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Complete treatment of CMB anisotropies in a FRW universe
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We generalize the total angular momentum method for computing cosmic microwave background anisotro-
pies to Friedmann-Robertson-WalkgfRW) spaces with arbitrary geometries. This unifies the treatment of
temperature and polarization anisotropies generated by scalar, vector and tensor perturbations of the fluid, seed,
or a scalar field, in a universe with constant comoving curvature. The resulting formalism generalizes and
simplifies the calculation of anisotropies and, in its integral form, allows for a fast calculation of model
predictions in linear theory for any FRW metric.
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PACS numbd(s): 98.70.Vc, 98.80.Es

I. INTRODUCTION of Seljak and Zaldarriaggb], which has been made publicly
available.
The study of the cosmic microwave backgroui@MB) The outline of the paper is as follows: we begin by estab-

radiation holds the key to understanding the seeds of théshing our notation for fluctuations about a FRW back-
structure we see around us in the universe, and could pote@round cosmology in Sec. Il. We then present the Boltzmann
tially enable precision measures for most of the importangguation in our formalism in Sec. I, which contains the
cosmological parameters. For this reason, as well as becaugin results. We give some examples and discuss applica-
of its intrinsic interest, one would like a physically transpar-tions in Sec. IV. Some of the more technical parts of the
ent framework for the study of CMB anisotropies which is asderivations(the Einstein, radial and hierarchy equatipase

general, powerful, and flexible as possible. presented in a series of three Appendices.
Theoretically, the calculation of CMB anisotropies is
“clean,” involving as it does only linear perturbation theory. ||. METRIC AND STRESS-ENERGY PERTURBATIONS

However, the calculations can become quite complex once ) ) ) )
one allows for the possibility of non-flat universes, non- In this section, we discuss the representation of the per-
scalar perturbations to the metric, and polarization as well alirbations for the cosmological fluids and the geometry of
temperature anisotropies. Recently Hu and White pre-  SPace-time. We start by. defining the k_)aS|s in wh|ch.we shall
sented a formalism for calculating CMB anisotropies which€xPand such perturbations and their representation under
treats all types of perturbations, temperature and polarizatioh@rious gauge choices. _ _
anisotropies, and hierarchy and integral solutions on an equal W& assum;e that the background is described by a FRW
footing. The formalism, named the total angular momentuninetric g,,,=ay,, with scale factora(t) and constant co-
method, greatly simplifies the physical interpretation of themoving curvatureK = —Hg(1— Q) in the spatial metric
equations and the form of their solutiofsee e.g[2]). How- vij - Here greek indices run from 0O to 3 while latin indices
ever, it was presented in detail only for the case of flat spatialun over the spatial part of the metricj=1,2,3. It is often
hypersurfaces. Here we generalize the treatment for theonvenient to represent the metric in spherical coordinates
curved spaces of open and closed Friedmann-Robertsoihere
Walker (FRW) universes. o

Aspects of this method in opefhyperbolic, negatively yijdxXdx = K| [ dx?+sing x(d6?+sirfed¢?)], (1)
curved geometries have been introduced in Hu and White
[3] and Zaldarriaga, Seljak, and Bertschinddi for the  with
cases of tensor temperature and scalar polarization respec-
tively. The latter work also addressed methods for efficient [sinr()(), K <0,
implementation through the line of sight integration tech- sing(x)=1 _. (2
nique [5]. In this paper, we complete the total angular mo- sin(x),  K=0,

mentum method for arbitrary perturbation type and FRW
y P P :where the flat-limit expressions are regainedKas 0 from

metric, paying particular attention to the case of open uni- ;
verses because of its strong observational motivation. As afi?0Ve or below. The component corresponding to conformal

example we use this formalism to compute the temperatuere

and polarization angular power spectra of both scalar and

tensor modes in critical density and open inflationary mod- X0= = J' i 3)
els. We incorporated the formalism into to®BFAST code a(t)
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iS Yoo= — 1. to the curvature scale even gs-0. We often go between
Small perturbation$ ,, around this FRW metric the variable setsk »), (q,#n) and (v,x) for convenience.
— a2
9r =8 (Yr Ths), “) B. Perturbation representation
can be decomposed into scalan0, compressional vec- A general metric perturbation can be broken up into the

tor (m==x1, vortica) and tensor fi==2, gravitational normal modes of scalan{=0), vector fn=+1) and tensor
wave) components from their transformation properties un-(m= +2) types:
der spatial rotation§6,1].

Ron= — 2A(M (m),
A. Eigenmodes 00 ; Q

In linear theory, each eigenmode of the Laplacian for the

perturbation evolves independently, and so it is useful to hOi:_E BMQM
decompose the perturbations via the eigente@$8t, where m '
vIQM=IQ[f’= —k*}Q'™, (5)

hij=2 2H™Q ™y + 2HM Q™.
with “|” representing covariant differentiation with respect m (13)
to the three metricy;; . Note that the eigentens@®™ has

Im| indices (suppressed in the aboveVector and tensor Ngte that scalar quantities cannot be formed from vector and
modes also satisfy the auxiliary conditions tensor modes so that(™ =0 andH(Lm)=0 for m#0: like-

