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Damping of cosmic magnetic fields
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We examine the evolution of magnetic fields in an expanding fluid composed of matter and radiation with
particular interest in the evolution of cosmic magnetic fields. We derive the propagation velocities and damp-
ing rates for relativistic and non-relativistic fast and slow magnetosonic and Alfve´n waves in the presence of
viscous and heat conducting processes. The analysis covers all magnetohydrodynamics modes in the radiation
diffusion and the free-streaming regimes. When our results are applied to the evolution of magnetic fields in
the early universe, we find that cosmic magnetic fields are damped from prior to the epoch of neutrino
decoupling up to recombination. Similar to the case of sound waves propagating in a demagnetized plasma,
fast magnetosonic waves are damped by radiation diffusion on all scales smaller than the radiation diffusion
length. The characteristic damping scales are the horizon scale at neutrino decoupling (M n'1024M ( in
baryons! and the Silk mass at recombination (Mg'1013M ( in baryons!. In contrast, the oscillations of slow
magnetosonic and Alfve´n waves get overdamped in the radiation diffusion regime, resulting in frozen-in
magnetic field perturbations. Further damping of these perturbations is possible only if before recombination
the wave enters a regime in which radiation free-streams on the scale of the perturbation. The maximum
damping scale of slow magnetosonic and Alfve´n modes is always smaller than or equal to the damping scale
of fast magnetosonic waves, and depends on the magnetic field strength and its direction relative to the wave
vector. Our findings have multifold implications for cosmology. The dissipation of magnetic field energy into
heat during the epoch of neutrino decoupling ensures that most magnetic field configurations generated in the
very early universe satisfy big bang nucleosynthesis constraints. Further dissipation before recombination
constrains models in which primordial magnetic fields give rise to galactic magnetic fields or density pertur-
bations. Finally, the survival of Alfve´n and slow magnetosonic modes on scales well below the Silk mass may
be of significance for the formation of structure on small scales.@S0556-2821~98!01208-9#

PACS number~s!: 98.62.Ai, 98.62.En, 98.80.Cq
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INTRODUCTION

In an attempt to explain the origin of galactic magne
fields through the amplification of primordial fields, seve
authors have considered scenarios for generating mag
fields in the early universe@1#. In such scenarios, one a
tempts to generate fields which will be sufficiently large af
recombination at least to seed galactic dynamos and at
to produce galactic fields without dynamo amplification. It
generally assumed that after a primordial field is generate
the early universe it becomes frozen into the cosmic plas
and redshifts by flux conservation with the expansion of
universe@B}a22; a(t) is the cosmic scale factor#. This as-
sumption is usually justified by noting that the cosmologi
plasma is highly conductive and magnetic diffusion is ins
nificant.

In this paper, we show that this simple picture of ma
netic field evolution is incorrect: at certain epochs in t
early universe, particularly during recombination and ne
trino decoupling, magnetic field energy is converted into h
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through the damping of magneto-hydrodynamic~MHD!
modes. The damping is caused by dissipation in the flu
which arises from the finite mean free path of photons
neutrinos.

The physical process by which the MHD modes a
damped is analogous to that involved in the damping of d
sity fluctuations around recombination@2#, and around neu-
trino decoupling@3#. Studies of the damping of density fluc
tuations with no magnetic fields present show that, in
diffusive regime~when the scales of interest are much larg
than the mean free path of photons or neutrinos,l mfp), the
effective viscosity and heat conductivity arising from the
nite mean free path cause the damping of acoustically os
lating density perturbations. Since with the expansion of
universe the mean free path of the decoupling partic
grows faster than the wavelength of an oscillatory mode,
modes whose wavelengths are smaller than the mean
path around decoupling have previously been in the diffus
regime. The rate of damping in this regime ensures tha
wave is significantly damped before the mean free path
the decoupling particles becomes comparable to the wa
length of the mode. For this reason, the investigation
damping in the diffusion regime yields a reasonable estim
of the final damping scales of density fluctuations.

However, when magnetic fields are added to the fluid,
3264 © 1998 The American Physical Society
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57 3265DAMPING OF COSMIC MAGNETIC FIELDS
existence of different MHD modes—Alfve´n, fast magneto-
sonic, and slow magnetosonic waves—adds complexity
the problem. We show that while fast magnetosonic wa
~which include sound waves! damp efficiently in the diffu-
sion regime by the described process, slow magnetos
and Alfvén waves may survive damping by diffusion. Slo
magnetosonic and Alfve´n modes oscillate with frequencie
which depend on the strength of the background magn
field and on its direction relative to the mode’s wave vect
and are in general different from the frequency of sou
waves of the same wavelength. In the case of a weak b
ground magnetic field or a large angle between the ba
ground field and the wave vector, the frequency can be s
enough for the damping by viscosity to overcome the os
lation, producing behavior which resembles an overdam
oscillator and causes the actual damping of the amplitud
be inefficient. The overdamped slow magnetosonic and
fvén modes therefore survive diffusion damping. Howev
they undergo additional damping if, with the expansion
the universe, they enter the so called free-streaming reg
i.e. if the mean free path grows to be much larger than
wavelength of a mode. As a consequence, whereas fast
netosonic modes are damped mostly when radiation is
fusing, slow magnetosonic and Alfve´n modes can also b
significantly damped when radiation is free-streamin
Therefore, when studying the damping of all MHD modes
order to estimate their damping scales, it is necessary to
vestigate both the free-streaming and the diffusion regim
even before the final stages of the decoupling process.

The damping of MHD modes which causes the dissi
tion of magnetic energy can be illustrated with the followi
picture: as long as there exist spatially tangled magn
fields, Lorentz forces accelerate the fluid, setting up osc
tions about a force-free field configuration; the induced m
tions are damped by the effective viscosity of photons
neutrinos; this causes the exponential decrease in the am
tude of the oscillations and thus results in the straighten
of magnetic field lines towards a force-free configuratio
After the cosmological magnetic fields undergo this damp
process they have little structure on scales below a cha
teristic damping scale, and the magnetic energy densit
such primordial fields is much smaller than that expec
from the simple redshift argument above.

In this paper we follow the evolution of MHD modes an
derive their propagation velocities and damping rates bot
the diffusion and free-streaming regimes during the dec
pling of photons and neutrinos. The existence of highly re
tivistic particles with mean free path much shorter than
wavelength of a MHD mode~e.g., photons and leptons! re-
quires the use of relativistic MHD. In the radiation diffusio
regime, studied in Sec. II, we develop a relativistic descr
tion of viscous expanding fluids with magnetic fields, wh
in the free-streaming case, Sec. III, the effects of the phot
or neutrinos are included through heat exchange and a
force which they exert on the fluid. This procedure allows
to calculate, in Sec. IV, the maximum damping lengths a
the epochs of neutrino decoupling and recombination. O
results may be applied to other astrophysical environme
where MHD waves propagate in a viscous fluid, since in
derivation of the dispersion relations we leave the source
viscosity and heat conductivity unspecified.
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II. DAMPING OF MAGNETOHYDRODYNAMIC MODES
IN THE RADIATION DIFFUSION REGIME

When the mean free paths of all interacting particle s
cies are shorter than the wavelength of the MHD mode
are interested in (l@ l mfp), it is adequate to study the evolu
tion of a single fluid and account for the effect of the diffu
ing particles by introducing shear viscosity, bulk viscosi
and heat conductivity into the fluid equations@4#. In order to
calculate the damping of MHD modes following this a
proach, we derive linearized relativistic MHD equations
an expanding dissipative fluid. We start by reviewing t
equations for a non-ideal relativistic fluid in Sec. II A, an
add the electromagnetic contributions to the fluid equati
in Sec. II B. In Sec. II C we calculate the propagation velo
ties and damping rates for all MHD modes. Our results
applicable for general viscous relativistic and non-relativis
plasmas, as long as the pressure is dominated by radia
pressure.

Throughout the paper we assume that the magnetic fi
can be decomposed into a large magnitude background c
ponentB0(x,t), and a small perturbation,b(x,t). We addi-
tionally assume that the curl of the background componen
negligible when compared to the curl of the perturbatio
These two assumptions allow us to solve for the damping
MHD modes analytically.

The use of scalar viscosities and heat conductivity imp
itly neglects any anisotropies in these quantities due to
presence of the magnetic field. Further, since our equat
are derived for an isotropically, homogeneously, and ad
batically expanding plasma, the background magnetic fi
B0, is required to have vanishing spatial average on su
ciently large scales,̂B0&50. In our derivation we also ne
glect gravitational forces because the scales of interest
smaller than the Jeans mass scale, and we assume the p
to be infinitely conducting which is an excellent approxim
tion for most astrophysical plasmas and for the early u
verse~see, e.g., Ref.@5#!.

A. Relativistic imperfect fluids

We consider the evolution of a non-ideal, relativistic flu
in a homogeneously and isotropically expanding backgro
using the spatially flat Robertson-Walker metr
gmn5diag(1,2a2,2a2,2a2) and comoving coordinatesxm.
The time dependent scale factora(t) provides the connection
between proper~physical! coordinatesx8m and the comoving
coordinates:x805x0 andx8 i5axi ~Greek indices run from 0
to 3 whereas Latin indices run from 1 to 3!.

The relativistic fluid is described by the energ
momentum tensor

Tmn5TI
mn1tmn1TEM

mn , ~1!

which is separated into three parts: the ideal fluid tensorTI
mn ,

the non-ideal fluid parttmn, which accounts for dissipation
and the electromagnetic energy-momentum tensorTEM

mn

~added in Sec. II B!. The equations of fluid dynamics can b
derived from energy-momentum conservation

Tmn
;n50. ~2!
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In comoving coordinates Eq.~2! becomes

]T0m

]xm
1ȧaS (

i 51,3
Tii D 13S ȧ

a
DT0050, ~3!

and

]Tim

]xm
15S ȧ

a
DTi050, ~4!

with the dot representing a derivative with respect to timex0.
The energy-momentum tensor for an ideal fluid is

TI
mn5~r1p!UmUn2pgmn, ~5!

where r, p, and Um are the total energy density, the tot
pressure, and the four velocity of the fluid, respectively. T
non-ideal contributions to the fluid energy-momentum ten
can be written as@6#

tmn5h~Um;n1Un;m2UmUlUn
;l2UnUlUm

;l!

