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Renormalization group approach to the Einstein equation in cosmology
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The renormalization group method has been adapted to the analysis of the long-time behavior of the
nonlinear partial differential equation and has demonstrated its power in the study of critical phenomena of
gravitational collapse. In the present work we apply the renormalization group to the Einstein equation in
cosmology and carry out a detailed analysis of renormalization group flow in the vicinity of the scale invariant
fixed point in the spherically symmetric and inhomogeneous dust filled universe model.
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I. INTRODUCTION

Recently the renormalization group~RG! idea was ap-
plied to study the long-time asymptotics of nonlinear par
differential equations@1,2#. The RG transformation there i
the integration of the equation up to a finite time followed
a rescaling of the dependent and independent variables.
RG transformation together with the original differenti
equation gives a RG equation. Using the RG transformat
the problem at infinite time is reduced to the problem at fin
time. A fixed point of the RG transformation corresponds
a scale-invariant solution of the differential equation. We c
obtain the long-time behavior of the equation by studying
flow around fixed points.

As an application of this RG method to the system
gravity, Koike, Hara, and Adachi@3# analyzed the Einstein
equation to understand the problem of the critical behavio
the black hole mass in gravitational collapse found by
merical study @4#. A pedagogical exposition of the RG
method in the deterministic system is given by Tasaki@5# in
a simple but very illustrative example of the motion of
point particle in the Newtonian gravity.

Here we apply the RG to the Einstein equations in
cosmological situation. For simplicity, we shall consid
only two cases. One is a homogeneous and isotropic univ
filled with a perfect fluid and the other is a spherically sy
metric universe filled with dust. We shall study the flow ne
the fixed points of the RG equations, which have se
similarity.

The astronomical observations indicate that the pres
universe has a hierarchical structure such as galaxies,
ters of galaxies, and superclusters, and that the two-p
correlation function of the galaxies and of the clusters
galaxies can be expressed roughly by a single power law@6#.
The scale-invariant Harrison-Zel’dovichi spectrum for t
primordial density perturbation has been successful in
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study of the structure formation of the universe@7#. These
suggest that the present universe has some self-similarity
that the scale-invariant solution plays an important role
cosmology.

In this paper we apply the renormalization group meth
to the Einstein equations in the cosmological context. In S
II, we illustrate the application of the RG method to the he
equation with a nonlinear term. In Sec. III, we apply the R
method to the Einstein equations. Section IV is devoted t
summary and discussion.

II. RENORMALIZATION GROUP TRANSFORMATION:
HEAT EQUATION WITH A NONLINEAR TERM

In this section, we review the RG method for nonline
partial differential equations@1#. First we consider the hea
equation with a nonlinear term as a simple example:

]u~x,t !

]t
5

1

2
@u9~x,t !1lu2~x,t !#, ~2.1!

where the prime denotes the spatial derivative andl is a
coupling constant. Equation~2.1! has scale invariance unde
the following scale transformation:

x→Lx,

t→L2t,

u~x,t !→L2u~Lx,L2t !, ~2.2!

where L is a parameter of the scale transformation and
taken to be larger than 1. Namely, ifu(x,t) is a solution of
Eq. ~2.1!, the scaled function

~L !

u ~x,t !5L2u~Lx,L2t ! ~2.3!

is also a solution of Eq.~2.1!. We can thus obtain a one
parameter family of solutions, provided thatu(x,t) is a so-
lution.

Here we define the RG transformationRL of a function of
x by
3340 © 1998 The American Physical Society
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RLu~x,1!5
~L !

u ~x,1!. ~2.4!

In short, theRL is a map from one set of initial data t
another. It is convenient to take the initial time to bet51.
The RG transformationRL has a semigroup property:

RLn5RLn21+RL . ~2.5!

Letting t51 and thenL25t in Eqs.~2.3! and ~2.4!, we can
express an arbitrary solutionu(x,t) as an initial datau(•,1)
transformed by RG transformations:

u~x,t !5t21
~ t1/2!
u ~xt21/2,1!. ~2.6!

The largeL means late time. Repeating the RG transform
tion ~2.4!, we can see the long-time behavior of the soluti
u(x,t) in Eq. ~2.1!.

DenotingL5et, we have from Eq.~2.3! that

d
~L !

u

dt
5L

d
~L !

u

dL
52

~L !

u1x
~L !

u 812
]

~L !

u

]t
. ~2.7!

Using the original partial differential equation~2.1! we have

d
~L !

u

dt
52

~L !

u1l
~L !

u21x
~L !

u 81
~L !

u 9. ~2.8!

This is the equation satisfied by the scaled function
(L)

u , which

we call the RG equation. We note that Eq.~2.8! has no
explicit scaleL dependence because of the scale invaria
of the original equation~2.1!.

We investigate the fixed point of the RG equation~2.8!.
The fixed pointu* is defined by

RLu* 5u* ~2.9!

for any L.1. This condition means that the field profile
unchanged after time evolution followed by a suitable resc
ing. In general this condition is equivalent to

d
~L !

u*

dt
50. ~2.10!

From Eq.~2.8!, u* satisfies the following equation:

2u* 1lu* 21xu* 81u* 950. ~2.11!

In the homogeneous case, we can easily obtain the fi
points

u* 50 and 2
2

l
. ~2.12!