Q=Vli=g wise, vector quantities cannot be formed from tensor modes
! ’ so thatB(M=0 for |m|=2.
YiQ*2=Q(*2li=q ©6) There remains gauge freedom associated with the coordi-
ij ij ’

nate choice for the metric perturbatiofsee Appendix A2

which represent the divergenceless and transverse-tracelds&S typically employed to eliminate two out of four of these
conditions respectively, as appropriate for vorticity and gray-duantities for scalar perturbations and one of the two for

ity waves. In flat space, these modes are particularly simpl¥€Ctor perturbations. The metric is thus specified by four
and may be expressed as quantities. Two popular choices are tfgnchronougauge,
where
(=m) A n AL >
Qi, i, ©(ertiey) ... (e Fiey); expik-x), HO=h,, HO=h,,

(K=0m=0), (7) HP=h,, HP=H, (14)

whgre t.heApre§ence o Wh'Ch, forms a local orthonormal and the generalizetbr conformal Newtoniangauge, where
basis withe;=k, ensures the divergenceless and transverse-

traceless conditions. AQO=y¢ pBh=y
It is also useful to construgauxiliary) vector and tensor
objects out of the fundamental scalar and vector modes HO—p HP=H (15)
L ’ T .

through covariant differentiation

1 Here and below, when only the=0 expressions are dis-
QV=— k—1Q|<i0) ' Qi(jm: k—2Q|<i(J?>+ ~7%Q,  (® played, them<0 expressions should be taken to be identical
3 unless otherwise specified.
The stress energy tensor can likewise be broken up into
Q[ Y=—(2k " HQf; '+ Qjji ™). (9 scalar, vector, and tensor contributions. Furthermore, one can
) _ separate fluid f{) contributions and seeds) contributions.
The completeness properties of these eigenmodes are difpg |atter is distinguished by the fact that the net effect can

cussed in detail ifi6], where it is shown that in terms of the g \jewed as a perturbation to the background. Specifically

generalized wavenumber Lw:?uﬁ 5T,, where To%=—p;, T0=To=0 and

q=Vk*+(Im+ 1)K, v=q/|K|, (10 Tij = pf(S‘j is given by the fluid alone. The fluctuations can be
decomposed into the normal modes of Sec. Il A as
the spectrum is complete for

»=0, K<O, (12) 5T°o=—% [pr o™+ ps]Q™, (16)

=3,4,5..., K>0. (12
: . . . . STO. = + (m_ g(m)
A deceptive aspect of this labeling is that for an open uni- : % [(pr+Po) vy )
verse the characteristic scale of the structure in a mode is (7 ()
27x/k andnot 27/q, so all functions have structure only out Tus 1Q, 17
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—E [(pf+pf)v(fm)+v<m)]Q(m)i, Ill. BOLTZMANN EQUATION
m S The Boltzmann equation describes the evolution in time
(18) () of the spatial ) and angular ) distribution of the
radiation under gravity and scattering processes. In the nota-

22 [5p$m)+ D] 5ijQ(m)+[pfﬂ_$m) tion of [2], it can be w;tten implicitly as
+ps]Q(m)] . (19) ET(nixan)EET—Fan‘l:C[T]—’_G[h,uy]i (23)
Since 8{™=sp{™=0 for m+#0, we hereafter drop the su- whereT=(0,Q+iU,Q—iU) encapsulates the perturbation
perscript from these quantities. to the temperatur® = AT/T and the polarizationiStokesQ
A minimally coupled scalar field> with Lagrangian and U parametersin units of the temperature fluctuation.

The termC accounts for collisions, here Compton scattering
1 of the photons with the electrons, while the te@raccounts
L=— 2 [—9[9*d,0d,0+2V(e)] (20)  for gravitational redshifts.

] . . A. Metric and scattering sources
can be treated in the same way with the associations

The gravitational termG is easily evaluated from the
Euler-Lagrange equations for the motion of a massless par-

1, e i , _
Ps=Pgyt 2V=§a*2¢2+v, 21) ticle in the background given by,,, [6,9,10:

1 . 1
j M+ =0 e
for the background density and pressure. The fluctuations G[h/”] n n'h j+nhoi+ 2" hooi,0.0). (24

o= ¢+ 5¢ are related to the fluid quantities gg o ) ) o
Note that gravitational redshifts affect different polarization

states alike. As should be expected, the modification from

Opy= 0Dyt 2V yob=a 2pdp— A0 P2 +V 56, the flat space case involves the replacement of ordinary spa-
tial derivatives with covariant ones.
(pgt p¢)(v(0) BO)=a"2k¢se, The Compton scattering ter@ was derived in[1,4] in
the total angular momentum language. Though the basic re-
Py 77(0)—0 (22)  sult has long been knowii1,12, this representation has the

virtue of explicitly showing that complications due to the
The evolution of the matter and metric perturbations fol-angular and polarization dependence of Compton scattering
lows the Einstein equatiorG,,=87GT,, and incorporates come simply through the quadrupole moments of the distri-
the continuity and Euler equations through the impliedbution. Here
energy-momentum conservatid#t”.,= 0. We give these re-
lations explicitly for the scalar, vector and tensor perturba- F(h) - (f_®,+n 5.0 0”
tions in both Newtonian and synchronous gauge in Appendix B
A (see alsd8)). , 5
These equations hold equally well for relativistic matter T -, N
such as the CMB photons and the neutrinos. However, in *10) 9N m:2_2 P™(nn)T(n), (25
that case they do not represent a closed system of equations
(the equation of motion of the anisotropic stress perturbawhere the differential cross section for Compton scattering is
tions 7{™ is unspecifieland do not account for the higher r=n.,ora wheren, is the free electron number density and
moments of the distribution or for momentum exchange beo is the Thomson cross section. The bracketed term in the
tween different particle species. To include these effects, weollision integral describes the isotropization of the photons
require the Boltzmann equation which describes the evoluin the rest frame of the electrons. The last term accounts for

tion of the full distribution function under collisional pro- the angular and polarization dependence of the scattering
cesses. with

