4 a(t)—a(t)=L"2Na(Lt), (3.14
Kij = —*R;; = KKjj + 2K{K|; k(t)— K (t) =L 232/ (Lt),
(3.1
Kp
T T[ZFUi“J’ +(2=T) ), 35  whereL isa parameter of the scale transformation and larger
than 1. From Egs(3.10 and (3.13), under this scale trans-
3R+K2—K|’“K' formation the variablesl andp are scaled in the following
Kp= —lm (3.69 way:
2(1+Tuu) (L)
H(t)— H(t)=LH(Lt), (3.19
1 :
k[ puj=— ——(K!.—K ), (3.7 (L)
P p(H)— p()=L%p(L1). (3.1

whereK; is the extrinsic curvaturé’R; is the Ricci tensor 1N€ equations of motiofB.9)~(3.12) are invariant under the
associated withy;;, and k=87G. An overdot denotes the scale transformation, Eq¢3.14—(3.17, and equivalently
derivative with respect to and a semicolon denotes the co- the scaled variables satisfy the original equaF'On-
variant derivative with respect tg; . Second, we define the RG transformati@n:

Hereafter we consider the RG transformation for the dy- _w o
namical variablesy;; andK;; . In the following subsections, Ra()=a(l), RH(D)= H(),
we invc_astigqte the two cases; the_one is a h_omogeneous and RLk(1)=(I;)(1). (3.18
isotropic universe, and the other is a spherically symmetric
inhomogeneous dust universe. )

Letting t=L, we have the formulas

i i ®

A. Homogeneous and isotropic case a(t)=t2’(gr)a(l), (3.19
We consider the homogeneous and isotropic universe as a ®

simple case. This case is rather trivial because the field equa- H(t)=t"'H(1), (3.20

tion becomes an ordinary differential equation. Nonetheless,

B B (t)
this gives a nice warming up model to familiarize us with the k(t)=t~232/C0K(1), (3.2
RG approach to the universe. In this case, the spatial metric
is written by which we shall use later to see the long-time behavioa,of
2(1) H, andk.
a . . . . T .
K sy Third, we derive the RG equation. Letting=e’, the in-
7ij(x lt)_wélj ) (38) o ] ) (L) q (L) t) rlg:
(1+ 2 ) finitesimal transformation o&, H, andk with respect tor
is
wherer?=g;;x'x!, and a(t) andk(t) are the functions of WL )
time t to be studied. Substituting E¢3.9) into Egs.(3.4)— d_a: 2wy da

(3.7), we get dr 3—Fa+ ot
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(L) (L )
dH_ o dH dok_2(3r-2) o -
FERRTS 4~ ar % (3-30
d(li) 2(3I'-2 ﬁ(li)
o gtﬁr i (3.22  where we neglect the second-order tefar and sH? and
dr 3T ot use the linearized equation of E®.12):

Using the equations of motiof3.9), (3.10, and(3.11), Egs. 4 3
. L W) (*

(3.22 can be rewritten as K Sp= = SH+ Sk, (3.31)
w r a*?

da 2L L

—_—=— —Fa +a H, o

dr 3 Substituting Eq(3.28 into Eqg.(3.29, da satisfies
(L)

dH o w, 2-3I u W W

9, HH| A —5—«p|, d253+d5a+ ar O 3.3
@ e e 0 69

dk 2(3F—2)<k> (3.23

dr ar ' ' We solve Eq(3.32:

These equation€3.23 are the RG equations. ((52= fle~ T4 el 26T -2/ - (3.33

Here we investigate the fixed point of the RG equations.

H H * * * H 1
The fixed point @*,H*,k") is defined by wheref; and f, are arbitrary constants. From the solution

Ria*=a*, RH*=H* R.Kk*=k*. (3.24 (3.33, we can see 'Fhe flow-in t.he RG around the fixed point.
If 3I'—2<0, this fixed point is an attractor. On the other

The above conditions can be rewritten as hand, if I'—2>0, there is a Single relevant mode. Note that
L L L in the case B—2>0, the matter we consider satisfies the
da* dH* dk* strong energy condition.
o, =% 4 =0 4 =0 (3.29 From the flow in the RG around the fixed point, we can
see the long-time behavior of the homogeneous and isotropic
From Eqs.(3.13 and(3.23, the fixed point is universe. If 3 —2<0 and setting the initial profile in the
vicinity of the fixed point @* ,H* ,k*), the spacetime will
3MI2) 1D 2 h the flat Fried iverst) = a*t?@). On th
a* = ) . HY=——, K*=0, xp*=3H*2 approach the flat Friedmann umve@( ) art=™’. On the
4 3r other hand, if I —2>0, the spacetime will deviate from the

