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We examine the evolution of magnetic fields in an expanding fluid composed of matter and radiation with
particular interest in the evolution of cosmic magnetic fields. We derive the propagation velocities and damp-
ing rates for relativistic and non-relativistic fast and slow magnetosonic andmliaves in the presence of
viscous and heat conducting processes. The analysis covers all magnetohydrodynamics modes in the radiation
diffusion and the free-streaming regimes. When our results are applied to the evolution of magnetic fields in
the early universe, we find that cosmic magnetic fields are damped from prior to the epoch of neutrino
decoupling up to recombination. Similar to the case of sound waves propagating in a demagnetized plasma,
fast magnetosonic waves are damped by radiation diffusion on all scales smaller than the radiation diffusion
length. The characteristic damping scales are the horizon scale at neutrino decodplisd @ *“M in
baryong and the Silk mass at recombinatiol (~ 10"M, in baryons. In contrast, the oscillations of slow
magnetosonic and Alfve waves get overdamped in the radiation diffusion regime, resulting in frozen-in
magnetic field perturbations. Further damping of these perturbations is possible only if before recombination
the wave enters a regime in which radiation free-streams on the scale of the perturbation. The maximum
damping scale of slow magnetosonic and Aifwaodes is always smaller than or equal to the damping scale
of fast magnetosonic waves, and depends on the magnetic field strength and its direction relative to the wave
vector. Our findings have multifold implications for cosmology. The dissipation of magnetic field energy into
heat during the epoch of neutrino decoupling ensures that most magnetic field configurations generated in the
very early universe satisfy big bang nucleosynthesis constraints. Further dissipation before recombination
constrains models in which primordial magnetic fields give rise to galactic magnetic fields or density pertur-
bations. Finally, the survival of Alfue and slow magnetosonic modes on scales well below the Silk mass may
be of significance for the formation of structure on small sc4/86556-282(98)01208-9

PACS numbe(s): 98.62.Ai, 98.62.En, 98.80.Cq

INTRODUCTION through the damping of magneto-hydrodynan{iidHD)
modes. The damping is caused by dissipation in the fluid,
In an attempt to explain the origin of galactic magneticwhich arises from the finite mean free path of photons or
fields through the amplification of primordial fields, several neutrinos.
authors have considered scenarios for generating magnetic The physical process by which the MHD modes are
fields in the early universgl]. In such scenarios, one at- damped is analogous to that involved in the damping of den-
tempts to generate fields which will be sufficiently large aftersity fluctuations around recombinati¢pg], and around neu-
recombination at least to seed galactic dynamos and at besino decoupling 3]. Studies of the damping of density fluc-
to produce galactic fields without dynamo amplification. It is tuations with no magnetic fields present show that, in the
generally assumed that after a primordial field is generated idiffusive regime(when the scales of interest are much larger
the early universe it becomes frozen into the cosmic plasméan the mean free path of photons or neutririgg,), the
and redshifts by flux conservation with the expansion of theeffective viscosity and heat conductivity arising from the fi-
universe[ Bxa~2; a(t) is the cosmic scale factbrThis as-  nite mean free path cause the damping of acoustically oscil-
sumption is usually justified by noting that the cosmologicallating density perturbations. Since with the expansion of the
plasma is highly conductive and magnetic diffusion is insig-universe the mean free path of the decoupling particles
nificant. grows faster than the wavelength of an oscillatory mode, all
In this paper, we show that this simple picture of mag-modes whose wavelengths are smaller than the mean free
netic field evolution is incorrect: at certain epochs in thepath around decoupling have previously been in the diffusion
early universe, particularly during recombination and neu+egime. The rate of damping in this regime ensures that a
trino decoupling, magnetic field energy is converted into heatvave is significantly damped before the mean free path of
the decoupling particles becomes comparable to the wave-
length of the mode. For this reason, the investigation of

*jedamzik@MPA-garching.MPG.de damping in the diffusion regime yields a reasonable estimate
Tvisnja@oddjob.uchicago.edu of the final damping scales of density fluctuations.
folinto@oddjob.uchicago.edu However, when magnetic fields are added to the fluid, the
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57 DAMPING OF COSMIC MAGNETIC FIELDS 3265

existence of different MHD modes—Alfwe fast magneto-  Il. DAMPING OF MAGNETOHYDRODYNAMIC MODES
sonic, and slow magnetosonic waves—adds complexity to IN THE RADIATION DIFFUSION REGIME

the problem. We show that while fast magnetosonic waves When the mean free paths of all interacting particle spe-

(which include sound wavesiamp efficiently in the diffu-  ieq are shorter than the wavelength of the MHD mode we
sion regime by the described process, slow magnetosonige jnterested iNN>1 ), it is adequate to study the evolu-
and Alfven waves may survive damping by diffusion. SIow jon, of a single fluid and account for the effect of the diffus-
magnetosonic and Alfve modes oscillate with frequencies ing particles by introducing shear viscosity, bulk viscosity,
which depend on the strength of the background magnetigng heat conductivity into the fluid equatioi#. In order to
field and on its direction relative to the mode’s wave vector,cglculate the damping of MHD modes following this ap-
and are in general different from the frequency of soundproach, we derive linearized relativistic MHD equations of
waves of the same wavelength. In the case of a weak baclmn expanding dissipative fluid. We start by reviewing the
ground magnetic field or a large angle between the backequations for a non-ideal relativistic fluid in Sec. Il A, and
ground field and the wave vector, the frequency can be slowdd the electromagnetic contributions to the fluid equations
enough for the damping by viscosity to overcome the oscilin Sec. Il B. In Sec. Il C we calculate the propagation veloci-
lation, producing behavior which resembles an overdampedes and damping rates for all MHD modes. Our results are
oscillator and causes the actual damping of the amplitude tapplicable for general viscous relativistic and non-relativistic
be inefficient. The overdamped slow magnetosonic and Alplasmas, as long as the pressure is dominated by radiation
fven modes therefore survive diffusion damping. However,pressure.
they undergo additional damping if, with the expansion of Throughout the paper we assume that the magnetic field
the universe, they enter the so called free-streaming regimean be decomposed into a large magnitude background com-
i.e. if the mean free path grows to be much larger than thgonentB,(x,t), and a small perturbatio(x,t). We addi-
wavelength of a mode. As a consequence, whereas fast magonally assume that the curl of the background component is
netosonic modes are damped mostly when radiation is difnegligible when compared to the curl of the perturbations.
fusing, slow magnetosonic and Alfwemodes can also be These two assumptions allow us to solve for the damping of
significantly damped when radiation is free-streaming.MHD modes analytically.
Therefore, when studying the damping of all MHD modes in  The use of scalar viscosities and heat conductivity implic-
order to estimate their damping scales, it is necessary to intly neglects any anisotropies in these quantities due to the
vestigate both the free-streaming and the diffusion regimegresence of the magnetic field. Further, since our equations
even before the final stages of the decoupling process.  are derived for an isotropically, homogeneously, and adia-
The damping of MHD modes which causes the dissipabatically expanding plasma, the background magnetic field,
tion of magnetic energy can be illustrated with the following B, is required to have vanishing spatial average on suffi-
picture: as long as there exist spatially tangled magnetigiently large scales,By)=0. In our derivation we also ne-
fields, Lorentz forces accelerate the fluid, setting up oscillaglect gravitational forces because the scales of interest are
tions about a force-free field configuration; the induced mosmaller than the Jeans mass scale, and we assume the plasma
tions are damped by the effective viscosity of photons oo be infinitely conducting which is an excellent approxima-

neutrinos; this causes the exponential decrease in the amption for most astrophysical plasmas and for the early uni-
tude of the oscillations and thus results in the straighteningerse(see, e.g., Ref5)).

of magnetic field lines towards a force-free configuration.

After the cosmological magnetic fields undergo this damping

process they have little structure on scales below a charac-

teristic damping scale, and the magnetic energy density in We consider the evolution of a non-ideal, relativistic fluid

such primordial fields is much smaller than that expectedn a homogeneously and isotropically expanding background

from the simple redshift argument above. using the spatially flat Robertson-Walker metric
In this paper we follow the evolution of MHD modes and g,,,=diag(1,-a? —a? —a?) and comoving coordinates".

derive their propagation velocities and damping rates both iThe time dependent scale fact(t) provides the connection

the diffusion and free-streaming regimes during the decoubetween propefphysica) coordinatesx’* and the comoving

pling of photons and neutrinos. The existence of highly relacoordinatesx’®=x® andx’'=ax' (Greek indices run from 0

tivistic particles with mean free path much shorter than theo 3 whereas Latin indices run from 1 t9.3

wavelength of a MHD modée.g., photons and leptonge- The relativistic fluid is described by the energy-

quires the use of relativistic MHD. In the radiation diffusion momentum tensor

regime, studied in Sec. Il, we develop a relativistic descrip-

tion of viscous expanding fluids with magnetic fields, while TR =T{"+ "+ TEy, N

in the free-streaming case, Sec. lll, the effects of the photons

or neutrinos are included through hea_1t exchange and a dr%/ghich is separated into three parts: the ideal fluid te$dr,
force which they exert on the fluid. This procedure allows USthe non-ideal fluid part*, which accounts for dissipation

to calculate, in Sec. IV, the maximum damping lengths after nd the electromagnetic energy-momentum tenSgf,

the epochs of neutrino decoupling and recombination. Ou ; : ) .
results may be applied to other astrophysical environment d_ded in Sec. Il B The equations of fluid d_ynamlcs can be
erived from energy-momentum conservation

where MHD waves propagate in a viscous fluid, since in the
derivation of the dispersion relations we leave the sources of
viscosity and heat conductivity unspecified. T#".,=0. 2

A. Relativistic imperfect fluids
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In comoving coordinates Eq2) becomes nos and photons. We choose to follow the velocity of the
charged particletand, therefore, the flow of baryon numper

JTOX a

: y which appears explicitly in the magneto-hydrodynamic equa-
i=1,3 ’ . . .
% ' The conservation of particle number can be written as
and
n{‘fo, (10

oTe  [a)