[T]——T

, 3 3
Y2'Y? - \[zzvgwg* — \[E_ngwg“

PM=1 — 6 Ym’zYm 3,Y],Y] 3.,Y, Y;” , (26)
—VJBYR YD 3V YR 3L,YE
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where YV=Y™(n’) and Y"=.,Y™(n’) and the
unprimed harmonics have argumeﬁnt Here (Y are the
spin-weighted spherical harmonigs3-15,1.

i q
nl(sG|m)\i :m[sKlm(selnll) _sKln]rl(sGln]rl)]

. aqms m
AES (20

B. Normal modes

constructed from the lowedtmode of Eq.(B2) with the

The temperature and polarization distributions are func ) e
coupling coefficient

tions of the position? and the direction of propagation of the

photonsn. They can be expanded in modes which account . \/ (17—m?)(1°—s?) 12
for both the local angular and spatial variatiop&™(x,n), K= 12 1= ?K : (3D
ie.,
The structure of this relation is readily apparent. The recur-
- - d3q 2 (M) ~m sion relation expresses the addition of angular momentum
O(n,x,n)= (277)32 22 0;"G", (27 and is the defining equation in the total angular momentum
m= method. It says the “total” local angular dependencésaty)
the origin is the sum of the local angular dependence at dis-
. d3q tant points(“spin” angular momentum plus the angular
(Q=iU)(n,x,n)= WE variations induced by the spatial dependence of the mode
! (“orbital” angular momentuny.
2 The recursion relation represents the addition of angular
X >, (EM™=+iB{™).,G", (289  momentum for the case of an infinitesimal spatial separation.
m=-2

Here the leading order spatial variation is the gradient
[n‘(SG,’“)“] term which has an angular structure of a dipole
with spin s=0 describing the temperature fluctuation andY3. The first term on the rhs of Eq31) arises from the
s=+2 describing the polarization tensd#, andB, are the Clebsch-Gordan relation that couples the Orb‘ﬁ%l\/\lith the
angular moments of the electric and magnetic polarizationntrinsic Y" to form | =1 states,
components. It is apparent that the effects of the local scat-
tering procesé is most simply evaluated in a representation /4_7TY0 Y = ' (Y™ )
where the separation of the local angular and spatial distri- 3 s 2+1)2-1) ° 't
bution is explicit[1], with the former being an expansion in

sY|". The subtlety lies in relating the local basis at tdif Clh 1 "
ferentcoordinate points, say, the last scattering event and the 21+ 1)(21+3) (sYi+1)
observer.

In flat space, the representation is straightforward since ms
the parallel transport of the angular basis in space is trivial. - m(s\ﬁm), (32)

The result is a product of spin-weighted harmonics for the
local angular dependence and plane waves for the spatiglhere the coupling coefficient is
dependence:

L= V(1?2=m?)(12=?)/12.

- A . | 4m A - The second term on the rhs of the coupling equat&)
m —( _ | m . =
CGrixm=(=1) 21+ 1[SY' (n)Jexp(ik-x),(K=0). accounts for geodesic deviation factors in the conversion of

(29 spatial structure into orbital angular momentum. Consider
first a closed universe with radius of curvatuRe=K %2,
Suppressing one spatial coordinate, we can analyze the prob-

Here we seek a s!mllar construction in an cury_ed geometry, m as geometry on the 2-sphere with the observer situated at
We will see that this construction greatly simplifies the scalar,

. : the pole. Light travels on radial geodesics or great circles of
harmonic treatment 16,174 and extends it to vector a_nd fixed longitude. A physical scabe at fixed latitudegiven by
tensor temperatur¢3] modes as well as all polarization

modes the polar angley) subtends an angle=\A/Rsiny. In the
To generalize these modes to the curved geometry, W%mall angle approximation, a Euclidean analysis would infer

wish to replace the plane wave with some spatially depen"—’1 distance of

dent phase factor e[d@(i,l?)] related to the eigenfunctions D(d)=Rsiny=K YZsiny (K>0), (33

QM of Sec. Il A while keeping the same local angular de- _ _ _
pendence(see Eq. C2 By virtue of this requirement, the called here theang_ular d|ame§er_ d|stanceF.or. negatwely
Compton scattering terms, which involve only the local an-Curved or open universes, a similar analysis implies

gular de_pendence, re_tain Epe same form as in flat space. In D(d) = K| Y3sinhy (K<0). (34)
Appendix C, we deriveG," by recursion from covariant

contractions of the fundamental ba§¥$™. The result is a Thus the angular scale corresponding to an eigenmode of
recursive definition of the basis wavelength\ is
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Y 1 tering sources of these equations follow from E@!) and
0= Rsinhy ~ vsinhy (39 (25) by noting that the spin harmonics are orthogonal:
For an .infin_itesimal changg, orbital angular momentum of f dO( Y™ SYW,*): 81+ S 37)
orderl is stimulated when