(3.29 flat Friedmann universe because there is a relevant mode

L : . . sa(t)=f,t?(r =2/,
This fixed poqnt c_orresponds to a flat Frledmann UNIVErSe. | the context of the usual cosmological perturbation

.Note that |le is taken to be 2/3, there is another fixed 5,ound a flat Friedmann universe, themode corresponds
point wherek* is nonzero. For the nonzekd case, the term 1, the decaying mode and tte mode corresponds to the
of the spatial curvature can be absorbed into the term of th rowing mode, which implies the gravitational instability,
energy density of matter because the dependence of the scglgcause the matter should satisfy the strong energy condi-
factor on each term is the same. Thus #fe=0 case in- g
cludes the nonzer&* case. Hereafter we concentrate on
only thek* =0 case.

In order to study the flow in the RG around the fixed
point, we consider the p(%rturpgtion aroLund the fixed point. We consider the spherically symmetrichomogeneous

@) . : o )
The perturbed quantitiesda, oH, and ok are defined by  case. In this case, the spatial metric is written by

B. Spherically symmetric case

vk iyl — A2 2,2 24 g 2y
Oy éta) ey 5(|L_>| O e 1 gk> 7ij (X, t)dx'dx! = A%(r,t)dr?+B2(r,t)(d6 S|n20d((;‘)3-)34)
(3.27 _
O o o Namely, v, =A2(rt),y,=B2(r,t), and y,,=B?sir’o
where da, 6H, and ok are assumed to be small qualities. while the other components of the spatial metric vanish. As a
From Egs.(3.23, the perturbed quantities satisfy the linear- Simple case, we investigate the universe filled with dust, i.e.,
ized equations I'=1, and we can set' =0 in Eqs.(3.4—(3.7). The Einstein
equations are

— %2 5H, (3.29 .

dr i = 2Kjj, (3.35
oH o 3 o . 3 | 1
T :_5H_2a* ok, (329 Kij:_ Rij+2Ki|Kj_KKij+§prijv (33@
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1., s mul We derive the RG equation. Letting=e’, the infinitesi-
= -[°*R+K"=K|"K. ], 3.3 . L) (D .
“p 2[ K] (3.39 mal transformation O%yij and Kj; with respect tor is
Kl —K;=0. (3.39 L
e d?’rr_2 PO A C N a4
Here we consider the following scale transformation: dr (1= @)y 19y +2a Ky, (3.44
r—Lr L
' dygg L (L (L)
dT =—2a’y99+r¢9r'ygg+2aK00, (345)
t— L%, o
w© " (2—a) Ky 410, K,
'}’rr(rat)_)'Yrr(r1t)EL2_2a7rr(Lr-Lat)1 (3.39 dr @) B P

1 (L)(L) 3(|—) (L) (Lh (L) (L)
+a| 2°R v — *Ri+2K, Ki— K Ky

(L _
Yoo )= Vg1, 1)=L"2%ygy(Lr L),
) 1 w,m g o

(3.40 + 2 )

K? Yer — K m7rr) (3.46
(L)
K (r,t)— K (r,t)=L%" %K, (Lr,L%),
(L)
(3.4 dK (L) (L)
agz—aK90+rc9r Kgg
w . 3 dr
Kag(r,t)H Keg(ryt)EL Kao(Lr,L t), (342 1 (L)L) L) L (Lﬁ L)
Ta ZgR Yoo~ Ropt2 Ko Kyy— KKy,
(L)
p(r,t)— p(r,t)=L2*p(Lr L), (3.43 1w, (L) (L)L)
+2(K Yoo~ Ki" Ky oo) |, (3.47)

where a is an arbitrary constant because the coordinate

transformationr —r# yields a substitution oft/B for @ in |\ here 3R. is the Ricci tensor associated wi(t’;n)-- In the
_ ; 1) UN