Py +5| 5 T"=0, (4 wheren*=nU* is the particle number four-current with the

X

proper number density of particlas The particle number
we follow is the net baryon numben®, which is conserved
for temperatures below the electroweak transition.
We can now derive the linearized equations of ordinary
TE'=(p+p)UrU"—pg*?, (5) relativistic fluid dynamics in an expanding universe from
Egs.(2)—(10), by expanding the fluid variables around their
where p, p, andU* are the total energy density, the total background values
pressure, and the four velocity of the fluid, respectively. The
non-ideal contributions to the fluid energy-momentum tensor p(X,t)= po(t) +p1(X,1), (11)
can be written a$6]

with the dot representing a derivative with respect to tiche
The energy-momentum tensor for an ideal fluid is

. . \ \ P(X,t) = Po(t) +Pp1(X,t), (12
™'=p(Usr+U"*—U*UMN", —U"UMU~A,)
+| & gn)ung—u“uw
nP(x,t)=ng(t)+n8(x,t), (14)
B aT N
T UF e~ TURU Uk=UE+ UL, (15)
aT aT The four-velocity is that of a stationary fluid elememtith
v y2 N MUV
+U X, TUSU ) 2UFU Xy, Ux}' ©) respect to the comoving framelus a small velocity pertur-
bation
In this expression] stands for temperature ang &, andk
are shear viscosity, bulk viscosity, and heat conductivity re- %
spectively. Up=(1,000, Ur=|0g (16)

The effective viscosities and heat conductivity for either

photons or neutrinos are given bY.3.4 We choosdJ in this particular form so that the fluid veloc-

w2 ity in proper coordinates;’ = (a/a)x’ +v, corresponds to an
n= 1—59 %T‘” mfp > (7) isotropic expansion plus an additional peculiar veloaity
We consider fluids in which the peculiar velocities are much
a2 (1 [dp smaller than the speed of light, efy|<1 with velocities
g=4g—T* __(_) } fos (8) measured in units of the speed of light. Although the fluid
30 |3 \dp/, velocities are small, a relativistic treatment is necessary to

adequately account for the presence of relativistic particles
- (e.g., photons and neutrinos
K= §9%T Imtp» ©) Evaluating Eqs(2) and (10) to lowest order in the fluid
variables, we obtain
wheren is the number density of the conserved particles in
the fluid andg is the statistical weight of the diffusing par- dpo
ticles. T3
The exact form ofr*” is partially a matter of definition

since, in relativistic fluid mechanics, the fluid velocity can be,hich represents conservation of entropy wkien0, and
defined either by the flow of conserved partidiéfor by the '

2

a

a

\ 2
(po+po>=9§( g) , a

flow of energy [8]. These definitions coincide in non- b :

S . : ang a
relativistic fluid mechanics where the rest mass of particles —+3| =|nd=0, (18
dominates the total energy. In our case, a relativistic one- at a

fluid approximation, the charged and strongly interacting )

particles (protons, neutrons, electrons, ¢tahich compose which represents conservation of baryon number. If we ex-
the fluid are all perfectly coupled and have the same velocitpand the energy momentum tensor and baryon number four-
as the conserved particle number, the baryon number. Theurrent to first order in the perturbation variablgs, p1, p;,
energy flow may differ from the particle flow, however, due Ty, andn?, use Egs.(3) and (4), and subtract the zeroth

to the energy transported by the imperfectly coupled neutriorder solution, we obtain
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dpy 1 a pev 0 Ey/a E,/a E,/a

St T(PotPo)Z Vv3| 2 (p1tpr—28V-v) o -EJa 0 B,/a> —B,/a?

. < | —E,/a —B,/a? 0 B, /a®
—;VZTl—;E(aToV'V)ZO, 19 —-E,Ja B,/a® -B,/a? 0

(26)

The equations of motion for the electromagnetic fields are
Maxwell's equations

19 4 3 1% 3
;ﬁ a“(potpo)V—ka ﬁ(aTovH—VTl —3é&a”av

Fur. =4mH 27
. _, 1 1
+IVp,— —Lv2y— e+ 2 W)= and
anl aZV % 2 3 377)V(V v)=0, (20
d J J

—F,,+—F,,+—F,,=0, (28

and ax* ax” IXM

o nb whereJ* is the electric four-current.

11 %3l 2 n?=0. (21) In the limit of infinite electrical conductivity, the electric

gt a field in the rest frame of the charged particles vanishes:

These equations form a complete set describing the evo- Ef=F*"U,=0. (29)

lution of a non-ideal fluid; equatiofil9) represents the first
law of thermodynamics in local form, E€RO) is the relativ-

istic version of Euler’'s equation, and E@1) represents the
conservation of baryon number. E=—vXB. (30)

This condition evaluated in the comoving frame using Egs.
(16) and (26) becomes

We decompose the magnetic field into its background

B. Magneto-hydrodynamics with dissipation value,Bj, and a small-amplitude perturbatidm(x,t),

We now include the electromagnetic fields. In an inertial

frame (denoted by } the Maxwell tensor has the form B(x,t)=Bo(x,1) +b(x,1), (31
0 Ex E, E and impose the following conditions:
. |-, o B, -B <
Fuv_ x z y , 22) b(x,t)<By(x,t), (32
~E, -B, 0 B,
VX By(X,1) <V X b(x,t). (33

—-E, By —By 0
We can now derive the relevant Maxwell's equations to ze-
whereE; andB; are the electric and magnetic fields as de-foth and first order in the small quantitiesandb by using
termined by an observer in the inertial frame. The MaxwellEds.(26), (28), and(30). This yields
tensor in comoving coordinatexX) can be derived from the

LT . - V-b=0, (34
Maxwell tensor in inertial coordinatexX),
) 149 , 1
F,u.v:A,u,)\AvUF)\(r, (23) ;E(a b):aVX(VX Bo), (35)
where J
E(a By)=0. (36)
axH . .
At =—. (29 Equation(36) shows that the background fieBy, by flux
X conservation, redshifts asaf/ with the expansion of the

fluid.

The coordinate transformation which transforms the lo- To complete the system of equations needed to describe
cally Minkowski metric @’”=diag(1,— 1,-1,—1) into the the evolution of the fluid in thel presence of electromagnetic
Robertson-Walker metricg””=diag(1— 1/a2, — 1/a2,— 1/ fleI(_js, we must add the contribution from the elec_:tromag—
a%) has netic energy-momentum tensdg,, to the conservation of
energy-momentum[Eqgs. (3) and (4)]. The energy-

) momentum tensor for electromagnetism is
A*,=diagl,1/,1/a,1/a). (25)

1 1
mv T MOEV _ _ NMVEOTP
Thus, in the comoving basB*” is Tew 47 FEFo 49 F7Fop), (37)
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which in comoving coordinates becomes

- 1/A S
TEM:E S J')’ 38
with
(E2+B?) (EXB)
=— = , and
2 a
ij 1 2. R2
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b= P Bo= B (44)
C[Am(ptp0l® T [Am(p+ )]
r— U r— f r— «T
T3t ¢ 3rp < T 3t
(45)

where p,=g7r2Té/30 andp,=p,/3 are the average energy
density and pressure of relativistic particles, gnd the total
statistical weight of relativistic particles.

For a fluid comprised of baryons and relativistic particles
(e.g., photons, neutrinos;"-pairs, etc), the energy density
and pressure up to first order in the small quantities are given

We can now evaluate the contributions from the electroy

magnetic stresses to the conservation of entropy(Eg), the
first law of thermodynamics in local form E¢L9), and the
relativistic version of Euler's equation EO). The contri-
bution to the left-hand sidd_HS) of the zeroth order equa-
tion (17) is

1 9
2 (44R2
- &t(a Bo).

(40)

pP=potp1

=p(1+48)+p°(1+A), (46)
P=pPo+P1

=pi(1+49), (47)

wherep,= ngmN is the baryon energy density, ang, is the

while to first order inv andb, the electromagnetic stresses to y,cleon rest mass. In writing E¢47), we assume that bary-

be added to the left-hand-sides of E¢K9) and (20) are

B ‘b-B B(Z) \Y ! By-V B
gﬁ(a : o)+;( 'V)—g( o' V)(v-Byp)

4
(41)

for Eq. (19), and

J 1
= E(a‘lBOX(VX Bo))+ R(BOX (VXDb)), (42)

for Eq. (20). After substituting Maxwell's equationgEq.
(349—(396)] into Eqg. (41), we find that the electromagnetic
contribution to Eq.(19) is zero. Similarly, Eq(40) is iden-
tical to zero by virtue of Eq(36) so that both Eq(17) and

onic pressure is negligible in comparison to radiation pres-
sure. In this case, and whefx0, Eq. (17) and Eq.(18)
imply simple redshift relations for the temperaturg~ 1/a

and the baryon number density~ 1/a%. We also define

3pp
4p,

R(t)= (48)

as a measure of the relative importance of baryon mass den-
sity with respect to energy density in relativistic particles.
For R—0, both energy density and pressure are dominated
by relativistic particles, whereas f&=1 the energy density
is dominated by the baryon rest mass and the pressure is
dominated by radiation.

In terms of the newly defined variables, the equations of

(19) are unmodified. The only coupling between the field andmagneto-hydrodynamics become
the fluid to first order occurs through the velocity of charged

particles and the curl of the magnetic field.

Note that the first term of Eq42) is only important in the
relativistic limit. For a mode with frequency and wave
numberk, Eq.(35) implies wb~kuvB. Therefore, the relative
contribution of the first term in Eq(42) compared to the
second term is of ordera{/k)?. Hence, the first term can

only be neglected when the group velocity of a mode,

dwl ok~ wlk, is much smaller than the speed of light.
To first order in the quantitie¥;, n?, p;, p1, v, b, Egs.

(19), (21), (34)—(36), together with the equation obtained by

adding Eq.(42) to the LHS of Eq.(20) describe magneto-

hydrodynamics in an expanding fluid. The following defini-
tions help to rewrite our equations into a more convenient

form
T, no
= — A= —5 4
TO i no 1 ( 3)

2

5+ 36¢' 2 o+ ! V-v—6 .)g/V K,VZE
o a 3a " aja’’ a2
al aV =0 49
= 57 v=0. (49)

(1+R)V—3«’

. 2 .
d | a .1 |a
E+36§ (5) V+5V5)—9§ (a)v

37’

Vov+ 1V(V-v)
a2 3

1
+ Vo
a

!

