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Complete treatment of CMB anisotropies in a FRW universe
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We generalize the total angular momentum method for computing cosmic microwave background anisotro-
pies to Friedmann-Robertson-Walker~FRW! spaces with arbitrary geometries. This unifies the treatment of
temperature and polarization anisotropies generated by scalar, vector and tensor perturbations of the fluid, seed,
or a scalar field, in a universe with constant comoving curvature. The resulting formalism generalizes and
simplifies the calculation of anisotropies and, in its integral form, allows for a fast calculation of model
predictions in linear theory for any FRW metric.
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I. INTRODUCTION

The study of the cosmic microwave background~CMB!
radiation holds the key to understanding the seeds of
structure we see around us in the universe, and could po
tially enable precision measures for most of the import
cosmological parameters. For this reason, as well as bec
of its intrinsic interest, one would like a physically transpa
ent framework for the study of CMB anisotropies which is
general, powerful, and flexible as possible.

Theoretically, the calculation of CMB anisotropies
‘‘clean,’’ involving as it does only linear perturbation theor
However, the calculations can become quite complex o
one allows for the possibility of non-flat universes, no
scalar perturbations to the metric, and polarization as we
temperature anisotropies. Recently Hu and White@1# pre-
sented a formalism for calculating CMB anisotropies wh
treats all types of perturbations, temperature and polariza
anisotropies, and hierarchy and integral solutions on an e
footing. The formalism, named the total angular moment
method, greatly simplifies the physical interpretation of t
equations and the form of their solutions~see e.g.@2#!. How-
ever, it was presented in detail only for the case of flat spa
hypersurfaces. Here we generalize the treatment for
curved spaces of open and closed Friedmann-Robert
Walker ~FRW! universes.

Aspects of this method in open~hyperbolic, negatively
curved! geometries have been introduced in Hu and Wh
@3# and Zaldarriaga, Seljak, and Bertschinger@4# for the
cases of tensor temperature and scalar polarization res
tively. The latter work also addressed methods for effici
implementation through the line of sight integration tec
nique @5#. In this paper, we complete the total angular m
mentum method for arbitrary perturbation type and FR
metric, paying particular attention to the case of open u
verses because of its strong observational motivation. As
example we use this formalism to compute the tempera
and polarization angular power spectra of both scalar
tensor modes in critical density and open inflationary m
els. We incorporated the formalism into theCMBFAST code
570556-2821/98/57~6!/3290~12!/$15.00
e
n-
t
se

-

e
-
s

n
al

e

al
e
n-

e

ec-
t

-
-

i-
an
re
d
-

of Seljak and Zaldarriaga@5#, which has been made publicl
available.

The outline of the paper is as follows: we begin by esta
lishing our notation for fluctuations about a FRW bac
ground cosmology in Sec. II. We then present the Boltzma
equation in our formalism in Sec. III, which contains th
main results. We give some examples and discuss app
tions in Sec. IV. Some of the more technical parts of t
derivations~the Einstein, radial and hierarchy equations! are
presented in a series of three Appendices.

II. METRIC AND STRESS-ENERGY PERTURBATIONS

In this section, we discuss the representation of the p
turbations for the cosmological fluids and the geometry
space-time. We start by defining the basis in which we sh
expand such perturbations and their representation u
various gauge choices.

We assume that the background is described by a F
metric gmn5a2gmn with scale factora(t) and constant co-
moving curvatureK52H0

2(12V tot) in the spatial metric
g i j . Here greek indices run from 0 to 3 while latin indice
run over the spatial part of the metric:i , j 51,2,3. It is often
convenient to represent the metric in spherical coordina
where

g i j dxidxj5uKu21@dx21sinK
2 x~du21sin2udf2!#, ~1!

with

sinK~x!5H sinh~x!, K,0,

sin~x!, K.0,
~2!

where the flat-limit expressions are regained asK→0 from
above or below. The component corresponding to confor
time

x0[h5E dt

a~ t !
~3!
3290 © 1998 The American Physical Society
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is g00521.
Small perturbationshmn around this FRW metric

gmn5a2~gmn1hmn!, ~4!

can be decomposed into scalar (m50, compressional!, vec-
tor (m561, vortical! and tensor (m562, gravitational
wave! components from their transformation properties u
der spatial rotations@6,1#.

A. Eigenmodes

In linear theory, each eigenmode of the Laplacian for
perturbation evolves independently, and so it is useful
decompose the perturbations via the eigentensorQ(m), where

¹2Q~m![g i j Qu i j
~m!52k2Q~m!, ~5!

with ‘‘ u ’’ representing covariant differentiation with respe
to the three metricg i j . Note that the eigentensorQ(m) has
umu indices ~suppressed in the above!. Vector and tensor
modes also satisfy the auxiliary conditions

Qi
~61!u i50,

g i j Qi j
~62!5Qi j

~62!u i50, ~6!

which represent the divergenceless and transverse-trac
conditions respectively, as appropriate for vorticity and gr
ity waves. In flat space, these modes are particularly sim
and may be expressed as

Qi 1 . . . i m
~6m! }~ ê16 i ê2! i 1

. . . ~ ê16 i ê2! i m
exp~ ikW•xW !,

~K50,m>0!, ~7!

where the presence ofêi , which forms a local orthonorma
basis withê35 k̂, ensures the divergenceless and transve
traceless conditions.

It is also useful to construct~auxiliary! vector and tensor
objects out of the fundamental scalar and vector mo
through covariant differentiation

Qi
~0!52k21Qu i

~0! , Qi j
~0!5k22Qu i j

~0!1
1

3
g i j Q

~0!, ~8!

Qi j
~61!52~2k!21~Qi u j

~61!1Qj u i
~61!!. ~9!