1S j2
2

3
h DUl

;l~gmn2UmUn!

1kFUmS ]T

]xn
2TUn

;lUlD
1UnS ]T

]xm
2TUm

;lUlD22UmUn
]T

]xl
UlG . ~6!

In this expression,T stands for temperature andh, j, andk
are shear viscosity, bulk viscosity, and heat conductivity
spectively.

The effective viscosities and heat conductivity for eith
photons or neutrinos are given by@7,3,4#

h5
4

15
g

p2

30
T4l mfp , ~7!

j54g
p2

30
T4F1

3
2S ]p

]r D
n
G l mfp , ~8!

k5
4

3
g

p2

30
T3l mfp , ~9!

wheren is the number density of the conserved particles
the fluid andg is the statistical weight of the diffusing pa
ticles.

The exact form oftmn is partially a matter of definition
since, in relativistic fluid mechanics, the fluid velocity can
defined either by the flow of conserved particles@6# or by the
flow of energy @8#. These definitions coincide in non
relativistic fluid mechanics where the rest mass of partic
dominates the total energy. In our case, a relativistic o
fluid approximation, the charged and strongly interact
particles~protons, neutrons, electrons, etc.! which compose
the fluid are all perfectly coupled and have the same velo
as the conserved particle number, the baryon number.
energy flow may differ from the particle flow, however, du
to the energy transported by the imperfectly coupled neu
e
r

-

r

n

s
-

g

ty
he

i-

nos and photons. We choose to follow the velocity of t
charged particles~and, therefore, the flow of baryon numbe!
which appears explicitly in the magneto-hydrodynamic eq
tions below.

The conservation of particle number can be written as

n;m
m 50, ~10!

wherenm5nUm is the particle number four-current with th
proper number density of particlesn. The particle number
we follow is the net baryon number,nb, which is conserved
for temperatures below the electroweak transition.

We can now derive the linearized equations of ordina
relativistic fluid dynamics in an expanding universe fro
Eqs.~2!–~10!, by expanding the fluid variables around the
background values

r~x,t !5r0~ t !1r1~x,t !, ~11!

p~x,t !5p0~ t !1p1~x,t !, ~12!

T~x,t !5T0~ t !1T1~x,t !, ~13!

nb~x,t !5n0
b~ t !1n1

b~x,t !, ~14!

Um5U0
m1U1

m . ~15!

The four-velocity is that of a stationary fluid element~with
respect to the comoving frame! plus a small velocity pertur-
bation

U0
m5~1,0,0,0!, U1

m5S 0,
v

aD . ~16!

We chooseU1
m in this particular form so that the fluid veloc

ity in proper coordinates,v85(ȧ/a)x81v, corresponds to an
isotropic expansion plus an additional peculiar velocityv.
We consider fluids in which the peculiar velocities are mu
smaller than the speed of light, e.g.uvu!1 with velocities
measured in units of the speed of light. Although the flu
velocities are small, a relativistic treatment is necessary
adequately account for the presence of relativistic partic
~e.g., photons and neutrinos!.

Evaluating Eqs.~2! and ~10! to lowest order in the fluid
variables, we obtain

]r0

]t
13S ȧ

a
D ~r01p0!59jS ȧ

a
D 2

, ~17!

which represents conservation of entropy whenj50, and

]n0
b

]t
13S ȧ

a
D n0

b50, ~18!

which represents conservation of baryon number. If we
pand the energy momentum tensor and baryon number f
current to first order in the perturbation variablesU1

m , r1, p1,
T1, and n1

b , use Eqs.~3! and ~4!, and subtract the zeroth
order solution, we obtain
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]r1

]t
1~r01p0!

1

a
¹–v13S ȧ

a
D ~r11p122j¹–v!

2
k

a2
¹2T12

k

a2

]

]t
~aT0¹–v!50, ~19!

1

a4

]

]tFa4~r01p0!v2ka3S ]

]t
~aT0v!1¹T1D23ja3ȧvG

1
1

a
¹p12

h

a2
¹2v2

1

a2S j1
1

3
h D¹~¹–v!50, ~20!

and

]n1
b

]t
1

n0
b

a
¹–v13S ȧ

a
D n1

b50. ~21!

These equations form a complete set describing the e
lution of a non-ideal fluid; equation~19! represents the firs
law of thermodynamics in local form, Eq.~20! is the relativ-
istic version of Euler’s equation, and Eq.~21! represents the
conservation of baryon number.

B. Magneto-hydrodynamics with dissipation

We now include the electromagnetic fields. In an inert
frame ~denoted by !̂ the Maxwell tensor has the form

F̂mn5S 0 Ex Ey Ez

2Ex 0 Bz 2By

2Ey 2Bz 0 Bx

2Ez By 2Bx 0

D , ~22!

whereEi and Bi are the electric and magnetic fields as d
termined by an observer in the inertial frame. The Maxw
tensor in comoving coordinates (xm) can be derived from the
Maxwell tensor in inertial coordinates (x̂m),

Fmn5Lm
lLn

sF̂ls, ~23!

where

Lm
n5

]xm

] x̂n
. ~24!

The coordinate transformation which transforms the
cally Minkowski metric ĝmn5diag(1,21,21,21) into the
Robertson-Walker metricgmn5diag(1,21/a2,21/a2,21/
a2) has

Lm
n5diag~1 ,1/a,1/a,1/a!. ~25!

Thus, in the comoving basisFmn is
o-

l

-
ll

-

Fmn5S 0 Ex /a Ey /a Ez /a

2Ex /a 0 Bz /a2 2By /a2

2Ey /a 2Bz /a2 0 Bx /a2

2Ez /a By /a2 2Bx /a2 0

D .

~26!

The equations of motion for the electromagnetic fields
Maxwell’s equations

Fmn
;n54pJm ~27!

and

]

]xl
Fmn1

]

]xn
Flm1

]

]xm
Fnl50, ~28!

whereJm is the electric four-current.
In the limit of infinite electrical conductivity, the electric

field in the rest frame of the charged particles vanishes:

Em5FmnUn50. ~29!

This condition evaluated in the comoving frame using E
~16! and ~26! becomes

E52v3B. ~30!

We decompose the magnetic field into its backgrou
value,B0, and a small-amplitude perturbation,b(x,t),

B~x,t !5B0~x,t !1b~x,t !, ~31!

and impose the following conditions:

b~x,t !!B0~x,t !, ~32!

¹3B0~x,t !!¹3b~x,t !. ~33!

We can now derive the relevant Maxwell’s equations to
roth and first order in the small quantitiesv andb by using
Eqs.~26!, ~28!, and~30!. This yields

¹•b50, ~34!

1

a2

]

]t
~a2b!5

1

a
¹3~v3B0!, ~35!

]

]t
~a2B0!50. ~36!

Equation~36! shows that the background fieldB0, by flux
conservation, redshifts as 1/a2 with the expansion of the
fluid.

To complete the system of equations needed to desc
the evolution of the fluid in the presence of electromagne
fields, we must add the contribution from the electroma
netic energy-momentum tensorTEM

mn to the conservation of
energy-momentum @Eqs. ~3! and ~4!#. The energy-
momentum tensor for electromagnetism is

TEM
mn 5

1

4p S FmsFn
s2

1

4
gmnFsrFsrD , ~37!
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which in comoving coordinates becomes

TEM
mn 5

1

4pS A S

S s i j D , ~38!

with

A5
~E21B2!

2
, S5

~E3B!

a
, and

s i j 5
1

a2S 2EiEj2BiBj1
1

2
d i j ~E21B2! D . ~39!

We can now evaluate the contributions from the elect
magnetic stresses to the conservation of entropy Eq.~17!, the
first law of thermodynamics in local form Eq.~19!, and the
relativistic version of Euler’s equation Eq.~20!. The contri-
bution to the left-hand side~LHS! of the zeroth order equa
tion ~17! is

1

8pa4

]

]t
~a4B0

2!, ~40!

while to first order inv andb, the electromagnetic stresses
be added to the left-hand-sides of Eqs.~19! and ~20! are

1

4p S 1

a4

]

]t
~a4b•B0!1

B0
2

a
~¹–v!2

1

a
~B0•¹!~v–B0!D

~41!

for Eq. ~19!, and

1

4pa4

]

]t
„a4B03~v3B0!…1

1

4pa
„B03~¹3b!…, ~42!

for Eq. ~20!. After substituting Maxwell’s equations@Eq.
~34!–~36!# into Eq. ~41!, we find that the electromagneti
contribution to Eq.~19! is zero. Similarly, Eq.~40! is iden-
tical to zero by virtue of Eq.~36! so that both Eq.~17! and
~19! are unmodified. The only coupling between the field a
the fluid to first order occurs through the velocity of charg
particles and the curl of the magnetic field.

Note that the first term of Eq.~42! is only important in the
relativistic limit. For a mode with frequencyv and wave
numberk, Eq.~35! impliesvb;kv̄B. Therefore, the relative
contribution of the first term in Eq.~42! compared to the
second term is of order (v/k)2. Hence, the first term can
only be neglected when the group velocity of a mod
]v/]k'v/k, is much smaller than the speed of light.

To first order in the quantitiesT1, n1
b , r1, p1, v, b, Eqs.

~19!, ~21!, ~34!–~36!, together with the equation obtained b
adding Eq.~42! to the LHS of Eq.~20! describe magneto
hydrodynamics in an expanding fluid. The following defin
tions help to rewrite our equations into a more conveni
form

d[
T1

T0
, D[

n1
b

n0
b , ~43!
-

d

,

t

b̃[
b

@4p~r r1pr !#
1/2

, B̃0[
B0

@4p~r r1pr !#
1/2

, ~44!

h8[
h

3~r r1pr !
, j8[

j

3~r r1pr !
, k8[

kT

3~r r1pr !
,

~45!

where r r5gp2T0
4/30 andpr5r r /3 are the average energ

density and pressure of relativistic particles, andg is the total
statistical weight of relativistic particles.