3¢ -
— = V(V-v) +BoX

1. -
a a

(50

v =
— X
at oo
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d_ 1 ~ We obtain the dispersion relations by substituting &)
5b= EVX(VX Bo), (51  into Egs.(49)—(52). The dispersion relations are derived to
first order in«’, »', &', which corresponds to the lowest
non-trivial expansion in powers df.,,/N (Where\ is the
wavelength of a mode We use the WKB approximation
neglecting the time derivatives of the Fourier amplitudes,
iﬁ -0 (53) dp(t)/dt<w, and the time derivative of the frequency,
at o dwl t<— w?, which arises from the?v/ot? term in Eq.
(50). This approximation is valid for modes with oscillation
frequencies much higher than the expansion rateH.

This procedure for Alfve waves yields:

éR 3’k2
5+”5
2

=0. (56)

V-b=0, (52)

C. Dispersion relations

In order to calculate propagation velocities and damping
rates, we first derive the dispersion relations for the different -
MHD modes by Fourier transforming all perturbative vari- 303k +iw*(1+R+Bj) +o
ables ¢, A, b, andv, generically represented hy below
using the convention

~ k
—iBﬁcos@(a

¢(x,t)=f d3kp(k,t)explik-x) (54)

Complete dispersion relations for all MHD modes are, due to

_ ) ) ) their length, placed in Appendix A.

in which k is a constant comoving wave vector. In the following two sections, we present the solutions for
~ The time dependence df(k,t) is modified by the expan- pscillation frequencies and damping rates derived from the

sion of the fluid which introduces a time variation into the dispersion relations in the following two limits: the oscilla-

frequency and the amplitude of the modes. With this in mindory |imit, when the solution is oscillatory with an exponen-

it is convenient to write tially decaying amplitude; and the overdamped limit, when
the amplitude of modes exponentially decrease without com-
(b(k,t):fﬁk(t)exr{j iw(t)dt}. (55) pleting an oscillation.

1. Oscillatory limit
The decrease of the amplitude due to damping is included in
the exponential part through imaginary solutions dowhile
the explicit time dependence ¢ (t) accounts only for the
effects of the expansion.

The system of equations resulting from the substitution o
Eq. (54) into Egs.(49)—(53) is solved separately for the dif-
ferent MHD modes: Alfva waves, for which the density and
e temperaure of e ld e o and 1 velocty fon th eal i disperson elaton.

- - N - - The solutions to the dispersion relations will be conve-
(k=kx,Bo=Byx+B,z,b=by,v=vy and6=0); and magne- pjently expressed in terms of the speed of sound:
tosonic waves, for which the velocity of the fluid makes an

arbitrary angle with the background field ap 1
(k=kx,By=BX+B,y,b=by,v=v,X+v,y). Note that vs= 1/ a_) =, (57)
sound waves, which propagate along the background field Pls V3(1+R)

without affecting it Boll kv andb=0), are a special case of 1 o relativistic Alfive speed:
magnetosonic waves. In all dispersion relations and their so-

The solutions to the dispersion relations, generally
consist of a real and an imaginary part, which represent the
oscillation frequency and the damping rate, respectively. In
ghe oscillatory limit, the dissipative effects are such that the
fluid oscillates many times as it damps, d*€Imw. In this
case, the dispersion relations can be solved by considering
all the viscosity and heat conductivity terms as perturbations

lutions, 6 denotes the angle between the background mag- 'go
netic field and the wave vector. VpA=—FT——ss. (58
2
The dispersion relation for magnetosonic modes allows V1+R+Bg

two solutions: slow magnetosonic modes and fast magneto- _ , . L
sonic modes. Fast magnetosonic modes are similar in natuolzre.r‘e relativistic Alfven speed includes the magnetic field en-

to sound waves, while slow magnetosonic modes are clos&9Y density in the denominator, which ensures that for
to Alfvén waves. This fact plays an important role in the strong magnetic fields the Alfwespeed does not exceed the

damping of magnetosonic waves, and is apparent for weakP€ed of light.

magnetic fields §z<pq,q) Where fast magnetosonic modes . For gll mode_s in the osg|llatory_l|m|t we first solve the
oscillate withv almost along the direction d¢ and involve dispersion relations for an ideal fluid and then compute the

oscillating density perturbations, while slow magnetosonicﬁIirSt order CO”tFibU“F’”S fr_om the dissipative terms. For C'af'
modes oscillate almost perpendicularlykaand have close ity, all the squuong in their general _form ha\_/e been placed n
to vanishing density perturbations. In the special ddk#, Appgnd|x A. In this and the fqllowmg section we give the
fast magnetosonic waves become sound waves and there Eﬁ%lutlons for each MHD mOdf in the cosmologically relevant
no slow magnetosonic solutiongor a discussion of MHD  limit of weak magnetic fields§,<1) and negligible redshift
modes see, for example, Rg®].) terms @/a).



3270 JEDAMZIK, KATALINI(f, AND OLINTO 57

For weak magnetic fields, the leading terms in the fre-modes may be extremely large.
guencies for fast magnetosonic waves do not depend either While the amplitudes of the fast decaying modes damp at
on the magnetic field strength or on the direction of propa+ates similar to the ones calculated in the oscillatory regime
gation, and are therefore the same as the frequencies f¢Bec. Il C ), the amplitudes of slowly decaying modes de-

sound waves: cay at significantly different rates. For weak magnetic fields

(§0< 1), the decay rate for the amplitude of overdamped
k R? 2 3 slow magnetosonic modes is
o™ vyl = k' + 7'+ &
osc TSl a 2(1+R)? 1+R 2(1+R)
sv_ ., 2K 2 picogl
k 2 wod:|K’UA —_ +1 , ’ (61)
|3 (59 37

. ) i ) and the decay rate for Alfvemodes is
This reproduces the solution for propagation and damping of

sound waves given in Reff4]. Similarly, the frequencies of 20020

slow magnetosonic waves and Alfvevaves are identical to wh=i oA . (62
leading order inBy and have the following form: 37’
SMA K\ 3 7% 2 Note that all modes with relativistic propagation veloci-
Wosc = FUACOSH 3l ol (1+R)\a) - (60)  ties (Rewys~k/a) never enter the overdamped regime in the

diffusion limit. For this reason a discussion of overdamped

The solutions show that, while for small magnetic fieldsrelativistic sound and fast magnetosonic waves is not neces-

the damping of slow magnetosonic and Alfvevaves pro-
ceeds through shear viscosity, fast magnetosonic waves are
damped by shear and bulk viscosity, as well as heat conducH!. DAMPING OF MAGNETOHYDRODYNAMIC MODES
tivity. Furthermore, fast magnetosonic waves damp differ- IN THE RADIATION FREE-STREAMING LIMIT
ently in different regimes: they damp predominantly by heat

conductivity when the matter density is larger than the radia- Slow magnetosonic and Alfve modes which become
uctivity w iyt 9 ' overdamped during the diffusion regime survive the damping

tion density, and by shear viscosity when the radiation den: nd with the expansion of the universe enter the free-

the frequencies directly througtia terms(see Appendix A |n order to investigate the additional damping that these
and indirectly through the integral in Eq. 55. For instance, asygdes undergo in the free-streaming regime, we study the
in the case of sound waves wh&r<1, the oscillation fre-  general case of MHD in an expanding fluid in the presence
quency of a fast magnetosonic mode with a given wavepf a uniform background. Similar to our analysis of the dif-
length in a radiation dominated expansion is twice the frefysjon regime, we study the evolution of a single dissipative
quency of the same wavelength mode in a static backgrounglid. However, in this case the fluid is comprised of all the
metric. particles with mean free paths much shorter than the wave-
o length of the MHD mode, while the decoupling particle spe-
2. Overdamped limit cies, whose mean free path is now large as it decouples from
When dissipative effects become very strong, oscillationghe rest of the fluid, represents a uniform background on the
of MHD modes are inhibited and the evolution of a givenscales of interest. The dissipation arises from occasional col-
MHD mode is dominated by the exponential decay of itslisions of the fluid particles with the relativistic background.
amplitude with time. We seek solutions in the extremely We generically define a drag coefficieat and a heat
overdamped regime by expanding the equations in powers @xchange coefficieny in the following way: the drag force
Rew s/ IMw,s., Wherew,q is the frequency of a wave de- per unit volume on the fluid element from scattering with the

rived in the oscillatory limit. background particles is given by
In general, a dispersion relation expanded in powers of
Rew s/ IMmwys: has several solutions distinguished in nature f=—avpng, (63

by their initial conditions. For example, in the case of Alive )

waves, fast decaying solutions arise from initial conditions@nd the heat exchanged between the fluid element and the
such that when the velocities of the fluid are damped awaypackground is

by shear viscosities, the amplitude of the magnetic perturba-

tions vanish as well. In contrast, when initial conditions gen- Ipthermal_ E (64)
erate slowly decaying Alfue modes, the fluctuations are not a 7T0 Pthermal-

erased as the velocities damp to zero; after the damping of

fluid motions, the remaining magnetic forces tend to accelThe exact form of these coefficients is obtained by calculat-
erate the fluid, although inefficiently because of the strongng the transfer of momentum and heat per scattering and
viscous damping. Since energy dissipation rates are propoaveraging it over the distribution of background and fluid
tional to the peculiar fluid velocity, the time scale for dissi- particles. We presented the coefficients later separately for
pation of the magnetic field perturbation of slow decayingneutrino decoupling and photon decoupling.
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In order to derive the free-streaming fluid equations, weThe energy densityequal topyerma) has contributions from
use the fluid equations developed in Sec. Il, as well as tectall relativistic particles, counted in the number of degrees of
niques for finding solutions described therein. The heatingreedomg; :
rate from Eq.(64) is incorporated into Eq(19), while the
drag force from Eq(63) is added to Eq(20) together with ., T4
the magnetic field contribution from E¢42). Although the Pr=Grgzp’ -
local thermodynamic equilibrium between the fluid and the
free-streaming component does not hold in general, we conthe heat exchange coefficient and the drag coefficient, de-
sider the case in which the mean scattering time betweefined by Eq.(64) and Eq.(63), are approximately the same at
particles of the fluid component and the free-streaming comthe high temperatures of neutrino free-streaming. Computed
ponent is shorter than the characteristic expansion time scaly averaging the transfer of energy in each scattering over a
of the fluid. In this case the temperature and velocity of thedistribution of background particles and a distribution of
background is the same as the average temperature and Vhid particles[10], they are
locity of the fluid. All other assumptions, including non-