The termn‘ﬂi is evaluated by use of the coupling relation
Eq. (30) for n'(SG,m)“ . It represents the fact that spatial gra-
dients in the distribution become orbital angular momentum

_ | 21 )2 as the radiation streams along its traject&(ﬁ). For ex-
K a[1+ O(7K/a)], (36) ample, a temperature variation on a distant surface surround-
ing the observer appears as an anisotropy on the sky. This
which explains the factors afK/qg® in the coupling term in  process then simply reflects a projection relation that relates
a curved geometry. We shall see in Sec. Il D that thesejistant sources to present day local anisotropies.

infinitesimal additions of angular momentum and geodesic \jith these considerations, the temperature fluctuation
deviation may be encorporated into a single step by findingyolves as

the integral solutions to the coupling equati@o).

X~ 5L+ 0026,

m m
. ‘ (M) _ 0K a(m _ 0K +1
C. Evolution equations 0, q 21-1) 0,71 (21+3)

O[T, |~ 7+

It is now straightforward to rewrite the Boltzmann equa-
tion (23) as the evolution equations for the amplitudes of the (I=m), (38)
normal modes of the temperature and polarization

T(M=0(™ EM™ B(™). The gravitational sources and scat- and the polarization as

. m 2m K" .
m_o 26 M om 2K%1 cmy | e, Epm)
EI q (2|_1) EIfl |(|+1) BI (2|+3) E|+1 7'[EI + 6P 5I,2]!
m m
S (m) _ 2K (m) (m_ 2K+1 oy | pm)
B q[(ZI—l) S aFD B T @iy i TR 39

The temperature fluctuation sources in Newtonian gauge are
00-0 wQ+kv PO
sm=| 0 sV 7pO (40)
0 0 P?—H

and in synchronous gauge,

. o : 2 -
T®(00)—h|_ TU(BO) TP(O)_§\/1_3K/k2hT

(m) _ . . 3 .
S 0 TP<1>—§ 1-2K/ihy | 4
0 0 P@—H

where rows representn=0,1,2 and columns represent and note that the photon density and velocities are related to
=0,1,2. Thel=m=2 source does not contain a curvaturethel=0,1 moments as
factor because we have recursively defined the basis func-
tions in terms of the lowest member, whichlis 2 in this 5,=40, v"=0{"; (43)
case. In the above

whereas the anisotropic stresses are given by

1 dQ 1
P(M=—o[05" — VBES"] (42) w;m>Q§j"‘>=12f 4 ninj—gm)@m% (44)

T
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which relates them to the quadrupole momemts %) as For an open geometry, the same analysis follows save that
the spherical Bessel function must be replaced by a hyper-

(1—3K/K2) Y270 = 1_2(0) sphe_rical Bessel functiofalso ca!led u]tra—spheriqal Bessel

y 52 functiong in the manner described in Appendix B. The

qualitative aspect of this modification is clear from consid-

2 1/2 (1)_8\/5 1 2_8 2 ering the angular diameter distance arguments of Sec. Il B.

(1-2K/k) ¥y =——05", m =£03". (49  The peak in the Bessel function picks out the angle which a
scalek *~\/—Kv~! subtends at distance~ y/\/—K. A
The evolution of the metric and matter sources are given irspherical Bessel function peaks when its argunkeht| or

AppendicegA3)—(A5). N d=~ 6 in the small angle approximation. The hyperspheri-
cal Bessel function peaks &D= vsinhy~| for »>1 or
D. Integral solutions ND= 6 in the small angle approximation. The main effect of

The Boltzmann equations have formal integral solutionstSp""tIal curvature is simply to shift features lispace with

that are simple to find. The hierarchy equations for the tem-he angular d|amgter d'Sta“.C"-?' I.e., 1o higheor smaller
L ..~ angles in open universes. Similar arguments hold for closed

perature distribution Eq.38) merely express the projection . ; ; S

of the various plane wave temperature sourﬁﬁé@oGF‘ on geometrieg17]. By virtue of this fact the division of polar-

. . ization intoE andB-modes remains the same as that in flat
the.sky. today see Eq(41)]. Likewise Eq.(39) expresses the space. More specifically, for a single mode the ratio in power
projection of — J6P(M e~ 7, ,G". is given by

The projection is obtained by extracting the total angular
dependence of the mode from its decomposition in spherical

coordinates, i.e., into radial functions times spin harmonics Z ['ﬂfm)]z 0, m=0,
sY|". We discuss their explicit construction in Appendix B. — =4 6, m==*1, (47)
The full solution |mmed|ateily foIIOW§ by integrating the pro- 2 [l E§m>]2 8/13, m=+2,
jected source over the radial coordinate, [
®|(m)(7lo,Q): " e S gl glim at fixed source distance with vsing>1.
21+1 o K T roo The integral solutiong46) are the basis of the “line of
sight” method [5,14] for rapid numerical calculation of
E|<m>(7]0,q) CMB spectra, which has been employeddmBFAST. The