For a fluid comprised of baryons and relativistic particl
~e.g., photons, neutrinos,e6-pairs, etc.!, the energy density
and pressure up to first order in the small quantities are gi
by

r5r01r1

5r r~114d!1rb~11D!, ~46!

p5p01p1

5pr~114d!, ~47!

whererb5n0
bmN is the baryon energy density, andmN is the

nucleon rest mass. In writing Eq.~47!, we assume that bary
onic pressure is negligible in comparison to radiation pr
sure. In this case, and whenj50, Eq. ~17! and Eq.~18!
imply simple redshift relations for the temperatureT0;1/a
and the baryon number densityn0

b;1/a3. We also define

R~ t ![
3rb

4r r
~48!

as a measure of the relative importance of baryon mass
sity with respect to energy density in relativistic particle
For R→0, both energy density and pressure are domina
by relativistic particles, whereas forR@1 the energy density
is dominated by the baryon rest mass and the pressu
dominated by radiation.

In terms of the newly defined variables, the equations
magneto-hydrodynamics become

ḋ136j8S ȧ

a
D 2

d1
1

3a
¹–v26S ȧ

a
D j8

a
¹–v2

k8

a2
¹2d

2
k8

a

]

]t
¹–v50, ~49!

F ]

]t
136j8S ȧ

a
D 2GF ~11R!v23k8S v̇1

1

a
¹d D 29j8S ȧ

a
D vG

1
1

a
¹d2

3h8

a2 F¹2v1
1

3
¹~¹–v!G

2
3j8

a2
¹~¹–v!1B̃03S ]v

]t
3B̃0D1

1

a
B̃03~¹3 b̃!50,

~50!
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]

]t
b̃5

1

a
¹3~v3B̃0!, ~51!

¹–b̃50, ~52!

]

]t
B̃050. ~53!

C. Dispersion relations

In order to calculate propagation velocities and damp
rates, we first derive the dispersion relations for the differ
MHD modes by Fourier transforming all perturbative va
ables (d, D, b, andv, generically represented byf below!
using the convention

f~x,t !5E d3kf~k,t !exp~ ik•x! ~54!

in which k is a constant comoving wave vector.
The time dependence off(k,t) is modified by the expan

sion of the fluid which introduces a time variation into th
frequency and the amplitude of the modes. With this in m
it is convenient to write

f~k,t !5fk~ t !expF E iv~ t !dtG . ~55!

The decrease of the amplitude due to damping is include
the exponential part through imaginary solutions forv while
the explicit time dependence offk(t) accounts only for the
effects of the expansion.

The system of equations resulting from the substitution
Eq. ~54! into Eqs.~49!–~53! is solved separately for the dif
ferent MHD modes: Alfve´n waves, for which the density an
the temperature of the fluid are uniform and the velocity
the fluid is perpendicular to the background magnetic fi
(k5kx̂,B05Bxx̂1Bzẑ,b5bŷ,v5v ŷ andd50); and magne-
tosonic waves, for which the velocity of the fluid makes
arbitrary angle with the background fiel
(k5kx̂,B05Bxx̂1Byŷ,b5bŷ,v5vxx̂1vyŷ). Note that
sound waves, which propagate along the background fi
without affecting it (B0ikiv andb50), are a special case o
magnetosonic waves. In all dispersion relations and their
lutions, u denotes the angle between the background m
netic field and the wave vector.

The dispersion relation for magnetosonic modes allo
two solutions: slow magnetosonic modes and fast magn
sonic modes. Fast magnetosonic modes are similar in na
to sound waves, while slow magnetosonic modes are cl
to Alfvén waves. This fact plays an important role in th
damping of magnetosonic waves, and is apparent for w
magnetic fields (rB!rfluid) where fast magnetosonic mode
oscillate withv almost along the direction ofk and involve
oscillating density perturbations, while slow magnetoso
modes oscillate almost perpendicularly tok and have close
to vanishing density perturbations. In the special casekiB0
fast magnetosonic waves become sound waves and ther
no slow magnetosonic solutions.~For a discussion of MHD
modes see, for example, Ref.@9#.!
g
t

d

in

f

f
d

ld

o-
g-

s
o-
re
er

ak

c

are

We obtain the dispersion relations by substituting Eq.~55!
into Eqs.~49!–~52!. The dispersion relations are derived
first order in k8, h8, j8, which corresponds to the lowes
non-trivial expansion in powers ofl mfp /l ~where l is the
wavelength of a mode!. We use the WKB approximation
neglecting the time derivatives of the Fourier amplitud
]fk(t)/]t!v, and the time derivative of the frequenc
]v/]t!2v2, which arises from the]2v/]t2 term in Eq.
~50!. This approximation is valid for modes with oscillatio
frequencies much higher than the expansion rate,v@H.

This procedure for Alfve´n waves yields:

3v3k81 iv2~11R1B̃0
2!1vF ȧ

a
R13h8S k

aD 2G
2 i B̃0

2cos2uS k

aD 2

50. ~56!

Complete dispersion relations for all MHD modes are, due
their length, placed in Appendix A.

In the following two sections, we present the solutions
oscillation frequencies and damping rates derived from
dispersion relations in the following two limits: the oscilla
tory limit, when the solution is oscillatory with an expone
tially decaying amplitude; and the overdamped limit, wh
the amplitude of modes exponentially decrease without co
pleting an oscillation.

1. Oscillatory limit

The solutions to the dispersion relations,v, generally
consist of a real and an imaginary part, which represent
oscillation frequency and the damping rate, respectively
the oscillatory limit, the dissipative effects are such that
fluid oscillates many times as it damps, Rev!Imv. In this
case, the dispersion relations can be solved by conside
all the viscosity and heat conductivity terms as perturbati
on the ideal fluid dispersion relation.

The solutions to the dispersion relations will be conv
niently expressed in terms of the speed of sound:

vs5AS ]p

]r D
S

5
1

A3~11R!
, ~57!

and the relativistic Alfve´n speed:

vA5
B̃0

A11R1B̃0
2

. ~58!

The relativistic Alfvén speed includes the magnetic field e
ergy density in the denominator, which ensures that
strong magnetic fields the Alfve´n speed does not exceed th
speed of light.

For all modes in the oscillatory limit we first solve th
dispersion relations for an ideal fluid and then compute
first order contributions from the dissipative terms. For cl
ity, all the solutions in their general form have been placed
Appendix A. In this and the following section we give th
solutions for each MHD mode in the cosmologically releva
limit of weak magnetic fields (B̃0!1) and negligible redshift
terms (ȧ/a).
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For weak magnetic fields, the leading terms in the f
quencies for fast magnetosonic waves do not depend e
on the magnetic field strength or on the direction of pro
gation, and are therefore the same as the frequencies
sound waves:

vosc
FM56vsS k

aD1 i S R2

2~11R!2
k81

2

11R
h81

3

2~11R!
j8D

3S k

aD 2

. ~59!

This reproduces the solution for propagation and dampin
sound waves given in Ref.@4#. Similarly, the frequencies o
slow magnetosonic waves and Alfve´n waves are identical to
leading order inB̃0 and have the following form:

vosc
SM,A56vAcosuS k

aD1
3

2
i

h8

~11R!S k

aD 2

. ~60!

The solutions show that, while for small magnetic fiel
the damping of slow magnetosonic and Alfve´n waves pro-
ceeds through shear viscosity, fast magnetosonic waves
damped by shear and bulk viscosity, as well as heat con
tivity. Furthermore, fast magnetosonic waves damp diff
ently in different regimes: they damp predominantly by h
conductivity when the matter density is larger than the rad
tion density, and by shear viscosity when the radiation d
sity dominates. Note that after taking the time dependenc
all variables into account, the expansion of the fluid affe
the frequencies directly throughȧ/a terms~see Appendix A!,
and indirectly through the integral in Eq. 55. For instance,
in the case of sound waves whenR!1, the oscillation fre-
quency of a fast magnetosonic mode with a given wa
length in a radiation dominated expansion is twice the f
quency of the same wavelength mode in a static backgro
metric.

2. Overdamped limit

When dissipative effects become very strong, oscillatio
of MHD modes are inhibited and the evolution of a giv
MHD mode is dominated by the exponential decay of
amplitude with time. We seek solutions in the extreme
overdamped regime by expanding the equations in power
Revosc/Imvosc, wherevosc is the frequency of a wave de
rived in the oscillatory limit.

In general, a dispersion relation expanded in powers
Revosc/Imvosc has several solutions distinguished in natu
by their initial conditions. For example, in the case of Alfve´n
waves, fast decaying solutions arise from initial conditio
such that when the velocities of the fluid are damped aw
by shear viscosities, the amplitude of the magnetic pertu
tions vanish as well. In contrast, when initial conditions ge
erate slowly decaying Alfve´n modes, the fluctuations are n
erased as the velocities damp to zero; after the dampin
fluid motions, the remaining magnetic forces tend to acc
erate the fluid, although inefficiently because of the stro
viscous damping. Since energy dissipation rates are pro
tional to the peculiar fluid velocity, the time scale for diss
pation of the magnetic field perturbation of slow decayi
-
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modes may be extremely large.
While the amplitudes of the fast decaying modes damp

rates similar to the ones calculated in the oscillatory regi
~Sec. II C 1!, the amplitudes of slowly decaying modes d
cay at significantly different rates. For weak magnetic fie
(B̃0!1), the decay rate for the amplitude of overdamp
slow magnetosonic modes is

vod
SM5 ik8vA

2 S k

aD 2

1 i
vA

2cos2u

3h8
, ~61!

and the decay rate for Alfve´n modes is

vod
A 5 i

vA
2cos2u

3h8
. ~62!

Note that all modes with relativistic propagation veloc
ties (Revosc;k/a) never enter the overdamped regime in t
diffusion limit. For this reason a discussion of overdamp
relativistic sound and fast magnetosonic waves is not ne
sary.

III. DAMPING OF MAGNETOHYDRODYNAMIC MODES
IN THE RADIATION FREE-STREAMING LIMIT

Slow magnetosonic and Alfve´n modes which become
overdamped during the diffusion regime survive the damp
and with the expansion of the universe enter the fr
streaming regime when the mean free path of the decoup
particles grows to be larger than the wavelength of a mo
In order to investigate the additional damping that the
modes undergo in the free-streaming regime, we study
general case of MHD in an expanding fluid in the presen
of a uniform background. Similar to our analysis of the d
fusion regime, we study the evolution of a single dissipat
fluid. However, in this case the fluid is comprised of all t
particles with mean free paths much shorter than the wa
length of the MHD mode, while the decoupling particle sp
cies, whose mean free path is now large as it decouples f
the rest of the fluid, represents a uniform background on
scales of interest. The dissipation arises from occasional
lisions of the fluid particles with the relativistic backgroun

We generically define a drag coefficienta and a heat
exchange coefficientg in the following way: the drag force
per unit volume on the fluid element from scattering with t
background particles is given by

f[2avrfluid , ~63!

and the heat exchanged between the fluid element and
background is

]r thermal

]t
[2g

T1

T0
r thermal. ~64!