Egs. (3.39—~(3.43 and above Eq(3.39. Without loss of derivation of Egs.(3.44—(3.47), the equations of motion

generality, we taker to be positive. Because of the scale (3.35 and(3.36 are used. These equatiof@44—(3.47) are
invariance of the Einstein equations EC&BS (3.38,the  ihe RG equations
L

oW v WL
L QW L, WL
scaled variablesy,,, v, Ki. Ky, and p also In terms ofA and B (A%2=1,, and B2= ”0) the RG
satisfy Eqs(3.35—(3.38. equationg3.44—(3.47) read
2(L) (L) (L), (L) (L), WL L W ( E WL 2(L),(L),
z—§+ 2(a—l)+(%?j—8—% ?j—A—Zr%A:—rZA”-F(Za—S)rA’—rB —A+ % r(l?) T A(‘L)B & —ga+2
7 B BT T B B B
o My O MOL) LL) (OO
+a(A —-2A'BB'—AB'“+2A BB")
oish
1 (AL\)d(é) LWL (L) (L)L) d(é,)
+ = ==—=+AB-rAB'+rA’'B|5, (3.48
o2 dr T
HL) LWl W W, " T PP C P )
9B+ 20+ 1,985 %—B—Zr%iz—rzB”vL(Za—l)rB’—r B_,2B Ao (3.49
7 2B B YT T 2B 2A2B

where the prime denotes the derivative with respect to
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From Eq.(3.37), the scaled variablg is

(B (S (L (L) W] W (L)
L 9 1 dB rB"|dA 4 rA’”  rB’ ldB dB 3a—2 2rA’ 2(2a—1) rB’
pE=D|l et g T o ar T |l et g et T a2
a@’A B a’B A @ B
2(L)/(L)/ 2“')/2
2 r°‘A'B 1r°B 1wy )W) (L)
- — [A +2 B'-AB’'“—2ABB"]. (3.50
(L)(L) 2 (LE <L>
o AB o
From Eq.(3.38, the momentum constraint reads
(L)
(L) (L 4 (L) (L )
BrdA _A “dBT —rA'B +rAB"=0. (3.50
|
Letting t=L¢, the original variat()LIFSA(r(,Lt)) and B(r,t) Forc>0,
are expressed by the scaled variab¥eandB: N sinhy
(i) A*(r,1)= —— (COShI7 Nre—c2——|,
-1
A(r,t t(a l)/aA rt— 1l/a 1 35 ( ) 2r COSh’]
(rt)= ( ) (352 (3.60
1/n
-1la 2
B(r,.H= tB ( e 1), (353 B*(r,l):%r“(coshr;—l), (3.61
Here we investigate the fixed point of the RG equations 9¢32
(3.48 and(3.49 defined by sinhyp— 7= T(r*“— p), (3.62
dA* dB* *
= RE—— ) kp*(r,1)
dr odr 0 (354
At the fixed point, = 9"
e fixed poin " - e (coshy—1)2 g(coshr;—l)—cl’z sinhp |-
AT ) =te- Dl gx (p =Y ) — gla= D c coshy—1
(3.63
X (function ofrt ~ ¥« only ) (3.55 Forc<O0,
and sin
iy A*(r,l)——ll2 9 |(1 cosy)re —|c|1’21—77,
B(r,t)=t B (rt Ya 1) =tx ( function ofrt ~ ¥« only) (1—]cf) ¢ cosy
(3.69
(3.56
2
is a self-similar solution. B*(r,1)= ol r“(1—cosy), (3.69
In the spherically symmetric spacetime filled with dust,
the general solution of the Einstein equations is the Tolman- 9lc|¥?
Bondi solution(A1) and(A2) in the Appendix. Therefore we 77— Siny= (r*—=p, (3.66
can obtain the fixed point from the Tolman-Bondi solution
with self-similarity rather than solving Eq$3.54) directly. 9¢2
The precise form of these are as follows. p*(r,1)= a -
Forc=0, r¢(1—cosy)? (1- cosn)—|c|1’2ﬂ
9| | 1-cosy
A1 1) ar® 1(1-3pr?) a5 (367
(r.h)= 3(1—prots (357 wherec andp are constants.
The constant can be interpreted as the total energy of
B*(r,1)=r3(1—pre)23 (3.59 the universe in the analogy of the Newtonian mechanics. By
the signature of the constaot these fixed points are classi-
fied into the following three. The universe with+ 0 is simi-
kp*(r,1)= (3.59 lar to the flat Friedmann universe. The universes with a posi-

3(1—pr“)(1—3pr“)'

tive ¢ or a negativec are similar to the open and closed
Friedmann universes, respectively. Especially when
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0< <20

TBSS

X o< <0

FIG. 1. TBSS represents the Tolman-Bondi solution with self-
similarity in the case of=0 andp<0. The axes correspond to the
modes of linear perturbation, E¢3.76).

c=p=0, the above fixed point coincides with the flat Fried-
mann universe and the spacetime becomes homogeneous.