The completeness properties of these eigenmodes are
cussed in detail in@6#, where it is shown that in terms of th
generalized wavenumber

q5Ak21~ umu11!K, n5q/uKu, ~10!

the spectrum is complete for

n>0, K,0, ~11!

53,4,5. . . , K.0. ~12!

A deceptive aspect of this labeling is that for an open u
verse the characteristic scale of the structure in a mod
2p/k andnot 2p/q, so all functions have structure only ou
-
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to the curvature scale even asq→0. We often go between
the variable sets (k,h), (q,h) and (n,x) for convenience.

B. Perturbation representation

A general metric perturbation can be broken up into
normal modes of scalar (m50), vector (m561) and tensor
(m562) types:

h0052(
m

2A~m!Q~m!,

h0i52(
m

B~m!Qi
~m! ,

hi j 5(
m

2HL
~m!Q~m!g i j 12HT

~m!Qi j
~m! .

~13!

Note that scalar quantities cannot be formed from vector
tensor modes so thatA(m)50 andHL

(m)50 for mÞ0; like-
wise, vector quantities cannot be formed from tensor mo
so thatB(m)50 for umu52.

There remains gauge freedom associated with the coo
nate choice for the metric perturbations~see Appendix A 2!.
It is typically employed to eliminate two out of four of thes
quantities for scalar perturbations and one of the two
vector perturbations. The metric is thus specified by fo
quantities. Two popular choices are thesynchronousgauge,
where

HL
~0!5hL , HT

~0!5hT ,

HT
~1!5hV , HT

~2!5H, ~14!

and the generalized~or conformal! Newtoniangauge, where

A~0!5C, B~1!5V,

HL
~0!5F, HT

~2!5H. ~15!

Here and below, when only them>0 expressions are dis
played, them,0 expressions should be taken to be identi
unless otherwise specified.

The stress energy tensor can likewise be broken up
scalar, vector, and tensor contributions. Furthermore, one
separate fluid (f ) contributions and seed (s) contributions.
The latter is distinguished by the fact that the net effect c
be viewed as a perturbation to the background. Specific
Tmn5T̄mn1dTmn where T̄0

052r f , T̄0
i5T̄0

i50 and
T̄i

j5pfd
i
j is given by the fluid alone. The fluctuations can

decomposed into the normal modes of Sec. II A as

dT0
052(

m
@r fd f

~m!1rs#Q
~m!, ~16!

dT0
i5(

m
@~r f1pf !~v f

~m!2B~m!!

1vs
~m!#Qi

~m! , ~17!



-

on

ol

ed

a
d

te
,
tio
ba
r

be
w

olu
-

me

ota-

n

.
ng

par-

on
om
spa-

re-
e
e
ring
tri-

g is
d
the
ns
for

ring

3292 57HU, SELJAK, WHITE, AND ZALDARRIAGA
dT0
i52(

m
@~r f1pf !v f

~m!1vs
~m!#Q~m!i ,

~18!

dTi
j5(

m
@dpf

~m!1ps#d
i
jQ

~m!1@pfp f
~m!

1ps#Q
~m!

j
i . ~19!

Sinced f
(m)5dpf

(m)50 for mÞ0, we hereafter drop the su
perscript from these quantities.

A minimally coupled scalar fieldw with Lagrangian

L52
1

2
A2g@gmn]mw]nw12V~w!# ~20!

can be treated in the same way with the associations

rf5pf12V5
1

2
a22ḟ21V, ~21!

for the background density and pressure. The fluctuati
w5f1df are related to the fluid quantities as@7#

drf5dpf12V,fdf5a22~ḟdḟ2A~0!ḟ2!1V,fdf,

~rf1pf!~vf
~0!2B~0!!5a22kḟdf,

pfpf
~0!50. ~22!

The evolution of the matter and metric perturbations f
lows the Einstein equationsGmn58pGTmn and incorporates
the continuity and Euler equations through the impli
energy-momentum conservationTmn

;n50. We give these re-
lations explicitly for the scalar, vector and tensor perturb
tions in both Newtonian and synchronous gauge in Appen
A ~see also@8#!.

These equations hold equally well for relativistic mat
such as the CMB photons and the neutrinos. However
that case they do not represent a closed system of equa
~the equation of motion of the anisotropic stress pertur
tions p f

(m) is unspecified! and do not account for the highe
moments of the distribution or for momentum exchange
tween different particle species. To include these effects,
require the Boltzmann equation which describes the ev
tion of the full distribution function under collisional pro
cesses.
s
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III. BOLTZMANN EQUATION

The Boltzmann equation describes the evolution in ti
(h) of the spatial (xW ) and angular (n̂) distribution of the
radiation under gravity and scattering processes. In the n
tion of @1#, it can be written implicitly as

d

dh
TW ~h,xW ,n̂![

]

]h
TW 1niTW u i5CW @TW #1GW @hmn#, ~23!

whereTW 5(Q,Q1 iU ,Q2 iU ) encapsulates the perturbatio
to the temperatureQ5DT/T and the polarization~StokesQ
and U parameters! in units of the temperature fluctuation
The termCW accounts for collisions, here Compton scatteri
of the photons with the electrons, while the termGW accounts
for gravitational redshifts.

A. Metric and scattering sources

The gravitational termGW is easily evaluated from the
Euler-Lagrange equations for the motion of a massless
ticle in the background given bygmn @6,9,10#:

GW @hmn#5S 1

2
ninj ḣi j 1niḣ0i1

1

2
nih00u i ,0,0D . ~24!

Note that gravitational redshifts affect different polarizati
states alike. As should be expected, the modification fr
the flat space case involves the replacement of ordinary
tial derivatives with covariant ones.