To investigate the character of the fixed point, Eq.~2.12!,
we consider a linear perturbation around the fixed po

Eq. ~2.12!. The perturbed quantity
(L)

du is defined by

~L !

u5u* 1
~L !

du, ~2.13!
-

e

l-

ed

t,

where
(L)

du is assumed small. Substituting Eq.~2.13! into Eq.

~2.8! and neglecting the second-order term
(L)

du2, we obtain

the linearized equation for
(L)

du:

d
~L !

du

dt
5H 2

~L !

du1x
~L !

du81
~L !

du9 ~u* 50!,

22
~L !

du1x
~L !

du81
~L !

du9 S u* 52
2

l D .
~2.14!

We require the boundary condition
~L !

du→0 ~ uxu→`!. ~2.15!

We are going to find the normal modes with the ansatz
~L !

du5 f ~x!e2x2/21vt, ~2.16!

where f (x) is a function to be determined below andv is a
constant. From Eqs.~2.14! and ~2.16!, we have

f 92x f82~v21! f 50 ~u* 50!,

f 92x f82~v13! f 50 S u* 52
2

l D . ~2.17!

The regularity atx50 and the boundary condition atuxu5`
imply

f ~x!5Hn~x!, ~2.18!

v5H 12n ~u* 50!,

232n S u* 52
2

l D ,
~2.19!

whereHn(x) is the Hermite polynomial andn50,1,2, . . . .
From Eq. ~2.19!, u* 522/l is an attractor because a

v ’s are negative. On the other hand,u* 50 has only one
relevant mode (n50).

We can discuss the long-time behavior of a solution of
nonlinear diffusion equation~2.1!, if u(x,1) is sufficiently
close to the self-similar profileu* . From Eq. ~2.12!, we
obtain the two self-similar profiles. Suppose the initial spa
profile of

(L)

du is expressed as a superposition of the norm

modesHne2x2/2. As we have seen from Eq.~2.19!, if u(x,1)
is sufficiently close to the fixed pointu* 522/l, the solu-
tion approaches22t21/l in the course of time because a
modes of perturbation are irrelevant. On the other hand, th
is only one growing mode (n50) of perturbation around the
fixed point u* 50. As time goes on, the behavior of th
solution near this fixed point is dominated by the releva
moden50. This relevant mode corresponds to a Gauss
distribution t21/2e2x2/(2t).

From this instructive example, we see that if the pert
bation around the fixed point has a finite number of relev
modes or no relevant modes, we have some prediction po
for the long-time behavior of the nonlinear partial differe
tial equation.

III. RENORMALIZATION GROUP FOR THE EINSTEIN
EQUATIONS

In this section, we apply the RG method, which is e
plained in the previous section, to the Einstein equations



el

di
ak
tu

ur
ta

o-

dy
,

a
tr

as
qu
s

he
et

aw

ger
-

3342 57OSAMU IGUCHI, AKIO HOSOYA, AND TATSUHIKO KOIKE
Take a synchronous reference frame where the line
ment is

ds25gmndxmdxn

52dt21g i j ~xk,t !dxidxj . ~3.1!

Throughout this paper Latin letters will denote spatial in
ces and Greek letters spacetime indices. The matter is t
to be a perfect fluid characterized by the energy-momen
tensor

Tmn5~r1p!umun1pgmn , ~3.2!

wherep, r, andum are pressure, energy density, and fo
velocity, respectively. We assume that the equation of s
of the fluid is

p5~G21!r, ~3.3!

whereG is a constant. The Einstein equations are

ġ i j 52Ki j , ~3.4!

K̇ i j 523Ri j 2KKi j 12Ki
lKl j

1
kr

2
@2Guiuj1~22G!g i j #, ~3.5!

kr5

3R1K22Kl
mKm

l

2~11Gulu
l !

, ~3.6!

kGrui52
1

A11ulu
l
~Ki ; j

j 2K ,i !, ~3.7!

whereKi j is the extrinsic curvature,3Ri j is the Ricci tensor
associated withg i j , andk[8pG. An overdot denotes the
derivative with respect tot and a semicolon denotes the c
variant derivative with respect tog i j .

Hereafter we consider the RG transformation for the
namical variablesg i j andKi j . In the following subsections
we investigate the two cases; the one is a homogeneous
isotropic universe, and the other is a spherically symme
inhomogeneous dust universe.

A. Homogeneous and isotropic case

We consider the homogeneous and isotropic universe
simple case. This case is rather trivial because the field e
tion becomes an ordinary differential equation. Nonethele
this gives a nice warming up model to familiarize us with t
RG approach to the universe. In this case, the spatial m
is written by

g i j ~xk,t !5
a2~ t !

S 11
k~ t !r 2

4 D 2 d i j , ~3.8!

where r 2[d i j x
ixj , and a(t) and k(t) are the functions of

time t to be studied. Substituting Eq.~3.8! into Eqs.~3.4!–
~3.7!, we get
e-

-
en
m

-
te

-

nd
ic

a
a-
s,

ric

ȧ5aH, ~3.9!

Ḣ523H22
2k

a2
1

22G

2
kr, ~3.10!

k̇50, ~3.11!

kr53FH21
k

a2G , ~3.12!

whereH is the Hubble parameter. From the conservation l
of the energy density, we have

kr5Ma23G, ~3.13!

whereM is an arbitrary constant.
First, we consider the following scale transformation:

t→Lt,

a~ t !→
~L !

a ~ t ![L22/~3G!a~Lt !, ~3.14!

k~ t !→
~L !

k ~ t ![L2~3G22!/~3G!k~Lt !,
~3.15!

whereL is a parameter of the scale transformation and lar
than 1. From Eqs.~3.10! and ~3.13!, under this scale trans
formation the variablesH andr are scaled in the following
way:

H~ t !→
~L !