ST 1 fﬂod nre”(—J6PM)e™m numerical implementation of equations E¢#6) requires an
0 efficient way of calculating the radial functiong(,¢,,8).
m This is best done acting the derivatives of the hyperspherical
B (70.,9) _ ”Od e~ (- \/gp(rm)B(m) Bessel function in the radial equatio(®3)—(B5) and (B11)
21+1 0 K b on the sources through integration by parts. The remaining
(46) integrals can be efficiently calculated with the techniques of

] . [4] for generating hyperspherical Bessel functions. The ten-
where the arguments of the radial functions (€,5) are  sorcmBrAsT code has now been modified to use the formal-

the distance to the sourge= y—K(7o— %) and the reduced ism described in this paper and the results have been cross
wavenumber v=q/y—K (see Appendix B for explicit checked against solutions of the Boltzmann hierarchy equa-

forms). tions (38) and (39) with very good agreement.
The interpretation of these equations is also readily appar-

ent from their form and construction. The decomposition of
sG] into radial and spherical parts encapsulates the summa- . ) ) ) )
tion of spin and orbital angular momentum as well as the The final step in calculating the anisotropy spectra is to
geodesic deviation factors described in Sec. Il B. The dif-integrate over th&-modes. The power spectra of tempera-
ference between the integral solution and the differentiafuré and polarization anisotropies today are defined as, e.g.,
form is that in the former case the coupling is performed inCi”~ =(|aim|?) for ®=3a,,Y" with the average being over
one step from the source at timﬁand distance(( 77) to the the (2| + 1) m-values. In terms of the moments of the pI'EVi-
present, while in the latter the power is steadily transferred t®Us section,
higherl as the time advances.

Take the flat space case. The intrinsic local angular mo- (2l +1)2C>&:3f dq
mentum at the pointy,n) is ;Y] but must be added to the '
orbital angular momentum from the plane wave which can
be expanded in terms ¢fY{. The resultis asum df—j| to ~ whereX takes on the value®, E andB for the temperature,
|+j angular momentum states with weights given byelectric polarization and magnetic polarization evaluated at
Clebsch-Gordan coefficients. Alternately a state of definitdhe present. For a closed geometry, the integral is replaced
angular momentum involves a sum over the same range iy a sum oven/|K|=3,4,5 ... . Note that there is no cross
the spherical Bessel function. These linear combinations atorrelationCP® or CE® due to parity.

Bessel functions are exactly the radial functions in &) We caution the reader that power spectra for the metric
for the flat limit [1]. fluctuation source®,,(q)=(h*(q)h(qg)) must be defined in

E. Power spectra

2
SO A
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FIG. 1. The scalafleft) and tensofright) angular power spectra
for anisotropies in a critical density modghick lineg and an open
model(thin lines with Q,=0.4. Solid lines arec’® , dashedCFE
and dottedCP®.
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FIG. 2. The scalar(left) and tensor (right) temperature-
polarization cross correlatioﬁ:,("’E with the same parameters and
notation as Fig. 1(thick: flat; thin opef. Dotted lines represent
negative correlation.

a similar fashion for consistency and choices between varieonvention of{14]. In the notation of(15], the temperature

ous authors differ by factors related to the curvatises[ 18]
for further discussion To clarify this point, the initial power

power spectra agree but for polarizatiof®?8=C¢/2 and
CPE=-CJ%\2.

spectra of the metric fluctuations for a scale-invariant spec-

trum of scalar modes and minimal inflationary gravity wave

modes[3] are

1
Pcp(Q)“m,

(q%+4

)
PH(Q)“mtanV(Trq/Z),
(49

where the normalization of the power spectrum comes fro

IV. RESULTS

We now employ the formalism developed here to calcu-
late the scalar and tensor temperature and polarization power
spectra for two CDM models one with critical density and
one with Qy=1-Qx=0.4 with initial conditions given by
Eq. (49. In general, there are two classes of effects: the
geometrical and dynamical aspects of curvatisee Fig. L

On intermediate to small scalésrgel), only geometri-
cal aspects of curvature affect the spectra. Changes in the
angular diameter distance to last scattering move features in

Mhe low4), models to smaller angular scalésigherl) as

the underlying theory for the generation of the perturbationsyiscussed in Sec. III. Since the Idwtail of the E-mode

This proportionality constant is related to the amplitude of
the matter power spectrum on large scales or the energy de

sity in long-wavelength gravitational wavgs8]. The vector

olarization is growing rapidly with, shifting the features to
igherl results in smaller large-angle polarization in an open
model for both scalar and tensor anisotropies. The suppres-

perturbations have only decaying modes and so are only s arger in the case of scalars than tensors since the low-

present in seeded models. The other initial conditions follo

W slope is steepdi].

from detailed balance of the evolution equations and gauge The presence of curvature also affects the late-time dy-

transformationgsee Appendix A

namics and initial power spectra. As is well known, the sca-

Our conventions for the moments also differ from those iNgr temperature power spectrum exhibits an enhancement of

[14,15. They are related to those pf4] by*
21+ 1A =0{"1(2m)%,

21+ 1AV =20(21(2m)%?, (50)
where the factor of/2 in the latter comes from the quadra-
ture sum over equam=2 and —2 contributions. Similar

relations forAgg’Bl occur but with an extra minus sign so

ﬂ1at(:CJ
The output ofcMBFAST continuesto be Cc; with the sign

'Footnote 3 of(1] incorrectly gives the relation betwedh and
AT .

