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Magnetohydrodynamics in the extreme relativistic limit
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We present two new formulations of magnetohydrodynamics~MHD!, in the limit where the inertia of the
charge carriers can be neglected. The first employs Lagrangian coordinates and generalizes Newcomb’s for-
malism to allow for a variable time slicing. It contains an extremely simple prescription for generalizing the
action of a relativistic Nambu-Goto string to four dimensions. It is also related by a duality transformation to
the action presented by Achterberg. This transformation causes the perturbed and unperturbed Lagrangian
coordinates to exchange roles as dynamical fields and background spacetime. Our second formulation intro-
duces massless electrically charged fermions as the current carrying modes, and considers long wavelength
perturbations withv2,k'

2 !eB. Because the Fermi zero mode can be bosonized separately on each magnetic
flux line, the current density may be written in terms of a four-dimensional axion field that acts as a Lagrange
multiplier to enforce the MHD condition. The fundamental modes of the magnetofluid in this limit comprise
two oppositely directed Alfve´n modes and the fast mode, all of which propagate at the speed of light. We
calculate the nonlinear interaction between two Alfve´n modes, and show that in both formulations it satisfies
the same simple expression. This provides the first exact treatment of the effects of compressibility on non-
linear interactions between MHD waves. We then summarize the interactions between Alfve´n modes, between
Alfvén modes and fast modes, and between fast modes in terms of a simplified Lagrangian. The three-mode
interaction between fast modes is a magnetohydrodynamic analogue of the QED process of photon splitting,
but occurs in background magnetic fields of arbitrary strength. The scaling behavior of an Alfve´n wave cascade
in a box is derived, paying close attention to boundary conditions. This result also applies to nonrelativistic
MHD media and differs from those obtained by previous authors in the nonrelativistic regime. Finally, we
briefly outline the physical processes which determine the inner scale of such a cascade in neutron star
magnetospheres, black hole accretion disks, andg-ray burst sources. At low charge density, the waves at the
inner scale may become charge starved; whereas Compton drag is the dominant dissipative mechanism at large
optical depth to electron scattering. A turbulent cascade leads to effective dissipation even in optically thick
media, and in particular can significantly raise the entropy-baryon ratio in the relativistic outflows that power
cosmologicalg-ray bursts.@S0556-2821~98!03806-5#

PACS number~s!: 95.30.Qd, 11.10.Lm, 11.27.1d, 52.35.Bj
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I. INTRODUCTION

Relativistic formulations of magnetohydrodynami
~MHD! generally accommodate the effects of both ma
and field inertia. We focus here on the extreme relativis
limit, in which matter inertia can be neglected. This is
excellent approximation in the magnetosphere of a neu
star, for example, even when the density of charge carrie
more than sufficient to enforce the MHD condition

E•B50. ~1.1!

The equation of motion in the extreme relativistic limit stat
that the net Lorentz force on the charge carriers vanishe1

j mFmn5]rFrmFmn50; ~1.2!

1Throughout this paper we use Heaviside-Lorentz units with\
5c51.
570556-2821/98/57~6!/3219~16!/$15.00
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i.e., the conducting medium is force-free. The normal mo
of the magnetofluid then simplify dramatically.2 In the case
of a uniform background magnetic fieldB05B0ẑ, they are
the two Alfvén modesA1 andA2 ~with dispersion relation
v56kz and polarization transverse to the background m
netic field! and the fast modeF ~with dispersion relation
v25k2 and single polarization statedE•B050!. In each
case, the magnitude of the group velocity equals the spee
light.

In marked contrast with the behavior of vacuum elect
magnetic waves, these three modes undergo nonlinear i
actions even at the classical level. The lowest order per
bative interactions turn out to be

A11A2↔A11A2, ~1.3!

A11A2↔F,

2For a derivation of these normal modes in the nonrelativis
case, see, for example@1#.
3219 © 1998 The American Physical Society
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3220 57CHRISTOPHER THOMPSON AND OMER BLAES
and

F1F↔F. ~1.4!

These interactions are nonvanishing for the fully fou
dimensional MHD modes, namely, those with nonvanish
momentumk' perpendicular to the background magne
field: the current-carryingA modes and theF mode. Analo-
gous interactions between Alfve´n waves in the nonrelativis
tic regime have been studied by a number of authors@2–6#.
This work focused on incompressible fluids, and has gen
ated a continuing debate on the role of nonperturbative
fects.

In this paper we develop two equivalent variational fo
mulations of extreme relativistic MHD, calculate the form
the interactions~1.3! and ~1.4!, and derive the scaling rela
tions for relativistic Alfvén turbulence. Since there is no suc
thing as an incompressible relativistic fluid, our work pr
vides the first exact treatment of the effects of compress
ity on nonlinear MHD mode interactions.

The limitations of the fluid description of relativisti
MHD deserve to be emphasized at the beginning. The e
tence of current-carrying modes with group velocity equa
the speed of light requires the existence ofmasslesselectric
charge carriers.3 We show that, in turn, this allows a great
simplified description of the dynamics in terms of the ele
tromagnetic field coupled to a pseudoscalar~axionlike! field.
The neglect of the inertia of the charge carriers implie
restriction to long wavelengthmodes, with perpendicula
momentumk' too small to excite individual fermions from
the lowest energy state~with longitudinal momentumupu
5E! into higher Landau states.

The advection of magnetic field lines by a perfectly co
ducting fluid provides an equivalent description of the d
namics. To achieve a Lagrangian description of this phys
model, one must choose between treating the perturbed
sitions xm of the fluid particles as field variables in a spa
defined by the initial coordinatesx0

m , or vice versa. The firs
route leads to a simple covariant action

S51
1

4 E d4xF̃mnF̃mn , ~1.5!

in which the dualF̃mn of the field strength tensor is ex
pressed as a function of thexm. This is a direct four-
dimensional generalization of the standard Lagrangian
mulation of nonrelativistic MHD @7#. An equivalent
Lagrangian description of the perturbed magnetofluid
which theunperturbedcoordinates appear as dynamical va
ables was worked out several years ago by Achterberg@8#.
This second description involves the electric variableFmn,
and is therefore related by a duality transformation. The
effect of this transformation is to cause the initial and fin
coordinatesx0

m andxm to exchange roles as field variable a
background spacetime. The perturbed Lagrangian coo
nates are the dynamical fields in the ‘‘magnetic’’ formalis

3In practice, the dynamics is very nearly equivalent if the cha
carriers are massive, but their space density is much larger tha
minimum valueJ/e needed to support a current densityJ.
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described in this paper, and because of this the action~1.5!
turns out to be a direct four-dimensional analogue of
action of a relativistic string.

In the nonrelativistic, incompressible case, it has be
shown that collidingA modes are subject to nonlocal kine
matic interactions in addition to the more familiar resona
dynamical interactions@5,6#. In the relativistic case, we show
that the additional freedom to choose a time slicing leads
to a gauge in which these kinematic interactions drop out
that the coordinate transformationxm(x0

n) is incompressible
in a four-dimensional sense.

The structure of this paper is as follows. The Lagrang
formulation of relativistic MHD is presented in Sec. II, an
the axionic formulation in Sec. III. The nonlinear collisio
between two Alfve´n wave packets is calculated in Sec. IV
and the equivalence of the two formalisms is demonstra
In Sec. V we consider wave interactions including the re
tivistic fast mode, and summarize the lowest order inter
tions in a simplified Lagrangian. We then derive the scal
relations for relativistic Alfven turbulence in Sec. VI, em
phasizing how the cascade properties depend sensitivel
boundary conditions. This work also has applications to n
relativistic, incompressible MHD turbulence. Finally, we di
cuss astrophysical applications of our results in Sec. V
including wave damping in neutron star magnetospheres
cosmologicalg-ray burst sources.

II. LAGRANGIAN PERTURBATIONS
OF A RELATIVISTIC MHD FLUID

As is well known in the nonrelativistic case@9,7# one
obtains a simple solution to the constraint equations

¹•B50; ¹3E1]B/]t50 ~2.1!

by labeling fluid particles with Lagrangian coordinatesx0 ,

x5x01j~x0 ,t !. ~2.2!

In other words,x0 is the initial position of a fluid particle and
j its displacement. The solution is

Bi5
1

J

]xi

]x0 j
B0 j , ~2.3!

or, equivalently,

B5J21@B01~B0•“0!j#. ~2.4!

Here,J is the Jacobian of the transformation fromx0 to x:
i.e.,

J5det~d i j 1]j i /]x0 j !. ~2.5!

The vanishing ofE in the fluid rest frame implies

E52
dx

dt
3B. ~2.6!