H~ t !5LH~Lt !, ~3.16!

r~ t !→
~L !

r ~ t !5L2r~Lt !. ~3.17!

The equations of motion~3.9!–~3.12! are invariant under the
scale transformation, Eqs.~3.14!–~3.17!, and equivalently
the scaled variables satisfy the original equation.

Second, we define the RG transformationRL :

RLa~1!5
~L !

a ~1!, RLH~1!5
~L !

H~1!,

RLk~1!5
~L !

k ~1!. ~3.18!

Letting t5L, we have the formulas

a~ t !5t2/~3G!
~ t !

a~1!, ~3.19!

H~ t !5t21
~ t !

H~1!, ~3.20!

k~ t !5t22~3G22!/~3G!
~ t !

k~1!, ~3.21!

which we shall use later to see the long-time behavior ofa,
H, andk.

Third, we derive the RG equation. LettingL5et, the in-

finitesimal transformation of
(L)

a ,
(L)

H, and
(L)

k with respect tot

is

d
~L !

a

dt
52

2

3G

~L !

a1
]

~L !

a

]t
,
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d
~L !

H

dt
5

~L !

H1
]

~L !

H

]t
,

d
~L !

k

dt
5

2~3G22!

3G

~L !

k 1
]

~L !

k

]t
. ~3.22!

Using the equations of motion~3.9!, ~3.10!, and~3.11!, Eqs.
~3.22! can be rewritten as

d
~L !

a

dt
52

2

3G

~L !

a1
~L !

a
~L !

H,

d
~L !

H

dt
5

~L !

H1F2
~L !

H21
223G

6
k

~L !

r G ,
d

~L !

k

dt
5

2~3G22!

3G

~L !

k . ~3.23!

These equations~3.23! are the RG equations.
Here we investigate the fixed point of the RG equatio

The fixed point (a* ,H* ,k* ) is defined by

RLa* 5a* , RLH* 5H* , RLk* 5k* . ~3.24!

The above conditions can be rewritten as

d
~L !

a*

dt
50,

d
~L !

H*

dt
50,

d
~L !

k *

dt
50. ~3.25!

From Eqs.~3.13! and ~3.23!, the fixed point is

a* 5S 3MG2

4 D 1/~3G!

, H*5
2

3G
, k*50, kr* 53H* 2.

~3.26!

This fixed point corresponds to a flat Friedmann universe
Note that if G is taken to be 2/3, there is another fixe

point wherek* is nonzero. For the nonzerok* case, the term
of the spatial curvature can be absorbed into the term of
energy density of matter because the dependence of the
factor on each term is the same. Thus thek* 50 case in-
cludes the nonzerok* case. Hereafter we concentrate
only thek* 50 case.

In order to study the flow in the RG around the fixe
point, we consider the perturbation around the fixed po
The perturbed quantities

(L)

da,
(L)

dH, and
(L)

dk are defined by

~L !

a5a* 1
~L !

da,
~L !

H5H* 1
~L !

dH,
~L !

k 5k* 1
~L !

dk,

~3.27!

where
(L)

da,
(L)

dH, and
(L)

dk are assumed to be small qualitie
From Eqs.~3.23!, the perturbed quantities satisfy the linea
ized equations

d
~L !

da

dt
5a*

~L !

dH, ~3.28!

d
~L !

dH

dt
52

~L !

dH2
3G

2a*

~L !

dk, ~3.29!
.

e
ale

t.

d
~L !

dk

dt
5

2~3G22!

3G

~L !

dk, ~3.30!

where we neglect the second-order termda2 and dH2 and
use the linearized equation of Eq.~3.12!:

k
~L !

dr5
4

G

~L !

dH1
3

a* 2

~L !

dk. ~3.31!

Substituting Eq.~3.28! into Eq. ~3.29!,
(L)

da satisfies

d2
~L !

da

dt2 1
d

~L !

da

dt
1

3G

2a*

~L !

dk50. ~3.32!

We solve Eq.~3.32!:

~L !

da5 f 1e2t1 f 2e@2~3G22!/~3G!# t, ~3.33!

where f 1 and f 2 are arbitrary constants. From the solutio
~3.33!, we can see the flow in the RG around the fixed po
If 3G22,0, this fixed point is an attractor. On the oth
hand, if 3G22.0, there is a single relevant mode. Note th
in the case 3G22.0, the matter we consider satisfies th
strong energy condition.

From the flow in the RG around the fixed point, we c
see the long-time behavior of the homogeneous and isotr
universe. If 3G22,0 and setting the initial profile in the
vicinity of the fixed point (a* ,H* ,k* ), the spacetime will
approach the flat Friedmann universea(t)5a* t2/(3G). On the
other hand, if 3G22.0, the spacetime will deviate from th
flat Friedmann universe because there is a relevant m
da(t)5 f 2t2(3G22)/(3G).

In the context of the usual cosmological perturbati
around a flat Friedmann universe, thef 1 mode corresponds
to the decaying mode and thef 2 mode corresponds to th
growing mode, which implies the gravitational instabilit
because the matter should satisfy the strong energy co
tion.