CE with the other power spectra unchanged.

power at low multipoles due to the integrated Sachs-Wolfe
(ISW) effect during curvature domination. This does not af-
fect the polarization, assuming no reionization, as it is gen-
erated at last scattering. However, does affect the
temperature-polarization cross correlatisee Fig. 2. In an
open universe, the largest scalisvestl) pick up unequal-
time correlations with the ISW contributions which are of
opposite sign to the ordinary Sachs-Wolfe contribution. This
reverses the sign of the correlation and formally violates the
predictions of 19]. In practice this effect is unobservable due
to the smallness of signal. Even minimal amounts of reion-
ization will destroy this effect.

Open universe modifications to the initial power spectrum
are potentially observable in the large angle CMB spectrum.
Unfortunately subtle differences in the temperature power
spectrum can be lost in cosmic variance. While polarization
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provides extra information, in the absence of late reioniza- 2. Gauge transformations

tion the Iarge-anglg polarization is Ia.rgely a projection of 19 represent the perturbations we must make a gauge
small-scale fluctuations. Nonetheless in our univévaaeere choice. A gauge transformation is a change in the correspon-

reionization occurred before redshift=5) the large-angle  gence between the perturbation and the background repre-
polarization is sensitive to the primordial power spectrum atygnted by the coordinate shifts

the curvature scale. Thus if the fluctuations which gave rise
to the large-scale structure and CMB anisotropy in our uni- 7=n+TQM,
verse were generated by an open inflationary scenario based
on bubble nucleation, a study of the large-angle polarization
can in principle teach us about the initial nucleation event

[18]. T corresponds to a choice in time slicing alhda choice of

In summary, we have completed the formalism for calcu-g4tia) coordinates. Since scalar and vector quantities cannot

lating and interpreting temperature and polarization anisotrogq tormed from tensor modesné +2), no gauge freedom

pies in linear theory from arbitrary metric fluctuations in @ remaing there. Under the condition that metric distances be
FRW universe. The results presented here are new for NoRs, o riant they transform the metric &&]

flat vector and tensofpolarization) perturbations and we
have calculated the scalar and tensor temperature and polar-
ization contributions for open inflationary spectra. The open
tensor perturbation equations have been addetMBFAST
which is now publicly available.

X;j=x+LQ\™. (A3)
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The stress-energy perturbations in different gauges are
APPENDIX A: EINSTEIN EQUATIONS similarly related by the gauge transformations
In this Appendix, we complete the Boltzmann equations 3
of Sec. Ill by giving the Einstein equations for the metric and 3= 5;+3(1+wp)—T,
a

the matter. We begin with the background evolution and then
proceed to the fluctuations. It is occasionally convenient to
shift between different representations or gauges and thus we ~ ) a
first discuss the transformations that link them. We then de- op¢=0ps+3cipr(1+wp) T,
rive and present the Einstein equations for scalar, vector and

tensor perturbations in a universe with constant comoving T m |
curvature in the synchronous and Newtonian gau@es ve T '
also[8]).

—(m)

i = g (AB)

1. Background evolution Note that the anisotropic stress is gauge-invariant. Seed per-
The Einstein equation§ ,,=87GT,, express the metric turbations are also gauge-invariant to lowest order, whereas a
evolution in terms of the matter sources. The backgroungcalar field transforms as
evolution equations are

Sp=05¢p—T. (AB)

Pt a . :
—-+3(1+wp)1=0, The relation between the synchronous and Newtonian gauge
Pt equations follow from these relations.

<';'S+2§<'ﬁ+a2VY¢=O, (A1) 3. Scalar Einstein equations
With the form of the scalar metric and stress energy ten-
sor given in Eqs(A4) and (19), the “Poisson” equations

for the fluid and scalar field components respectively and become in the Newtonian gauge

a 87G 5
2] +K="—a(pi+pytpy)s (A2) (k?—3K)P=47Ga?

a 3 (Pt S5+ ps)

where w;=p;/p; and p,(¢) was given in Eq.(21) and

a
_ (0) (0)
p,=3H3Q, /187G is the vacuum energy. +3<’=1[(pfﬂ)f)vf TUs ]/k}' (A7)
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KAV +d)=—8wGa?(p;mi” + 7)), (A8) '
A §9g0+ %((9(10)—0(50)). (A14)
and in the synchronous gauge

For a seed source, the conservation equations become

1
hL+ _hT

(k?—3K) 3

a.
+3ah|_=47TGa2[pf5f+pS],

. a .
Ps= — 35(1)5"_ ps) - kvs ’

. 1 N 2 0
ho+ = (1—3K/k2) hy= —47Ga (p;+ py)v!® '
3 0 _ 22 0 2 270
0= 400+ pe— S(1- 3K/ 7L,

(0) 3
+0 @7k, (A15)

1 independent of gauge since the metric fluctuations produce
3 P16+ Opy higher order terms.

Finally for a scalar field,p= ¢+ ¢, the conservation
equations become

. a.
h, + ahLz —47Ga®

1
+ §Ps+ Ps

. a.
Sp+2 04+ (K2+a%V 44) 06=S,, (A16)

. a, 1
hr+ —hr—k2[ h + —hT) =—-8nGa p;mi¥+ 7]
a 3 where
(A9)
R .