The exact form of these coefficients is obtained by calcu
ing the transfer of momentum and heat per scattering
averaging it over the distribution of background and flu
particles. We presented the coefficients later separately
neutrino decoupling and photon decoupling.
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57 3271DAMPING OF COSMIC MAGNETIC FIELDS
In order to derive the free-streaming fluid equations,
use the fluid equations developed in Sec. II, as well as te
niques for finding solutions described therein. The heat
rate from Eq.~64! is incorporated into Eq.~19!, while the
drag force from Eq.~63! is added to Eq.~20! together with
the magnetic field contribution from Eq.~42!. Although the
local thermodynamic equilibrium between the fluid and t
free-streaming component does not hold in general, we c
sider the case in which the mean scattering time betw
particles of the fluid component and the free-streaming co
ponent is shorter than the characteristic expansion time s
of the fluid. In this case the temperature and velocity of
background is the same as the average temperature an
locity of the fluid. All other assumptions, including non
relativistic fluid velocities, are carried over from Sec. II.

The resulting equations are

]r1

]t
1

1

a
~r01p0!¹–v13

ȧ

a
~r11p1!52g

T1

T0
r thermal,

~65!

1

a4

]

]t
„a4~r01p0!v…1

1

a
¹p11

1

4p
B̃03S ]v

]t
3B̃0D

1
1

4p
B̃03~¹3 b̃!52avr0 , ~66!

]n1
b

]t
13

ȧ

a
n1

b1
n0

b

a
¹–v50 ~67!

and together with Maxwell’s equations Eqs.~51!–~53! they
form a complete set.

In order to derive dispersion relations for a given fluid, w
have to specify the energy density, matter density, and p
sure, and substitute these into the above set of equat
This is done in the rest of Sec. III for two fluid combination
a baryonic fluid with free-streaming photons; and a flu
which consists of baryons and relativistic particles like ph
tons ande1e2 pairs, in a background of free-streaming ne
trinos. All the dispersion relations as well as the solutions
fast magnetosonic modes are given in the appendices.
we present the solutions to dispersion relations for slow m
netosonic modes and Alfve´n modes, the two modes that i
the presence of weak magnetic fields survive into the fr
streaming regime before recombination.

A. Neutrino free-streaming limit

Around neutrino decoupling the fluid consists of tight
coupled baryons, photons, ande1e2 pairs. The dominant
component of the pressure is radiation pressure,

pr5
1
3 r r , ~68!

and, sinceR.0, the speed of sound is

vs5
1

A3
. ~69!
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The energy density~equal tor thermal) has contributions from
all relativistic particles, counted in the number of degrees
freedomgr :

r r5gr

p2

30
T4. ~70!

The heat exchange coefficient and the drag coefficient,
fined by Eq.~64! and Eq.~63!, are approximately the same a
the high temperatures of neutrino free-streaming. Compu
by averaging the transfer of energy in each scattering ov
distribution of background particles and a distribution
fluid particles@10#, they are

g.swnw

rn

rg
5

gn

gr l n
~71!

and

a.g. ~72!

Heresw is the cross section for scattering of neutrinos w
other weakly interacting particles,nw is the number density
of weakly interacting particles~scatterers!, gn is the neutrino
statistical weight, andl n is the neutrino mean free path.

Following the steps used in the diffusion regime~Sec.
II C!, we obtain dispersion relations for the different MH
modes and present them in Appendix B.

1. Oscillatory limit

The oscillation frequencies and damping rates for sl
magnetosonic and Alfve´n modes are again obtained by fir
solving the dispersion relations for an ideal fluid and th
solving for the first order dissipative terms. In terms of t
previously defined Alfve´n speed, the solutions for sma
magnetic fields are the same for slow magnetosonic and
fvén modes, and have the form

vosc
SM,A56vAcosuS k

aD1
3i

8
a. ~73!

The frequencies for oscillatory fast magnetosonic waves~in-
cluding sound waves! are presented in Appendix B.

2. Overdamped limit

As in the diffusion regime, the solutions in the extreme
overdamped regime (Revosc!Imvosc) are derived by ex-
panding the equations in powers of Revosc/Imvosc. The
overdamped solution in the case of weak magnetic fields
for slow magnetosonic modes

vod
SM5

i

4
gvA

21
4ivA

2cos2u

3a S k

aD 2

, ~74!

and for Alfvén waves

vod
A 5

4ivA
2cos2u

3a S k

aD 2

. ~75!

As in the case of radiation diffusion~Sec. II C!, relativis-
tic fast magnetosonic modes do not become overdampe
the free-streaming regime.
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B. Photon free-streaming limit

Fluid equations for the modes in the free-streaming lim
around photon decoupling are somewhat different from
cases analyzed so far. Namely, the only contribution to
energy density of the perturbations is the thermal ene
density of baryons,

r thermal5
3
2 ~ne1np!T53nbT, ~76!

which enters Eq.~65! but can be neglected in Eq.~66! be-
cause it is much smaller than the matter density. Herene and
np are electron and proton number densities, respectiv
Furthermore, since the photons can be considered decou
on the free-streaming scales, the only pressure left to sup
the oscillations is the pressure of the baryonic fluid itself

pb5~ne1np!T52nbT. ~77!

This yields the gradient of pressure in Eq.~66! which de-
pends both on density and temperature fluctuations an
best expressed through the sound speed:

1

r
¹p5

3

5
cs

2~¹D1¹d!, ~78!

wherecs is the adiabatic baryonic speed of sound for a fu
ionized proton-electron fluid,

cs5AS ]pb

]rb
D

S

5A10

3

T

mp
. ~79!

With these substitutions for the densities and the press
we obtain dispersion relations for different MHD modes a
present them in Appendix C.

The drag and heat exchange coefficients, which appea
the dispersion relations and their solutions, are similarly
tained as in the neutrino free-streaming case, and have
following form @11#:

a.sTne

rg

rb
5

1

l gR
, ~80!

and

g.
mp

me
a. ~81!

1. Oscillatory limit

Unlike in the relativistic cases where the photon press
dominates, the structure of the non-relativistic equations w
free-streaming photons allows for oscillating magnetoso
modes with two different propagation velocities and dam
ing rates. These modes are commonly referred to as adia
and isothermal, depending if heat transport is slow or ra
compared to the oscillation time: a mode is adiabatic wh
v@g andv@a, and it is isothermal wheng@v@a. Alfvén
modes have only one solution since they do not include d
sity or temperature fluctuations and therefore are not affe
by heat transport.

Again we derive the dispersion relations from Eqs.~51!–
~53! and Eqs.~65!–~67!, and place them in Appendix C
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Before presenting the solutions for slow magnetosonic
Alfvén modes, it is useful to introduce the non-relativis
Alfvén speed,

cA5
B̃0

AR
. ~82!

The oscillation frequency and the damping rate for sl
magnetosonic waves in the adiabatic regime Rev@g,a are
given by:

vosc
SM56cAcosuS k

aD1 i S a

2
1

g

5

B̃0
2sin2u

cs
2R

D , ~83!

and

vosc
SM56cscosuS k

aD1 i S a

2
1

g

5D , ~84!

where the upper solution corresponds to weak magn
fields such thatcs@cA and the lower solution to strong mag
netic fields withcs!cA . It is important to remember tha
both of these solutions are derived for a background m
netic field whose energy density is much smaller than
energy density in photons. The condition for adiabaticity
dependent on the strength of the magnetic field since os
lation frequencies of magnetosonic waves are different
strong and weak magnetic fields.

Slow magnetosonic modes in the isothermal regim
g@Rev@a, have the solution

vosc
SM56cAcosuS k

aD1 i
a

2
, ~85!

and

vosc
SM56A3

5
cscosuS k

aD1 i
a

2
, ~86!

where again the upper solution is forcs@cA and the lower
solution is forcs!cA .

The result for Alfvén waves is

vosc
A 56cAcosuS k

aD1 i
a

2
. ~87!

The frequency of non-relativistic fast magnetoson
waves in the adiabatic and isothermal limits are placed
Appendix C.

2. Overdamped limit

The frequencies for slow magnetosonic waves cor
sponding to slow exponential decay are:

vod
SM5 i

cA
2cos2u

a S k

aD 2

, ~88!

and

vod
SM5 i

3cs
2cos2u

5a S k

aD 2

, ~89!
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57 3273DAMPING OF COSMIC MAGNETIC FIELDS
with the upper solution forcA!cs , and the lower solution
for cA@cs . The slowly decaying mode of overdamped A
fvén waves has frequency

vod
A 5 i

cA
2cos2u

a S k

aD 2

. ~90!

In contrast to relativistic MHD, some non-relativistic fa
magnetosonic modes can enter the overdamped reg
Their damping rates can also be found in Appendix C.

IV. DAMPING OF MAGNETIC FIELDS
IN THE EARLY UNIVERSE

In this section we discuss the implications of the damp
of magneto-hydrodynamic modes for the evolution of c
mological magnetic fields. Magnetic fields generated in
early universe are likely to be randomly oriented, spatia
varying fields with small coherence lengths, usually of t
order of the horizon at the epoch when the fields were c
ated. We assume that the magnetic fields are created
magnetic field energy below equipartition with the radiati
energy density, i.e.B̃0!1. For an arbitrary magnetic field
configuration, we choose a separation of scales such tha
given volume the field can be described as an approxima
force-free background magnetic fieldB0, and a spectrum o
propagating modesb(k), where ubu!uB0u. In this case we
can decompose the propagating modes into slow and
magnetosonic, and Alfve´n modes with different wave vec
torsk and different phases. Although the conditionubu!uB0u
may not be easily achieved for every field configuration,
predicted evolution of propagating modes is indicative of
general field evolution. In particular, the efficient visco
damping discussed in this paper should cause the dissip
of magnetic energy in generic field configurations.