A simple variational principle for nonrelativistic MHD
based on these Lagrangian variables, was written down l
ago by Newcomb@7#. Starting from the action

e
the
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S5E dtd3xF1

2
rS dx

dt D
2

2
1

2
B2G , ~2.7!

and substitutingd3x5Jd3x0 , r5r0 /J, and Eq.~2.3!, one
obtains

S5E dtd3x0Fr0

2 S dx

dt D
2

2
1

2J S B0 j

]xi

]x0 j
D 2G ~2.8!

when the background fluid is static. Varying Eq.~2.8! with
respect toxi yields the usual MHD equation. We focus
this paper on wave propagation and interactions in a st
medium with a uniform magnetic field

B05B0ẑ. ~2.9!

The JacobianJ plays a crucial role in this formalism
Without it, the action depends only on derivatives with r
spect to two coordinatest andz0 . All the terms in the MHD
equation involving derivatives with respect to the transve
coordinates arise from the variation ofJ.

This action has a simple covariant generalization wh
the inertia of the conducting fluid can be neglected,

S852E d4x
1

4
FmnFmn5E d4x

1

2
~E22B2!.

~2.10!

To make sense of this expression, we must introduce a b
ground time coordinatet ~e.g., the time coordinate far from
localized region of perturbed magnetofluid!, and allow for
variable time slicings of the fluid. Then the dual of the fie
strength tensor takes the simple form

F̃mn[
1

2
«mnrsFrs5

F̃0
ab

J4

]xm

]x0
a

]xn

]x0
b , ~2.11!

whereJ45det(]xm/]x0n) is the Jacobian of the correspondin
coordinate transformation. This is the four-dimensional g
eralization of Eq.~2.3! and~2.6!. In parallel with the nonrel-
ativistic case, the equation of motion~1.2! follows by vary-
ing S8 with respect toxm, as is demonstrated in Appendix A

In the case of a uniform background magnetic field~2.9!

F̃mn5
B0

J4
S ]xm

]t

]xn

]z0
2

]xn

]t

]xm

]z0
D , ~2.12!

and the magnetic and electric fields can be written separa
as

B5
B0

J4
S ]t

]t

]x

]z0
2

]t

]z0

]x

]t D ; ~2.13!

E52
B0

J4
S ]x

]t
3

]x

]z0
D . ~2.14!

Making these substitutions in Eq.~2.10! yields

S85
B0

2

2 E d4x0

1

J4
F S ]x

]t
3

]x

]z0
D 2

2S ]t

]t

]x

]z0
2

]t

]z0

]x

]t D 2G .
~2.15!
tic
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The nonlinear interactions between fully four-dimension
MHD waves are encoded in the factor of ofJ4

21. Without it,
the dynamics is essentially two-dimensional and equiva
to that of noninteracting waves on relativistic Nambu-Go
strings. One immediate benefit of introducing the new tim
coordinatet is that by an appropriate choice of time slicing
one can setJ451 everywhere in the equations of motio
after introducing appropriate longitudinal components of
displacement functionjm. We demonstrate this for the co
lision between two Alfve´n wave packets in Sec. III, and fo
the collision between twoF modes in Sec. IV.

An equivalent Lagrangian description of the perturb
magnetofluid involves the dual variableFmn @8#,

Fmn5F0
ab ]x0a

]xm

]x0b

]xn
. ~2.16!

This expression arises from the fact that the Lie derivative
the field strength two-formF5 1

2 Fmndxm∧dxn vanishes
along the fluid four-velocity, if the MHD condition~1.1! is
satisfied. The corresponding electric current density is

J0
a52F0

ab x0b , ~2.17!

in the unperturbed coordinate system. This vanishes un
k2Þ0, which is possible only forA modes that are sheare
perpendicular toB0 , namely, those withk'Þ0. The trans-
formations~2.11! and ~2.16! both preserve the MHD condi
tion. In addition, the Lorentz scalarE22B2 is everywhere
negative if the unperturbed field is magnetic; as follows fro
the inequality (]xm/]t•]xm/]z0)22(]xm/]t)2(]xm/]z0)2

,0.
The important thing to note here is that, in the actio

built out of Eqs.~2.11! and~2.16!, the initial and final coor-
dinatesx0

m and xm play opposite roles as field variable an
background spacetime~Fig. 1!. The perturbed Lagrangian
coordinates are the dynamical fields in the ‘‘magnetic’’ fo
mula ~2.11!, and so the corresponding action~2.15! provides
a more direct four-dimensional analog of the action of a re
tivistic string.

The connection between~2.15! and the classical string
action is obvious when the latter is written in the followin
form @10#:

FIG. 1. In the action employing magnetic Lagrangian variab
~2.11!, the perturbed coordinatesxm of the magnetofluid play the
role of dynamical fields in a background spacetime labeled by
unperturbed coordinatesx0

m . The roles ofxm andx0
m are reversed by

a duality transformation into the electric Lagrangian variab
~2.16!.
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3222 57CHRISTOPHER THOMPSON AND OMER BLAES
SSchild5TE dtdsF S ]x

]t
3

]x

]s D 2

2S ]t

]t

]x

]s
2

]t

]s

]x

]t D 2G
~2.18!

~in flat space!. Here,T is the string’s tension ands is the
coordinate along the string. The dynamics of a thin magn
flux tube is essentially two dimensional, with the excitatio
of the tube being limited to transverse modes that are equ
lent ~in the extreme relativistic limit! to Nambu-Goto waves
The stress energy tensor averaged over the transverse
dinates of the tube~or string! satisfieŝ Ttt&52^Tzz& in both
cases.4 By contrast, the fully four-dimensional MHD mode
~the F mode and the current-carryingA modes! undergo
nonlinear interactions that Nambu-Goto waves do not. In
sense, four-dimensional relativistic MHD provides a high
nontrivial generalization of Nambu-Goto dynamics. The
wave interactions are the main subject of this paper.

The dynamics of a perfect fluid composed of strings h
been studied previously by Stachel@12#, although the precise
correspondence between the two actions was not wri
down by him. The main result of the preceding discussion
that this correspondence is remarkably simple:

J2↔J4 , E d2x0↔E d4x0 . ~2.19!

The dynamics of a perfect fluid composed ofk-dimensional
objects inD-dimensional spacetime was investigated in@13#,
by employing energy flux and ‘‘particle’’ flux as the bas
variables. In the specific casek51, D54, it was shown that
the dynamics is given by equations that are formally equi
lent to the force free equation~1.2! and the constraint equa
tions ~2.1!. However, this approach is less useful for stud
ing interactions between waves, and will not be adop
here. Finally, the dynamics of a relativistic superfluid h
been studied recently in@14#. The basic variable in this for
malism is a Kalb-Ramond field that couples to the vorticit5

One new complication that arises in the relativistic regi
is that the displacement current and the electrostatic fo
both play important dynamical roles. As a result, the eq
tion of motion is fourth order inj, as compared with secon
order in the nonrelativistic case. This is seen most easily
writing Eq. ~1.2! in component form:

~“•E!E1~“3B!3B2] tE3B50, ~2.20!

E•~“3B2] tE!50. ~2.21!

The first of these equations has only two independent c
ponents, given the MHD conditionE•B50, and the second
is a straightforward consequence of the first. From this,
expects that the propagating MHD modes have only t

4Indeed, a number of years ago, when considering the dyna
of thin magnetic flux tubes, Nielsen and Olesen@11# wrote down a
related expression forF̃mn , but without the factor of (J4)21.

5This field is physically distinct from the pseudoscalar field intr
duced below, which is excited only in the presence of an elec
magnetic current—that is, only if the magnetofluid supports wa
that are sheared perpendicular to the background magnetic fie
ic
s
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or-
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physical degrees of freedom~the components ofE and B
perpendicular toB0 for the A modes, and the componen
perpendicular tok for the F mode!.

It is remarkable that, in direct analogy with nonrelativist
MHD, Eq. ~2.20! admitsexactnonlinear solutions. For theA
mode,

B5B01b~z7t,x,y! ~2.22!

and

E56b3 ẑ ~2.23!

~with b• ẑ5“•b50!. This describes a wave propagating in
single direction along the background magnetic field. On
other hand, two waves traveling in opposite directions can
be superposed and still remain an exact nonlinear solutioA
modes withk parallel toB0 may be viewed as vacuum elec
tromagnetic waves. However, the shear between neighbo
field lines in a wave withk3B0Þ0, or in a collection of
such waves, is supported by a current density alongB0 ,

j5S ]by

]x
2

]bx

]y D ẑ. ~2.24!

The fast magnetosonic modes are essentially vacu
electromagnetic waves, with zero charge and current de
ties. Hence they also constitute exact nonlinear solutions.
plane waves these are given by

B5B01b~ k̂•x2t ! ~2.25!

and

E52 k̂3b, ~2.26!

where k̂ is a constant unit vector,“•b50, andb•( k̂3B0)
50. In contrast with true vacuum electromagnetic waves,
plasma response~i.e., E•B50! prevents superposed fa
modes with arbitraryk̂ from being an exact solution.