B. Spherically symmetric case

We consider the spherically symmetricinhomogeneous
case. In this case, the spatial metric is written by

g i j ~xk,t !dxidxj5A2~r ,t !dr21B2~r ,t !~du21sin2udf2!.
~3.34!

Namely, g rr 5A2(r ,t),guu5B2(r ,t), and gff5B2sin2u
while the other components of the spatial metric vanish. A
simple case, we investigate the universe filled with dust, i
G51, and we can setui50 in Eqs.~3.4!–~3.7!. The Einstein
equations are

ġ i j 52Ki j , ~3.35!

K̇ i j 523Ri j 12Kil K j
l 2KKi j 1

1

2
krg i j , ~3.36!
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kr5
1

2
@3R1K22Kl

mKm
l #, ~3.37!

Ki ; j
j 2K ,i50. ~3.38!

Here we consider the following scale transformation:

r→Lr ,

t→Lat,

g rr ~r ,t !→
~L !

g rr ~r ,t ![L222ag rr ~Lr ,Lat !, ~3.39!

guu~r ,t !→
~L !

g uu~r ,t ![L22aguu~Lr ,Lat !,

~3.40!

Krr ~r ,t !→
~L !

Krr ~r ,t ![L22aKrr ~Lr ,Lat !,

~3.41!

Kuu~r ,t !→
~L !

Kuu~r ,t ![L2aKuu~Lr ,Lat !, ~3.42!

r~r ,t !→
~L !

r ~r ,t ![L2ar~Lr ,Lat !, ~3.43!

where a is an arbitrary constant because the coordin
transformationr→r b yields a substitution ofa/b for a in
Eqs. ~3.39!–~3.43! and above Eq.~3.39!. Without loss of
generality, we takea to be positive. Because of the sca
invariance of the Einstein equations Eqs.~3.35! – ~3.38!, the

scaled variables
(L)

g rr ,
(L)

g uu ,
(L)

Krr ,
(L)

Kuu , and
(L)

r also

satisfy Eqs.~3.35!–~3.38!.
e

We derive the RG equation. LettingL5et, the infinitesi-

mal transformation of
(L)

g i j and
(L)

Ki j with respect tot is

d
~L !

g rr

dt
52~12a!

~L !

g rr 1r ] r

~L !

g rr 12a
~L !

Krr , ~3.44!

d
~L !

g uu

dt
522a

~L !

g uu1r ] r

~L !

g uu12a
~L !

Kuu, ~3.45!

d
~L !

Krr

dt
5~22a!

~L !

Krr 1r ] r

~L !

Krr

1aF1
4

3
~L !

R
~L !

g rr 2 3
~L !

Rrr 12
~L !

Krl

~L !

Kr
l 2

~L !

K
~L !

Krr

1
1

4
~

~L !

K2
~L !

g rr 2
~L !

Kl
m

~L !

Km
l

~L !

g rr !G , ~3.46!

d
~L !

Kuu

dt
52a

~L !

Kuu1r ] r

~L !

Kuu

1aF1

4
3

~L !

R
~L !

g uu2 3
~L !

Ruu12
~L !

Ku l

~L !

Ku
l 2

~L !

K
~L !

Kuu

1
1

4
~

~L !

K2
~L !

g uu2
~L !

Kl
m

~L !

Km
l
~L !

g uu!G , ~3.47!

where 3
(L)

Ri j is the Ricci tensor associated with
(L)

g i j . In the
derivation of Eqs.~3.44!–~3.47!, the equations of motion
~3.35! and~3.36! are used. These equations~3.44!–~3.47! are
the RG equations.

In terms of
(L)

A and
(L)

B (
(L)

A25
(L)

g rr and
(L)

B25
(L)

g uu), the RG
equations~3.44!–~3.47! read
d2
~L !

A
dt2 1F2~a21!1 1

~L !

B

d
~L !

B
dt

2
r

~L !

B8
~L !

B
Gd

~L !

A
dt

22r d
~L !

A8
dt

52r 2
~L !

A91~2a23!r
~L !

A82
r

~L !

B8
~L !

B

~L !

A1 1
2S r

~L !

B8
~L !

B
D 2

~L !

A2
r 2

~L !

A8
~L !

B8
~L !

B
2 a224a12

2

~L !

A

1
a2~

~L !

A322
~L !

A8
~L !

B
~L !

B82
~L !

A
~L !

B8212
~L !

A
~L !

B
~L !

B9!

2
~L !

A2
~L !

B2

1 1
~L !

B2
F ~L !

A
2

d
~L !

B
dt

1
~L !

A
~L !

B2r
~L !

A
~L !

B81r
~L !

A8
~L !

BGd
~L !

B
dt

, ~3.48!

d2
~L !

B
dt2 1F2a1 1

2
~L !

B

d
~L !

B
dt

2
r

~L !

B8
~L !

B
Gd

~L !

B
dt

22r d
~L !

B8
dt

52r 2
~L !

B91~2a21!r
~L !

B82
r 2

~L !

B82

2
~L !

B
1

a2~
~L !

B822
~L !

A2!

2
~L !

A2
~L !

B
2 a2

2

~L !

B, ~3.49!

where the prime denotes the derivative with respect tor .
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From Eq.~3.37!, the scaled variable
(L)

r is

k
~L !

r 5 2

a2
~L !

A
F a1 1

~L !

B

d
~L !