The Compton scattering termCW was derived in@1,4# in
the total angular momentum language. Though the basic
sult has long been known@11,12#, this representation has th
virtue of explicitly showing that complications due to th
angular and polarization dependence of Compton scatte
come simply through the quadrupole moments of the dis
bution. Here

CW @TW #52 ṫFTW ~ n̂!2S E dn̂8

4p
Q81n̂•vW B ,0,0D G

1
ṫ

10E dn̂8 (
m522

2

P~m!~ n̂,n̂8!TW ~ n̂8!, ~25!

where the differential cross section for Compton scatterin
ṫ5nesTa wherene is the free electron number density an
sT is the Thomson cross section. The bracketed term in
collision integral describes the isotropization of the photo
in the rest frame of the electrons. The last term accounts
the angular and polarization dependence of the scatte
with
P~m!5S Y2
m8Y2

m
2A3

2 2Y2
m8Y2

m 2A3

2 22Y2
m8Y2

m

2A6Y2
m82Y2

m 32Y2
m82Y2

m 322Y2
m82Y2

m

2A6Y2
m822Y2

m 32Y2
m822Y2

m 322Y2
m822Y2

m,
D , ~26!
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where Yl
m8[Yl

m* (n̂8) and sYl
m8[sYl

m* (n̂8) and the

unprimed harmonics have argumentn̂. Here sYl
m are the

spin-weighted spherical harmonics@13–15,1#.

B. Normal modes

The temperature and polarization distributions are fu
tions of the positionxW and the direction of propagation of th
photonsnW . They can be expanded in modes which acco
for both the local angular and spatial variations:sGl

m(xW ,n̂),
i.e.,

Q~h,xW ,n̂!5E d3q

~2p!3(
l

(
m522

2

Q l
~m!

0Gl
m , ~27!

~Q6 iU !~h,xW ,n̂!5E d3q

~2p!3(
l

3 (
m522

2

~El
~m!6 iBl

~m!!62Gl
m , ~28!

with spin s50 describing the temperature fluctuation a
s562 describing the polarization tensor.El andBl are the
angular moments of the electric and magnetic polariza
components. It is apparent that the effects of the local s
tering processCW is most simply evaluated in a representati
where the separation of the local angular and spatial di
bution is explicit@1#, with the former being an expansion i

sYl
m . The subtlety lies in relating the local basis at twodif-

ferentcoordinate points, say, the last scattering event and
observer.

In flat space, the representation is straightforward si
the parallel transport of the angular basis in space is triv
The result is a product of spin-weighted harmonics for
local angular dependence and plane waves for the sp
dependence:

sGl
m~xW ,n̂!5~2 i ! lA 4p

2l 11
@sYl

m~ n̂!#exp~ ikW•xW !,~K50!.

~29!

Here we seek a similar construction in an curved geome
We will see that this construction greatly simplifies the sca
harmonic treatment of@16,17,4# and extends it to vector an
tensor temperature@3# modes as well as all polarizatio
modes.

To generalize these modes to the curved geometry,
wish to replace the plane wave with some spatially dep
dent phase factor exp@id(xW,kW)# related to the eigenfunction
Q(m) of Sec. II A while keeping the same local angular d
pendence~see Eq. C2!. By virtue of this requirement, the
Compton scattering terms, which involve only the local a
gular dependence, retain the same form as in flat spac
Appendix C, we derivesGl

m by recursion from covarian
contractions of the fundamental basisQ(m). The result is a
recursive definition of the basis
-
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ni~sGl
m! u i5

q

2l 11
@sk l

m~sGl 21
m !2sk l 11

m ~sGl 11
m !#

2 i
qms

l ~ l 11! sGl
m, ~30!

constructed from the lowestl -mode of Eq.~B2! with the
coupling coefficient

sk l
m5AF ~ l 22m2!~ l 22s2!

l 2 GF12
l 2

q2 KG . ~31!

The structure of this relation is readily apparent. The rec
sion relation expresses the addition of angular momen
and is the defining equation in the total angular moment
method. It says the ‘‘total’’ local angular dependence at~say!
the origin is the sum of the local angular dependence at
tant points ~‘‘spin’’ angular momentum! plus the angular
variations induced by the spatial dependence of the m
~‘‘orbital’’ angular momentum!.

The recursion relation represents the addition of angu
momentum for the case of an infinitesimal spatial separat
Here the leading order spatial variation is the gradi
@ni(sGl

m) u i# term which has an angular structure of a dipo
Y1

0 . The first term on the rhs of Eq.~31! arises from the
Clebsch-Gordan relation that couples the orbitalY1

0 with the
intrinsic sYl

m to form l 61 states,

A4p

3
Y1

0~sYl
m!5

scl
m

A~2l 11!~2l 21!
~sYl 21

m !

1
scl 11

m

A~2l 11!~2l 13!
~sYl 11

m !

2
ms

l ~ l 11!
~sYl

m!, ~32!

where the coupling coefficient is

scl
m5A~ l 22m2!~ l 22s2!/ l 2.

The second term on the rhs of the coupling equation~31!
accounts for geodesic deviation factors in the conversion
spatial structure into orbital angular momentum. Consi
first a closed universe with radius of curvatureR5K21/2.
Suppressing one spatial coordinate, we can analyze the p
lem as geometry on the 2-sphere with the observer situate
the pole. Light travels on radial geodesics or great circles
fixed longitude. A physical scalel at fixed latitude~given by
the polar anglex) subtends an anglea5l/Rsinx. In the
small angle approximation, a Euclidean analysis would in
a distance of

D~d!5Rsinx5K21/2sinx ~K.0!, ~33!

called here theangular diameter distance. For negatively
curved or open universes, a similar analysis implies

D~d!5uKu21/2sinhx ~K,0!. ~34!

Thus the angular scale corresponding to an eigenmod
wavelengthl is
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u5
l

Rsinhx
'

1

nsinhx
. ~35!