Given the existence of the exact nonlinear solutions,
expect thatA modes propagating in the same direction alo
B0 will be noninteracting.A modes propagating in differen
directions will interact with each other and also withF
modes.F modes will undergo nonlinear interactions, unle
they are traveling in the same direction.

III. AXIONIC FORMULATION OF RELATIVISTIC MHD

Until now we have assumed the presence of electrom
netic fields and charged matter which enforces the MH
conditionE•B50, but made no further attempt to prescrib
the charged fields. These fields must have modes wh
propagate at the speed of light in both directions along
background magnetic field. Massless, electrically char
fermions of chargee in a background magnetic fieldB0ẑ
have one zero mode with dispersion relationv25kz

2 and spin
sz5eB0 /ueB0u ~e.g., @15#!. Thus, we require at least tw
species of fermions with opposite helicitiesx5szkz /ukzu,
since particles and antiparticles have identical values
x/e5sgn(kz)/ueu.

Because these fermi zero modes are effectively two

cs

-
s
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57 3223MAGNETOHYDRODYNAMICS IN THE EXTREME . . .
mensional, we can apply the technique of bosonizat
@16,17#. In two dimensions, one can write the electric curre
j a (a5t,z) as6

j a5~2pe!«ab]bu. ~3.1!

When dB50, this procedure can be applied directly to t
fermi fields on each quantum of magnetic flux; the fou
dimensional current densityj mis obtained by multiplyingj a

by the transverse density of statesueB0u/2p, and settingj x

5 j y50. More generally, when the magnetic field expe
ences a long wavelength perturbationk2!eB, one can find a
local Lorentz frame in whichE50 and repeat this procedure
The net result is thatj m can be written in a simple covarian
form:

j m52
e2

2
«mnrs]nuFrs , ~3.2!

Since the electromagnetic field was force-free in the origi
~local! Lorentz frame, it is not surprising to find that th
expression exactly satisfies Eq.~1.2!,

j mFmn5e2]nu~E•B!50, ~3.3!

as long as the MHD condition is satisfied.
Expression~3.2! is formally equivalent to the current den

sity induced by a spatially variable axion field in a bac
ground electromagnetic field, and indeed follows from t
action

S95E d4xF2
1

4
FmnFmn1

e2

4
u«mnrsFmnFrsG ~3.4!

as long as

E
2`

`

dz]zu5E
2`

`

dt] tu50. ~3.5!

These conditions are equivalent to

E
2`

`

dz]z~dBx,y!5E
2`

`

dt] t~dBx,y!50, ~3.6!

which corresponds to a vanishing net transverse displ
ment of the background magnetic field lines across an Alf´n
wave packet. An additional surface term is present otherw
representing a net charge on the Alfve´n wave packet coupled
to a background gauge field. The effect of this term on wa
interactions is examined in Secs. IV and V.

The u parameter in the actionS9 has a simple interpreta
tion as a Lagrange multiplier which enforces the MHD co
dition:

]L

]u
50 ⇒ «mnrsFmnFrs528E•B50. ~3.7!

6We choose a normalization different from the conventional o
by a factor 2p3/2.
n
t

-

l

e

e-

e,

e

-

A kinetic term foru is absent because we are neglecting
energy

eB

2p EpF dpz

2p
upzu5

eB

2p

pF
2

4p
~3.8!

of the fluctuating fermi fields compared with the energy

1

2
@~dB!21~dE!2#5~dB!2 ~3.9!

of the fluctuating gauge field. Thez componentpF of the
Fermi momentum of the excited Dirac sea is related to
perpendicular wave numberk' of the Alfvén excitation
through

u j u5uk'dBu5
e2B

2p

upFu
2p

. ~3.10!

Hence the neglect of the kinetic energy of the Fermi fields
justified when the wave is weakly sheared,

k'
2 !

e2

2p2 eB, ~3.11!

that is, when the perpendicular momentum of the wave is
small to excite individual fermions into higher Landau le
els.

There is a physical distinction between this model for
MHD fluid, and the picture advanced in Sec. II, that deser
to be emphasized. Consider, for example, anA mode with
vanishing space charge (kiB0) exerts no net force on the
Fermi zero modes propagating in the same direction as
wave, and does not perturb them. Modes of energyuEu
&(eB0)1/2 propagating against the wave receive transve
momentump' /uEu522ie(vuEu/B0)dB/B0 in the direction
of dE. Even for a large amplitude wave, this vanishes
;e2v/(eB)1/2 in the low frequency limit that we are explor
ing. In this case, the MHD wave can be thought of as
vacuum electromagnetic wave superposed on a static b
ground magnetic field and a static Dirac sea.

IV. EQUIVALENCE OF THE TWO FORMULATIONS:
COLLISION OF TWO ALFVE ´ N WAVE PACKETS

We have presented two distinct formulations of magne
hydrodynamics in the extreme relativistic limit. The bas
variable in the first formulation is the displacementjm of
each fluid particle from its equilibrium position~and time!.
The second formulation involves the electromagnetic fi
tensor Fmn as well as an axionlike fieldu that acts as a
Lagrange multiplier to enforce the MHD condition. Let u
now demonstrate the equivalence of these two formulati
by calculating the collision between two Alfve´n wave pack-
ets1 and2 propagating in opposite directions alongB0 .

We emphasize that the interaction that we now calcu
is dynamic, and will be related to third-order terms in th
MHD Lagrangian. Colliding Alfve´n waves also undergo ki
nematic interactions that involve a mixing between the tra
verse positions of the field lines in Lagrangian and Euler
coordinates, as has been demonstrated in@6# for a nonrela-
tivistic magnetofluid. The perturbative expansion of the

e
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3224 57CHRISTOPHER THOMPSON AND OMER BLAES
additional kinematic interactions breaks down when
transverse displacement of each field line is free to under
random walk alongB0 . While analogous interactions ar
also present in the relativistic regime, we are able to cho
a temporal gauge in which they vanish, so that only the t
dynamical interactions survive. An additional difference b
tween a relativistic magnetofluid and a nonrelativistic~in-
compressible! magnetofluid is that in the relativistic regime
the lowest order dynamical interaction is third order injm ~as
compared with fourth order in the nonrelativistic regime@3#!.

The displacement vectorsj1
m (z2t,x,y) and j2

m (z1t,
x,y) ~or, more precisely, their derivatives with respect
z1[z1t and z2[z2t! provide a covariant generalizatio
of the Elsasser variables

u5
b

B0
1

v

VA
; w5

b

B0
2

v

VA
~VA[B0 /A4pr!

~4.1!

commonly used in treatments of nonrelativistic MHD~e.g.,
@18#!. We further choose a gauge in whichj6

t 5j6
z 50 and

J451 when the wave packets are well separated. The co
sponding time-dependent magnetic and electric fields ar

dB65B0j68 ; dE656B0~j68 3 ẑ!, ~4.2!

where

j68 5
1

2
~]z7] t!j6[]7j6 . ~4.3!

When the waves overlap, longitudinal displacements
excited, as well as a new transverse wa
$dBI ,dEI ,j I%(z,t,x,y) whose time evolution we now calcu
late.

Substituting B5B01dB11dB21dBI , E5dE11dE2

1dEI into the induction equation and the equation of moti
~2.20!, one finds

“3dEI1] tdBI50, ~4.4!

and

B0@~“3dBI !3 ẑ2] tdEI3 ẑ#

52“'~dB1•dB2!22~dB1•“ !dB222~dB2•“ !dB1 .

~4.5!

These two equations govern the collision of two Alfve´n
wave packets to second order indB/B.

The only technical subtlety here is that expression~2.11!
for F̃mn involves derivatives with respect to the unperturb
coordinatest andz0 , whereas Maxwell’s equations involv
derivatives with respect to the perturbed coordinatesxm.
These derivatives are equivalent for the noninteracting w
packets, but one generically finds thattÞt andzÞz0 when
two MHD modes overlap. Nonetheless, it is possible
choose a temporal gauge in whichJ451 and the derivatives
remain identical to a high order inj,
e
a

se
e
-

e-

re
e

e

]jm

]t
5

]jm

]t
1O~j6

4 !;
]jm

]z0
5

]jm

]z
1O~j6

4 !, ~4.6!

as we sketch in Appendix B. In this gauge, the distor
magnetofluid in the interaction region is incompressible in
four-dimensional sense.

Even though expression~2.11! directly solves the induc-
tion equation, the gauge choiceJ451 leads to constraints on
j. These are found by substitutingjm5j1

m 1j2
m 1j I

m into ex-
pressions~2.13! and ~2.14! for B and E and then into the
induction equation. Keeping all terms to second order inj6

~note thatj I is itself second order!, this gives

~j28 •]!j18 2~j18 •]!j28 1~]•j28 !j18 2~]•j18 !j28

52
1

2
]t~]•j I !ẑ. ~4.7!