2
(70)

relativistic fluid velocities, are carried over from Sec. II. = Pv_ 9 71
X . Y= 0wy (71
The resulting equations are Py Gl
: and
&pl 1 a Tl
7"’5(%’0"’ pO)V'V+3a(P1+p1):_'YT_OPthermaI- a=-y. (72
(65

Here o, is the cross section for scattering of neutrinos with
other weakly interacting particles,, is the number density

19 , 1 1. [(ov - of weakly interacting particleéscatterers g, is the neutrino
24 ﬁ(a (potPo)V)+ an1+ EBOX ot X Bo statistical weight, andl, is the neutrino mean free path.
Following the steps used in the diffusion regirf@ec.
1 - II C), we obtain dispersion relations for the different MHD
+ 2-BoX(VxB)=—avp,, (66)  modes and present them in Appendix B.
1. Oscillatory limit
o 3, Mo he oscillation f ies and dampi for sl
— +3-nP+ =V.v=0 (67) The oscillation frequencies and damping rates for slow
ot a a magnetosonic and Alfvemodes are again obtained by first

solving the dispersion relations for an ideal fluid and then

and together with Maxwell's equations Ed§1)—(53) they  solving for the first order dissipative terms. In terms of the
form a complete set. previously defined Alfva speed, the solutions for small

In order to derive dispersion relations for a given fluid, wemagnetic fields are the same for slow magnetosonic and Al-
have to specify the energy density, matter density, and pregven modes, and have the form
sure, and substitute these into the above set of equations.
This is done in the rest of Sec. Il for two fluid combinations: wMAZ 11 o E
a baryonic fluid with free-streaming photons; and a fluid 0s¢ A a
which consists of baryons and relativistic particles like pho- ) ) ) )
tons ande* e~ pairs, in a background of free-streaming neu_The.frequenues for oscillatory fast r_nagnetosqmc waues
trinos. All the dispersion relations as well as the solutions forcluding sound wavesare presented in Appendix B.
fast magnetosonic modes are given in the appendices. Here
we present the solutions to dispersion relations for slow mag-
netosonic modes and Alfmemodes, the two modes that in  As in the diffusion regime, the solutions in the extremely
the presence of weak magnetic fields survive into the freeeverdamped regime (Rg.<Imw.) are derived by ex-
streaming regime before recombination. panding the equations in powers of &g./ImMwy.. The
overdamped solution in the case of weak magnetic fields is,
for slow magnetosonic modes

3i 73
+§a. (73

2. Overdamped limit

A. Neutrino free-streaming limit

Around neutrino decoupling the fluid consists of tightly w b, 4ivicog| k)2
coupled baryons, photons, amd e~ pairs. The dominant Woq :ZYUA+3—a al (74)
component of the pressure is radiation pressure,
) and for Alfven waves
Pr=3pr, (689
4 divicogo k|2
and, sinceR=0, the speed of sound is @od™ T3, la (79)
1 As in the case of radiation diffusiofBec. Il Q, relativis-
Iy — (69) tic fast magnetosonic modes do not become overdamped in
V3 the free-streaming regime.
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B. Photon free-streaming limit Before presenting the solutions for slow magnetosonic and
Fluid equations for the modes in the free-streaming IimitAlfVén modes, it is useful to introduce the non-relativistic

around photon decoupling are somewhat different from thé*(fven speed,
cases analyzed so far. Namely, the only contribution to the

energy density of the perturbations is the thermal energy CA:E- (82)
density of baryons, JR
Phermar= 3 (Net+Np) T=3n, T, (76) The oscillation frequency and the damping rate for slow

. ) magnetosonic waves in the adiabatic regimewRey,« are
which enters Eq(65) but can be neglected in E(G6) be-  given by:

cause it is much smaller than the matter density. hherend

n, are electron and proton number densities, respectively. a yESSinzﬂ
Furthermore, since the photons can be considered decoupled W= icAcosﬁ(a izt —2g | ©3
on the free-streaming scales, the only pressure left to support s
the oscillations is the pressure of the baryonic fluid itself: ;4
Pp=(Net+Np) T=2n,T. (77 a vy
o _ . _ wol=+ccos| = | +i| =+ =], (84)
This yields the gradient of pressure in E§6) which de- a 2 5

pends both on density and temperature fluctuations and is . .
best expressed through the sound speed: where the upper solution corresponds to weak magnetic
' fields such thats>c, and the lower solution to strong mag-

1 3 netic fields withcg<<c,. It is important to remember that
—-Vp= gcg(mwa), (78 both of these solutions are derived for a background mag-
p netic field whose energy density is much smaller than the
energy density in photons. The condition for adiabaticity is
dependent on the strength of the magnetic field since oscil-
lation frequencies of magnetosonic waves are different for
9Py 0T strong and weak magnetic fields.

Cs= \/( a_) N3 m- (79 Slow magnetosonic mc_)des in the isothermal regime,

Po/ g p y>Rew> a, have the solution

wherec, is the adiabatic baryonic speed of sound for a fully
ionized proton-electron fluid,

With these substitutions for the densities and the pressure,

o
we obtain dispersion relations for different MHD modes and wgs'\ﬁ= iCACOS‘)(a +i PR (85
present them in Appendix C.
The drag and heat exchange coefficients, which appear igq
the dispersion relations and their solutions, are similarly ob-
tained as in the neutrino free-streaming case, and have the . 3 k\  «
following form [11]: Wosc= * \/ £CsCOY 5) tig, (86)

(80) where again the upper solution is fog>c, and the lower
pp LR solution is force<c, .
The result for Alfvan waves is

and
m i =*c CosﬁE vis 87
yz_pa. (81) osc — YA a 2
me
The frequency of non-relativistic fast magnetosonic
1. Oscillatory limit waves in the adiabatic and isothermal limits are placed in

Unlike in the relativistic cases where the photon pressuréb‘ppemjIX c.
dominates, the structure of the non-relativistic equations with
free-streaming photons allows for oscillating magnetosonic
modes with two different propagation velocities and damp- The frequencies for slow magnetosonic waves corre-
ing rates. These modes are commonly referred to as adiaba®onding to slow exponential decay are:
and isothermal, depending if heat transport is slow or rapid

2. Overdamped limit

compared to the oscillation time: a mode is adiabatic when WwSM—i cacoS'0 k| (89)
0> v andw> «, and it is isothermal wheg> w> a. Alfvén od a al’
modes have only one solution since they do not include den-
sity or temperature fluctuations and therefore are not affected@nd
by heat transport. 2602 )

Again we derive the dispersion relations from E¢gl)— WwSM=i 3cscos'd E (89)
(53) and Eqs.(65—(67), and place them in Appendix C. od S5a al’
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with the upper solution focy<cg, and the lower solution cross section. The quantitigs and g, are the statistical
for cy>c. The slowly decaying mode of overdamped Al- weights of relativistic weakly interacting leptons and quarks
fvén waves has frequency present at the epoch of interest.
At temperatures below the completion of the
e e -annihilation T~20 keV), heat and momentum are
(90) most efficiently transported by photons. The dominant pro-
cess limiting the photon mean free path during this period is
In contrast to relativistic MHD, some non-relativistic fast Thomson scattering of photons off electrons which gives the
magnetosonic modes can enter the overdamped regimehoton mean free path the following form:
Their damping rates can also be found in Appendix C. T -3/ . h2
|(T)= v) ( D

-1
:1022CI'T] ( 5\) X (T)_l,
IV. DAMPING OF MAGNETIC FIELDS o1Ne 025 e 0.012 €
IN THE EARLY UNIVERSE (92

In this section we discuss the implications of the dampingVheréX. is the number of free electrons per baryen;, is
of magneto-hydrodynamic modes for the evolution of costhe Thomson cross section, andis the electron density.
mological magnetic fields. Magnetic fields generated in the The damping of MHD waves is particularly efficient dur-
early universe are likely to be randomly oriented, spatiallyi"d the epochs of neutrino decoupling and recombination,
varying fields with small coherence lengths, usually of thehen efficient momentum transfer and heat transport arise
order of the horizon at the epoch when the fields were creffom the quickly growing mean free path of the decoupling
ated. We assume that the magnetic fields are created wifparticles. Therefore, all the variables in the above equations
magnetic field energy below equipartition with the radiationnave been scaled to their values at those epochs. Also, since
energy density, i.eBy<1. For an arbitrary magnetic field at neuf[rlno decou_pllng the dominant scattermg process 1s
configuration, we choose a separation of scales such that inscattenng of neutrinos off leptons, the appropriate values for

given volume the field can be described as an approximateli/ﬁle parameters in Eg91) areg,=8.75 (™ and six neutrino

) e pecies and g4=0. The remaining unspecified parameter,
:)orrocs agzgnza%kgégg?lij) ,mvavngélfbr?fgoﬁnl?l atlh?g eccggimwzf the ionization fractionX,, drops within a short time from 1

can decompose the propagating modes into slow and faIs? ~d10 ° during recombination which occurs approximately
magnetosonic, and Alfremodes with different wave vec- 2t 1,~0-25eV. o .

torsk and different phases. Although the conditit<|B| The baryon mass density is negligible when compared to
may not be easily achieved for every field configuration, the"€ radiation energy density during neutrino decoupling
predicted evolution of propagating modes is indicative of the(R~0), while around recombination it is approximately
general field evolution. In particular, the efficient viscous 91Ven by