B

dt
2

r
~L !

B8
~L !

B
Gd

~L !

A

dt
1 1

a2
~L !

B
F 2~2a21!22

r
~L !

A8
~L !

A
22

r
~L !

B8
~L !

B
1 1

~L !

B

d
~L !

B

dt Gd
~L !

B

dt
1

3a22

a
2

2

a

r
~L !

A8
~L !

A
2

2~2a21!

a2

r
~L !

B8
~L !

B

1
2

a2

r 2
~L !

A8
~L !

B8
~L !

A
~L !

B
1

1

a2

r 2
~L !

B82

~L !
B2

1
1

~L !

A3
~L !

B2
@

~L !

A312
~L !

A8
~L !

B
~L !

B82
~L !

A
~L !

B8222
~L !

A
~L !

B
~L !

B9#. ~3.50!

From Eq.~3.38!, the momentum constraint reads

~L !

B8
d

~L !

A
dt

2
~L !

Ad
~L !

B8
dt

2r
~L !

A8
~L !

B81r
~L !

A
~L !

B950. ~3.51!
n

st
an
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i-

si-
d
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Letting t5La, the original variablesA(r ,t) and B(r ,t)
are expressed by the scaled variables

(L)

A and
(L)

B:

A~r ,t !5t ~a21!/a
~ t1/a!
A ~rt 21/a,1!, ~3.52!

B~r ,t !5t
~ t1/a!
B ~rt 21/a,1!. ~3.53!

Here we investigate the fixed point of the RG equatio
~3.48! and ~3.49! defined by

dA*

dt
50,

dB*

dt
50. ~3.54!

At the fixed point,

A~r ,t !5t ~a21!/a
~ t1/a!
A* ~rt 21/a,1!5t ~a21!/a

3 ~ function ofrt 21/a only ! ~3.55!

and

B~r ,t !5t
~ t1/a!
B* ~rt 21/a,1!5t3 ~ function ofrt 21/a only !

~3.56!

is a self-similar solution.
In the spherically symmetric spacetime filled with du

the general solution of the Einstein equations is the Tolm
Bondi solution~A1! and~A2! in the Appendix. Therefore we
can obtain the fixed point from the Tolman-Bondi soluti
with self-similarity rather than solving Eqs.~3.54! directly.
The precise form of these are as follows.

For c50,

A* ~r ,1!5
ar a/321~123pra!

3~12pra!1/3
, ~3.57!

B* ~r ,1!5r a/3~12pra!2/3, ~3.58!

kr* ~r ,1!5
4

3~12pra!~123pra!
. ~3.59!
s

,
-

For c.0,

A* ~r ,1!5
a

~11c!1/2r
F 2

9c
~coshh21!r a2c1/2

sinhh

coshh21G ,
~3.60!

B* ~r ,1!5
2

9c
r a~coshh21!, ~3.61!

sinhh2h5
9c3/2

2
~r 2a2p!, ~3.62!

kr* ~r ,1!

5
9c2

r a~coshh21!2F2r a

9c
~coshh21!2c1/2

sinhh

coshh21G .

~3.63!

For c,0,

A* ~r ,1!5
a

~12ucu!1/2r
F 2

9ucu ~12cosh!r a2ucu1/2
sinh

12cosh G ,
~3.64!

B* ~r ,1!5
2

9ucu
r a~12cosh!, ~3.65!

h2sinh5
9ucu3/2

2
~r 2a2p!, ~3.66!

kr* ~r ,1!5
9c2

r a~12cosh!2F 2r a

9ucu ~12cosh!2ucu1/2
sinh

12cosh G ,

~3.67!

wherec andp are constants.
The constantc can be interpreted as the total energy

the universe in the analogy of the Newtonian mechanics.
the signature of the constantc, these fixed points are class
fied into the following three. The universe withc50 is simi-
lar to the flat Friedmann universe. The universes with a po
tive c or a negativec are similar to the open and close
Friedmann universes, respectively. Especially wh
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c5p50, the above fixed point coincides with the flat Frie
mann universe and the spacetime becomes homogeneo

In the context of the RG, we can treat the time evoluti
of the field variables as the map from one set of initial data
another. If the initial data is taken to be the above fixed po
A* , B* , andr* , the spacetime will evolve into the Tolman
Bondi solution with self-similarity. In the cases ofc50 and
c.0, the fixed point is not regular ifp.0. For c,0, the
fixed point has singularities irrespective of the signature op
because the spacetime is similar to the closed Friedm
universe and will recollapse. Since we should set a reg
initial data in the physical situation, we investigate only t
case ofc50 (p,0) andc.0 (p<0) where the fixed point
is everywhere regular. Note we exclude the case ofc5p50
because we have already studied it in the previous sub
tion.

To study the behavior of the flow in the RG around t
fixed point, we consider the linear perturbation around
fixed point. The linear perturbation around the self-simi
Tolman-Bondi solution has also been discussed by Tom
@8# in a different context from ours@9#. For simplicity, we
concentrate on the spherical modes of linear perturbat

The perturbed quantities
(L)

dA and
(L)

dB are defined by

~L !

g rr 5A* 212A*
~L !

dA,

~L !

g uu5B* 212B*
~L !

dB. ~3.68!

We assume the spatial metric variables for
(L)

dA and
(L)

dB in

the following form:

~L !

dA5a~r !evt,

~L !

dB5b~r !evt. ~3.69!