Since the transverse components ofj6 are linearly indepen-
dent, this requires

]•j15]•j25]•j I50 ~4.8!

together with

~j28 •]!j15~j18 •]!j250. ~4.9!

Here, the derivative] is with respect to theperturbedcoor-
dinatesx5x01j, whereasJ4 involves derivatives ofjm with
respect to theunperturbedcoordinatesx0 . Nonetheless it is
easy to show, as we do in Appendix B, that conditions~4.8!
and ~4.9! are equivalent to the conditions

]0•j50; ~j•]0!j50, ~4.10!

where (]0)m[]/]x0
m . Equations~4.10! in turn guarantee tha

J451.
Although ]•j65“'•j650 for the noninteracting Al-

fvén wave packets, longitudinal components are required
enforce equations~4.9! when two A waves overlap. The
unique choice which also satisfies Eq.~4.8! is

~j68 ! i52
k7•j6

~k7! i•~k6! i
~k6! i5

~k7!'•~j68 !'

2v1v2
~k6! i ,

~4.11!

in a Fourier representationjm5j0
me2 ikmxm with km5k'

m1ki
m

andki
m5(v,0,0,kz). Equation~4.11! determines the fluctu-

ating components oft andz in the interaction region.
The equation of motion now takes a much simpler for

ExpressingB andE in terms ofjm5j1
m 1j2

m 1j I
m , and mak-

ing use of the constraints~4.8! and ~4.9!, we obtain

~] t
22]z

2!jI2“'~“'•jI !52“'~j18 •j28 !. ~4.12!

This demonstrates that the physical components ofj I are
purely transverse. Without loss of generality, we may e
press jI as the sum of irrotational and solenoidal vect
fields, i.e.,

jI5“'3~c ẑ!1“'x[jI~A!1jI~F !. ~4.13!
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Here c and x are scalar fields, which we have respective
identified with theA andF modes produced in the interac
tion. Equation~4.12! now becomes

~] t
22]z

2!jI~A!1~] t
22¹2!jI~F !52“'~j18 •j28 !.

~4.14!

Operating¹'x on both sides of Eq.~4.14! shows that only
theF mode is sourced,A11A2↔F. The main advantage o
this formalism is that it allows us to separate the gau
dependent longitudinal components ofj that are excited dur-
ing the interaction, from the physical transverse wavej I that
survives asymptotically.

Now let us repeat this calculation in the axionic formu
tion of MHD. To begin, it is useful to rederive the shearedA
modes and evaluateu explicitly. We look for a single fourier
mode dB, dE}e2 ikmxm

. The gradient ofu can be decom-
posed as

]mu5 iK m~k!1 ikmdu0e2 ikmxm
, ~4.15!

where the first~spatially constant! term depends only on
~some components of! km. The absence of a constant curre
or charge density impliesK05Kz50. Then one has

j 0

e2 5“u•B5 iK•dB1 ikzduB0 , ~4.16!

and

j

e2 52~ u̇B1“u3E!52 iK'3E1 ivduB0 , ~4.17!

where we defineK'5K2Kzẑ and make use of the con
straintsvdB2k3dB50 andk•dB50.

This shows thatj m is precisely first order indB. Further-
more, the induction equation and the MHD condition t
gether guarantee thatE•B050, and soj is parallel toB0 .
~We could have guessed this at the beginning, since the
rent carrying Fermi zero modes propagate parallel to the
perturbed magnetic field; but the result is more general.! Fi-
nally, dividing k into components perpendicular and paral
to dE, and making use of the Maxwell equation

j5 i ~k',dE1ki ,dE!3dB1 ivdE5 iki ,dE3dB, ~4.18!

one sees that the Poynting flux1
2 dE3dB lies parallel toB0 .

To obtain the shearedA modes, it is sufficient to setdu50
and take

K65~K6!'56~ ẑ3k6!. ~4.19!

Now consider the interactions between twoA modes
$dB1 ,K1% and $dB2 ,K2%. One observes new interactio
terms in the expression for the charge density

D j 0

e2 5 iK1•dB21 iK2•dB1 . ~4.20!

In order to cancel these terms~and the corresponding term
in j z! it is necessary to introduce a fluctuating longitudin
component of]mu,
-

t

-

r-
n-

l

l

] tu l5
i

B0
ẑ•@k'

13dB21k'
23dB1#;

]zu l5
i

B0
ẑ•@k'

13dB22k'
23dB1#. ~4.21!

A new longitudinal electric-field enforces the MHD cond
tion

dEl5
2

B0
@dB13dB2#. ~4.22!

Substituting Km5K1
m 1K2

m , ]mu5]mu l and E5dE1

1dE21dEl into Eq.~4.17!, and then takingẑ3, leads to the
following time evolution equation for the transverse fie
components:

]z~dBI !'2“'dBIz1 ẑ3] tdEI5
2

B0
@“'~dB1•dB2!

2~dB2•“ !dB12~dB1•“ !dB2#. ~4.23!

This is equivalent to Eq.~4.5!.

V. OTHER WAVE INTERACTIONS

There is, in addition to the three-mode interaction b
tween twoA modes analyzed in the last section, a thre
mode interaction betweenF modes,

F~1!1F~2!↔F~3!. ~5.1!

This is easier to calculate, since none of the participat
modes supports an electric current. The incident waves

dB1,25B0cosu1,2j1,28 ;

dE1,25
1

cosu1,2
dB1,23 ẑ5B0~j1,28 3 ẑ!, ~5.2!

whereu is the angle between the wave propagation direct
and the background magnetic field, andj5j( k̂•x2t). The
MHD condition is satisfied in the zone where the wav
overlap only if a third, interaction component to the elect
field,

dEI52
dB13dB2

B0cosu1cosu2
~cosu12cosu2!, ~5.3!

is present. The equation of motion~2.20! for the new fast
mode then becomes

B0@~¹3dB3!3 ẑ2] tdE33 ẑ#

5
cosu22cosu1

cosu1cosu2
] t~dB13dB2!3 ẑ. ~5.4!

As with two colliding Alfvén waves, the gaugeJ451 can
be imposed by shifting the displacement functions in a m
ner analogous to Eq.~4.11!,

dj152
k2•j1

k1•k2
k1 ; dj252

k1•j2

k2•k1
k2 . ~5.5!
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~This givesk1•dj15k2•dj250 for F modes and charge
freeA modes withk250.! The equation of motion~5.4! then
becomes in Lagrangian coordinates

~] t
22]z

2!j32“'~“'•j3!

5~cosu22cosu1!] t@j28~j18!z2j18~j28!z#, ~5.6!

to second order inj1,2. The right side of Eq.~5.6! vanishes
whenu15u2 and the waves propagate at the same angle w
respect toB0 ~whether or notk1 andk2 are in fact aligned!.

This classical process is the magnetohydrodynamic a
logue of the QED process of photon splitting@19#. There are,
nonetheless, a number of distinctions with photon splitti
First, the spontaneous rate for aF mode to split into twoF
modes vanishes, as theF mode is an exact, nonlinear solu
tion to the MHD equations. Second, the polarization sel
tion rules are different: whereas all the participatingF modes
have electric vector perpendicular toB0 , the allowed photon
splitting channels in a vacuum are'↔'1i and'↔i1i .
In a dense plasma, the selection rules are obtained by in
changing' and i.7 ~Here,' and i denote the orientation o
dB with respect toB̂03 k̂.!

When considering all possible interactions between thA
modes andF modes, it is useful to simplify the higher orde
terms in the Lagrangian by imposing the constraint of fo
dimensional incompressibility. We follow the Lagrangia
formalism developed in Sec. III. Although the general fo
of the action~2.15! is fairly complicated due to the presenc
of the Jacobian factorJ4 , we have seen that, in practice, it
possible to choose a time-slicing corresponding toJ451. In
this gauge,

S85E d4x0@~]tj3 ẑ!22~]z0
j!222~]tj

t]z0
jz2]tj

z]z0
j t!

12~]tj3 ẑ!•~]tj3]z0
j!22]tj

t~]z0
j!2

12]z0
j t~]tj•]z0

j!1~]tj3]z0
j!2

2~]tj
t]z0

j2]z0
j t]tj!2#. ~5.7!

Note that the assumption of four-dimensional incompre
ibility implies that j t,zÞ0 in a region where two or moreA
waves are interacting~Sec. IV!. The correct interactions ar
obtained by substituting into Eq.~5.7! the modified wave
displacement functions~4.11!. It should be emphasized tha

7Photon splitting is, however, of limited importance in this se
ond, plasma-dominated regime: if the magnetic field is stro
enough to induce a significant splitting rate (B.1012 G) then the
dielectric tensor is dominated by the plasma~rather than by vacuum
polarization! only at very high particle densities, so high that ph
tons lose energy predominantly via the Compton recoil rather t
by splitting @20#.
th

a-

.