For an infinitesimal changex, orbital angular momentum o
order l is stimulated when

x'
1

nu
@11O~n2u2!#,

h'
l

q
@11O~ l 2K/q2!#, ~36!

which explains the factors ofl 2K/q2 in the coupling term in
a curved geometry. We shall see in Sec. III D that th
infinitesimal additions of angular momentum and geode
deviation may be encorporated into a single step by find
the integral solutions to the coupling equation~30!.

C. Evolution equations

It is now straightforward to rewrite the Boltzmann equ
tion ~23! as the evolution equations for the amplitudes of
normal modes of the temperature and polarizat
TW l

(m)5(Q l
(m) ,El

(m) ,Bl
(m)). The gravitational sources and sca
nt
re
un
e
ic
g

e
n

tering sources of these equations follow from Eqs.~24! and
~25! by noting that the spin harmonics are orthogonal:

E dV~ sYl
m!~ sYl 8

m8* !5d l ,l 8dmm8. ~37!

The termniTW u i is evaluated by use of the coupling relatio
Eq. ~30! for ni(sGl

m) u i . It represents the fact that spatial gr
dients in the distribution become orbital angular moment
as the radiation streams along its trajectoryxW (n̂). For ex-
ample, a temperature variation on a distant surface surrou
ing the observer appears as an anisotropy on the sky.
process then simply reflects a projection relation that rela
distant sources to present day local anisotropies.

With these considerations, the temperature fluctuat
evolves as

Q̇l
~m!5qF 0k l

m

~2l 21!
Q l 21

~m! 2
0k l 11

m

~2l 13!
Q l 11

~m! G2 ṫQ l
~m!1Sl

~m!

~ l>m!, ~38!

and the polarization as
Ėl
~m!5qF 2k l

m

~2l 21!
El 21

~m! 2
2m

l ~ l 11!
Bl

~m!2
2k l 11

m

~2l 13!
El 11

~m! G2 ṫ@El
~m!1A6P~m!d l ,2#,

Ḃl
~m!5qF 2k l

m

~2l 21!
Bl 21

~m! 1
2m

l ~ l 11!
El

~m!2
2k l 11

m

~2l 13!
Bl 11

~m! G2 ṫBl
~m! . ~39!

The temperature fluctuation sources in Newtonian gauge are

Sl
~m!5S ṫQ0

~0!2Ḟ ṫvB
~0!1kC ṫP~0!

0 ṫvB
~1!1V̇ ṫP~1!

0 0 ṫP~2!2Ḣ

D ~40!

and in synchronous gauge,

Sl
~m!5S ṫQ0

~0!2ḣL ṫvB
~0! ṫP~0!2

2

3
A123K/k2ḣT

0 ṫvB
~1! ṫP~1!2

A3

3
A122K/k2ḣV

0 0 ṫP~2!2Ḣ

D , ~41!
d to
where rows representm50,1,2 and columns represe
l 50,1,2. Thel 5m52 source does not contain a curvatu
factor because we have recursively defined the basis f
tions in terms of the lowest member, which isl 52 in this
case. In the above

P~m!5
1

10
@Q2

~m!2A6E2
~m!# ~42!
c-

and note that the photon density and velocities are relate
the l 50,1 moments as

dg54Q0
~0! , vg

~m!5Q1
~m! ; ~43!

whereas the anisotropic stresses are given by

pg
~m!Qi j

~m!512E dV

4p S ninj2
1

3
g i j DQ~m!, ~44!
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which relates them to the quadrupole moments (l 52) as

~123K/k2!1/2pg
~0!5

12

5
Q2

~0! ,

~122K/k2!1/2pg
~1!5

8A3

5
Q2

~1! , pg
~2!5

8

5
Q2

~2! . ~45!

The evolution of the metric and matter sources are given
Appendices~A3!–~A5!.

D. Integral solutions

The Boltzmann equations have formal integral solutio
that are simple to find. The hierarchy equations for the te
perature distribution Eq.~38! merely express the projectio
of the various plane wave temperature sourcesSl

(m)
0Gl

m on
the sky today@see Eq.~41!#. Likewise Eq.~39! expresses the
projection of2A6P(m)ṫe2t

62Gl
m .

The projection is obtained by extracting the total angu
dependence of the mode from its decomposition in spher
coordinates, i.e., into radial functions times spin harmon

sYl
m . We discuss their explicit construction in Appendix

The full solution immediately follows by integrating the pro
jected source over the radial coordinate,

Q l
~m!~h0 ,q!

2l 11
5E

0

h0
dhe2t(

j
Sj

~m!f l
~ jm! ,

El
~m!~h0 ,q!

2l 11
5E

0

h0
dhṫe2t~2A6P~m!!e l

~m! ,

Bl
~m!~h0 ,q!

2l 11
5E

0

h0
dhṫe2t~2A6P~m!!b l

~m! ,

~46!

where the arguments of the radial functions (f l ,e l ,b l) are
the distance to the sourcex5A2K(h02h) and the reduced
wavenumber n5q/A2K ~see Appendix B for explicit
forms!.

The interpretation of these equations is also readily ap
ent from their form and construction. The decomposition

sGj
m into radial and spherical parts encapsulates the sum

tion of spin and orbital angular momentum as well as
geodesic deviation factors described in Sec. III B. The d
ference between the integral solution and the differen
form is that in the former case the coupling is performed
one step from the source at timeh and distancex(h) to the
present, while in the latter the power is steadily transferre
higher l as the time advances.