2 2
A . CacOSH

Wod™ |

k
a

o

damping discussed in this paper should cause the dissipation 3p T -1/ O.h2
of magnetic energy in generic field configurations. R= P 4( ( b 5) (93
We are interested in the evolution of individual MHD 4pr 0.25 eV 0.012

g]aorggisn ;rt?omn t::e;?reeaéueeeggﬁhwzfxgﬁtigzggﬁﬁfgrt]ﬁetcér{;i/vhere Q, is the fractional contribution of baryons to the
acteristic scéles over thich pre-existing cosmic magneti((::Iosure densnly and |slthe pre_s_ent Hubble cons_tant_m units
fields are damped. As previously described, the evolution o f 100 km s Mp(_:‘ - In writing Eq. (93) we implicitly -
o N AR ¥ ssume that neutrinos have decoupled from the remaining
fast magnetosonic waves is distinctively different from the . .
: . . particle species.
evolution of slow magnetosonic modes and Ativaaves;
therefore they are discussed separately: fast magnetosonic , , , ,
waves in Sec. IVA, and slow magnetosonic and Alfve A. Damping of fast magnetosonic waves in the early universe
waves in Sec. IV B. The damping of all fast magnetosonic modes is to leading
For the calculation of the damping scales we need therder equivalent to the damping of sound waves if the energy
expressions for the mean free path of the decoupling pardensity in the large-scale magnetic field is much smaller than
ticles as well as the ratio of the baryon density to the photonhe energy density in radiation. The damping occurs due to
density. While the universe cools from temperatures belowhe diffusion of either neutrinos prior to neutrino decoupling,
the electroweak breaking scal@ {100 Ge\j to neutrino  or photons before recombination. From the expressions in
decoupling T,~MeV), neutrinos are the particles with the Eqs.(91) and(92), which represent mean free paths in proper
longest mean free path and therefore the most efficient maunits, it can be seen that in both cases the comoving mean
mentum and heat transporters. The neutrino mean free paftfee path grows with the expansion of the universe. As a
at temperatur@ can be written as consequence, MHD modes with wavelengths-27a(T)/k
smaller than the mean free pdth,(T) at timet(T) were in
the diffusion regime at some prior time in the early universe,
' .8, Np(T")>1mio(T") att(T").
(91 The amount of damping that fast magnetosonic modes
undergo in the diffusion regime can be calculated using the
wheren; andn, are lepton and quark number densiti€  damping rates in Eq59). From the leading damping term,
is Fermi’s constant, an(ﬁf-:T2 is a typical weak interaction 2i 7%’ (k/a)?/(1+R), and the definitions in Eq$45) and(7),

T

=10'cm (—)5 979

8.75

1(T)= Vv

GETA(nj+ny)
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we see that the amplitude of the perturbation is damped be- FM_ 1013 T, |\~ 1540 h? )\~ 1?2 o
tween timet=0 andt by M5"=10"Mo | 535 v (0_0125) (Qoh%)~ =
t| (100
expl — f "t |. (94)
0Np

The above calculations for the damping scales are ap-
If we define a characteristic damping scale as the largegiroximate in that we assume that the damped modes are in
comoving wavelength of an MHD mode whose initial ampli- the diffusion regimel, ,<\,. The diffusion approximation
tude has been damped by at least one e-folding bytjiies  is not a valid approximation late within the decoupling ep-
damping scale approximately corresponds to the comovingchs. Around neutrino decoupling, while our analysis uncov-

photon/neutrino diffusion length, ers the order of magnitude of the damping mass scale, an
t] / improvement on the diffusion approximation only, would not
2 mfp(t ) ; . .

d?= 2—d ' (95)  yield more accurate results since the calculated damping

0 as(t’) scale approximately corresponds to the causal horizon at that

o , i time. Around recombination, our treatment is analogous to
which is the distance a photon/neutrino has random walkegha calculations of the damping of sound waves in RéF.
betwee_n time=0 andt. ) ) in writing Eq. (97) we assume an instantaneous recombina-

In this section we present all the damping scales in Ot \while the ionization fractiorX, decreases gradually to
moving units, in particular, comoving to the present epoChyery gyring recombination. More detailed treatments for the
unless stated otherwise. The diffusion damping scale caICLBamping of sound waves during recombination have been
lated for fast magnetosonic waves prior to neutrino deco“performed using the Boltzman equatift?—14 or using a

pling (T=1 MeV) is: two-fluid model[15,16]. Since the dominant damping terms
- > T\ 52 g, |\~ g, |12 of fast magnetosonic waves are the same as those of sound
A, "=2X10"cm MeV 107 525 waves, values for the sound wave damping scale calculated

in more accurate models may be used as better approxima-
tions to the fast magnetosonic damping scale. A review of
previous Silk scale calculations is given in REf4].

9i+dq|” 1/2

8.75

(96)

Note that the damping scale at neutrino decoupling con-
verted to proper units approximately corresponds to the
causal horizon at that tima,,(MeV)~5x 10%cm.

In a similar fashion we can compute the comoving damp- Unlike the damping of fast magnetosonic waves, the
ing scale of fast magnetosonic waves due to the effects of thaamping of slow magnetosonic and Alfvevaves in the
finite photon mean free path at lower temperatures. Arounearly universe proceeds through several different stages. We
recombination, where we assume matter domination, thiglustrate these stages by following an Alfvevave from

B. Damping of slow magnetosonic and Alfve waves
in the early universe

damping scale is after neutrino decoupling up to recombination.
N Initially, in the diffusion regime where\>1,,, a wave
4 oscillates and damps in the same manner as described for fast
5 T |\ % Qh%|\ 12 o 14 magnetosonic waves. The oscillation frequency and the
x10%em | o=l loozs (@00 damping rate are shown in EG0), and after using Eqs45)
@ and(7) they approximately become
: : . L A k s
In this expression(), is the total density in units of the W™= FUA 3 cosf+il, e (101
critical density at the present epoch.
Baryonic mass scales can be associated with the damping
length scales by defining The damping rate in this expression is the same as the damp-
3 ing rate for fast magnetosonic modes, and is valid as long as

, (98 vacos9>1.k/a. The crucial difference, however, is that for a
small background magnetic field in the early universe, the
wherep,, is the average baryon mass density at temperaturgsc'"at'on frequency Of. an Alfue mode ¢ 4k/a) is much .
T. The baryonic mass scale associated with the dampin maller _than the oscillation frequency of a.fast magnetosonic
scale of fast magnetosonic waves by neutrino diffusio ode W'.th the samelwavelengti?lsk/a).Whlle_e_lll fast mag-
around neutrino decoupling is netosonic modes of interest satisfy the condition for damping
in the oscillatory regimeys>1,k/a), an Alfven mode can

4 MT)a(T)
Egpbm(%

L\ T2 g\ ¥ g, \%? become overdamped when, with the expansion of the uni-
MIM=10"* Mg, T verse, the mean-free-path becomes large enough for dissipa-
MeV 10.7 5.25 . e
tive effects to overcome the oscillationv {cost=1 k/a).
9i+9q| 32 Q1 yh? One may define a temperature dependent wavelexgth
: (99

8.75 0.012
Moo T.B 2 (T) 102
and by photon diffusion around recombination od( T,Bo) = vACOS (102
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such that modes with proper wavelength=\ .4 are oscil- A g
latory, while modes with\ ;<\ 4 are overdamped. L Aliven waves ]
Overdamped modes are a superposition of fast and slowh "¢ . " . ] E
decaying overdamped modes, and the relative amplitudes de .7 * os b = 1 @J”
pend on the phase of the mode when it becomes over g
damped. Fast decaying overdamped modes damp at rate
similar to the oscillatory modes, and therefore their damping ;
is equivalent to the damping of fast magnetosonic modes 1= L
discussed in the previous section. In this section, we follow; ¢
the significantly different evolution of the slowly decaying =, 10 ¢
overdamped modes which experience the least damping. TH
amplitude of a slowly decaying overdamped Alfvenode A
damps with a rate given by E@62), which in terms of the .
photon mean-free-path is

10%

10% ;

2 10 |
vacosg o g
Wl =i A|— . (103

100
Y E

Since the damping rate is inversely proportional to the grow- 10”1(;;““ o FE— oo

ing mean free path, the integrated damping rate is muct (T/0.25eV)

smaller than the integrated damping rate of fast magneto-

sonic modes du”ng the same penod AS a resu|t the damp_ FIG. 1. Scales relevant for the evolution of Alfveand slow

ing in overdamped diffusion is inefficient and the dampmgmagnetosonlc waves before recombination, calculated for modes

scales of Alfve modes at the end of the diffusion regime aretnat propagate at cés=1 and a background magnetic field of

smaller than the damping scales of fast magnetosonic modeo =310~ G today. All length scales are given in comoving
The LHS of Fig. 1(left of the dotted ling illustrates the units. Any mode with fixed comoving wavelength will at cosmic

evolution of Alfven waves in the diffusion regime for temperaturg'l’ be |n.the photon diffusion regime if it is to .th.elleft of
the dotted line, or in the photon free-streaming regime if it is to the

cogy=1and a background magnetic field Bf~ 107_3 (COr- right. Modes with wavelength . will at temperatureT be non-
responding toB,~3X10"° G at present In the diffusion oscillatory (overdampe} if they are between the two solid lines.
regime there are two important temperature dependenthe two dashed lines indicate the temperature at which a mode of
scales: the photon diffusion length scédashed ling which  given wavelength is damped by one e-fold, either during its oscil-
is the scale damped by one e-folding by the time the universgtory evolution in photon diffusion or its overdamped evolution in
cools to temperatur@ provided that modes are still in the photon free-streaming. The figure assurfigs=0.0125 anch=1,
oscillatory regime; and the overdamping length scale giverand equality between radiation and matter energy density at
by Eg. (102 (solid line), which shows the temperature at Tgo=5.5 eV. See Sec. IV B for a more detailed explanation.
which a mode with comoving wavelengih enters the over-
damped regime. The modes which do not damp significantly Pb
in the radiation diffusion regime before they become over- wod ICA| ( )
damped, preserve their amplitude until they reach the free- Py
streaming regime, apart from small additional damping dur- h
ing the transition itself. On the graph, these are all the moded/ €N & Wave is overdamped, and
with comoving wavelength larger than that given by the in-
tersection of the solid line with the dashed line. Therefore, A (k) i &
; , , Wos= T Cpl | COH+I (105

the intersection of these two lines roughly represents the L,
largest Alfven mode that is damped by one e-folding in the
diffusion regime. Its position depends on the strength of thevhen it oscillates.
background magnetic field and on the angle between the field Using Eq.(104) in Eq.(55), we find that for Alfven waves
and the wave vector. during overdamped free-streaming, the largest comoving