-

er-

-

-

the resulting Lagrangian is exact to fourth order inj, because
the gauge choice~4.11! is precisely equivalent toJ451.

The various mode interactions can now easily be read
from the action. The third order terms represent the thr
mode couplings~5.1! and

A11A2↔F; ~5.8!

and the fourth order terms represent the two four-mode c
plings

A1~1!1A2~1!↔A1~2!1A2~2!, ~5.9!

and

A1~1!1A2~1!↔F~1!1F~2!. ~5.10!

The three-mode couplings~5.8! and ~5.1! are nonvanishing
because theF mode hasjzÞ0 ~except for the degenerat
casekiB0!.

The corresponding conservation equations for the long
dinal components of energy-momentum are

v11v25vF , k1
z 1k2

z 5v12v25kF
z ~5.11!

for reaction~5.8!

v1~1!1v2~1!5v1~2!1v2~2!;

k1
z ~1!1k2

z ~1!5v1~1!2v2~1!5k1
z ~2!1k2

z ~2!

5v1~2!2v2~2! ~5.12!

for reaction~5.9!, and similarly for reaction~5.10!
The third order terms inS8 require further discussion. We

might also consider the following three-mode interaction~cf.
@5#!:

A1~1!1A2~1!↔A1~2!1A2~1!, ~5.13!

in which only one of the Alfve´n wave packets is distorte
during the collision. Unlike the three-mode coupling~5.8!
involving the F mode, this reaction is not resonant unle
A2(1) contains a zero-frequency componentv2(1)50 @2–
4#. The third order terms in Eq.~5.7! are proportional to

exp$ i @k1~1!1k2~1!2k1~2!#•x% ~5.14!

and vanish in the spatial integration unless the resona
condition is satisfied.

The F mode is absent in an incompressible, no
relativistic magnetofluid, as are dynamical three-mode c
plings involving Alfvén waves in the Lagrangian descriptio
@3#. Dynamical three-mode couplings emerge in the non
ativistic case when the assumption of incompressibility
relaxed. Furthermore, in the nonrelativistic Lagrangian f
malism of@3# the longitudinal component ofj excited during
a collision betweenA modes 1, 2 has a wave vectork5k1
1k2 and is expressed indirectly in terms of the initial a
final transverse wave displacements through the incompr
ibility condition J351. By contrast, in the relativistic cas
the additional freedom of choosing a time slicing allows o
to pick longitudinal components separately for the two in
dent waves, with the result that the propagating interact
componentjI is purely transverse.
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To demonstrate that the simplified Lagrangian~5.7! does
give the correct dynamics, we consider once again the c
sion between twoA modes. Substituting Eq.~4.11! for
]t,z0

j t,z and expressing the derivatives]t and]z0
in terms of

light-cone derivatives]6 , the third order terms in Eq.~5.7!
become

S38524E d4x0$]1j•@~]2j•“ !j#1]2j•@~]1j•“ !j#%.

~5.15!

As for the second order terms inS8 ~whose variation gives
rise to the kinetic terms for the interaction componentjI!,
one can self-consistently choose the gaugej I

050, sincej I
m is

the linear superposition of modes that asymptotically areA
modes andF modes. In this gauge,]z0

j I
352“'•jI ,' , and

the second order terms become

S2852E d4x0@4]1jI ,'•]2jI ,'1~“'•jI ,'!2#.

~5.16!

Varying S281S38 with respect tojI ,' , one regains the equa
tion of motion ~4.12! for jI .

VI. SHEARED ALFVÉ N CASCADE: SCALING

Now let us consider an ensemble of Alfve´n waves in a
box. The waves are injected at some outer scale and dev
a range of wave numbers. In general, the shape of the po
spectrum at a given wave number depends on whether
coupling between two Alfve´n waves isweakor strong—that
is, whether the fractional distortion suffered by a wa
packet is small or of the order of unity. A similar effe
occurs in a nonrelativistic MHD fluid, as has been analyz
in @3,6#. When the coupling is weak, conservation of ener
and longitudinal momentum guarantee that each wave i
vidually conservesv and kz during a collision@21,3#, so
collisions cause onlyk' to increase. In both weak and stron
coupling regimes, the cascade is anisotropic with wave pa
ets becoming increasingly concentrated in the dimens
perpendicular toB0 . Previous attempts to derive the pow
spectrum of nonrelativistic MHD turbulence@22,23# did not
properly account for the anisotropy of the cascade.

Collisions betweenA modes generateF modes as well as
higher wave numberA modes. This effect cannot be ne
glected in the relativistic regime, as it can in the nonrelat
istic regime by imposing the assumption of incompressi
ity. Nonetheless, the three-mode coupling between
colliding F modes calculated at the beginning of Sec. V
smaller in amplitude by a factorki /k' than the three-mode
coupling betweenA modes calculated in Sec. IV. This mea
that in the large shear regime, the cascade proceeds al
entirely via collisions betweenA modes. The spectral inde
of theA modes~andF modeswithkF;kz,A! can be obtained
by considering theA modes in isolation. Note, finally, tha
Alfvén wave emission by vibrating neutron stars is expec
to be in the large shear regime, withk' /ki;c/vm;300.
Here,vm;108 cm s21 is the characteristic shear-wave velo
ity in the crust@24#.

The scaling we derive in the presence of three-mode c
li-
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plings differs from that obtained by Ng and Bhattacharjee@5#
and Goldreich and Sridhar@6#, due in part to our different
treatment of boundary conditions. The simplest way to exc
A modes in the box is to move its boundaries. This impl
that energy can be transported into the box from the med
outside. Self-consistency demands that energy also be tr
ported out of the box; i.e., that the reflection coefficientR of
waves incident on the boundary is less than unity. We
sume for simplicity thatR; 1

2 and that the energy flow into
the box balances the flow out of the box.8 However, the
time-averaged positions of the magnetic footpoints rem
fixed, except for an initial transverse shift. An explicit rea
ization of this model is a parallel series of boxes separated
partially reflecting membranes. By contrast, Goldreich a
Sridhar @6# assume that the magnetic field lines are pinn
rigidly at the walls of the box, with the turbulence bein
excited by internal body forces. This boundary conditi
forces 3-mode couplings~both dynamical and kinematic! to
vanish near the outer scale, and in turn reduces the ov
cascade rate.

We assume that the turbulence is injected with some c
acteristic wavelength 2p/kz smaller by a factorN than the
sizeL of the box. When the boundaries move, this is direc
related to the characteristic frequency of the motions. Thekz
power spectrum is then cutoff below a wave number 2pN/L
in the absence of a long term, secular displacement of
magnetic footpoints. By contrast, the transverse position
the field lines are assumed in@6# to undergo a random walk
along the background magnetic field, with this random w
being forced to vanish at the boundaries. This leads t
much broader power spectrum that is cut off only atkz
52p/L. These differing assumptions about the excitati
mechanism lead to significant differences in the cascade s
ing, because thekz power spectrum is conserved durin
weak collisions between Alfve´n waves. Redistribution of
power occurs neither during the dynamic interactions~which
preservekz as long as the couplingk'j is weak!, nor during
the kinematic interactions~which preserve thekz power
spectrum even while modifying thek' power spectrum!.
Such redistribution would occur if the sides of the box u
derwent some sort of gradual plastic creep that cause
secular displacement of the field lines. In the application
strong-B neutron stars, this is a second-order effect which
neglect.

A. Strength of the mode coupling

The shape of the power spectrum depends on theorder of
the interaction between colliding Alfve´n wave packets
j1(z2 ,x') and j2(z1 ,x'), as well as the strength of th
couplingk'j. This is best seen by integrating the time ev
lution equation~4.14! for jI over z15z1t at fixed z25z
2t. In the temporal gauge~4.8!, ~4.9! only the dyanamical
interactions betweenA modes survive. The change inj1

integrated over the collision is equal to the asymptotic va
of j I at z and t large compared to the collision coordinate

8As is appropriate for the boundary between the magnetosp
and surface of a neutron star with a very strong magnetic fieldB
;1014– 1015 G @24#.
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dj18 ~z2 ,x'!5
1

2
~]z2] t!jI~z,t,x'! ~z,t→`!,

~6.1!

namely,

dj18 ~z2 ,x'!

52
1

2 E dz1“'@]2j1~z2 ,x'!•]1j2~z1 ,x'!#

52
1

2
“'@]2j1~z2 ,x'!•Dj2~x'!#. ~6.2!