Take the flat space case. The intrinsic local angular m
mentum at the point (x,n̂) is sYj

m but must be added to th
orbital angular momentum from the plane wave which c
be expanded in terms ofj lYl

0 . The result is a sum ofu l 2 j u to
l 1 j angular momentum states with weights given
Clebsch-Gordan coefficients. Alternately a state of defin
angular momentum involves a sum over the same rang
the spherical Bessel function. These linear combinations
Bessel functions are exactly the radial functions in Eq.~46!
for the flat limit @1#.
in

s
-

r
al
s

r-
f
a-
e
-
l

to

-

n

e
in
of

For an open geometry, the same analysis follows save
the spherical Bessel function must be replaced by a hy
spherical Bessel function~also called ultra-spherical Bess
functions! in the manner described in Appendix B. Th
qualitative aspect of this modification is clear from cons
ering the angular diameter distance arguments of Sec. II
The peak in the Bessel function picks out the angle whic
scale k21'A2Kn21 subtends at distanced'x/A2K. A
spherical Bessel function peaks when its argumentkd' l or
l/d'u in the small angle approximation. The hypersphe
cal Bessel function peaks atkD5nsinhx'l for n@1 or
l/D'u in the small angle approximation. The main effect
spatial curvature is simply to shift features inl -space with
the angular diameter distance, i.e., to higherl or smaller
angles in open universes. Similar arguments hold for clo
geometries@17#. By virtue of this fact the division of polar-
ization intoE andB-modes remains the same as that in fl
space. More specifically, for a single mode the ratio in pow
is given by

(
l

@ lb l
~m!#2

(
l

@ l e l
~m!#2

5H 0, m50,

6, m561,

8/13, m562,

~47!

at fixed source distancex with nsinKx@1.
The integral solutions~46! are the basis of the ‘‘line of

sight’’ method @5,14# for rapid numerical calculation o
CMB spectra, which has been employed inCMBFAST. The
numerical implementation of equations Eqs.~46! requires an
efficient way of calculating the radial functions (f l ,e l ,b l).
This is best done acting the derivatives of the hyperspher
Bessel function in the radial equations~B3!–~B5! and~B11!
on the sources through integration by parts. The remain
integrals can be efficiently calculated with the techniques
@4# for generating hyperspherical Bessel functions. The t
sor CMBFAST code has now been modified to use the form
ism described in this paper and the results have been c
checked against solutions of the Boltzmann hierarchy eq
tions ~38! and ~39! with very good agreement.

E. Power spectra

The final step in calculating the anisotropy spectra is
integrate over thek-modes. The power spectra of temper
ture and polarization anisotropies today are defined as,
Cl

QQ[^ualmu2& for Q5(almYl
m with the average being ove

the (2l 11) m-values. In terms of the moments of the prev
ous section,

~2l 11!2Cl
XX̃5

2

pE dq

q (
m522

2

q3Xl
~m!* X̃l

~m! , ~48!

whereX takes on the valuesQ, E andB for the temperature,
electric polarization and magnetic polarization evaluated
the present. For a closed geometry, the integral is repla
by a sum overq/uKu53,4,5 . . . . Note that there is no cros
correlationCl

QB or Cl
EB due to parity.

We caution the reader that power spectra for the me
fluctuation sourcesPh(q)5^h* (q)h(q)& must be defined in
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a similar fashion for consistency and choices between v
ous authors differ by factors related to the curvature~see@18#
for further discussion!. To clarify this point, the initial power
spectra of the metric fluctuations for a scale-invariant sp
trum of scalar modes and minimal inflationary gravity wa
modes@3# are

PF~q!}
1

q~q211!
,

PH~q!}
~q214!

q3~q211!
tanh~pq/2!,

~49!

where the normalization of the power spectrum comes fr
the underlying theory for the generation of the perturbatio
This proportionality constant is related to the amplitude
the matter power spectrum on large scales or the energy
sity in long-wavelength gravitational waves@18#. The vector
perturbations have only decaying modes and so are
present in seeded models. The other initial conditions foll
from detailed balance of the evolution equations and ga
transformations~see Appendix A!.

Our conventions for the moments also differ from those
@14,15#. They are related to those of@14# by1

~2l 11!DTl
~S!5Q l

~0!/~2p!3/2,

~2l 11!DTl
~T!5A2Q l

~2!/~2p!3/2, ~50!

where the factor ofA2 in the latter comes from the quadr
ture sum over equalm52 and 22 contributions. Similar
relations forD (E,B) l

(S,T) occur but with an extra minus sign s

that CC,l52Cl
QE with the other power spectra unchange

The output ofCMBFAST continuesto be CC,l with the sign

1Footnote 3 of@1# incorrectly gives the relation betweenQ and
DT .

FIG. 1. The scalar~left! and tensor~right! angular power spectra
for anisotropies in a critical density model~thick lines! and an open
model~thin lines! with V050.4. Solid lines areCl

QQ , dashedCl
EE

and dottedCl
BB .
ri-

c-

s.
f
n-

ly

e

.

convention of@14#. In the notation of@15#, the temperature
power spectra agree but for polarizationCl

EE,BB5Cl
G,C/2 and

Cl
QE52Cl

TG/A2.

IV. RESULTS

We now employ the formalism developed here to calc
late the scalar and tensor temperature and polarization po
spectra for two CDM models one with critical density an
one with V0512VK50.4 with initial conditions given by
Eq. ~49!. In general, there are two classes of effects:
geometrical and dynamical aspects of curvature~see Fig. 1!.

On intermediate to small scales~large l ), only geometri-
cal aspects of curvature affect the spectra. Changes in
angular diameter distance to last scattering move feature
the low-V0 models to smaller angular scales~higher l ) as
discussed in Sec. III. Since the low-l tail of the E-mode
polarization is growing rapidly withl , shifting the features to
higherl results in smaller large-angle polarization in an op
model for both scalar and tensor anisotropies. The supp
sion is larger in the case of scalars than tensors since the
l slope is steeper@1#.