We are interested in the evolution of individual MH
modes from before the epoch of neutrino decoupling to
combination. For each epoch we wish to determine the c
acteristic scales over which pre-existing cosmic magn
fields are damped. As previously described, the evolution
fast magnetosonic waves is distinctively different from t
evolution of slow magnetosonic modes and Alfve´n waves;
therefore they are discussed separately: fast magnetos
waves in Sec. IV A, and slow magnetosonic and Alfv´n
waves in Sec. IV B.

For the calculation of the damping scales we need
expressions for the mean free path of the decoupling
ticles as well as the ratio of the baryon density to the pho
density. While the universe cools from temperatures be
the electroweak breaking scale (T;100 GeV! to neutrino
decoupling (Tn;MeV!, neutrinos are the particles with th
longest mean free path and therefore the most efficient
mentum and heat transporters. The neutrino mean free
at temperatureT can be written as

l n~T!.
1

GF
2T2~nl1nq!

.1011cm S T

MeVD 25S gl1gq

8.75 D 21

,

~91!

wherenl andnq are lepton and quark number densities,GF

is Fermi’s constant, andGF
2T2 is a typical weak interaction
e.
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cross section. The quantitiesgl and gq are the statistical
weights of relativistic weakly interacting leptons and quar
present at the epoch of interest.

At temperatures below the completion of th
e1e2-annihilation (T;20 keV!, heat and momentum ar
most efficiently transported by photons. The dominant p
cess limiting the photon mean free path during this period
Thomson scattering of photons off electrons which gives
photon mean free path the following form:

l g~T!.
1

sTne
.1022cm S T

0.25 eVD
23S Vbh2

0.0125D
21

Xe~T!21,

~92!

whereXe is the number of free electrons per baryon,sT is
the Thomson cross section, andne is the electron density.

The damping of MHD waves is particularly efficient du
ing the epochs of neutrino decoupling and recombinati
when efficient momentum transfer and heat transport a
from the quickly growing mean free path of the decoupli
particles. Therefore, all the variables in the above equati
have been scaled to their values at those epochs. Also, s
at neutrino decoupling the dominant scattering proces
scattering of neutrinos off leptons, the appropriate values
the parameters in Eq.~91! aregl58.75 (e6 and six neutrino
species! and gq50. The remaining unspecified paramete
the ionization fractionXe , drops within a short time from 1
to ;1025 during recombination which occurs approximate
at Tg

d.0.25 eV.
The baryon mass density is negligible when compared

the radiation energy density during neutrino decoupl
(R'0), while around recombination it is approximate
given by

R5
3rb

4r r
'0.4S T

0.25 eVD
21S Vbh2

0.0125D , ~93!

where Vb is the fractional contribution of baryons to th
closure density andh is the present Hubble constant in uni
of 100 km s21 Mpc21. In writing Eq. ~93! we implicitly
assume that neutrinos have decoupled from the remai
particle species.

A. Damping of fast magnetosonic waves in the early universe

The damping of all fast magnetosonic modes is to lead
order equivalent to the damping of sound waves if the ene
density in the large-scale magnetic field is much smaller t
the energy density in radiation. The damping occurs due
the diffusion of either neutrinos prior to neutrino decouplin
or photons before recombination. From the expressions
Eqs.~91! and~92!, which represent mean free paths in prop
units, it can be seen that in both cases the comoving m
free path grows with the expansion of the universe. As
consequence, MHD modes with wavelengthslp52pa(T)/k
smaller than the mean free pathl mfp(T) at timet(T) were in
the diffusion regime at some prior time in the early univer
i.e., lp(T8)@ l mfp(T8) at t(T8).

The amount of damping that fast magnetosonic mo
undergo in the diffusion regime can be calculated using
damping rates in Eq.~59!. From the leading damping term
2ih8(k/a)2/(11R), and the definitions in Eqs.~45! and~7!,
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we see that the amplitude of the perturbation is damped
tween timet50 andt by

expS 2E
0

t l mfp

lp
2

dt8D . ~94!

If we define a characteristic damping scale as the larg
comoving wavelength of an MHD mode whose initial amp
tude has been damped by at least one e-folding by timet, this
damping scale approximately corresponds to the comov
photon/neutrino diffusion length,

d25E
0

t l mfp~ t8!

a2~ t8!
dt8, ~95!

which is the distance a photon/neutrino has random wal
between timet50 andt.

In this section we present all the damping scales in
moving units, in particular, comoving to the present epo
unless stated otherwise. The diffusion damping scale ca
lated for fast magnetosonic waves prior to neutrino dec
pling (T>1 MeV! is:

ln
FM.231020cm S T

MeVD 2 5/2S gr

10.75D
2 3/4S gn

5.25D
1/2

3S gl1gq

8.75 D 2 1/2

. ~96!

Note that the damping scale at neutrino decoupling c
verted to proper units approximately corresponds to
causal horizon at that time,ln(MeV)'531010cm.

In a similar fashion we can compute the comoving dam
ing scale of fast magnetosonic waves due to the effects o
finite photon mean free path at lower temperatures. Aro
recombination, where we assume matter domination,
damping scale is

lg
FM.7

31025cm S T

0.25 eVD
2 5/4S Vbh2

0.0125D
2 1/2

~V0h2!2 1/4.

~97!

In this expressionV0 is the total density in units of the
critical density at the present epoch.

Baryonic mass scales can be associated with the dam
length scales by defining

M[
4p

3
rb~T!S l~T!a~T!

2 D 3

, ~98!

whererb is the average baryon mass density at tempera
T. The baryonic mass scale associated with the damp
scale of fast magnetosonic waves by neutrino diffus
around neutrino decoupling is

M n
FM.1024 M( S Tn

MeVD 2 15/2S gr

10.75D
2 9/4S gn

5.25D
3/2

3S gl1gq

8.75 D 2 3/2S Vbh2

0.0125D , ~99!

and by photon diffusion around recombination
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Mg
FM.1013M( S Tg

0.25 eVD
2 15/4S Vbh2

0.0125D
2 1/2

~V0h2!2 3/4.

~100!

The above calculations for the damping scales are
proximate in that we assume that the damped modes ar
the diffusion regime,l n,g!lp . The diffusion approximation
is not a valid approximation late within the decoupling e
ochs. Around neutrino decoupling, while our analysis unc
ers the order of magnitude of the damping mass scale
improvement on the diffusion approximation only, would n
yield more accurate results since the calculated damp
scale approximately corresponds to the causal horizon at
time. Around recombination, our treatment is analogous
the calculations of the damping of sound waves in Ref.@4#;
in writing Eq. ~97! we assume an instantaneous recombi
tion while the ionization fractionXe decreases gradually t
zero during recombination. More detailed treatments for
damping of sound waves during recombination have b
performed using the Boltzman equation@12–14# or using a
two-fluid model@15,16#. Since the dominant damping term
of fast magnetosonic waves are the same as those of s
waves, values for the sound wave damping scale calcul
in more accurate models may be used as better approx
tions to the fast magnetosonic damping scale. A review
previous Silk scale calculations is given in Ref.@14#.

B. Damping of slow magnetosonic and Alfve´n waves
in the early universe

Unlike the damping of fast magnetosonic waves, t
damping of slow magnetosonic and Alfve´n waves in the
early universe proceeds through several different stages.
illustrate these stages by following an Alfve´n wave from
after neutrino decoupling up to recombination.

Initially, in the diffusion regime wherel@ l mfp , a wave
oscillates and damps in the same manner as described fo
magnetosonic waves. The oscillation frequency and
damping rate are shown in Eq.~60!, and after using Eqs.~45!
and ~7! they approximately become

vosc
A .6vAS k

aD cosu1 i l gS k

aD 2

. ~101!

The damping rate in this expression is the same as the da
ing rate for fast magnetosonic modes, and is valid as long
vAcosu @ lgk/a. The crucial difference, however, is that for
small background magnetic field in the early universe,
oscillation frequency of an Alfve´n mode (vAk/a) is much
smaller than the oscillation frequency of a fast magnetoso
mode with the same wavelength (vsk/a). While all fast mag-
netosonic modes of interest satisfy the condition for damp
in the oscillatory regime (vs@ l gk/a), an Alfvén mode can
become overdamped when, with the expansion of the u
verse, the mean-free-path becomes large enough for dis
tive effects to overcome the oscillation (vAcosu . lgk/a).
One may define a temperature dependent wavelengthlod,

lod~T,B0!.
2p l g~T!

vAcosu
, ~102!
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such that modes with proper wavelengthlp>lod are oscil-
latory, while modes withlp<lod are overdamped.

Overdamped modes are a superposition of fast and slo
decaying overdamped modes, and the relative amplitudes
pend on the phase of the mode when it becomes o
damped. Fast decaying overdamped modes damp at
similar to the oscillatory modes, and therefore their damp
is equivalent to the damping of fast magnetosonic mo
discussed in the previous section. In this section, we fol
the significantly different evolution of the slowly decayin
overdamped modes which experience the least damping.
amplitude of a slowly decaying overdamped Alfve´n mode
damps with a rate given by Eq.~62!, which in terms of the
photon mean-free-path is

vod
A . i

vA
2cos2u

l g
. ~103!

Since the damping rate is inversely proportional to the gro
ing mean free path, the integrated damping rate is m
smaller than the integrated damping rate of fast magn
sonic modes during the same period. As a result, the da
ing in overdamped diffusion is inefficient and the dampi
scales of Alfvén modes at the end of the diffusion regime a
smaller than the damping scales of fast magnetosonic mo

The LHS of Fig. 1~left of the dotted line! illustrates the
evolution of Alfvén waves in the diffusion regime fo
cosu 51 and a background magnetic field ofB̃0'1023 ~cor-
responding toB0'331029 G at present!. In the diffusion
regime there are two important temperature depend
scales: the photon diffusion length scale~dashed line!, which
is the scale damped by one e-folding by the time the unive
cools to temperatureT provided that modes are still in th
oscillatory regime; and the overdamping length scale gi
by Eq. ~102! ~solid line!, which shows the temperature
which a mode with comoving wavelengthlc enters the over-
damped regime. The modes which do not damp significa
in the radiation diffusion regime before they become ov
damped, preserve their amplitude until they reach the fr
streaming regime, apart from small additional damping d
ing the transition itself. On the graph, these are all the mo
with comoving wavelength larger than that given by the
tersection of the solid line with the dashed line. Therefo
the intersection of these two lines roughly represents
largest Alfvén mode that is damped by one e-folding in t
diffusion regime. Its position depends on the strength of
background magnetic field and on the angle between the
and the wave vector.