The perturbed quantitiesa(r ) andd
(L)

r are expressed byb(r );

FIG. 1. TBSS represents the Tolman-Bondi solution with se
similarity in the case ofc50 andp,0. The axes correspond to th
modes of linear perturbation, Eq.~3.76!.
.

o
t

nn
ar

c-

e
r
ta

n.

a

A*
5

b8

B* 8
2

c1

2~11c!
r v, ~3.70!

d
~L !

r

r*
5evtF9~v1a!

4a
c2r v22

b

B*
2

b8

B* 8
G ,

~3.71!

wherec1 andc2 are arbitrary constants~see the Appendix!.
As for the spherical modes of the perturbation, we c

easily obtain the solutions.
For c50,

b~r !5r vF 9

20
c1r 2a/3~12pra!4/31

3

4
c2r a/3~12pra!2/3

2
2

3
c3r 4a/3~12pra!21/3G , ~3.72!

wherec3 is another arbitrary constant. The density contras

d
~L !

r

r*
5evtr vH 2

9

20a
c1r 22a/3~12pra!2/3~123pra!21

3@3v1a23~v13a!pra#

2
9v

2a
c2pra~123pra!21

1
2

a
c3r a~12pra!21~123pra!21

3@v12a2~v13a!pra#J . ~3.73!

In the expression for the linear perturbation, Eq.~3.73!, there
are three terms corresponding toc1, c2, andc3 so that there
should be a gauge mode hidden in Eq.~3.73! because the
number of physical modes has to be 2. Actually there
mains a gauge freedom corresponding to the coordin
transformation ofr , Eq. ~A8!. The gauge mode is given by

d
~L !

r g

r*
5 f r v11evt

r* 8

r*

5evtr v f @2apra~223pra!~12pra!21

3~123pra!21#, ~3.74!

with f being an arbitrary constant. Because we should fix

freedom of gauge, we choosef so that (d
(L)

r 1d
(L)

r g)/r* be-

have as nicely as possible atr 5` because we are intereste
in the perturbation modes which are finite atr 5`.

We use the following condition as a convenient gau
condition.

f 52
9~v13a!

40a2
p2/3c11

3v

4a2
c22

v13a

3a2p
c3 . ~3.75!

We fix the gauge mode by the above condition and obt

the physical perturbationd
(L)

r̃ 5d
(L)

r 1d
(L)

r g as follows:

-
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d
~L !

r̃

r*
5evtr v

ˆD1~123pra!21
†p22/3r 22a/3~12pra!2/3

3@3v1a23~v13a!pra#

1~v13a!pra~223pra!~12pra!21
‡

1D2pra~12pra!21~123pra!21
‰, ~3.76!

where

D152
9p2/3

20a
c1 , ~3.77!

D252
3v

2a S c22
4

9p
c3D . ~3.78!

Since we consider only the case ofp,0, the coordinater
can be taken from 0 tò . We demand the regularity cond

tion thatd
(L)

r̃ /r* should be finite at the boundary,r 50 and
r 5`. This condition implies that D1 modes with
2a/3<v<a and D2 modes with2a<v<a are allowed.
The mode withv50 corresponds to a change ofp in the
self-similar solution, Eqs.~3.59!, and r* remains constan
independent oft in the direction. Although this fixed point is
not a repeller, it has many relevant modes,D1 with 0,v<a
andD2 with 0,v<a. Note that a suitable linear combina
tion of theD1 andD2 modes will have an asymptotic beha
ior 'r v22a at r 5`. For such modes, 2a/3<v<2a is al-
lowed. These modes which satisfy the regularity condit
are not discrete but continuous. We suppose that this sp
feature arises because our matter is assumed to be dus
summarize, the possible value ofv ranges from2a to 2a.
The flow of the RG in the vicinity of the fixed point is show
in Fig. 1.

In the case ofc5p50 where the fixed point correspond
to the flat Friedmann universe, thec2 modes in the density
contrast~3.73! are gauge modes. The regularity conditi
implies that thec1 mode with v52a/3 and thec3 mode
with v52a are allowed. This result corresponds to the h
mogeneous and isotropic case in the previous section. C
pared with the usual cosmological perturbation in the s
n
ial
To

-
m-
-

chronous comoving reference frame, this result appears t
strange because the only spherical modes of the linear
turbation allowed are constant in space. However, the t
coordinate used in this RG method is different from the us
cosmic time coordinate, and the solution allowed by t
regularity condition in each case does not coincide in g
eral. Moreover, in the homogeneous universe, there is
nontrivial characteristic profile of field variables. If the fixe
point is a homogeneous universe, the RG method may h
no advantage since the RG approach respects the self-si
profile. But if the fixed point is an inhomogeneous univer
we believe that the RG method may be useful.

Compared with thec50(p,0) case, the value ofv al-
lowed in the case (p50) is the lower limit in the case
(p,0). The effect of the nonlinearity of gravity makes th
growth rate of the density contrast large.

For c.0,

b~r !5r vH 2
1

9c2
c1F2~coshh21!2

3sinhh~sinhh2h!

coshh21 G
1

1

2c
c2Fcoshh212

sinhh~sinhh2h!

coshh21 G
2

c1/2sinhh

coshh21
c3J . ~3.79!