The presence of curvature also affects the late-time
namics and initial power spectra. As is well known, the s
lar temperature power spectrum exhibits an enhancemen
power at low multipoles due to the integrated Sachs-Wo
~ISW! effect during curvature domination. This does not a
fect the polarization, assuming no reionization, as it is g
erated at last scattering. However, itdoes affect the
temperature-polarization cross correlation~see Fig. 2!. In an
open universe, the largest scales~lowest l ) pick up unequal-
time correlations with the ISW contributions which are
opposite sign to the ordinary Sachs-Wolfe contribution. T
reverses the sign of the correlation and formally violates
predictions of@19#. In practice this effect is unobservable du
to the smallness of signal. Even minimal amounts of reio
ization will destroy this effect.

Open universe modifications to the initial power spectru
are potentially observable in the large angle CMB spectru
Unfortunately subtle differences in the temperature pow
spectrum can be lost in cosmic variance. While polarizat

FIG. 2. The scalar~left! and tensor ~right! temperature-
polarization cross correlationCl

QE with the same parameters an
notation as Fig. 1~thick: flat; thin open!. Dotted lines represen
negative correlation.
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provides extra information, in the absence of late reioni
tion the large-angle polarization is largely a projection
small-scale fluctuations. Nonetheless in our universe~where
reionization occurred before redshiftz'5) the large-angle
polarization is sensitive to the primordial power spectrum
the curvature scale. Thus if the fluctuations which gave
to the large-scale structure and CMB anisotropy in our u
verse were generated by an open inflationary scenario b
on bubble nucleation, a study of the large-angle polariza
can in principle teach us about the initial nucleation ev
@18#.

In summary, we have completed the formalism for calc
lating and interpreting temperature and polarization aniso
pies in linear theory from arbitrary metric fluctuations in
FRW universe. The results presented here are new for n
flat vector and tensor~polarization! perturbations and we
have calculated the scalar and tensor temperature and p
ization contributions for open inflationary spectra. The op
tensor perturbation equations have been added toCMBFAST

which is now publicly available.
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APPENDIX A: EINSTEIN EQUATIONS

In this Appendix, we complete the Boltzmann equatio
of Sec. III by giving the Einstein equations for the metric a
the matter. We begin with the background evolution and th
proceed to the fluctuations. It is occasionally convenien
shift between different representations or gauges and thu
first discuss the transformations that link them. We then
rive and present the Einstein equations for scalar, vector
tensor perturbations in a universe with constant comov
curvature in the synchronous and Newtonian gauges~see
also @8#!.

1. Background evolution

The Einstein equationsGmn58pGTmn express the metric
evolution in terms of the matter sources. The backgrou
evolution equations are

ṙ f

r f
13~11wf !

ȧ

a
50,

f̈12
ȧ

a
ḟ1a2V,f50, ~A1!

for the fluid and scalar field components respectively and

S ȧ

a
D 2

1K5
8pG

3
a2~r f1rf1rv!, ~A2!

where wf5pf /r f and rf(f) was given in Eq.~21! and
rv53H0

2VL /8pG is the vacuum energy.
-
f

t
e
i-
ed
n
t

-
-

n-

lar-
n

f
.

s

n
o
we
-

nd
g

d

2. Gauge transformations

To represent the perturbations we must make a ga
choice. A gauge transformation is a change in the corresp
dence between the perturbation and the background re
sented by the coordinate shifts

h̃5h1TQ~m!,

x̃ i5xi1LQi
~m! . ~A3!

T corresponds to a choice in time slicing andL a choice of
spatial coordinates. Since scalar and vector quantities ca
be formed from tensor modes (m562), no gauge freedom
remains there. Under the condition that metric distances
invariant, they transform the metric as@7#

Ã~m!5A~m!2Ṫ2
ȧ

a
T,

B̃~m!5B~m!1L̇1kT,

H̃L
~m!5HL

~m!2
k

3
L2

ȧ

a
T,

H̃T
~m!5HT

~m!1kL. ~A4!

The stress-energy perturbations in different gauges
similarly related by the gauge transformations

d̃ f5d f13~11wf !
ȧ

a
T,

d p̃ f5dpf13cf
2r f~11wf !

ȧ

a
T,

ṽ f
~m!5v f

~m!1L̇,

p̃ f
~m!5p f

~m! . ~A5!

Note that the anisotropic stress is gauge-invariant. Seed
turbations are also gauge-invariant to lowest order, where
scalar field transforms as

d̃ f5df2ḟT. ~A6!

The relation between the synchronous and Newtonian ga
equations follow from these relations.

3. Scalar Einstein equations

With the form of the scalar metric and stress energy t
sor given in Eqs.~A4! and ~19!, the ‘‘Poisson’’ equations
become in the Newtonian gauge

~k223K !F54pGa2F ~r fd f1rs!

13
ȧ

a
@~r f1pf !v f

~0!1vs
~0!#/kG , ~A7!
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k2~C1F!528pGa2~pfp f
~0!1ps

~0!!, ~A8!

and in the synchronous gauge

~k223K !S hL1
1

3
hTD13

ȧ

a
ḣL54pGa2@r fd f1rs#,

ḣL1
1

3
~123K/k2!ḣT524pGa2@~r f1pf !v f

~0!

1vs
~0!#/k,

ḧL1
ȧ

a
ḣL524pGa2F1

3
r fd f1dpf

1
1

3
rs1psG ,

ḧT1
ȧ

a
ḣT2k2S hL1

1

3
hTD528pGa2@pfp f

~0!1ps
~0!#.

~A9!

Two out of four of the synchronous gauge equations
redundant.

The corresponding evolution of the matter is given
covariant conservation of the stress energy tensorTmn :

ḋ f52~11wf !kv f
~0!23

ȧ

a
dwf1Sd,

@~11wf !v f
~0!#˙52~11wf !

ȧ

a
~123wf !v f

~0!1wfkFdpf /pf

2
2

3
~123K/k2!p f

~0!G1Sv
~0! , ~A10!

for the fluid part~see, e.g.,@20#!. The gravitational source
are

Sd5H 23~11wf !Ḟ, ~Newtonian!,

23~11wf !ḣL , ~synchronous!,
~A11!

and

Sv
~0!5H ~11wf !kC, ~Newtonian!,

0, ~synchronous!.
~A12!