Two out of four of the synchronous gauge equations are S, = (¥=3D)¢—2a"y ,¥, (Newtonian,
redundant. * | —3h. ¢, (synchronous

The corresponding evolution of the matter is given by (A17)

covariant conservation of the stress energy teiisgr. o
are the gravitational sources.
5 — (0 _ g2 —_ .
Or=—(1+wy)kvy _35 ows+Ss, 4. Vector Einstein equations

The vector metric source evolution is similarly con-
O a © structed from a “Poisson” equation: in the generalized New-
[(X+whoi] == (1+wp)_ (1=3wg)vi+wik 5ps/ps tonian gauge

. a
+809), (A10) V42_V=-8rGa’(pri’ +m{!)/k,  (A18)

2
- 5(1—3K/k2)w§°>

for the fluid part(see, e.g.[20]). The gravitational sources and in the synchronous gauge,

are :
. a.
. 4% — 200D+ 7D /K2,
—3(1+wp)®, (Newtonian, hy+22hy=—8rGa(pim+7s7)/k (A19)
S,= _ (A11)
—3(1+wph, (synchronous Likewise momentum conservation implies the Euler equa-
tion
and
i " (1 2 a y_ 1w 2y, (1 1
o | (I+wp)k¥, (Newtonian, viV=—(1-3cH)-v{” - Sk (1-2K/K})mV+ 8V,
(0) — (A12) a 2 1+ w v
v 0, (synchronouks (A20)

These equations remain true for each fluid individually in the,here recallc?=p;/p; is the sound speed and the gravita-
absence of momentum exchange, e.g., for the cold dark magynal sources are

ter. The baryons have an additional term to the Euler equa-
tion due to momentum exchange from Compton scattering

. a
with the photons. For a given velocity perturbation the mo- V+(1—3c$)av, (Newtonian),

(1) _
mentum density ratio between the two fluids is S,= (A21)
0, (synchronougs
petPs  3ps
R= ~— Al3 L
p,tp, 4p, (A13)  The seed Euler equation is given by
A comparison with the photon Euler equati¢®8; | =1) '(1):_4é (1)_Ek 1—2K/K2) 7L ADD
gives the source modification for the baryon Euler equation Us a’s "2 ( )7 (A22)
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Again, the Eq(A20) remains true for each fluid individually, 1 (1-1)(1+2)
save for momentum exchange terms. The baryon Euler equa- €/ (x,»)=5\/ —>—~——5—-—cschy[ cothy®/(x)
. . . 2 V(v +4)(ve+1)
tion has an additional term in the source of the same form as
+

Eq. (A14) with m=0—m=1. @1 (x)],

5. Tensor Einstein equations 1 1
N . , e?(xv) =2\ o L ()
The Einstein equations tell us that the tensor metric 4 N (v+4)(vo+1)

source is governed by + 4cothy®,"" (x)
|

. —(v?>—1—2cotttx)®/(x)], (B4)
Fi+ 22+ (K2+ 2K)H =8 G a?[ py 2+ m?)]
a TOALPTy T s and
(A23)
B (x,1)=0,
for all gauges.
D) 1 [(1-1)(1+2)»? ()
W)=\ 23—+ —>—-CSC ,
APPENDIX B: RADIAL FUNCTIONS Brxm)=3 (v +4)(v*+1) X
It is often useful to represent the eigenmodes in a spheri- 1 2
cal coordinate systemy(6,¢), wherey is the radial coor- ﬁfz)()(,v)=§ )AL
dinate scaled to the curvature radius. Here we explicitly write (v (v
down the forms and properties of the radial modes in an open X[D"(x)+2cothy D/ (x)], (B5)
geometry and describe the modifications necessary to treat
closed geometries. for m>0. For m<0, g{"™=—gM while the other two

By separation of variables in the Laplacian, we can writefynctions remain the same. Hetg(x) is the hyperspherical
Bessel function whose properties are discussed extensively
by [6].

GM= —iam2I+ 1) ™ (x.v) YR, The overall normalizatipn of the modes here has been
sl EI (=) Va4 ) s () SYE() altered from those df6,21] in the case of vector and tensor

(B1) temperature modes such that

and the goal is to find explicit expressions far{!™ . Here (im0, ) — 1 5 56
thel-weights are set to reproduce the flat-space conventions s (0)= 21+1 0 (B6)
of spherical Bessel functionsee alsd1]). We proceed by ) o
analyzing the lowest=min(|s|,|m|) harmonic where the difference lies in the lack of curvature dependence
in the relation. Our choice simplifies the equations since it
0(3}“: nit. .. nimQMm preserves the flat space form of the equations locally around

1 Nm)”’ the origin. It alsodefinesthe normalization of the polariza-

I . tion modes with respect tQ{["” through Eq.(B2).
+2G5c(myxim,)'i(myxim,) 2Qiiy» The properties of the hyperspherical Bessel functions im-
(B2)  ply useful properties for the radial functions. For our pur-
. . poses, the important relations they obey are
where m; and m, form a right-handed orthonormal basis
with n. We can now determinga{!™ from the radial repre- iq)lvziﬂ Nt
sentation ofQ(™ [21] dx 2l+1