@Following the discussion in Sec. IV, this new mode can
regarded as a current-freeA mode~k'50), or as anF mode
propagating alongB0.# This depends on the transverse d
placement of the background magnetic field lines across
wave packet

Dj2~x'!5E
2`

`

dz1]1j2~z1 ,x'! ~6.3!

in a similar manner to the nonrelativistic case@5#.
In sum, a left-moving wavej1 suffers a fractional distor-

tion

udj18 u
uj18 u

;uk'
11k'

2uDj2 ~6.4!

whenDj2Þ0 and the coupling is weak. This corresponds
the three-mode reactionA1(1)1A2(1)→A1(2)1A2(1).
Defining the dimensionless coupling parameter

z2[uk'
11k'

2uuj2u;S uk'
11k'

2u
ukz

2u D S dB2

B0
D , ~6.5!

the condition for weak coupling can be written as

udj18 u
uj18 u

;z2

uDj2u
j2

. ~6.6!

The distortion of the right-moving wave takes a similar for
When Dj6 is small, the four-mode couplingA1(1)
1A2(1)→A1(2)1A2(2) dominates, and

udj18 u
uj18 u

;z2
2 . ~6.7!

This result may be obtained by substitutingDj18 ;(k'
1

1k'
2)(j18 •j2) into the right side of~4.12!.
Now let us estimate the net distortion suffered by an

fvén wave packet as it crosses a box of sizeL. The three-
mode distortion~6.6! depends linearly on the net transver
shift Dj(L,k') of the magnetic field lines across the bo
~which we fourier decompose in the transverse dimensio!.
This component of the distortion therefore depends cruci
on the boundary conditions at the edge of the box. It does
vanish if the walls of the box transmit wave energy, where
it does vanish for the rigid boundary conditions assumed
@6#.
e

-
e

.

-

ly
ot
s
n

With our boundary conditions, the net transverse shift
the field lines across the box is comparable in amplitude
the instantaneous displacement at any point in the box

Dj~L,k'!;j~k'!. ~6.8!

Here,j(k');kz
21dB(k')/B0 . The net three-mode distortio

of the wavepacket as it crosses the box is then

dj8

j8
;k'j. ~6.9!

The three-mode distortions are substantially uncorrelated
tween successive crossings of the box, because the sha
the wave packet is modified at each reflection. In a ste
state, energy transmitted out of the box at wave numberk' is
replenished by the injection of equal energy at the sa
wave number. The wavedj then grows as a random walk
and the damping time is

tdamp

L
;~k'j!22. ~6.10!

This compares with the four-mode distortion, which
;@(k' /kz)(dB/B0)#2;(k'j)2 over one ~parallel! wave-
length and accumulates in a random walk of

N5
kzL

2p
~6.11!

collisions across the box,

S dj8

j8 D 2

;N~k'j!4. ~6.12!

The corresponding damping time is

tdamp

L
;

1

N~k'j!4 . ~6.13!

B. Cascade scaling

Notice that the three-mode coupling dominates in stren
at the outer scale, unless the waves are strongly couplez
[k'j;1) or N is very large. Assuming that this is not th
case, the constancy of the energy flux~per unit volume and
time! implies that

~k'j!2

N
~dB!2kz;const, ~6.14!

which in turn implies

j~k'!

j0
;

Dj~k'!

Dj0
;S k'

k'0
D 21/2

~6.15!

while the cascade is weakly coupled andkz , N;const.~Here
the subscript 0 refers to the outer scale.! The three-mode and
four-mode couplings become comparable in strength wh
(k'j)2;N21, which corresponds to

k'
!

k'0
;N21z0

22.1. ~6.16!
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Herez0[k'0j0 is the coupling parameter at the outer sca
At wave numberk'

! , the four-mode coupling is still weak,

@k'
! j~k'

! !#2;N21. ~6.17!

At higher wave numbers, this weak cascade steepens
one dominated by the dynamic four-mode couplings,
cause the cumulative effect of those couplings grows as
waves transit the box.9 Constant energy flux now implie
(k'j)4(dB)2kz;const, and we recover the scaling deriv
in @3# for nonrelativistic Alfvén turbulence

j~k'!

j~k'
! !

;S k'

k'
! D 22/3

. ~6.18!

This can be rewritten, using Eq.~6.16!, as

j~k'!

j0
;N21/6z0

21/3S k'

k'0
D 22/3

. ~6.19!

We therefore havez}k'
1/3 and the cascade must eventua

become strongly turbulent (z→1).
At still higher wave numbers,

k'.k'
!!5k'0z0

22N1/2, ~6.20!

we will assume that the strong cascade is critically balan
with the cascade time being of order the wave period
z51 ~see@25# for a detailed justification of this in the non
relativistic case!. Again assuming a constant rate of ener
cascade, we find that

j~k'!

j~k'
!!!

;S k'

k'
!!D 21

~6.21!

and

v

v0
5

kz

kz0
5

z0
4/3

N1/3 S k'

k'0
D 2/3

. ~6.22!

The corresponding scaling of the magnetic perturbation

dB

B
5

z0
1/3

N1/3

dB0

B S k'

k'0
D 21/3

. ~6.23!

Notice that

9P. Goldreich~private communication! has noted that one shoul
in principle include kinematic couplings between waves that a
due to mixing between the Lagrangian and Eulerian positions of
field lines@6#. At fourth order, these kinematic couplings would b
larger in magnitude than the resonant four-mode couplings con
ered here~by a factorN1/2! if the positions of the field lines were
free to random walk across the box. However, as discussed in
introduction to this section, this possibility is eliminated by o
assumption that thetime-averagedpositions of the field lines re-
main fixed at each side of the box~following an initial Alfvén
impulse!.
.

to
-
e

d
d

k'
!!

k'
! ;N3/2. ~6.24!

We can summarize as follows. When the three-mode c
pling between colliding Alfve´n waves discovered by Ng an
Bhattacharjee@5# is taken into account, the cascade divid
into three regimes: an outer, weakly coupled cascade dr
by dynamical three-mode interactions@with scaling~6.15! at
k'0,k',k'

! #; an intermediate, weakly coupled casca
driven by dynamical four-mode interactions@with scaling
~6.18! at k'

! ,k',k'
!!#; and an inner, strongly coupled ca

cade@with scaling ~6.21!–~6.23! at k'.k'
!!#. When N;1

the outer weak cascade blends directly into the inner str
cascade.

We emphasize that these results apply also tononrelativ-
istic magnetofluids. In their analysis of the nonrelativis
incompressible case, Goldreich and Sridhar@6# have also
found three cascade regimes, but with dynamical 4-m
couplings dominating at low wave number, and kinema
3-mode ~and higher! couplings dominating at intermediat
wave number. The basic reason for these differing conc
sions lies in the treatment of boundary conditions and
assumedkz power spectrum, as discussed above.

C. Damping time

These results have important implications for the damp
rate of the wave turbulence at the outer scale. Let us supp
that waves are suddenly excited~for example, when the crus
of a neutron star fractures, sending an Alfve´n pulse in the
star’s magnetosphere!. Then the damping time at the oute
scale is

tdamp

L
;minF 1

~k'j!2 ,
1

N~k'j!4G . ~6.25!

In the presence only of four-mode couplings,tdamp increases
rapidly with decreasing wave amplitude~or shear!; whereas
the dependence is much weaker when the three-mode
pling is properly included.

VII. APPLICATION TO ASTROPHYSICAL X-RAY
SOURCES

Strongly magnetized neutron stars and accreting bl
holes are plausible astrophysical sources of relativistic~or
mildly relativistic! Alfvén turbulence. For example, a larg
pulse of Alfvén radiation is emitted when the rigid crust of
neutron star fractures, or when a magnetic flux tube ri
buoyantly out of an accretion disk close to the last sta
orbit surrounding a black hole. In such a situation, the rate
turbulent energy releaseLw can be very high, so that th
corresponding compactness within a radiusl

l w5
LwsT

4pmec
3l

~7.1!
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exceeds unity.10

This has three important consequences. First, the cha
needed to support the fluctuating magnetic field at the o
scale themselves generate a surprisingly large scatte
depth; second, the turbulence can be damped effectivel
Compton scattering of the ambient radiation field~‘‘Comp-
ton drag’’!; and, third, a turbulent cascade raises the damp
rate even further by increasing the minimum charge den
needed to support the fluctuating magnetic field.

This minimum charge density can readily be converted
a Thomson scattering optical depth

tT5sTnel ;
sTdB~k'l !

4pe
. ~7.2!

If the wave energy is sufficient to power a softg repeater
~SGR! burst ~energyEB*1041 erg! then

tT;0.06S k'R

300D S EB

1041 ergD
1/2S l

10 kmD 23/2

. ~7.3!