Some overdamped modes enter the free-streaming re
before recombination~to the right of the dotted line in Fig. 1!
as the mean free path of the decoupling particles grows w
the expansion. The dissipation coefficients in the fr
streaming regime are inversely proportional to the mean
path unlike those in the diffusion regime. This implies th
when a wave enters the free-streaming regime, it is initia
overdamped and becomes oscillatory when the drag fo
and the heat conduction decrease as the mean free pa
creases. It also implies that modes in the free-streaming
gime undergo most damping while overdamped. The da
ing rates during free-streaming, derived using Eq.~80! in
Eqs.~87! and ~90!, are
ly
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vod
A . icA

2 l gS rb

rg
D S k

aD 2

cos2u, ~104!

when a wave is overdamped, and

vosc
A .6cAS k

aD cosu1 i
1

l g

rg

rb
, ~105!

when it oscillates.
Using Eq.~104! in Eq. ~55!, we find that for Alfvén waves

during overdamped free-streaming, the largest comov
wavelength whose amplitude is damped by one e-folding
time t is:

@lg
A~ t !#25E

0

t

cA
2cos2uR~ t8!

l g~ t8!

a2~ t8!
dt85cA

2cos2udg
2~ t !R~ t !,

~106!

wheredg(t) is the comoving photon diffusion length. As w
can see, the damping depends on the strength of the b
ground magnetic field and the angle between the field
the wave vector. The above damping length evaluated a
combination is the characteristic Alfve´n wave damping

FIG. 1. Scales relevant for the evolution of Alfve´n and slow
magnetosonic waves before recombination, calculated for mo
that propagate at cosu 51 and a background magnetic field o
B05331029 G today. All length scales are given in comovin
units. Any mode with fixed comoving wavelengthlc will at cosmic
temperatureT be in the photon diffusion regime if it is to the left o
the dotted line, or in the photon free-streaming regime if it is to
right. Modes with wavelengthlc will at temperatureT be non-
oscillatory ~overdamped! if they are between the two solid lines
The two dashed lines indicate the temperature at which a mod
given wavelength is damped by one e-fold, either during its os
latory evolution in photon diffusion or its overdamped evolution
photon free-streaming. The figure assumesVb50.0125 andh51,
and equality between radiation and matter energy density
TEQ55.5 eV. See Sec. IV B for a more detailed explanation.
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length for the free-streaming regime, because all modes
overdamped before recombination regardless of the stre
of the magnetic field.

The damping of Alfve´n waves with free-streaming pho
tons is illustrated on the right-hand side~RHS! of Fig. 1. The
dashed line shows the damping scale from Eq.~106!. The
solid line marks the transition from overdamped to oscil
tory behavior, defined in the same fashion as in the diffus
regime@Eq. ~102!#, with the overdamped region to the left o
the line. Since all the modes that cross the dashed line be
recombination get damped by one e-folding during ov
damped free-streaming, the length scale marked by this
at recombination represents the free-streaming damping s
for Alfvén modes.

In our analysis we have assumed the WKB approxim
tion. This approximation does not formally hold during a
the discussed epochs for every mode. In particular, the
proximation breaks down for comoving wavelengths b
tween the damping length scale for Alfve´n waves in the pho-
ton free-streaming regime,lg

A , and the photon mean fre
path~i.e., between the dashed and dotted lines on the RH
Fig. 1!. Although the damping rates calculated in the prec
ing section predict no damping in this region, some damp
is in principle possible since here WKB is not a good a
proximation. In Fig. 2 we present the result of a numeri
integration of the magnetic field amplitude of Alfve´n waves
in different wavelengths through the epoch of interest. T
mode with the largest wavelength which still damps bef

FIG. 2. The evolution of the Fourier amplitude as a function
cosmic temperature calculated numerically~solid line!, and analyti-
cally using the WKB approximation~dashed line!, for Alfven
waves with three different comoving wavelengths indicated on
figure. For the calculation we assumeB05331029 G, cosu51,
Vb50.0125, andh51, and we have fixed the ionization fraction
Xe51 even for temperatures below the approximate temperatur
recombinationT'0.25 eV. The largest scale which the numeric
calculation shows to be damped by one e-fold before recombina
~at!, corresponds to the analytically calculated length scale
231023 cm.
ay
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the epoch of recombination (T.0.25 eV! is consistent with
our analytic estimate. Note that in this calculation we assu
that recombination never occurs~i.e., Xe.1 for T<0.25 eV
in Fig. 2!. We have extended the calculation into this no
physical regime to learn when the results obtained by
WKB approximation deviate significantly from the numer
cal results. From the plot we see that significant discrep
cies happen only with modes that would damp after reco
bination if Xe was kept fixed.

The damping of slow magnetosonic waves proceeds s
larly to the illustrated damping of Alfve´n waves except for
two differences. First, slow magnetosonic waves in ov
damped diffusion damp at a slightly different rate than A
fvén waves because of the additional damping expres
through the extra term in Eq.~61!. This damping is relevan
only for the waves that propagate at very large angles w
respect to the background magnetic field. Second, the da
ing rates for slow magnetosonic waves during free-stream
depend on whether the non-relativistic sound speed is la
or smaller than the non-relativistic Alfve´n velocity @Eq. ~88!
and Eq.~89!#. The damping scale whencs.cA is the same as
the damping scale for Alfve´n waves, while the damping
scale forcs,cA is unique to slow magnetosonic modes.

We can define damping length and mass scales for Alf´n
and slow magnetosonic waves analogously to the prev
section, and consider that the waves below these sc
would have dissipated by the time of neutrino/photon dec
pling. The general evolution of all the damping length sca
with temperature, followed through the different dampi
stages up to decoupling, can be found in Appendix D. In t
section we present the final damping lengths at neutrino
coupling (T.1 MeV) and at recombination (T.0.25 eV),
for the background magnetic field below 331029 G, which
is the current estimate of the upper limit on magnetic fie
on Mpc scales~see, e.g. Ref.@17#!.

The final damping scale of Alfve´n waves for this range o
the background magnetic field strengths is determined by
free-streaming damping length. At neutrino decoupling, m
modes in free-streaming are damped while overdamped
though the largest modes are damped just as they beg
oscillate again. This determines the comoving damping sc
at neutrino decoupling to be

ln
A.1017cm B9cosuS gr

10.75D
21S gn

5.25D
1/3S gl1gq

8.75 D 1/3

.

~107!

The background magnetic field is expressed throu
B95B0 /(331029G), whereB0 is the background magneti
field strength scaled to the present epoch. During pho
decoupling, the largest Alfve´n mode damped by one e
folding during free-streaming is damped while still in th
overdamped regime, and its comoving wavelength is

lg
A.231023cm B9cosu~V0h2!2 1/4S Vbh2

0.0125D
2 1/2

.

~108!

The baryonic mass scales which correspond to the dam
length scales at neutrino and photon decoupling are
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M n
A.10213M( B9

3cos3uS Vbh2

0.0125D S gr

10.75D
23S gn

5.25D
3S gl1gq

8.75 D ~109!

and

Mg
A.106 M( B9

3cos3u~V0h2!2 3/4S Vbh2

0.0125D
2 1/2

.

~110!

The characteristic damping length scale for slow mag
tosonic waves at neutrino decoupling is the same as
damping length of Alfve´n waves@Eq. ~107!#. At recombina-
tion however, the slow magnetosonic damping scale depe
on the value of the non-relativistic sound speed relative
the non-relativistic Alfve´n speed. Whencs.cA the damping
scale for slow magnetosonic waves in the free-streaming
gime is the same as the damping scale for Alfve´n waves@Eq.
~108!#. On the other hand, whencs,cA the slow magneto-
sonic damping scale is
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SM.331021cm cosu~V0h2!2 1/4, ~111!

which is independent of the background magnetic fi
strength. The condition cs.cA is equivalent to
B0&5310211(Vbh2/0.0125)1/2G for the strength of the
large scale magnetic field at the present epoch,
B̃0&231025(Vbh2/0.0125)1/2 and B9&1.731022(Vbh2/
0.0125)1/2 for the two different scalings of the magnetic fie
strength present in our equations.

The baryonic mass scales associated with the dam
lengths of slow magnetosonic modes are

M n
S.10213M( B9

3cos3uS Vbh2

0.0125D S gr

10.75D
23S gn

5.25D
3S gl1gq

8.75 D , ~112!

and
Mg
SM.H 106 M( B9

3cos3u~V0h2!2 3/4S Vbh2

0.0125D
2 1/2

for cs.cA

1 M( cos3u~V0h2!2 3/4S Vbh2

0.0125D for cs,cA.

~113!
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V. CONCLUSIONS

In this paper we have studied the effects of dissipation
the propagation of MHD modes in an expanding fluid co
posed of matter and radiation. We have derived the propa
tion velocities and damping rates for fast and slow magne
sonic, and Alfve´n waves in the radiation diffusion an
radiation free-streaming regimes. The derived damping r
have general applications in magnetized relativistic and n
relativistic astrophysical environments.

We have applied the damping rates to the evolution
MHD modes in the early universe to show that cosmic m
netic fields suffer significant damping from before neutri
decoupling to the end of recombination. In particular, f
magnetosonic waves are damped by radiation diffusion
all scales smaller than the radiation diffusion length in an
ogy to the propagation of sound waves in a demagnet
plasma. The characteristic damping scales are: the hor
scale at neutrino decoupling,M n

FM'1024M ( in baryons,
and the Silk mass at recombination,Mg

FM'1013M ( in bary-
ons. In contrast to fast magnetosonic waves, slow magn
sonic and Alfvén waves reach an overdamped regime dur
which the damping is not very efficient; further significa
damping occurs once the radiation is free-streaming on
scale of the perturbation. The maximum damping scales
slow magnetosonic and Alfve´n modes in general depend o
n
-
a-
-

es
n-

f
-

t
n

l-
d

on

o-
g

e
or

the magnetic field strength and the direction of propagat
with respect to the background magnetic field. At neutri
decoupling the damping scale isM n

A,SM'10213M (B9
3cos3u,

the same for both types of modes. At recombination,
B9,1.731022, this scale isMg

A,SM'106M (B9
3cos3u, and if

B9.1.731022, the damping scale for slow magnetoson
modes is different:Mg

SM'1M (cos3u. The background mag
netic field strength scaled to the present epoch is expre
in terms of B95(B0/331029G), the current observationa
limit on the large scale magnetic field.