Some overdamped modes enter the free-streaming regimgavelength whose amplitude is damped by one e-folding at
before recombinatiofto the right of the dotted line in Fig)1 timet is:
as the mean free path of the decoupling particles grows with
the expansion. The dissipation coefficients in the free- ‘
streaming regime are inversely proportional to the mean free[)\ (t)1?= f cf\cos’-eR(t’)
path unlike those in the diffusion regime. This implies that, 0 a’(t’)
when a wave enters the free-streaming regime, it is initially (106
overdamped and becomes oscillatory when the drag force
and the heat conduction decrease as the mean free path imhered,(t) is the comoving photon diffusion length. As we
creases. It also implies that modes in the free-streaming resan see, the damping depends on the strength of the back-
gime undergo most damping while overdamped. The dampground magnetic field and the angle between the field and
ing rates during free-streaming, derived using EBD) in  the wave vector. The above damping length evaluated at re-
Egs.(87) and(90), are combination is the characteristic Alfuewave damping

k 2
5) cosé, (104

| !
7(—t,)dt'=c,§co§0d§(t)R(t),
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T T 1 the epoch of recombinationT&0.25 eVj is consistent with
\%’;’Be:‘;?rmf’;ﬁ“ Alfven waves 1 our analytic estimate. Note that in this calculation we assume
"""""" Bo=0x10° Gauss that recombination never occufise., X,=1 for T<0.25 eV
in Fig. 2. We have extended the calculation into this non-
physical regime to learn when the results obtained by the
WKB approximation deviate significantly from the numeri-
cal results. From the plot we see that significant discrepan-
cies happen only with modes that would damp after recom-
bination if X, was kept fixed.

The damping of slow magnetosonic waves proceeds simi-
larly to the illustrated damping of Alfwe waves except for
. two differences. First, slow magnetosonic waves in over-
] damped diffusion damp at a slightly different rate than Al-
fvén waves because of the additional damping expressed
through the extra term in E461). This damping is relevant
only for the waves that propagate at very large angles with
respect to the background magnetic field. Second, the damp-
ing rates for slow magnetosonic waves during free-streaming
depend on whether the non-relativistic sound speed is larger
or smaller than the non-relativistic Alfmevelocity [Eq. (88)

(T/0.25¢V) and Eq.(89)]. The damping scale when>c, is the same as
the damping scale for Alfwe waves, while the damping

FIG. 2. The evolution of the Fourier amplitude as a function of gcgle forcg<c, is unique to slow magnetosonic modes.
cosmic t_emperature calculated_ numericz{xﬂylid Iir_1e), and analyti- We can define damping length and mass scales for Alfve
cally using the WKB approximatior(dashed ling for Alfven  5n4 gjow magnetosonic waves analogously to the previous
vyaves with three dlﬁergnt comoving wavelengthg indicated on thesection, and consider that the waves below these scales
f'gu_re' For the CalCUIat'on we assurBp=3x10 " G, co$=1, 5 q have dissipated by the time of neutrino/photon decou-
0,=0.0125, anch=1, and we have fixed the ionization fraction at J}’”ng' The general evolution of all the damping length scales
Xe=1 even for temperatures below the approximate temperature of . . .
recombinationT~0.25 eV. The largest scale which the numerical with temperature, fo_IIowed through th_e dlfferenfc damplng
calculation shows to be damped by one e-fold before recombinatioﬁtag.eS up to decoupllng,_can be fo_und in Appendix D. .In this
(at), corresponds to the analytically calculated length scale ofsecuqn we present the final damp'”g Iengths at neutrino de-
2% 107 cm. coupling (T=1 MeV) and at recombination’(=0.25 eV),

for the background magnetic field belowka0™° G, which
length for the free-streaming regime, because all modes std§ the current estimate of the upper limit on magnetic fields
overdamped before recombination regardless of the streng@ Mpc scalegsee, e.g. Ref.17]).
of the magnetic field. The final damping scale of Alfirewaves for this range of

The damp|ng of A|f\;e waves with free_streaming pho_ the baCkgrOUnd magnetic field Strengths is determined by the
tons is illustrated on the right-hand siRHS) of Fig. 1. The  free-streaming damping length. At neutrino decoupling, most
dashed line shows the damping scale from B@6). The Mmodes in free-streaming are damped while overdamped, al-
solid line marks the transition from overdamped to oscilla-though the largest modes are damped just as they begin to
tory behavior, defined in the same fashion as in the diffusiorPscillate again. This determines the comoving damping scale
regime[Eq. (102)], with the overdamped region to the left of at neutrino decoupling to be
the line. Since all the modes that cross the dashed line before
recombination get damped by one e-folding during over- . 9 |\ 7Y 9, \¥¥a+g,
damped free-streaming, the length scale marked by this line \,=10""cm Bgcosy 10.7¢ 525 875, °
at recombination represents the free-streaming damping scale (107)
for Alfven modes.

In our analysis we have assumed the WKB approxima
tion. This approximation does not formally hold during all
the discussed epochs for every mode. In particular, the a
proximation breaks down for comoving wavelengths be

tween the damping length scale for Alfvevaves in the pho- folding during free-streaming is damped while still in the

; : A
ton free-streaming regimey,,, and the photon mean free ,orqamped regime, and its comoving wavelength is
path(i.e., between the dashed and dotted lines on the RHS of

Fig. 1). Although the damping rates calculated in the preced- Q.p2 | - 12
ing section predict no damping in this region, some damping  \A~2x 10?¢cm Bgycosf(Qph?)~ 1/4( LJ
is in principle possible since here WKB is not a good ap- ’

A=2x10%cm

A =2x10%cm A.=2x10%cm

01 -

1/3

The background magnetic field is expressed through
Bo=B,/(3x10 °G), whereB, is the background magnetic
Rield strength scaled to the present epoch. During photon
“decoupling, the largest Alfve mode damped by one e-

0.012

proximation. In Fig. 2 we present the result of a numerical (108
integration of the magnetic field amplitude of Alivavaves

in different wavelengths through the epoch of interest. TheThe baryonic mass scales which correspond to the damping
mode with the largest wavelength which still damps befordength scales at neutrino and photon decoupling are
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Qph?\( g, \ 7% ¢ ASM=3x 10" cm co®(Qoh?)~ V4 (112
Az — 13 3 b r 14 y 0 l
M, =10""Me BQCO§6(0.012F)<10.75) (5.25)
01+ which is independent of the background magnetic field
875 (109  strength. The condition cs>c, is equivalent to

Bo=5x10 *{(0,h?/0.0125}/*G for the strength of the
and large scale magnetic field at the present epoch, or
Bp=2x10"5(0,h%0.0125}? and By=<1.7X10 2(Qyh?/
2|12 0.0125)/2 for the two different scalings of the magnetic field
A_ 3 o — a4 b strength present in our equations.
MY 1Mo BQCO§6(Q°h ) (0.0125) ' The baryonic mass scales associated with the damping
(110 lengths of slow magnetosonic modes are

The characteristic damping length scale for slow magne-
tosonic waves at neutrino decoupling is the same as the
damping length of Alfva waves Eq. (107)]. At recombina- g \ 3 g
. ) . S —13 3.0 b r v
tion however, the slow magnetosonic damping scale depends M7;=10""Mg Bgcos'¢
o . 0.01251\10.7 5.25
on the value of the non-relativistic sound speed relative to

the non-relativistic Alfve speed. Whegs>c, the damping 91+ 9q
scale for slow magnetosonic waves in the free-streaming re- 8.75 )" (112
gime is the same as the damping scale for Alfveaved Eq.
(108]. On the other hand, whery<c, the slow magneto-
sonic damping scale is and
Q h2 - 1/2
1P Mg Bgco§a(90h2)—3/4(L for co>cp
.y 0.012
M7= Qh? (113
_ b
1 Mg CO§0(QOh2) 3/4(mg for cs<cCa.
|
V. CONCLUSIONS the magnetic field strength and the direction of propagation

In this paper we have studied the effects of dissipation or\]/\llth respect to the background magnetic field. At neutrino

; ; ‘A ASM__ 1 13 3
the propagation of MHD modes in an expanding fluid Com_dhecouplmgfthebdarr:wplng sca]lce M;Vd f M@Bg_cos”_a, it
posed of matter and radiation. We have derived the propagatl-e same for both types of modes. At recombination, |

—2 g M ASM__ 3 ;
tion velocities and damping rates for fast and slow magneto|-39<1'7>< 1077, this scale M) ~10°MBgcos’d, and if