Here we relatedB to the total wave energyEB and confine-
ment volume l 3 and estimatek' /kz;c/cs , where cs
;108 cm s21 is the shear wave velocity deep in the crust

Much larger scattering depths are generated by the
cade, since the current density scales with wave numbe

j ;k'dB}k'
1/2;k'

1/3;k'
2/3, ~7.4!

in the outer~three-mode dominated! weak cascade~6.15!;
the intermediate ~four-mode dominated! weak cascade
~6.18!; and the strong cascade~6.23!, respectively. The inne
scale of the cascade lies at a wave numberkz( i ) where the
cascade is strongly coupled, under a wide range of co
tions. This implies thatk'dB;kzB and, assuming that th
waves are marginally charge starved at the inner scale,
scattering depth is related in a simple manner tokz( i ),

kz~ i !l ;
3

2

tT~ l !

aem
S B

BQED
D 21

. ~7.5!

Hereaem is the fine-structure constant andBQED5me
2c3/e\

54.431013 G. This has possible applications not only
SGR’s but also to stellar-mass BH coronae. At this wa
number, resonant wave-particle interactions are absen
long as

kz~ i !

eB/mec
2 5

3

2 S l

l me
D 21 tT

aem
S B

BQED
D 22

!1. ~7.6!

Here l me
5\/mec53.8310211 cm is the Compton wave

length of the electron. This condition is easily satifised in
magnetosphere of a neutron star, and is marginally satis
in the magnetic corona of a black hole accretion disk.

10This quantity equals the optical depth to electron scatter
along a radial path, in the case where the plasma is compose
mildly relativistic electrons~and positrons!. In this section we retain
factors ofc for clarity.
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There are, in sum, three principal modes of MHD wa
damping in highly compact astrophysical sources: first, ad
batic expansion~e.g., leakage onto open magnetic fie
lines!; second, Compton drag at lowtT in a dense photon
field; and, third, a nonlinear cascade to high wave numb
When the cascade dominates, the resulting radiative sig
ture depends strongly on the scattering depth generated
consistently by the waves.

A. Wave damping in an optically thick plasma:
application to cosmologicalg-ray bursts

First let us consider wave damping in a plasma tha
very optically thick to scattering. What dissipative proce
determines the inner wave numberkz( i ) in this regime? On
the outer scalel , the photon and electron fluids are effe
tively coupled by Compton scattering, but at sufficiently hi
wave number the scattering depthtT(j) across the wave
displacementj becomes small enough that the moving ele
tron fluid suffers significant drag. Since almost all the iner
is carried by the background magnetic field, the time sc
for Compton drag is obtained by dividing the drag force p
unit volume 4

3 sTne(ve /c)2Ugc into the energy density o
the waves

tC5
~dB!2

~4/3!sTne~ve /c!2Ugc
. ~7.7!

Here, (ve /c)25(dB/B)2 is the mean square oscillator
speed of the electrons. Comparing with the cascade ratekz of
strongly coupled Alfve´n waves, this is

ctCkz5
3

2 S B2/2

Ug
D ~dB/B!kz

tT@j~kz!#
. ~7.8!

Compton drag begins to be effective at a wave num
where the photon diffusion time;@tT(j)#j across the wave
displacementj becomes less thankz

21. This corresponds to
@tT(j)#21;(dB/B)kz

and

ctCkz;
~dB!kz

2

Ug
~7.9!

at the appropriate wave number. Notice thatdBkz
/dB0;

N21/2z0
2(kz /kz0)21/2!1 @from Eqs. ~6.22! and ~6.23!#. We

conclude that the cascade is cutoff effectively by Comp
drag when the photon density has increased to a fraction

Ug

~dB0!2 ;
~k'0j0!2

N
~7.10!

of the MHD wave pressure at the outer scale. It is on
during the earliest phase of such an optically thick casc
~or at low optical depths in the presence of a weak ba
ground photon source! that the cascade continues to a hi
wave number where the waves becomes charge starved

This process should provide effective heating at e
tremely high scattering depths. For example, a cosmolog
g-ray burst sources involve energy release at a rateLg
;1051 erg s21, which in the most plausible models occu
within a radius less than;10– 100 km.

g
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The corresponding compactness is enormousl g;1015.
Moreover, if the source contains a neutron star or neut
torus~orbiting a black hole!, then this energy must be tran
ported by ordered Poynting flux~a wound-up magnetic field!
to avoid excessive baryon loading of the outflow. This can
achieved if the source has a rotation period;1023 sec, and
a poloidal magnetic field of strength;1015 G @26–29#. Dy-
namo action naturally generates magnetic fields of
strength in a variety of triggering models, includin
accretion-induced collapse of a white dwarf, binary neut
star and neutron star-black hole mergers, and failed Typ
supernovae@26,30,29#. The alternative process of neutrin
annihilation into pairsn1 n̄→e11e2 ~@31#, and references
therein! induces a matter outflow that is larger than the t
erable value by a factor;106 for Le6;1051 erg s21 @32#.

The ratio of photon luminosityLg to ~ordered! Poynting
luminosity LP at the base of the wind is a key parameter
models for the spectrum involving Compton up scattering
hotspots in an expanding relativistic MHD wind@29,32#. The
mean photon energy emerging from the flow is^Eg&
;LP /Ng , when the baryon loading lies at the critical valu
where Comptonization is effective and adiabatic losses
small. Near the base of the flow, the photon gas is very c
to black body, and sôEg& is directly related to the effective
temperatureTeff

4 .Lg /sSB4pR2c at the light cylinder,

^Eg&;Teff50.8S Lg

1050D 1/4S P

1023 sD
21/2

MeV.

~7.11!

This is remarkably close to the observed range of spec
break energies, after allowing for cosmological redshift.

The loading of the outflow by baryon rest energy is tol
ably small only if Lg,1022LP at the neutrinosphere. In
other words, a key requirement of this model is that the w
be reheated fromLg!LP to Lg;LP well outside the neutri-
nosphere. This is plausibly accomplished by the sort
MHD cascade just described. The time scale for convec
and/or differential rotation in the source is comparable to
;1023 rotation period@26#, which implies that the foot-
points of the external poloidal magnetic field move arou
rapidly enough to excite strong turbulence in the exter
field. The resulting photon luminosity should be compara
to the wave luminosity~when the wave couplingk'j*1! so
that

Lg

LP
;S dB

B D 2

~7.12!

~these quantities being evaluated at the light cylinder!.

B. Leakage from neutron star magnetospheres

Alfvén waves injected into the magnetosphere of a n
tron star can either damp near the surface of the star
escape the region of closed magnetic field lines, ther
driving a relativistic outflow. Waves trapped near the ste
surface can undergo a turbulent cascade. We examine
two damping mechanisms in succession, and indicate
ranges of wave luminosities over which each dominates.

Alfvén waves propagate along open magnetic field lin
and their energy is lost from the star. Even if the waves
n
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first injected on closed magnetic field lines~as in the softg
repeater model of@20#!, they will couple to internal shea
waves which transport energy throughout the crust@24#.
Since the waves take many wave periods to leak out~the
fraction of open field lines being small!, one can approxi-
mate the wave amplitudedB! as being constant over th
surface of the star,11 and estimate the Alfve´n wave luminos-
ity as

LA;2puopen
2 R!

2 ~dB!!2

8p
c. ~7.13!

Hereuopen is the polar angle of the last open magnetic fie
line, and we approximate the external field near the star
dipole with polar flux densityB! .

The width of the bundle of open field lines is determin
by the rotation periodP, in the usual manner, when th
Alfvén wave pressure is very small@33#:

uopen
2 5

2pR!

cP
[

R!

Rlc
. ~7.14!

However, above a critical Alfve´n wave pressure a large
fraction of field lines are forced open by the pressure
Alfvén waves. To estimate this fraction, one balances
dipole magnetic pressure with the wave pressure

LA

4pRA
2c

;
B2~RA!

8p
, ~7.15!

and then notes that

uopen
2 ;S RA

R!
D 21

;S 2LA

B!
2R!

2cD 1/4

. ~7.16!

Sinceuopendepends implicitly onLA , one can combine Eqs
~7.13! and ~7.16! to obtain

uopen
2 ;S dB!

B!
D 2/3

~7.17!

and

LA;0.2S dB!

B!
D 8/3

B!
2R!

2c. ~7.18!

In this regime, the neutron star loses energy primarily
Alfvén wave and particle emission, andnot by rotational
torques.

Nonetheless, the usual magnetic dipole energy loss
mula for a rotating neutron star is modified, because the
poloidal field scales as

B~R!;B~RA!S R

RA
D 22

~RA,R,Rlc! ~7.19!