These equations remain true for each fluid individually in
absence of momentum exchange, e.g., for the cold dark
ter. The baryons have an additional term to the Euler eq
tion due to momentum exchange from Compton scatte
with the photons. For a given velocity perturbation the m
mentum density ratio between the two fluids is

R[
rB1pB

rg1pg
'

3rB

4rg
. ~A13!

A comparison with the photon Euler equation~38; l 51)
gives the source modification for the baryon Euler equat
e

e
at-
a-
g
-

n

Sv
~0!→Sv

~0!1
ṫ

R
~Q1

~0!2vB
~0!!. ~A14!

For a seed source, the conservation equations become

ṙs523
ȧ

a
~rs1ps!2kvs

~0! ,

v̇s
~0!524

ȧ

a
vs

~0!1kFps2
2

3
~123K/k2!ps

~0!G ,
~A15!

independent of gauge since the metric fluctuations prod
higher order terms.

Finally for a scalar field,w5f1df, the conservation
equations become

d f̈12
ȧ

a
d ḟ1~k21a2V,ff!df5Sf , ~A16!

where

Sf5H ~Ċ23Ḟ!ḟ22a2V,fC, ~Newtonian!,

23ḣLḟ, ~synchronous!,
~A17!

are the gravitational sources.

4. Vector Einstein equations

The vector metric source evolution is similarly co
structed from a ‘‘Poisson’’ equation: in the generalized Ne
tonian gauge

V̇12
ȧ

a
V528pGa2~pfp f

~1!1ps
~1!!/k, ~A18!

and in the synchronous gauge,

ḧV12
ȧ

a
ḣV528pGa2~pfp f

~1!1ps
~1!!/k2. ~A19!

Likewise momentum conservation implies the Euler eq
tion

v̇ f
~1!52~123cf

2!
ȧ

a
v f

~1!2
1

2
k

wf

11wf
~122K/k2!p f

~1!1Sv
~1! ,

~A20!

where recallcf
25 ṗf / ṙ f is the sound speed and the gravit

tional sources are

Sv
~1!5H V̇1~123cf

2!
ȧ

a
V, ~Newtonian!,

0, ~synchronous!.

~A21!

The seed Euler equation is given by

v̇s
~1!524

ȧ

a
vs

~1!2
1

2
k~122K/k2!ps

~1! . ~A22!
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Again, the Eq.~A20! remains true for each fluid individually
save for momentum exchange terms. The baryon Euler e
tion has an additional term in the source of the same form
Eq. ~A14! with m50→m51.

5. Tensor Einstein equations

The Einstein equations tell us that the tensor me
source is governed by

Ḧ12
ȧ

a
Ḣ1~k212K !H58pGa2@pfp f

~2!1ps
~2!#,

~A23!

for all gauges.

APPENDIX B: RADIAL FUNCTIONS

It is often useful to represent the eigenmodes in a sph
cal coordinate system (x,u,f), wherex is the radial coor-
dinate scaled to the curvature radius. Here we explicitly w
down the forms and properties of the radial modes in an o
geometry and describe the modifications necessary to
closed geometries.

By separation of variables in the Laplacian, we can wr

sGj
m5(

l
~2 i ! lA4p~2l 11! sa l

~ jm!~x,n! sYl
m~ n̂!,

~B1!

and the goal is to find explicit expressions forsa l
( jm) . Here

the l -weights are set to reproduce the flat-space convent
of spherical Bessel functions~see also@1#!. We proceed by
analyzing the lowestj 5min(usu,umu) harmonic

0Gj
m5ni 1 . . . ni umuQi 1 . . . i umu

~m! ,

62G2
m}~m̂16 im̂2! i 1~m̂16 im̂2! i 2Qi 1i 2

~m! ,

~B2!

where m̂1 and m̂2 form a right-handed orthonormal bas
with n̂. We can now determinesa l

( jm) from the radial repre-
sentation ofQ(m) @21#

f l
~00!~x,n!5F l

n~x!,

f l
~11!~x,n!5A l ~ l 11!

2~n211!
cschxF l

n~x!,

f l
~22!~x,n!5A3

8

~ l 12!~ l 221!l

~n214!~n211!
csch2xF l

n~x!,

~B3!

for 0a l
(mm)5f l

(mm) ; similarly for 62a l
(2m)5e l

(m)6 ib l
(m) ,

e l
~0!~x,n!5A3

8

~ l 12!~ l 221!l

~n214!~n211!
csch2xF l

n~x!,
a-
s

c

ri-

e
n
at

e

ns

e l
~1!~x,n!5

1

2
A ~ l 21!~ l 12!

~n214!~n211!
cschx@cothxF l

n~x!

1F l
n8~x!#,

e l
~2!~x,n!5

1

4
A 1

~n214!~n211!
@F l

n9~x!

14cothxF l
n8~x!

2~n22122coth2x!F l
n~x!#, ~B4!

and

b l
~0!~x,n!50,

b l
~1!~x,n!5

1

2
A ~ l 21!~ l 12!n2

~n214!~n211!
cschxF l

n~x!,

b l
~2!~x,n!5

1

2
A n2

~n214!~n211!

3@F l
n8~x!12cothxF l

n~x!#, ~B5!

for m.0. For m,0, b l
(2m)52b l

(m) while the other two
functions remain the same. HereF l

n(x) is the hyperspherica
Bessel function whose properties are discussed extens
by @6#.