, g L. . . — 2 i i
sonic, and Alfve waves in the radiation diffusion and Be>1.7<10"¢, the damping scale for slow magnetosonic

radiation free-streaming regimes. The derived damping rate¥10des is differentM ;' ~1Mocos6. The background mag-
have general applications in magnetized relativistic and nonDetic field strength scaled to the present epoch is expressed
relativistic astrophysical environments. in terms of Bg=(Bo/3x 10" °G), the current observational
We have applied the damping rates to the evolution ofimit on the large scale magnetic field.
MHD modes in the early universe to show that cosmic mag- These results have various implications for cosmological
netic fields suffer significant damping from before neutrinomagnetic fields and for models of their creation in the early
decoupling to the end of recombination. In particular, fastiniverse. The dissipation of magnetic energy into heat
magnetosonic waves are damped by radiation diffusion ofrough diffusion damping during neutrino decoupling weak-
all scales smaller than the radiation diffusion length in anal€ns the big bang nucleosynthesis constraint on viable mag-
ogy to the propagation of sound waves in a demagnetizefietogenesis models. The observed element abundances re-
plasma. The characteristic damping scales are: the horizotuire that the energy density in magnetic fields be less than
scale at neutrino decouplingv EM“lo_AMo in baryons, one-third of the photon energy density during nucleosynthe-
and the Silk mass at recombinatidv/l,i“"wlO”MO in bary-  sis[18,19. Even if processes prior to neutrino decoupling
ons. In contrast to fast magnetosonic waves, slow magnet@enerate magnetic fields with initial energy density compa-
sonic and Alfve waves reach an overdamped regime duringable to the photon energy density, neutrino damping causes
which the damping is not very efficient; further significant the magnetic energy to decrease substantially relative to that
damping occurs once the radiation is free-streaming on thef radiation by the time of nucleosynthesis. This ensures that
scale of the perturbation. The maximum damping scales fomost magnetic field configurations generated prior to neu-
slow magnetosonic and Alfvemodes in general depend on trino decoupling satisfy big bang nucleosynthesis constraints.
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Further dissipation through photon diffusion before re-quences of the cosmological evolution of MHD modes in a
combination considerably lessens the magnetic field energyubsequent paper.
in primordial magnetic fields available for generating galac-
tic magnetic fields. This constrains models which attempt to
explain the generation of galactic magnetic fields through the ACKNOWLEDGMENTS
amplification of a primordial seed field. Since a sizable frac-
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scale for fast magnetosonic modes. As long as mode cou-
pling is not effective, which we expect to be true for non-
oscillating _modes before recqmbination, some magnetic en- APPENDIX A: RADIATION DIEEUSION
ergy density can be stored in Alfweand slow modes on
scales well below the Silk mass. The survival of these modes
may be of significance to the formation of structure on rela- This appendix contains the diffusion regime dispersion
tively small scales. In particular, these modes may be responelations and their solutions. The dispersion relation for mag-
sible for fragmentation of early structures as well as seedingetosonic waves, expanded to first orderin »', and ¢’
early star formation. We will further discuss the conse-(which corresponds to a first order expansior ji\), is

2
+3¢'(1+R)

2

- - k\2
0[6k'(1+R)+3k' B2l +i0 [ (1+R)?+B3(1+R) ]+ 0% 77" (1+R) 5 3 +K’(R2—2)(5)

k)2 k\? k\? k\? k|2
=5 =5 I~ = .
+37 Bo(a +x'B3(R-2) 5) +7'B3cog o 5) +3¢ B(z)cosze(a) -2k Bécos’-a(a)
+2éR1+R+-BZR +iw? 11+R k2§21+R K)° 1§2 5 k)
SRA+R)+ _BoR) |+ie —o(1+R)| ] —Bo(1+R)| 7] — 5Bgcosd| -

4 4

’ k N '"R2 k ! 'R2 k '_2 k N 'R2 a2 k N
tol—7'| | =378y | —«BAL+R)| 2| =7 Bjcos o 5 —3¢ Bjcos o 5] T2« Bgcos e 3
15;1Rk2é\.B,2Rk2 Bicogo K\t a_ (k\* _ _(Kk|®
—33Rl3) ~3BRI 5| |*i—3 |5 TiR«'ZBo| | +3ix #'Bg| 7| =0. (A1)

Since the scales of interest are smaller than the horizon scalgsonic wave propagates along the field lingEB,:
we only keepa/a terms which are first order ih,/dy and

N dy. In addition, note that there are two terms in the last 2 k\?2

row which seem to be second order in the expansion vari- 30°«' +iw*(1+R)+w| 4| =| 7'+3 5) & —(1-R)(
ables, although for some slow magnetosonic waves for

which Bgcosd is so small that Bico$9<B37' k' or _ o

B3cog0<B2«'ala, these terms play a crucial role in deter- XEZK’+ 8 L K -0. (A2)
mining the damping rates for overdamped solutions. a a  3la

We recover the dispersion relation for sound waves from
the one for magnetosonic wavesBf=0, or if the magne- The dispersion relation for Alfwewaves is:
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303k’ +iw?(1+R+B2)+ éR+3 (%) (K| 2 Sy R
@l o) “la 7\a “1 7\al |1¥R7 2(1+R)§ 2(1+R)2K
~ k)2 l1al R
—iBzcos’-H(—) =0. A3 | —
o a (A3) "2al1+R (A8)
The solutions to the dispersion relations are presented us-
ing the following convention: the oscillatory part of the fre- and
guency is denoted bw,=Rew, and the damping rate by
1=Imw. For Alfven waves the solutions are
w3 k2,+1éR+k2
, kK\Z 1/a\? R? Y1 721+R)\al " " 2a1+R " |a
wg=* \/vacogll —| —=| = P N
a/ 4la/ (11+R+Bj)
X 3 "B2sirt 9+ 3 "B2cog6
K K -
LN DT 3 R §9(k2 20 2 Ry
W= - Kk'vACOS 6| —
L oa+r)L 7 \a AS=Y 3 (A9)
a
+5R . (A4)
For sound waves EqA8) reduces to
For magnetosonic waves, a general solution for a non-
dissipative fluid is
=2 B2co2 ! k (A10)
1+R+3B;(1+R)+B wo=—"—=| |+
= £ 5) oI+ R+ Bocos d “\BI+R)\a
V6(1+R+B3) \ @ (1+R+Bg)
[1+R+3B2(1+R)+B2cog0]? and
+ =
(1+R+Bj)?
1/211/2 k\?2 R2 2 3
~ (1+R) _ ( , , '
—12Bicod—— A5 il K'+ 7'+ 3
oo R B (A5) al \2(1+r2" "1+R”7 " 2(1+R)
Thi luti tains t t i luti : fast -1-1(;jl R All
is solution contains two magnetosonic solutions: fast mag- 2a(1+R)’ (Al

netosonic, whose frequency is obtained by taking the plus
sign, and slow magnetosonic, using the minus sign. For weak
magnetic fields EqAS) may be expanded to second order in

Bo, and the solutions become which reproduces the solution in R¢&] if the expansion is

neglected 4/a=0 anda=1).

k 3R+2 _
wSMZivS a 1+ 2(1—+R)B§sin20), (AB)
APPENDIX B: NEUTRINO FREE-STREAMING
and During neutrino free-streaming, the dispersion relations
are:
k 3R+2
SM_ T B2ai
wg _vAcoa‘)(a)(l 2(1+R)505|r129). (A7)

—~ 3 ~ k\?2
w?(1+ BS)—Ziaw—Béco§0(a> =0 (B1)
The imaginary(dissipative parts of the magnetosonic fre-

quencies, again to first order @/a, «’, and 5, and to
leading order irB, are for Alfven waves, and
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4q w2y 33 so1 5 1(K)? P=*vy(1+B3sinte) « +§i( +7) (B4)
0" (1+Bj)—iw Z[(Za-l—y)-l—(a-i—y)Bo]—w 3la Wosc™ = U 0 al “g'ter v
K\ 2 Egco§0 K\2 9 and for slow magnetosonic waves:
+B2 5) +T a +1—6(a2+2ay+ayBg)
1 (k)2 k\2 (3)2 SM_ 2 cosp(1— BLsir?e)| <] + 2i(a+ 382
YiolZal = +—(a+7)§2 S Y e Wosc= + v ACOSH( oSin‘ ) a 8'(0’ oY)
4 4 %\a 4
(B5)
Bicogh/k\2 9 k)2
3 a 166”’BO =0 (B2) The decay rates for overdamped slow manetosonic and Al-

fvén waves are given in the text in EZ4) and Eq.(75).

for magnetosonic waves.

The solution to the dispersion relation for oscillatory Al-
fvéen waves is: APPENDIX C: PHOTON FREE-STREAMING

During photon free-streaming, the dispersion relation for
Alfvén waves is:

O)>

ia. (B3)

(I)I(JO

== UAC089

_ a| Bjcogo|k\?
w’—iw a+a - R a =0, (Cy
The oscillatory magnetosonic solutions are expanded to
first order in the dissipation coefficient® and vy, corre-
sponding to the first order expansionnfl ,. This yields for
fast magnetosonic waves: and the dispersion relation for magnetosonic waves is:
5wt 20+ y+ 35 32k2+82k++2 122 (2aty) |+ +B°k+32+§g )°
w’—iw a'yawcsa Rla a ay (a'y) IcuacRa 75C5Ra
a22§§k2 al a [k\?cZBicogak\? 3, B} a3, B} a B2
+ | Cst E 5 ‘y+a + a'ya-i-w a T a +ay gCS‘Fﬁ +’)/5 gCS‘Fﬁ +a—ﬁ
3. ,Bcose/k\|*
~5i TR ) ©2

The magnetosonic dispersion relation has been derived to first ordéa jbut without any approximation in the dissipative
coefficientsa andvy.
The oscillatory solution to the dispersion relation for Alfvevaves is:

A k
Wos= = CACOY 2 +

2

}
a+ a . (Cg)

For fast magnetosonic waves in the adiabatic regimeofRe,a) the oscillatory solution is:

§2
20 Sirfé
R

S

k Y

2+5+

for cs>cp

o™ _Cs(l-l-2

osc™
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2R
LG LY ’Rsi6 1a
FM_ 4 LA R <
W= +Cp 5 sm20 ( >TE 5 5 a) for ce<ca, (C4)
and in the isothermal regimey& Rew> «) it is:
3 5 B k| |a cZ(k\? 1a
FM:—;—\ﬁ __0' —|+il= N + - — >
o=+ 505(1+6 c§RSIn20 15+5.03] *2a for ce>ca

2

3 ciR | k
1+1—0§—35|rr29) 5 +

2
PV i| = f cs
W= FCp > Or Cg<<Cp. (CH

k
+—ssin20(—
2y a

a
+ —
a

The condition for adiabaticity is dependent on the strength of the magnetic field aykecy .
In the limit Bo=0, the above solutions give the solutions for sound waves:

= Kl 24 2,2 Cé
©==Ca) 275 (8
in the adiabatic regimectk/a> y,a) and
_+\F k (a+c§k2 la) c
©=* V5% T2t 5,03 T2a €D
in the isothermal regimey>ck/a> a).
The oscillation frequency and the damping rate for slow magnetosonic waves in the adiabatic regime are:
B2 K| [a yBZsie 1a
Wgsc cAcosB( 2Rc§ ) (2 5 oR 53 for cs>cp
o 1 —CgR'n2 (2422 4 C8
=+ — — —+t =+ <
W o= F CCOY ZESSI 0 tilgtgt Or Cs<<Cp, (C8
and in the isothermal regime:
EZ a 1
wES%:tcAcose(l 5 RC§S|n26) 5+55| for c>ca
3 3 cR k a
oo 12 Fotal [ 1] 2 22] or
Wom=* 5CSCOS9( -7 5 S|n249) 3/ Tilz T35 for cs<ca. (C9
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Note that all the solutions are derived for a background magThe decay rates of overdamped slow magnetosonic and Al-
netic field whose energy density is much smaller than thdvéen waves are given in the text in Eq88)—(90).
energy density in photongg<1).