11Because the transmission coefficient between crust and m
netosphere depends on the strength and orientation of the su
field B! , dB! will in fact vary by a numerical factor of the order o
unity.
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3232 57CHRISTOPHER THOMPSON AND OMER BLAES
in between the Alfve´n radius and the light cylinder. Thi
increases the field strength at the light cylinder over the us
value. The rotational energy loss rate also increases to

Lsd;0.1B2~Rlc!Rlc
2 c;0.1LA~VRA /c!2 ~Rlc.RA!,

~7.20!

whereV52p/P and the normalization is estimated from th
standard magnetic dipole formula~e.g., @33#!. Although Lsd
remains smaller thanLA , the rotation period decreasesexpo-
nentially with time in this regime

d ln V

dt
;20.1

LA

I S RA

c D 2

. ~7.21!

It has been suggested that the halo of nonthermal ra
emitting particles surrounding SGR 1806-20@34# is powered
by such an Alfve´n wave-driven wind@20,35#. This model
therefore suggests that the rotation period of SGR 1806
may be far longer than the 8 sec period of SGR 0526-66~the
source of the very bright burst on March 5, 1979, which
not surrounded by any detected plerion!.

The Alfvén waves may also be released in a short per
of time. In particular, the initial hard spike of the March
1979 superburst which appears to have been an expan
relativistic fireball @20,36#. However, the lack of spectra
evolution in the softer repeat bursts emitted by the S
sources argues against models~e.g.,@37#! in which the pho-
tons are emitted from a relativistic outflow as opposed t
trapped plasma.

C. Turbulent cascade in neutron star magnetospheres

Alfvén waves trapped on closed magnetic field lines w
cascade to high wave number, via the three-mode and f
mode couplings considered in Sec. VI. The wave damp
rate is a stronger function of wave amplitude than is
leakage rate~which depends on the amplitude only throu
uopen!. The main uncertainty in estimating this damping ra
involves the form of the Alfve´n wave packets. If the wave
are injected directly by a sudden irreversible horizontal d
placement of the crust, then the magnetic field lines unde
a net shiftDj;ki

21(dB/B0) across each wave packet. Th
total cascade luminosity within a confinement volum
;(4p/3)R3 is

Lcas;z0
2 ~dB!2

8p
n0

4p

3
R3. ~7.22!

HeredB is related to the wave amplitude at the stellar s
face bydB;dB!(B/B!)1/25dB!(R/R!)23/2. The wave fre-
quency at the outer scale isn0 and the strength parameter
the outer scale is

z0~R!5
dB

B

k'

ki
5z0~R!! ~7.23!

sincek'(R)5k'(R!)(B/B!)1/2. Thus,

Lcas;
1

6 S dB!

B!
D 4S k'~R!!

ki
D 2S n0R!

c DB!
2R!

2c. ~7.24!
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Note that the stronger dependence ondB! than LA @Eq.
~7.18!#, as well as the additional dependence onk' /ki . A
plausible value for this last parameter is;300 @24#.

Alternatively, if the Alfvén wave packets are harmon
with negligible net shift, thenLcas}z0

4 instead ofz0
2, and

expression~7.24! is modified to

Lcas;
1

6 S dB!

B!
D 6S k'~R!!

ki
D 4S n0R!

c DB!
2R!

2c. ~7.25!
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APPENDIX A

In this appendix we prove that the action principle in t
Lagrangian formulation, discussed in Sec. II, gives the c
rect equations of motion. We begin by demonstrating t
Eq. ~2.11! for the dual of the electromagnetic field tensor

F̃mn5
1

J4

]xm

]x0
r

]xn

]x0
s F̃0

rs ~A1!

is indeed an integral of the constraint equations

]F̃mn

]xn 50. ~A2!

This is true for an arbitrary~nonstatic, inhomogeneous! un-
perturbed reference backgroundF̃0

rs , provided it too satis-
fies the constraint equations in the unperturbed coordina
Substituting into the constraint equations and changing
differentiation over the unperturbed coordinates

]x0
a

]xn

]

]x0
a F 1

J4

]xm

]x0
r

]xn

]x0
s F̃0

rsG50. ~A3!

Carrying out the differentiation

F21

J4

]J4

]~]xg/]x0d!

]2xg

]x0
s]x0d

1
]x0

a

]xn

]2xn

]x0
a]x0

sG ]xm

]x0
r

F̃0
rs

J4
50,

~A4!

where we have used the antisymmetry ofF0
rs and the back-

ground constraint equations to eliminate two terms. Beca

]x0d

]xg 5
1

J4

]J4

]~]xg/]x0d!
, ~A5!
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the left-hand side of Eq.~A4! vanishes identically, thereb
proving that the constraint equation is satisfied.

Note that Eq.~A1! is simply the usual coordinate tran
formation of a tensor, apart from the Jacobian factor. T
implies that the pseudoscalarE•B50 in the perturbed fluid,
provided it is zero in the reference background. Hence
~A1! also enforces the MHD condition.

We now turn to the action principle:

S852E d4x
1

4
FmnFmn5E d4x

1

4
F̃mnF̃mn . ~A6!

This may be written as an integral over the unperturbed
ordinates

S85E d4x0

J4

4
F̃mnF̃mn[E d4x0L. ~A7!

Extremizing this action then gives the Euler-Lagrange eq
tions

]

]x0
a F ]L

]~]xm/]x0
a!G50 ~A8!

or

]

]x0
a F 1

J4
F̃0

gd ]xm

]x0
g

]xn

]x0
d F̃0

ab ]xn

]x0
b2

]J4

]~]xm/]x0
a!

1

4
F̃2G50.

~A9!

It is straightforward to show@cf., Eq. ~B1! below# that the
Jacobian has the property

]

]x0
a F ]J4

]~]xm/]x0
a!G50. ~A10!

In addition, the antisymmetry of the field tensor and t
background constraint equations imply

]

]x0
a S F̃0

ab ]xn

]x0
bD 50. ~A11!

Hence the Euler-Lagrange equations become

F̃0
ab ]xn

]x0
b

]

]x0
a S 1

J4
F̃0

gd ]xm

]x0
g

]xn

]x0
dD 2

]J4

]~]xm/]x0
a!

]

]x0
a S 1

4
F̃2D

50. ~A12!

The two derivative operators may be written

F̃0
ab ]xn

]x0
b

]

]x0
a 5F̃0

ab ]xn

]x0
b

]xe

]x0
a

]

]xe 5J4F̃en
]

]xe ~A13!

and

]J4

]~]xm/]x0
a!

]

]x0
a 5J4

]

]xm . ~A14!

Therefore

F̃en
]F̃mn

]xe 2
1

4

]F̃2

]xm 50. ~A15!
s

q.

-

-

Rewriting the dual in terms of the field tensor and simplif
ing, we finally obtain the equation of motion

Fmn

]Frm

]xr 50. ~A16!

The results obtained in this section follow more imme
ately from the alternative field transformation~2.16!. The
derivation will be left to the reader.

APPENDIX B

In this appendix we consider the interaction between
MHD waves, and derive the relation between the quanti
]•j, (j•])jm ~involving derivatives with respect to the pe
turbed coordinatesxm5x0

m1jm of the magnetofluid!, and the
analogous quantities]0•j, (j•]0)jm ~involving derivatives
with respect to the unperturbed coordinatesx0

m!.
In four dimensions, one has

]x0
m

]xn
5

1

J4

]J4

]~]xn/]x0
m!

52
1

6J4
«nabg«mrst

]xa

]x0
r

]xb

]x0
s

]xg

]x0
t .

~B1!

This implies

]mjm52
1

6
«mabg«nrst

]jm

]x0
n

]xa

]x0
r

]xb

]x0
s

]xg

]x0
t ~B2!

in a gauge whereJ451. The last three derivatives can ea
be written as

]xa

]x0
r 5har1

]ja

]x0
r , ~B3!

and so Eq.~B2! can be expanded in powers ofj. In the
presence of 2 MHD fourier modes, the antisymmetry
«mabg forces all terms involving three or more factors ofj to
vanish. This implies

]mjm5]0,mjm1~]0,mjm!22~]0,mjn]0,njm!. ~B4!

Similarly one has

jm]mjd5jm]0,mjd1~]0,njn!jm]0,mjd2~]0,mjn!jn]0,njd.
~B5!

The simultaneous conditions

]mjm5~jm]m!jd50 ~B6!

are satisfied if

]0,mjm5~jm]0,m!jd50. ~B7!

The addition of a third interaction termj I ~second order
in the two interacting modes! does not change these rel
tions. For example, in the case of two collidingA modes, the
interaction wavej I with time-evolution equation~4.14! sat-
isfies (j6•])j I50 in the gauge~B6! and ~B7!. Similarly,
inspection of Eq.~B1! shows that the derivatives

]rjm5]r,0j
m1O~j6

4 ! ~B8!

remain equal to third order inj6 , even though the difference
betweenx andx0 is first order inj.
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