The overall normalization of the modes here has be
altered from those of@6,21# in the case of vector and tenso
temperature modes such that

sa l
~ jm!~0,n!5

1

2l 11
d l , j , ~B6!

where the difference lies in the lack of curvature depende
in the relation. Our choice simplifies the equations since
preserves the flat space form of the equations locally aro
the origin. It alsodefinesthe normalization of the polariza
tion modes with respect toQi j

(m) through Eq.~B2!.
The properties of the hyperspherical Bessel functions

ply useful properties for the radial functions. For our pu
poses, the important relations they obey are

d

dx
F l

n5
1

2l 11
@ lAn21 l 2F l 21

n

2~ l 11!An21~ l 11!2F l 11
n #,

cothxF l
n5

1

2l 11
@An21 l 2F l 21

n

1An21~ l 11!2F l 11
n #, ~B7!

which define the series in terms of its first member

F0
n5

sinnx

nsinhx
. ~B8!

Notice that limK→0F l
n(x)5 j l(kr).

From the recursion relations ofF l
n , one establishes the

corresponding relations for the radial function
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d

dx
@sa l

~ jm!#5
n

2l 11
$sk l

m@sa l 21
~ jm!#

2sk l 11
m @ sa l 11

~ jm!#%2 i
nms

l ~ l 11!
@sa l

~ jm!#,

~B9!

for the lowestj , where recall

sk l
m5AF ~ l 22m2!~ l 22s2!

l 2 GF11
l 2

n2G . ~B10!

The construction of the highersGl
m via the recursion re-

lation of Eq.~30! also returns the higher radial harmonics.
few useful ones are

f l
~10!~x,n!5A 1

n211
F l

n8~x!,

f l
~20!~x,n!5

1

2
A 1

~n214!~n211!

3@3F l
n9~x!1~n211!F l

n~x!#,

f l
~21!~x,n!5A3

2

l ~ l 11!

~n214!~n211!

3@cschxF l
n~x!#8. ~B11!

Furthermore, the recursion relation obeyed by the higher
dial harmonics is the same as Eq.~B9!, by virtue of Eq.~C5!
and explicit substitution of the radial form Eq.~C3!. This
j -independence of the recursion relation implies thatf l

( jm) is
a solution to the temperature hierarchy Eq.~38! for any j and
aids in the construction of the integral solutions in Sec. III

Finally, the radial functions for a closed geometry follo
by replacing alln21n, wheren is integer, withn22n and
trigonometric functions with hyperbolic trigonometric fun
tions ~see@6,21# for details!.

APPENDIX C: DERIVATION OF THE NORMAL MODES

We would like to describe the spatial and angular dep
dence of the normal modessGl

m(xW ,n̂) in a coordinate-free
way by constructing them out of covariant derivatives
Q(m) contracted with some orthonormal basis (n̂,m̂1 ,m̂2).
The lowestj 5max(umu,usu) modes can be written as@3,4#

0Gj
m5ni 1 . . . ni umuQi 1 . . . i umu

~m! ,

62G2
m}~m̂16 im̂2! i 1~m̂16 im̂2! i 2Qi 1i 2

~m! ,

~C1!

and satisfy~Appendix B!
a-

.

-

f

sGl
m~xW ,n̂!5~2 i ! lA 4p

2l 11
@sYl

m~ n̂!#exp@ id~xW ,kW !#,

~C2!

with l 5 j . We demand that the higherl -modes also do so to
maintain the division of spin and orbital angular momentu
defined in flat space@1#.

We begin the construction by choosing some arbitr
point xW0, and using a spherical coordinate system around
xW2xW05A2Kx(2n̂). Now n̂ defines both the intrinsic angu
lar coordinate system and the angular coordinates for
spatial locationxW (x,n̂). This reduction in the dimension o
the space is sufficient since the end goal is to derive how
intrinsic and orbital angular dependence in the same di
tion n̂ adds. In physical terms, only those photons direc
toward the observer can contribute to the local angular
pendence there. First expand the lowest mode in s
spherical harmonics

sGj
m~x,n̂;n!5(

l
~2 i ! lA4p~2l 11! sa l

~ jm!~x,n! sYl
m~ n̂!,

~C3!

where recall that the dimensionless wavenumber
n5q/A2K. We obtain the explicit expressions forsa l

( jm)

and their recursion relations in Appendix B by simple co
parison between equations~C1! and~C3!. At the origin they
satisfy

sa l
~ jm!~0,n!5

1

2l 11
d l , j , ~C4!

which both fixes the normalization of the modes and ma
festly obeys Eq.~C2!. As x→0, only the local angular de
pendence remains, as expressed in the Kronecker delta o
~C4!. Because the spatial variation of the normal modeQ(m)

across a shell at fixed radiusx must be added to the loca
dependence, even a mode of fixedj has a sum over alll in its
angular dependence which contributes at any other poin

This generation of higherl -structure asx increases sug-
gests that we can use the radial structure ofsGj

m to generate
the higherl -modes. From the radial recursion relation f

sa l
( jm) Eq. ~B9!, let us make the Ansatz

1

A2K
ni~sGl

m! u i5
n

2l 11
@ sk l

m
sGl 21

m 2 sk l 11
m

sGl 11
m #

2 i
nms

l ~ l 11! sGl
m. ~C5!

That this series generates modes with the desired prope
can be shown by returning to the spherical coordinate s
tem. By an explicit substitution of the radial form forsGj

m of
Eq. ~C3! and by noting that in this coordinate system
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1

A2K
ni~sGl

m! u i52
d

dx
~sGl

m!, ~C6!

we obtain

sGl
m~0,n̂!5~2 i ! lA 4p

2l 11
@sYl

m~ n̂!#, ~C7!

~up to a phase factor! as desired. Since we have shown th
r,

s.
for an arbitrary point, it is clear that Eq.~C2! holds in gen-
eral. Note that this construction requires

E dV

4p
u@sGl 1

m1#* @sGl 2

m2#u5
1

2l 111
d l 1 ,l 2

dm1 ,m2
, ~C8!

for all xW , as in the flat case of Eq.~29!, and defines our
normalization convention.
v.
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