—(|+1)\/Vz+(l+l)ZCD|”+l],

H%(x,v)=D}(x),
1

[(1+1 cothy®/= [VZ+1207
H P (x.v)= \/ﬁcsch(@f(x), 2+l i
P+ (I+ D)%), ], (B7)
&P (x,v)= \/§ (_lzﬂgl_)lcscﬁxq,qx) which define the series in terms of its first member
b 8 (12+4)(¥?+1) A%
(B3) sinv
0= Vsinf');(' (B8)
for ga{™M = (™ : similarly for . ,a{®™ =™ +ig(m
, Notice that limx_,o®/(x) =], (kr).
0) 3 (+2)(17=1)l ) From the recursion relations @b,’, one establishes the
e%(x.v) =g~z oz eseix P (x), . ! . ;
8 (v°+4)(v-+1) corresponding relations for the radial function
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41

2l+1

)= o s G, = (1) [Y'(R) Jexii (X, K)],

(C2

a[sal(

. vms ,
— M [ a(lm)] B — a(]m)],
il s3]} I(1+1) with | =j. We demand that the highémodes also do so to
(B9)  maintain the division of spin and orbital angular momentum
defined in flat spacgl].

for the lowestj, where recall We begin the construction by choosing some arbitrary
point >20, and using a spherical coordinate system around it,
2
m_ [(1Z-m9)(1°-s%)
sk = - 9z

X—Xo=/—Kx(—n). Now n defines both the intrinsic angu-
: (B10)  lar coordinate system and the angular coordinates for the
The construction of the higheyG[" via the recursion re-
lation of Eq.(30) also returns the higher radial harmonics. A

2
1+
V2

spatial Iocatiorb_i()(,ﬁ). This reduction in the dimension of
the space is sufficient since the end goal is to derive how the
intrinsic and orbital angular dependence in the same direc-

few useful ones are tion n adds. In physical terms, only those photons directed
toward the observer can contribute to the local angular de-
\/T pendence there. First expand the lowest mode in spin-
(10) = v spherical harmonics
| (X!V) V2+1q)| (X)v p

1 1 . . .
fzo)(x,v)zg\/m sGJm()(.rHV)=2| (=D)'Vam(21+1) g™ (x,v) Y(N),

X[3D!"(x)+(»*+1)®](x)], (C3)

where recall that the dimensionless wavenumber is

21 _ \/3 Id+1) v=q/\/—K. We obtain the explicit expressions fe/!™
& (x.v) = 2 (V¥ +4)(VP+1) and their recursion relations in Appendix B by simple com-
parison between equatiof§1) and(C3). At the origin they
X[esehy @/ (x)]'. (B11 satisfy

Furthermore, the recursion relation obeyed by the higher ra-

dial harmonics is the same as EB9), by virtue of Eq.(C5) . 1

and explicit substitution of the radial form E¢C3). This a™(0y)=5—=4;, (C4)
j-independence of the recursion relation implies thﬁ'i." is

a solution to the temperature hierarchy E2g) for anyj and

aids in the construction of the integral solutions in Sec. 11l D.Which both fixes the normalization of the modes and mani-

Finally, the radial functions for a closed geometry follow feStly obeys Eq(C2). As x—0, only the local angular de-
by replacing allv?+n, wheren is integer, with»>—n and pendence remains, as expressed in the Kronecker delta of Eq.

trigonometric functions with hyperbolic trigonometric func- (C4)- Because the spatial variation of the normal mQue)
tions (see[6,21] for detalils. across a shell at fixed radiys must be added to the local

dependence, even a mode of fiyeldas a sum over allin its

angular dependence which contributes at any other point.
APPENDIX C: DERIVATION OF THE NORMAL MODES This generation of highelr-structure asy increases sug-

We would like to describe the spatial and angular dependests that we can use the radial structurg®@f' to generate
mes oy ; the higherl-modes. From the radial recursion relation for
dence of the normal modegs,"(x,n) in a coordlr?ate'—free o im) Eq. (B9), let us make the Ansatz
way by constructing them out of covariant derivatives of s™! ) '
Q™ contracted with some orthonormal basis,rf;,m,).
The lowestj =max(m|,|s|) modes can be written 48,4]

1 . v
_nl(sG{n)\i:m[sKImSGIm—l_ sKInlrlsGInl—l]

Vv—K
m__ i i (m)
oG] —”'l---”"m‘Qil---Hm|' . ovms
—I1 m SG| . (C5)
2G5 (Mg £imy)'3(my=im,)'2Q(T That this series generates modes with the desired properties

(C) can be shown by returning to the spherical coordinate sys-
tem. By an explicit substitution of the radial form fg@}“ of
and satisfy(Appendix B Eqg. (C3) and by noting that in this coordinate system



1 i my _ d m
\/—_Kn (SGI )\i__ E(SGI )s (C6)
we obtain
mia A — i 4m me
SG| (0,”)—(_|) 2|+1[SYI (n)]! (C7)
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for an arbitrary point, it is clear that EC2) holds in gen-
eral. Note that this construction requires

aer G, "*[G"?]|= ! 5. 1.6, cs8
2. |[sG T s ,2]|—2|1—+1 1,0,0m, my (C8

for all x, as in the flat case of Eq29), and defines our

(up to a phase factpras desired. Since we have shown thisnormalization convention.
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