The density contrast is

FIG. 2. TBSS represents the Tolman-Bondi solution with se
similarity in the case ofc.0 andp,0. The axes correspond to th
modes of linear perturbation, Eq.~3.83!.
d
~L !

r

r*
5

evtr v

aF2r a

9c
~coshh21!2

c1/2sinhh

coshh21G H
1

9c2
c1F ~v13a!r aS 2~coshh21!2

3sinhh~sinhh2h!

coshh21 D

1
27c3/2a

2 S 2
sinhh

coshh21
1

~2coshh11!~sinhh2h!

~coshh21!2 D G2
1

2c
c2F r aS 2a~coshh21!2~v13a!

sinhh~sinhh2h!

coshh21 D
1

9c2/3

2 S ~v2a!sinhh

coshh21
1

a~2coshh11!~sinhh2h!

~coshh21!2 D G1c1/2c3S ~v13a!r a
sinhh

coshh21
2

9ac2/3~2coshh11!

2~coshh21!2 D J .

~3.80!

The gauge mode is given by
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d
~L !

r g

r*
5 f r v11evt

r* 8

r*

52
a f evtr v

F2r a

9c
~coshh21!2

c1/2sinhh

coshh21GF
4

9c
r a~coshh21!2

4c1/2sinhh

coshh21
1

9c2r 2a~2coshh11!

2~coshh21!2 G . ~3.81!

Similarly to the case ofc50, we demand the regularity condition atr 50 andr 5`.
~i! Case 1 (p,0). We use the following convenient gauge condition:

f 5
1

4a2H v13a

c
c1F223

sinhh0~sinhh02h0!

~coshh021!2 G2
9

2
c2F2a2~v13a!

sinhh0~sinhh02h0!

~coshh021!2 G1
9c2/3~v13a!sinhh0

~coshh021!2
c3J ,

~3.82!

whereh5h0 corresponds tor→` andh0 is thus given by sinhh02h0529pc3/2/2.

By using the above condition, Eq.~3.82!, we obtain the physical perturbationd
(L)

r̃ 5d
(L)

r 1d
(L)

r g as follows:

d
~L !

r̃

r*
5

evtr v

aF2r a

9c
~coshh21!2

c1/2sinhh

coshh21GXD1
1H 3~v13a!r a~coshh21!S sinhh0~sinhh02h0!

~coshh021!2
2

sinhh~sinhh2h!

~coshh21!2 D
1

9c3/2

2 F S 4v19a26~v13a!
sinhh0~sinhh02h0!

~coshh021!2 D sinhh

coshh21
13a

~2coshh11!~sinhh2h!

~coshh21!2 G J
1D2

1F ~v13a!r a~coshh21!S sinhh

~coshh21!2
2

sinhh0

~coshh021!2D 2
9c3/2a~2coshh11!

2~coshh21!2

1
9~v13a!c2/3sinhh0

4~coshh021!2 S 4sinhh

coshh21

9c3/2~2coshh11!

2~coshh21!2r a D GC, ~3.83!
th
g

r

e

is
where

D1
15

1

9c2
c1 , ~3.84!

D2
152

9pc1/2

4 S c22
4

9p
c3D , ~3.85!

and sinhh2h59c3/2(r 2a2p)/2.
The regularity condition atr 50 and r 5` implies that

D1
1 modes withv5a and D2

1 modes with 0<v<a are
allowed. In this case, this fixed point is a repeller up to
zero mode because all other modes which satisfy the re
larity condition have a positivev. Note that a suitable linea
combination of the D1

1 and D2
1 modes will have an

asymptotic behavior'r v22a. Therefore the possible valu
of v ranges from 0 to 2a. The flow of the RG in the vicinity
of the fixed point is shown in Fig. 2.

~ii ! Case 2 (p50). The gauge condition which we use

f 52
9

4a
c2 . ~3.86!
e
u-

By using the above condition, Eq.~3.86!, we obtain the
physical perturbation

d
~L !

r̃

r*
5

evtr v

aF2r a

9c
~coshh21!2

c1/2sinhh

coshh21G
3H D1

1F ~v13a!r aS 2~coshh21!

2
3sinhh~sinhh2h!

coshh21 D1
27c3/2a

2

3S 2
sinhh

coshh21
1

~2coshh11!~sinhh2h!

~coshh21!2 D G
1D2

1S ~v13a!r asinhh

coshh21
2

9ac2/3~2coshh11!

2~coshh21!2 D J ,

~3.87!
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where

D1
15

1

9c2
c1 , ~3.88!

D2
15c1/2c3 . ~3.89!

The regularity condition atr 50 andr 5` implies that no
modes are allowed.

From the linear perturbation analysis around the fix
point, we see that the long-time behavior of the spherica
symmetric dust universe is separated into two types. On
the case that the fixed point is a repeller. In this case,
Tolman-Bondi solution with self-similarity does not play a
important role in an expanding universe because this fi
point is unstable and the spacetime will diverge from t
fixed point. In the other case, the fixed point has both
evant and irrelevant modes. Although this fixed point is no
repeller, it has continuously many relevant modes. Thus
not as straightforward as in the case of gravitational colla
@3# to extract the long-time behavior of the universe, beca
it is sensitive to the initial condition and therefore we cann
uniquely predict the outcome. In the final section, we brie
discuss how to treat the fixed point which has many relev
modes of the perturbation.