In the context of the RG, we can treat the time evolution
of the field variables as the map from one set of initial data to
another. If the initial data is taken to be the above fixed point
A*, B*, andp*, the spacetime will evolve into the Tolman-
Bondi solution with self-similarity. In the cases o&£0 and
c>0, the fixed point is not regular iH>0. Forc<O0, the
fixed point has singularities irrespective of the signaturp of
because the spacetime is similar to the closed Friedmann
universe and will recollapse. Since we should set a regular
initial data in the physical situation, we investigate only the
case ofc=0 (p<0) andc>0 (p=<0) where the fixed point
is everywhere regular. Note we exclude the case-op=0
because we have already studied it in the previous subsec-
tion.

To study the behavior of the flow in the RG around the
fixed point, we consider the linear perturbation around thq
fixed point. The linear perturbation around the self-similar
Tolman-Bondi solution has also been discussed by Tomit
[8] in a different context from our§9]. For simplicity, we
concentrate on the sphe[ical modes of linear perturbatio

a b’ Cq " 37
A B+ 2(1+c) (3.70
L
Sop - I w+a) o_p b b’
p—*—e T4 2T T B* B*'|

(3.71)

wherec; andc, are arbitrary constanisee the Appendix

As for the spherical modes of the perturbation, we can

easily obtain the solutions.

Forc=0,

9 3
—al3/1 _ a\4/3 al31 _ a\2/3
—Zoclr (1—pr®) +4c2r (1—pr®)

b(r)=r®

2
_ §C3r4a/3(1_pra)71/3 , (372

wherec; is another arbitrary constant. The density contrast is

(L)

op 9 B B
_*:ew‘rro){_ Zoaclr 2a/3(1_pra)2/3(1_3pra) 1
X[3w+a—3(w+3a)pr]

w a1-13 ay—1

55 C2Pr(1=3pre)

E arq _ ay—1lr1 _ ay—1
+ac3r (1—pr*)~(1-3pr%)

X[w+2a—(w+3a)prt];. 3.73

n the expression for the linear perturbation, E3)73, there
are three terms correspondingdg c,, andcs so that there
should be a gauge mode hidden in E8.73 because the
rpumber of physical modes has to be 2. Actually there re-
mains a gauge freedom corresponding to the coordinate

" (L .
The perturbed quantitiessA and 6B are defined by transformation of , Eq. (A8). The gauge mode is given by

(L) L)
Y =A*2+2A% 5A,

(L) w2 . (L)
y99=B*2+2B* 5B. (3.69

(L)

L */
p p
*g: frw+lewr

*

p
=e*rf[2apré(2—3pr®)(1—pr®) *
X (1-3pro)~1, (3.79

with f being an arbitrary constant. Because we should fix the

. . . ) .
We assume the spatial metric variables foA and 9B in freedom of gauge, we chooseso that @(’;)+ 5(;)9)/[)* be-

the following form: have as nicely as possiblerat © because we are interested
in the perturbation modes which are finiterat «.

) or We use the following condition as a convenient gauge
oA=a(r)e”, condition.

9(w+3a) 3 3w w+3a
) f=————p™c;+ —cCo— ———Cs. (3.75
6B=b(r)e”". (3.69 40« a 3ap

We fix the gauge mode by the above condition and obtain

" L , RG] (OIE(B)
The perturbed quantitie(r) andSp are expressed Hy(r); the physical perturbationp =dp+dp4 as follows:
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@
op 1203 —
p* :ewTrw{Al(l_gpra) l[p 2/3r 2a/3(l_pra)2/3

TBSS

X[Bw+a—3(w+3a)prv]

+(w+3a)pré(2—3pr9(1—pr*) 1]

+A,pré(1—pr*) " Y(1-3pre)~1}, (3.76
where

9p2/3

Ay=-— 20 C1, (3.7 FIG. 2. TBSS represents the Tolman-Bondi solution with self-

similarity in the case o€>0 andp<0. The axes correspond to the

3w 4 modes of linear perturbation, E¢3.83.