These results have various implications for cosmologi
magnetic fields and for models of their creation in the ea
universe. The dissipation of magnetic energy into h
through diffusion damping during neutrino decoupling wea
ens the big bang nucleosynthesis constraint on viable m
netogenesis models. The observed element abundance
quire that the energy density in magnetic fields be less t
one-third of the photon energy density during nucleosynt
sis @18,19#. Even if processes prior to neutrino decouplin
generate magnetic fields with initial energy density com
rable to the photon energy density, neutrino damping cau
the magnetic energy to decrease substantially relative to
of radiation by the time of nucleosynthesis. This ensures
most magnetic field configurations generated prior to n
trino decoupling satisfy big bang nucleosynthesis constrai
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Further dissipation through photon diffusion before
combination considerably lessens the magnetic field ene
in primordial magnetic fields available for generating gala
tic magnetic fields. This constrains models which attemp
explain the generation of galactic magnetic fields through
amplification of a primordial seed field. Since a sizable fra
tion of the energy in magnetic field fluctuations is erased
to the Silk scale, it is even more difficult than previous
thought to produce the observed galactic field without
namo amplification. This new constraint is particularly re
evant for proposed models which generate a primordial m
netic field through causal processes during cosmolog
phase transitions, since, in general, in these models mag
field fluctuations have more power on smaller scales.

Finally, although Alfvén and slow magnetosonic mode
also undergo significant damping, their damping scales
pend on the strength and the direction of the backgro
magnetic field and are generally smaller than the damp
scale for fast magnetosonic modes. As long as mode c
pling is not effective, which we expect to be true for no
oscillating modes before recombination, some magnetic
ergy density can be stored in Alfve´n and slow modes on
scales well below the Silk mass. The survival of these mo
may be of significance to the formation of structure on re
tively small scales. In particular, these modes may be resp
sible for fragmentation of early structures as well as seed
early star formation. We will further discuss the cons
ca
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quences of the cosmological evolution of MHD modes in
subsequent paper.

ACKNOWLEDGMENTS

We thank B. Berger, J. Geddes, A. Konigl, R. Kulsru
and R. Rosner for help throughout this project. We are p
ticularly grateful to B. Chandran for alerting us to the ex
tence of overdamped magnetohydrodynamic modes. T
work was performed, in part, under the auspices of the U
Department of Energy by the Lawrence Livermore Nation
Laboratory under contract number W-7405-ENG-48 a
DOE Nuclear Theory grant SF-ENG-48. It was also su
ported by DOE at University of Chicago, DOE and NASA
Fermilab. We also acknowledge the hospitality of the Asp
Center for Physics where some of this work was perform

APPENDIX A: RADIATION DIFFUSION

This appendix contains the diffusion regime dispers
relations and their solutions. The dispersion relation for m
netosonic waves, expanded to first order ink8, h8, and j8
~which corresponds to a first order expansion inl g /l), is
v5@6k8~11R!13k8B̃0
2#1 iv4@~11R!21B̃0

2~11R!#1v3F7h8~11R!S k

aD 2

13j8~11R!S k

aD 2

1k8~R222!S k

aD 2

13h8B̃0
2S k

aD 2

1k8B̃0
2~R22!S k

aD 2

1h8B̃0
2cos2uS k

aD 2

13j8B̃0
2cos2uS k

aD 2

22k8B̃0
2cos2uS k

aD 2

12
ȧ

a
R~11R!1

ȧ

a
B̃0

2R) G1 iv2F2
1

3
~11R!S k

aD 2

2B̃0
2~11R!S k

aD 2

2
1

3
B̃0

2cos2uS k

aD 2G
1vF2h8S k

aD 4

23h8B̃0
2S k

aD 4

2k8B̃0
2~11R!S k

aD 4

2h8B̃0
2cos2uS k

aD 4

23j8B̃0
2cos2uS k

aD 4

12k8B̃0
2cos2uS k

aD 4

2
1

3

ȧ

a
RS k

aD 2

2
ȧ

a
B̃0

2RS k

aD 2G1 i
B̃0

2cos2u

3 S k

aD 4

1 iRk8
ȧ

a
B̃0

2S k

aD 4

13ik8h8B̃0
2S k

aD 6

50. ~A1!
Since the scales of interest are smaller than the horizon s

we only keepȧ/a terms which are first order inl g /dH and
l/dH . In addition, note that there are two terms in the l
row which seem to be second order in the expansion v
ables, although for some slow magnetosonic waves

which B0cosu is so small that B̃0
2cos2u ! B0

2h8k8 or

B̃0
2cos2u ! B0

2k8ȧ/a, these terms play a crucial role in dete
mining the damping rates for overdamped solutions.

We recover the dispersion relation for sound waves fr
the one for magnetosonic waves, ifB050, or if the magne-
le,

t
i-
r

tosonic wave propagates along the field lines,kiB0:

3v3k81 iv2~11R!1vF4S k

aD 2

h813S k

aD 2

j82~12R!~

3
k

a
2k81

ȧ

a
R2

i

3S k

aD 2

50. ~A2!

The dispersion relation for Alfve´n waves is:
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3v3k81 iv2~11R1B̃0
2!1vF ȧ

a
R13h8S k

aD 2G
2 i B̃0

2cos2uS k

aD 2

50. ~A3!

The solutions to the dispersion relations are presented
ing the following convention: the oscillatory part of the fr
quency is denoted byv05Rev, and the damping rate b
v15Imv. For Alfvén waves the solutions are

v056AvA
2cos2uS k

aD 2

2
1

4S ȧ

aD 2 R2

~111R1B̃0
2!2,

v15
1

2~11R!
F3h8S k

a
D 2

13k8vA
2cos2uS k

a
D 2

1
ȧ

a
RG . ~A4!

For magnetosonic waves, a general solution for a n
dissipative fluid is

v056
1

A6~11R1B̃0
2!

S k

aD F11R13B̃0
2~11R!1B̃0

2cos2u

~11R1B̃0
2!

6S @11R13B̃0
2~11R!1B̃0

2cos2u#2

~11R1B̃0
2!2

212B̃0
2cos2u

~11R!

~11R1B̃0
2!
D 1/2G 1/2

. ~A5!

This solution contains two magnetosonic solutions: fast m
netosonic, whose frequency is obtained by taking the p
sign, and slow magnetosonic, using the minus sign. For w
magnetic fields Eq.~A5! may be expanded to second order
B̃0, and the solutions become

v0
FM56vsS k

aD S 11
3R12

2~11R!
B̃0

2sin2u D , ~A6!

and

v0
SM56vAcosuS k

aD S 12
3R12

2~11R!
B̃0

2sin2u D . ~A7!

The imaginary~dissipative! parts of the magnetosonic fre
quencies, again to first order inȧ/a, k8, and h8, and to
leading order inB0 are
s-

-

-
s

ak

v1
FM5S k

aD 2S 2

11R
h81

3

2~11R!
j81

R2

2~11R!2
k8D

1
1

2

ȧ

a S R

11RD ~A8!

and

v1
SM5

3

2~11R! S k

aD 2

h81
1

2

ȧ

a

R

11R
1S k

aD 2

3S 3

2
k8B̃0

2sin2u1
3

2
k8B̃0

2cos2u
R

~11R2!2D .

~A9!

For sound waves Eq.~A8! reduces to

v05
1

A3~11R!
S k

aD , ~A10!

and

v15S k

aD 2S R2

2~11R!2
k81

2

11R
h81

3

2~11R!
j8D

1
1

2

ȧ

a

R

~11R!
, ~A11!

which reproduces the solution in Ref.@4# if the expansion is
neglected (ȧ/a50 anda51).

APPENDIX B: NEUTRINO FREE-STREAMING

During neutrino free-streaming, the dispersion relatio
are:

v2~11B̃0
2!2

3

4
iav2B̃0

2cos2uS k

aD 2

50 ~B1!

for Alfvén waves, and
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v4~11B̃0
2!2 iv3

3

4
@~2a1g!1~a1g!B̃0

2#2v2F1

3S k

aD 2

1B̃0
2S k

aD 2

1
B̃0

2cos2u

3 S k

aD 2

1
9

16
~a212ag1agB̃0

2!G
1 ivF1

4
aS k

aD 2

1
3

4
~a1g!B̃0

2S k

aD 2

1S 3

4D 2

a2gG
1

B̃0
2cos2u

3 S k

aD 2

1
9

16
agB̃0

2S k

aD 2

50 ~B2!

for magnetosonic waves.
The solution to the dispersion relation for oscillatory A

fvén waves is:

vosc
A 56vAcosuS k

aD1
3

8
i a . ~B3!

The oscillatory magnetosonic solutions are expanded
first order in the dissipation coefficientsa and g, corre-
sponding to the first order expansion inl/ l n . This yields for
fast magnetosonic waves:
to

vosc
FM56vs~11B̃0

2sin2u!S k

aD1
3

8
i ~a1g!, ~B4!

and for slow magnetosonic waves:

vosc
SM56vAcosu~12B̃0

2sin2u!S k

aD1
3

8
i ~a13B̃0

2g!.

~B5!

The decay rates for overdamped slow manetosonic and
fvén waves are given in the text in Eq.~74! and Eq.~75!.