IV. SUMMARY AND DISCUSSION

We considered the spherically symmetric but inhomo
neous universe filled with dust, where the Einstein equati
have scale invariance, Eqs.~3.39!–~3.43!, and applied the
renormalization group~RG! method to study its long-time
asymptotics. The fixed point of the RG transformation is
self-similar solution with scale invariance of the Einste
equations. In order to study the flow of the RG around t
fixed point, the linear perturbation analysis is used. We
pose the perturbation on the regularity at the boundary wh
the radial coordinater equals zero or infinity. This boundar
means that the area radius equals zero or infinity in the c
of c50; on the other hand, in the case ofc.0, it equals a
finite or infinity. The fixed point is the Tolman-Bondi solu
tion with self-similarity, which includes the flat Friedman
universe. The behavior of the fixed point is separated i
two types. Both types have many relevant modes of the
turbation. The fixed points of the RG flow are self-simil
solutions of the Einstein equations, which are worth study
in their own right and have been studied by many peo
@10,11#. Our approach has an obvious advantage that
fixed point is in general not always spherical symmetric l
the Tolman-Bondi solution of the dust filled universe. Mo
importantly, we can systematically treat thedynamicsof the
universe near the self-similar solution, adopting the scale
a ‘‘time’’ of the evolution. The RG flow near the fixed point
is a new aspect in the study of the self-similarity in the u
verse@12#.

The Tolman-Bondi solution with self-similarity is un
d
y
is
e

d
s
l-
a
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e
e
t
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-
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s
-
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g
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-

stable against almost all spherical modes of linear pertu
tion. The spacetime will deviate from this fixed point. It
necessary to study the nonspherical mode of perturbatio
say something more definite. In the cosmological proble
only the statistical quantities are meaningful if we think of
comparison with observations. There are some works in
RG approach@13–15# on the universe which has a hierarch
cal structure. We may contemplate further developmen
the RG approach to the cosmology formulated in the pres
work by introducing some kind of volume or statistical a
erage for observables such as the energy density and
Hubble constant of the universe. A statistical concept
needed not only for comparison with observations but a
for us to proceed further in the analysis of the RG equat
because we have continuously many relevant~growing!
modes around the fixed points. That is, the long-time beh
ior of the universe is sensitive to the initial configuratio
over which we have noa priori control and we have to
consider the statistical likelihood of the initial values.

We remark that the introduction of a volume average in
finite region of the universe potentially introduces the sc
invariance violation by hand because the exact scale inv
ance holds only for an infinite space. Note that in quant
field theories and statistical physics of the second-or
phase transition the scale invariance violations are hidde
the form of a cutoff of the spectrum of physical modes. W
shall elaborate our present observation in our future wor

The self-similar solution given by Eqs.~3.52! and ~3.53!
through the fixed point of the RG equation is essentially
function of t21/ar 5t121/ar /t, which is roughly the fraction
of the physical distance to the horizon scale of the Fri
mann universe. Also note that in the case of a nonlin
diffusion equation, Eq.~2.6! implies that the self-similar so
lution is a function of the ratio of the distancex to the dif-
fusion lengthAt. In the both cases, the self-similar solutio
is a function of the distance in units of a physically releva
time-dependent scale. We believe this is a general phen
enon and the physical background of the RG equation wh
governs how dynamical variables deviate from the se
similar solution.
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APPENDIX: TOLMAN-BONDI SOLUTION
WITH SELF-SIMILARITY

In the spherically symmetric universe filled with dust, th
most general solution of the Einstein equations is
Tolman-Bondi solution@16#:
A~r ,t !5
B8~r ,t !

A11C1~r !
, ~A1!



B~r ,t !55
S 9C2~r !

4 D 1/3

@ t2C3~r !#2/3 for C1~r !50,

C2~r !

2C1~r !
~coshh21! S t2C3~r !5

C2~r !

2C1
3/2~r !

~sinhh2h!D for C1~r !.0,

C ~r ! C ~r !

~A2!

3350 57OSAMU IGUCHI, AKIO HOSOYA, AND TATSUHIKO KOIKE
2

2uC1~r !u ~12cosh! S t2C3~r !5
2

2uC1
3/2~r !u

~h2sinh!D for C1~r !,0,

kr~r ,t !5
C28~r !

B2B8
, ~A3!
n
se
ur

t

whereC1(r ), C2(r ), andC3(r ) are arbitrary functions ofr
and a prime denotes the derivative with respect tor . By
takingC1(r )5c, C2(r )54r a/9, andC3(r )5pra, we obtain
the Tolman-Bondi solution with self-similarity, Eqs.~3.57!–
~3.67!.

As for the calculation of linear perturbation, since we co
centrate on the spherical modes of perturbation around a
similar solutions, it is enough to consider the linear pert
bation of the arbitrary functionsC1(r ), C2(r ), and C3(r ).
The perturbed quantitiesdC1(r ), dC2(r ), and dC3(r ) can
be expressed by a superposition of modes with differenv
and taken in the following form:

dC1~r !5c1r v, ~A4!
l.

ns
-
lf-
-

dC2~r !5c2r v1a, ~A5!

dC3~r !5c3r v1a. ~A6!

By a coordinate transformation ofr ,

r→r 1F~r !, ~A7!

whereF(r ) is an arbitrary function ofr , we obtain the gauge
mode of linear perturbation. This functionF(r ) also can be
expressed by the superposition of modes with differentv in
the form

F~r !5 f r v11. ~A8!
ate
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there is no physical meaning of this point because the Eins
equations are found to be regular at this point.
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