Azz__( Cz__Cs)- 3.78 . .
2a 9p chronous comoving reference frame, this result appears to be

strange because the only spherical modes of the linear per-
turbation allowed are constant in space. However, the time
coordinate used in this RG method is different from the usual
w cosmic time coordinate, and the solution allowed by the
tion that5p /p* should be finite at the boundany=0 and  regularity condition in each case does not coincide in gen-
r=o0, This condition implies thatA; modes with eral. Moreover, in the homogeneous universe, there is no
2al3<w<a and A, modes with—a<w=<a are allowed. nontrivial characteristic profile of field variables. If the fixed
The mode withw=0 corresponds to a change pfin the  point is a homogeneous universe, the RG method may have
self-similar solution, Eqs(3.59, and p* remains constant no advantage since the RG approach respects the self-similar
independent of in the direction. Although this fixed pointis profile. But if the fixed point is an inhomogeneous universe,
not a repeller, it has many relevant modés,with 0<w<a«  We believe that the RG method may be useful.

and A, with 0<w=a. Note that a suitable linear combina- ~ Compared with the=0(p<0) case, the value ab al-

tion of theA; andA, modes will have an asymptotic behav- lowed in the case =0) is the lower limit in the case

ior ~r®=2« atr=c0. For such modes, &3<w<2« is al- (P<0). The effect of the nonlinearity of gravity makes the
lowed. These modes which satisfy the regularity conditiongrowth rate of the density contrast large.

are not discrete but continuous. We suppose that this special Forc>0,

feature arises because our matter is assumed to be dust. To

Since we consider only the case 0, the coordinate
can be taken from 0 tee. We demand the regularity condi-

summarize, the possible value ofranges from— « to 2a. b(r)=r‘°[ _ ic 2(coshy—1) 3sinhy(sinhy— 77)}
The flow of the RG in the vicinity of the fixed point is shown 271 coshy—1
in Fig. 1.
In the case ot=p=0 where the fixed point corresponds N ic coshy—1— sinhp(sinhy — 7])}
to the flat Friedmann universe, tlig modes in the density 2c 2 coshy—1
contrast(3.73 are gauge modes. The regularity condition
implies that thec; mode with w=2a/3 and thec; mode cYZsinhy
with o= — « are allowed. This result corresponds to the ho- N coshy—1 Cs(- 3.79

mogeneous and isotropic case in the previous section. Com-
pared with the usual cosmological perturbation in the syn-The density contrast is

op e’Tr® 1 N 3sinhy(sinhp— 7)
p_*— 2ra 1 Cllzsinhﬂ l@Cl (0)+3C¥)r (Z(COShU—l)— COShU_l )
a§(coshr;— )_coshzy—l
27c3’2a{ sinhy  (2coshy+1)(sinhy— 7) sinhy(sinhy— 7)
5 \_coshr;—1+ (coshy—1)2 ~5cCe| T (Za(cosm_l)_(w+3a)—cosh7—l )
9¢?? (0 — a)sinh 2coshy+1)(sinhy— sinh 9ac?3(2coshy+1
. [ (w—a)sinhy  a(2coshy+1)(sinhy— 1) s 62, (s 3qyre S 9ac®H2costy+ 1)) |
2 | coshy-1 (coshy—1)2 coshy—1 2(coshy—1)2

(3.80

The gauge mode is given by
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(L)
p
*9: frw+1ew7

*/

afe?Tr? [ 4cY%sinhy  9c?r~%(2coshy+ 1)
% r “(coshp—1)— + >
inhy || 9¢ coshy—1 2(coshy—1)

coshy—1

(3.89

~[or 1
5¢ (coshy—1)—

Similarly to the case o€=0, we demand the regularity conditionrat 0 andr =~
(i) Case 1 p<0). We use the following convenient gauge condition:

1 Iw+3a
f=
4a2l c

9

sinhzo(sinhyge— 7,)
(coshyy—1)2

,Sinhyg(sinhyo— 7o)
(coshyy—1)2

Cq1 2 2a— (w+3a)

9¢?3(w+ 3a)sinhy, ]

(coshyo—1)?
(3.82

where = 7, corresponds to— and 7, is thus given by sink,— 70=—9pc>%2.