APPENDIX C: PHOTON FREE-STREAMING

During photon free-streaming, the dispersion relation
Alfvén waves is:

v22 ivS a1
ȧ

a
D 2

B̃0
2cos2u

R S k

aD 2

50, ~C1!

and the dispersion relation for magnetosonic waves is:
e

v52 iv4S 2a1g13
ȧ

a
D 2v3Fcs

2S k

aD 2

1
B̃0

2

R S k

aD 2

1a212ag12
ȧ

a
~2a1g!G1 iv2FaS cs

21
B̃0

2

R
D S k

aD 2

1gS 3

5
cs

21
B̃0

2

R
D S k

aD 2

1
ȧ

a
S cs

212
B̃0

2

R
D S k

aD 2

1a2S g1
ȧ

a
D 12ag

ȧ

a
1vS k

aD 2Fcs
2B̃0

2cos2u

R S k

aD 2

1agS 3

5
cs

21
B̃0

2

R
D 1g

ȧ

a
S 3

5
cs

21
B̃0

2

R
D 1a

ȧ

a

B̃0
2

R
G

2
3

5
igcs

2
B̃0

2cos2u

R S k

aD 4

50. ~C2!

The magnetosonic dispersion relation has been derived to first order inȧ/a, but without any approximation in the dissipativ
coefficientsa andg.

The oscillatory solution to the dispersion relation for Alfve´n waves is:

vosc
A 56cAcosuS k

aD1
i

2
S a1

ȧ

a
D . ~C3!

For fast magnetosonic waves in the adiabatic regime (Rev@g,a) the oscillatory solution is:

vosc
FM56csS 11

B̃0
2

2cs
2R

sin2u D S k

aD1 i S a

2
1

g

5
1

ȧ

a
D for cs@cA
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vosc
FM56cAS 11

cs
2R

2B̃0
2
sin2u D S k

aD1 i S a

2
1

g

5

cs
2Rsin2u

B̃0
2

1
1

2

ȧ

aD for cs!cA, ~C4!

and in the isothermal regime (g@Rev@a) it is:

vosc
FM56A3

5
csS 11

5

6

B̃0
2

cs
2R

sin2u D S k

aD1 i Fa

2
1

cs
2

5gS k

aD 2

1
1

2

ȧ

a
G for cs@cA

vosc
FM56cAS 11

3

10

cs
2R

B̃0
2

sin2u D S k

aD1 i Fa

2
1

cs
2

2g
sin2uS k

aD 2

1
ȧ

a
G for cs!cA . ~C5!

The condition for adiabaticity is dependent on the strength of the magnetic field whencA@cs .
In the limit B050, the above solutions give the solutions for sound waves:

v56csS k

aD1 i S a

2
1

g

5
1

ȧ

a
D ~C6!

in the adiabatic regime (csk/a@g,a) and

v56A3

5
csS k

aD1 i Xa
2

1
cs

2

5gS k

aD 2

1
1

2

ȧ

a
C ~C7!

in the isothermal regime (g @csk/a@a).
The oscillation frequency and the damping rate for slow magnetosonic waves in the adiabatic regime are:

vosc
SM56cAcosuS 12

B̃0
2

2Rcs
2
sin2u D S k

aD1 i S a

2
1

g

5

B̃0
2sin2u

cs
2R

1
1

2

ȧ

aD for cs@cA

vosc
SM56cscosuS 12

cs
2R

2B̃0
2
sin2u D S k

aD1 i S a

2
1

g

5
1

ȧ

a
D for cs!cA , ~C8!

and in the isothermal regime:

vosc
SM56cAcosuS 12

5

6

B̃0
2

Rcs
2
sin2u D S k

aD1 i S a

2
1

1

2

ȧ

a
D for cs@cA

vosc
SM56A3

5
cscosuS 12

3

10

cs
2R

B̃0
2

sin2u D S k

aD1 i S a

2
1

1

2

ȧ

a
D for cs!cA . ~C9!
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Note that all the solutions are derived for a background m
netic field whose energy density is much smaller than
energy density in photons (B̃0!1).

In contrast to relativistic MHD there do exist non
relativistic, fast magnetosonic waves in the overdamp
limit. The decay rates for the amplitudes of these ov
damped fast magnetosonic waves are:

vod
FM5 i

3cs
2

5a S k

aD 2

for cs@cA

vod
FM5 i

cA
2

a S k

aD 2

for cs!cA . ~C10!
s
p
i

th
b
e

a
ph

e
io

m

ca
g-
e

d
-

The decay rates of overdamped slow magnetosonic and
fvén waves are given in the text in Eqs.~88!–~90!.

APPENDIX D: DAMPING SCALES

In this appendix we give the evolution of the dampin
scale as a function of temperature for Alfve´n and slow mag-
netosonic modes in the early universe. The temperature
pendence of the damping scale of fast magnetosonic wav
given in Sec. IV A. Before neutrino decoupling, the dampi
scale for Alfvén and slow magnetosonic modes evolves
follows:
lA,SM.

¦

231020cm S T

MeVD 25/2S gr

10.75D
23/4S gn

5.25D
1/2S gl1gq

8.75 D 21/2

for T.T1

331015cm ~B9cosu!5/3S gr

10.75D
21/3S gn

5.25D
21/3S gl1gq

8.75 D 1/3

for T1.T.T2

1018cm B9cosuS T

MeVD 25/2S gr

10.75D
1/4S gn

5.25D
21/2S gl1gq

8.75 D 21/2

for T2.T.T3

1017cm B9cosuS gr

10.75D
21S gn

5.25D
1/3S gl1gq

8.75 D 1/3

for T3.T.

~D1!
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The damping scale atT.T1 is approximately the same a
the damping scale for fast magnetosonic modes, and re
sents the diffusion length of the decoupling particles. It
illustrated for photon decoupling by the dashed line on
LHS of Fig. 1. The largest wavelength mode still damped
one e-fold during oscillatory diffusion becomes overdamp
at temperatureT1:

S T1

MeVD580 ~B9cosu!22/3S gr

10.75D
21/6S gn

5.25D
1/3

3S gl1gq

8.75 D 21/3

, ~D2!

i.e. the temperature at which the oscillatory damping sc
~diffusion length! and the overdamping length on the gra
intersect.

Since the damping is inefficient during the overdamp
diffusion phase, the largest length scale damped in diffus
represents the maximum damping scale, until further da
ing during free-streaming. TemperatureT2 represents the
point when the overdamped free-streaming damping s
~equivalent to the dashed line on the RHS of Fig. 1! exceeds
the maximum scale damped so far,
re-
s
e
y
d

le

d
n
p-

le

S T2

MeVD510 ~B9cosu!24/15S gr

10.75D
7/30S gn

5.25D
21/15

3S gl1gq

8.75 D 21/3

. ~D3!

If this happens before decoupling, the damping scale gro
further, and is now determined by the free-streaming dam
ing scale. Finally, the largest length scale damped in fr
streaming is the one which still damps by one e-fold bef
becoming oscillatory again, determined by the intersection
the dashed and the solid line on the RHS of Fig. 1. T
happens at:

S T3

MeVD55 S gr

10.75D
1/2S gn

5.25D
21/3S gl1gq

8.75 D 21/3

. ~D4!

The final damping scale is determined by this transition; a
is given in Eq.~D1! for T,T3, it includes the scales dampe
during the transition itself. Note that for large magnetic fie
strength, with energy density approaching equipartition w
radiation energy density (B9'103), and cosu'1, the maxi-
mum damping length scale is determined by damping dur
the oscillatory diffusion phase rather than during the ov
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damped free-streaming phase. In this case the damping
of Alfvén and slow magnetosonic modes becomes simila
the damping scale of fast magnetosonic modes.
th
lla
ale
to

Around photon decoupling, the damping scale for Alfv´n
modes, and the damping scale for slow magnetosonic mo
whencs.cA , have the same form:
d

lA,SM.

¦

1026cm S Vbh2

0.0125D
21/2S T

0.25 eVD
23/2

for T.T1

1021cm ~B9cosu!3S Vbh2

0.0125D for T2,T,T1

431023cm B9cosuS T

0.25eVD
23/2S Vbh2

0.0125D
21/2

for TEQ,T,T2

231023cm B9cosuS T

0.25 eVD
25/4

~V0h2!21/4S Vbh2

0.0125D
21/2

for T,TEQ.

~D5!

On the other hand, ifcA.cs , the damping scale for slow magnetosonic modes evolves like:

lSM.

¦

1026cmS Vbh2

0.0125D
21/2S T

0.25 eVD
23/2

for T.T1

1021cm~B9cosu!3S Vbh2

0.0125D for T28,T,T1

431021cm cosuS T

0.25eVD
23/2

for TEQ,T,T28

331021cm cosuS T

0.25 eVD
25/4

~V0h2!21/4 for T,TEQ.

~D6!

The transition temperatures are determined by matter-radiation equality atTEQ55.5 eV(V0h2), and by the last scale dampe
by one e-fold in oscillatory diffusion, which becomes overdamped atT1,

S T1

0.25 eVD523103~B9cosu!22S Vbh2

0.0125D
21

, ~D7!

and presents the largest damping scale until damping in free-streaming damps even larger scales, atT,T2 with

S T2

0.25 eVD550 ~B9cosu!24/3S Vbh2

0.0125D
21

, ~D8!

or T,T28 with

S T28

0.25 eVD 52B9
22~cosu!24/3S Vbh2

0.0125D
22/3

. ~D9!
-

the
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lt-

or
However, if T2,TEQ the damping scale of SM 1021cm
(B9cosu)3 (Vbh2/0.0125) is valid until (T/0.25 eV)
52B9

212/5 cosu28/5 (Vbh2/0.0125)24/5 (V0h2/0.0125)21/5,
after which it changes to SM5331021cm cosu
3(T/0.25 eV)25/4 (V0h2)21/4.

The above equations are derived for the case in which
universe is radiation dominated during damping in osci
e
-

tory diffusion (T1.TEQ). This is always true for the back
ground magnetic fields withB9<1. Although for larger
background magnetic fields the damping processes are
same, the temperature dependence of the diffusion dam
scale and its time of overdamping might be different, resu
ing in a different final damping scale. For example, f
B9cosu'103 ~or vAcosu'1), the oscillatory diffusion damp-
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ing scale dominates up to recombination, and its evolution
the matter dominated era determines the damping sca
recombination.

Slow magnetosonic modes which propagate almost
pendicular to the background magnetic field have differ
.
.
.
.
.

in
at

r-
t

damping scales due to the additional term in Eq.~61!. How-
ever, this scale is substantially different from those given
the text only for modes with cosu ,0.03B9

8/3, which makes
the influence of this additional damping term on the over
damping of slow magnetosonic modes negligible.
oc.
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