In contrast to relativistic MHD there do exist non-

relativistic, fast magnetosonic waves in the overdamped
limit. The decay rates for the amplitudes of these over-

damped fast magnetosonic waves are: APPENDIX D: DAMPING SCALES
2/ 2 In this appendix we give the evolution of the damping
Fu_; 30K le as a function of t ture for Alfvand sl :
wM=i—|=| for c>cy scale as a function of temperature for and slow mag
Sa netosonic modes in the early universe. The temperature de-

pendence of the damping scale of fast magnetosonic waves is
given in Sec. IV A. Before neutrino decoupling, the damping

2 2 .
cal k i
W= ;A( 5) for co<cp. (C10 ?(fl?c!(\?vsf?r Alfven and slow magnetosonic modes evolves as
—5/2 1/2 -1/2
v g|+g
0 — d for T>T
2x10*%cm (Mev) (10 7 ( ) 8.75 L
-1/3 1/3 g|+gq 1/3
X 10 53 for T,>T>T
3Xx10%cm (Bgcos) (10 7 (5 5) 875 1 2
NASM~ T \-52 —12 —12 (D1)
9, g+9q
for T,>T>T
16*%cm Bgcow( Mev) ( 5) (5 25) 8.75 2 3
- 1/3
Or v g9+9
7 d for To>T.
10""cm Bgcos”( 10. 75) ( .25) 8.75 3

the damping scale for fast magnetosonic modes, and repréy;ay/| =

sents the diffusion length of the decoupling particles. It is

illustrated for photon decoupling by the dashed line on the

LHS of Fig. 1. The largest wavelength mode still damped by

one e-fold during oscillatory diffusion becomes overdamped

at temperaturdy: If this happens before decoupling, the damping scale grows
further, and is now determined by the free-streaming damp-
ing scale. Finally, the largest length scale damped in free-
streaming is the one which still damps by one e-fold before

The damping scale af>T, is approximately the same as [ T, g "% g, |\ V"
10 (Bgcosd) 418 ——
\ 10.7 5.25

9 +gq) e 03

8.75

e O VY g\ becoming oscillatory again, determined by the intersection of
MeV =80 (Bocost) "™ 7575|525 the dashed and the solid line on the RHS of Fig. 1. This
happens at:
9i+gq| °
8.75 ' (b2

T3 g, 1/2 gV -1/3 g|+gq —-1/3
(Mev>_5(10.75) 5.25 8.75 )

i.e. the temperature at which the oscillatory damping scale
(diffusion length and the overdamping length on the graph
intersect.

Since the damping is inefficient during the overdampedThe final damping scale is determined by this transition; as it
diffusion phase, the largest length scale damped in diffusions given in Eq.(D1) for T<Tj, it includes the scales damped
represents the maximum damping scale, until further dampduring the transition itself. Note that for large magnetic field
ing during free-streaming. Temperatufe represents the strength, with energy density approaching equipartition with
point when the overdamped free-streaming damping scaleadiation energy densityBg~10°), and co®~1, the maxi-
(equivalent to the dashed line on the RHS of Figetceeds mum damping length scale is determined by damping during
the maximum scale damped so far, the oscillatory diffusion phase rather than during the over-
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damped free-streaming phase. In this case the damping scale Around photon decoupling, the damping scale for Atfve
of Alfvén and slow magnetosonic modes becomes similar tanodes, and the damping scale for slow magnetosonic modes

the damping scale of fast magnetosonic modes. whencs>c,, have the same form:
Qth —-1/2 T —-3/2
6 P for T>T
16*%em (0.0lZF) 0.25 eV L
Qph?
NASM_ - T |32 Qh?| 12 S (D5)
or <T<
4x10%em Bocosd| 555y | 0.012 EQ 2
—5/4 Qb 2\ —1/2
8 — S T [P for T<Tgo.
2x10%%cm Bgycosd W e\/) (Qoh?) (0.0125) EQ

On the other hand, i€,>cg, the damping scale for slow magnetosonic modes evolves like:

Qth -1/2 T —3/2

6 for T>T

16 Cm(o.0125) 0.25 eV L
Qph?
1021Cn1(BQC0$)3(ﬁJ for T,<T<T,
ASM= T -3/2 (D6)
4x10% cm co9 We\/) for Tee<T<T)
T —5/4

3x 10" cm co9 m) (Qoh?)~Y4  for T<Tgq.

The transition temperatures are determined by matter-radiation equalipyats.5 eV(Qyh?), and by the last scale damped
by one e-fold in oscillatory diffusion, which becomes overdamped,at

T, Ll Qph? |7
025 oy~ 27X 10(Beco) ¥ Goy ©7)
and presents the largest damping scale until damping in free-streaming damps even larger scal&s,veith
T, | Cag Qeh? )T
(0.25 eV)_SO (Bocosh) ™ 50125 (D8)
or T<T, with
T -2 —4/3 Qph? ) 728
(o.zs e\/)_ZBg (co) ™ 50128 (©9)

However, if T,<Tgq the damping scale of SM em  tory diffusion (T;>Teg). This is always true for the back-
(Bocos)® (0,h?/0.0125) is valid until T/0.25 eV) ground magnetic fields wittBg=<1. Although for larger
=2Bg 1" cost ¥ (Q,ph?/0.0125) 4° (Q0h?/0.0125) Y5, background magnetic fields the damping processes are the
after which it changes to SM3x10%'cm co¥ same, the temperature dependence of the diffusion damping
X (T/0.25 eV) %4 (Qh?) 14 scale and its time of overdamping might be different, result-
The above equations are derived for the case in which thing in a different final damping scale. For example, for
universe is radiation dominated during damping in oscilla-Bgcos9~10° (or v scos9~1), the oscillatory diffusion damp-
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ing scale dominates up to recombination, and its evolution irdamping scales due to the additional term in &{). How-
the matter dominated era determines the damping scale aver, this scale is substantially different from those given in
recombination. the text only for modes with c#s<0.08%®, which makes

Slow magnetosonic modes which propagate almost petthe influence of this additional damping term on the overall
pendicular to the background magnetic field have differendamping of slow magnetosonic modes negligible.

[1] E. R. Harrison, Mon. Not. R. Astron. Sot47, 279(1970; E. [6] S. WeinbergGravitation and CosmologyWiley, New York,

R. Harrisonibid. 165 185 (1973; C. J. Hogan, Phys. Rev.

Lett. 51, 1488(1983; M. S. Turner and L. M. Widrow, Phys.

Rev. D 37, 2743(1988; J. Quashnock, A. Loeb, and D. N.
Spergel, Astrophys. B44, L49 (1989; T. Vaschaspati, Phys.
Lett. B 265 258(1991); R. H. Brandenberger, A.-C. Davis, A.

M. Matheson, and M. Troddeiihid. 293 287 (1992; W. D.
Garretson, G. B. Fields, and S. M. Carroll, Phys. Re\4®)
5346(1992; B. Ratra, Astrophys. B91, L1 (1992; B. Ratra,
Phys. Rev. D45, 1913(1992; A. D. Dolgov, ibid. 48, 2499
(1993; A. D. Dolgov and J. Silk,ibid. 47, 3144 (1993; B.
Cheng and A. V. Olintoibid. 50, 2421(1994; K. Enqvist and
P. Olensen, Phys. Lett. B29, 195(1994; A. P. Martin and
A.-C. Dauvis, ibid. 360 71 (1995; T. W. B. Kibble and A.
Vilenkin, Phys. Rev. 62, 679(1995; M. Gasperini, M. Gio-
vannini, and G. Veneziano, Phys. Rev. L&, 3796(1995;
D. Lemoine and M. Lemoine, Phys. Rev.32, 1955(1995;
G. Baym, D. Balecker, and L. McLerraribid. 53, 662(1996.

[2] J. Silk, Astrophys. J151, 459 (1968.

[3] C. W. Misner, Astrophys. 1151, 431(1968.

[4] S. Weinberg, Astrophys. 168 175 (197J.

[5] B. Cheng and A. V. QOlinto, Phys. Rev. B0, 2421(1994.

1972, p. 53.

[7] C. W. Misner and D. H. Sharp, Phys. Lets, 279(1965.

[8] L. D. Landau and E. M. LifshitzFluid Dynamics 2nd ed.
(Pergamon, Oxford, 1975p. 505.

[9] J. D. JacksorClassical Electrodynamic®2nd ed.(Wiley, New
York, 1962.

[10] K. Jedamzik and G. M. Fuller, Astrophys.4R3 33 (1994.

[11] P. J. E. Peebles, Astrophys.112, 1317(1965.

[12] P. J. E. Peebles and J. T. Yu, Astrophysl62, 815(1970.

[13] P. J. E. Peebles, Astrophys.218 885 (1981).

[14] B. J. T. Jones and R. F. G. Wyse, Mon. Not. R. Astron. Soc.
205, 983(1983.

[15] S. A. Bonometto and F. Lucchin, Mon. Not. R. Astron. Soc.
187, 611(1979.

[16] W. H. Press and E. T. Vishniac, Astrophys236, 323(1980.

[17] P. P. Kronberg, Rep. Prog. Physz, 325 (1994).

[18] P. Kernan, G. Starkman, and T. Vachaspati, Phys. Re¥4,D
7207(1996.

[19] B. Cheng, A. V. Olinto, D. Schramm, and J. Truran, Phys.
Rev. D54, 4714(1996.