. " . . NG (OI(W)
By using the above condition, E3.82, we obtain the physical perturbatighp =dJp+ p4 as follows:

w
S evTr® sinhyg(sinhyg— sinhy(sinhy—
P* _ 2 S— {A [3(a)+3a)r“(coshr;—1)( mo(Sinhio 2770)_ n(sinhy Zn))
p (coshy—1)— ——7 Inhn \ (coshyy—1) (coshy—1)
9c coshy—1
sinhzg(sinhyy— sinh 2coshy+ 1)(sinhy—
N Ao+ 9a—6(w+3a) 7o(Sinhzo 770)) 7, 5, 200SH )(sinfy— 7)
(coshyy—1)2 | coshy—1 (coshy—1)2
sinh sinh 9c¢%2a(2coshy+1
+AS (w+3a)r“(coshr]—1)( " 7o )— a(2coshy+1)
(coshy—1)? (coshyy—1) 2(coshy—1)2
+9(w+3a)C2/SSinh7]o( 4sinhy 903’2(2cosh;+1)) ) (3.83
4(coshpo—1)2 | coshy—1 2(coshy—1)%r« ||/’ '
|
where By using the above condition, Eq3.86, we obtain the
physical perturbation
1
Aj=—cy, (3.84
9c? w
5p WTy w
9pC1/2 4 _ e’'r
Ay=——1— Cz——Cs)- (3.89 * 2r@ csinhy
4 9p P o o(costy—1)— ——
9c coshy—1

and sinty— »=9c¥4(r ~*—p)/2.

The regularity condition at=0 andr=o implies that + « _
A7 modes witho=a and A; modes with Gsw<« are X Ar| (@+3a)re| 2(coshy—1)
allowed. In this case, this fixed point is a repeller up to the

zero mode because all other modes which satisfy the regu- 3sinhy(sinhp—7)|  27c¢¥%a

larity condition have a positive. Note that a suitable linear a coshy—1 2

combination of theA; and A, modes will have an

asymptotic behavior=r“~2%. Therefore the possible value sinhy  (2coshy+1)(sinhp—7)
of w ranges from O to &. The flow of the RG in the vicinity X~ coshy—1 (coshy—1)2

of the fixed point is shown in Fig. 2.

(ii) Case 2 p=0). The gauge condition which we use is (w+3a)r®sinhy  9ac?3(2coshy+1)

+A, -
2 coshy—1 2(coshy—1)2

|

(3.87

9
f=—7-Co. (3.8
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where stable against almost all spherical modes of linear perturba-
tion. The spacetime will deviate from this fixed point. It is
L, 1 necessary to study the nonspherical mode of perturbation to
A; zﬁcl’ (3.89 say something more definite. In the cosmological problem,
only the statistical quantities are meaningful if we think of a
A =cl,. (3.89 comparison with observations. There are some works in the

RG approacti13—15 on the universe which has a hierarchi-

The regularity condition at=0 andr = implies that no ~ cal structure. We may contemplate further development of
modes are allowed. the RG approach to the cosmology formulated in the present

From the linear perturbation analysis around the fixedvork by introducing some kind of volume or statistical av-
point, we see that the long-time behavior of the sphericallyerage for observables such as the energy density and the
Symmetric dust universe is Separated into two types_ One |b|ubb|e constant of the universe. A statistical Concept is
the case that the fixed point is a repeller. In this case, théeeded not only for comparison with observations but also
Tolman-Bondi solution with self-similarity does not play an for us to proceed further in the analysis of the RG equation
important role in an expanding universe because this fixeecause we have continuously many relevégitowing
point is unstable and the spacetime will diverge from thismodes around the fixed points. That is, the long-time behav-
fixed point. In the other case, the fixed point has both relior of the universe is sensitive to the initial configuration
evant and irrelevant modes. Although this fixed point is not 22ver which we have na priori control and we have to
repeller, it has continuously many relevant modes. Thus it i§onsider the statistical likelihood of the initial values.
not as straightforward as in the case of gravitational collapse We remark that the introduction of a volume average in a
[3] to extract the long-time behavior of the universe, becauséhite region of the universe potentially introduces the scale
it is sensitive to the initial condition and therefore we cannotinvariance violation by hand because the exact scale invari-
uniquely predict the outcome. In the final section, we brieflyance holds only for an infinite space. Note that in quantum
discuss how to treat the fixed point which has many relevanfield theories and statistical physics of the second-order

modes of the perturbation. phase transition the scale invariance violations are hidden in
the form of a cutoff of the spectrum of physical modes. We
IV. SUMMARY AND DISCUSSION shall elaborate our present observation in our future work.

The self-similar solution given by Eq$3.52 and (3.53

We considered the spherically symmetric but inhomogethrough the fixed point of the RG equation is essentially a
neous universe filled with dust, where the Einstein equationfunction oft~“*r =t*~Yr/t, which is roughly the fraction
have scale invariance, Eq.39—(3.43, and applied the of the physical distance to the horizon scale of the Fried-
renormalization grougRG) method to study its long-time mann universe. Also note that in the case of a nonlinear
asymptotics. The fixed point of the RG transformation is adiffusion equation, Eq(2.6) implies that the self-similar so-
self-similar solution with scale invariance of the Einstein|ution is a function of the ratio of the distanceto the dif-
equations. In order to study the flow of the RG around thisfusion lengthy/t. In the both cases, the self-similar solution
fixed point, the linear perturbation analysis is used. We imys a function of the distance in units of a physically relevant
pose the perturbation on the regularity at the boundary whergme-dependent scale. We believe this is a general phenom-
the radial coordinate equals zero or infinity. This boundary enon and the physical background of the RG equation which
means that the area radius equals zero or infinity in the casfoverns how dynamical variables deviate from the self-
of c=0; on the other hand, in the case®$0, it equals a  sjmilar solution.
finite or infinity. The fixed point is the Tolman-Bondi solu-
tion with self-similarity, which includes the flat Friedmann
universe. The behavior of the fixed point is separated into
two types. Both types have many relevant modes of the per- O.l. would like to thank Professor H. Ishihara and K.
turbation. The fixed points of the RG flow are self-similar Nakamura for discussions. This research is supported in part
solutions of the Einstein equations, which are worth studyingy the Japan Society for the Promotion of Scieri€el.).
in their own right and have been studied by many peopleThis work is partially supported by a grant-in-aid by the
[10,17. Our approach has an obvious advantage that th&linistry of Education, Science, Sports, and Culture of Japan
fixed point is in general not always spherical symmetric like(A.H., 09640341, and T.K., 012-10096097
the Tolman-Bondi solution of the dust filled universe. More
importantly, we can systematically treat thgnamicsof the APPENDIX: TOLMAN-BONDI SOLUTION
universe near the self-similar solution, adopting the scale as WITH SELFE-SIMILARITY
a “time” of the evolution. The RG flow near the fixed points
is a new aspect in the study of the self-similarity in the uni- In the spherically symmetric universe filled with dust, the
verse[12]. most general solution of the Einstein equations is the

The Tolman-Bondi solution with self-similarity is un- Tolman-Bondi solutiorf16]:
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B'(r,t)

Ji+Cy(r)’

A(r,t)= (A1)
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( 9C,(r 1/3
( Z( )) [t—Ca(r)]23 for Cy(r)=0,
B Ca(l) (coshr; 1) t—Cj(r)= Calr) (sinhy 77)) for C4(r)>0 A2
rt)= —Ce(N)= "3+ - 1 ,
(r.t) 2C,(r) 2C¥(r) (A2)
Cy(r) Cao(r) .
———(1—co t—Cs(r)=——=——(n—sin for C4(r)<0,
| et RS COT l
CH(r)
kp(r,t)y= , A3
pr = (A3)
|
whereC,(r), C,(r), andC;(r) are arbitrary functions of SCy(r)y=cyrete, (A5)
and a prime denotes the derivative with respect tBy
takingC,(r)=c, C,(r)=4r“/9, andCz(r)=pr<, we obtain 8Cy(r)=cgrete, (AB)
the Tolman-Bondi solution with self-similarity, Eq&.57)—
(3.67). By a coordinate transformation of
As for the calculation of linear perturbation, since we con-
centrate on the spherical modes of perturbation around a self- r—r+F(r), (A7)

similar solutions, it is enough to consider the linear pertur-

bation of the arbitrary function€,(r), C,(r), andCs(r).  WhereF(r) is an arbitrary function of, we obtain the gauge
The perturbed quantitie6C,(r), 5C,(r), and 6C4(r) can  mode of linear perturbation. This functidf(r) also can be
be expressed by a superposition of modes with different expressed by the superposition of modes with diffeterh

and taken in the following form: the form
SC(r)=cqr?, (A4) F(r)=fretl, (A8)
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