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We present two new formulations of magnetohydrodynarti¢lD), in the limit where the inertia of the
charge carriers can be neglected. The first employs Lagrangian coordinates and generalizes Newcomb's for-
malism to allow for a variable time slicing. It contains an extremely simple prescription for generalizing the
action of a relativistic Nambu-Goto string to four dimensions. It is also related by a duality transformation to
the action presented by Achterberg. This transformation causes the perturbed and unperturbed Lagrangian
coordinates to exchange roles as dynamical fields and background spacetime. Our second formulation intro-
duces massless electrically charged fermions as the current carrying modes, and considers long wavelength
perturbations Withuz,kf<eB. Because the Fermi zero mode can be bosonized separately on each magnetic
flux line, the current density may be written in terms of a four-dimensional axion field that acts as a Lagrange
multiplier to enforce the MHD condition. The fundamental modes of the magnetofluid in this limit comprise
two oppositely directed Alfve modes and the fast mode, all of which propagate at the speed of light. We
calculate the nonlinear interaction between two Atfhreodes, and show that in both formulations it satisfies
the same simple expression. This provides the first exact treatment of the effects of compressibility on non-
linear interactions between MHD waves. We then summarize the interactions betweem rtides, between
Alfvén modes and fast modes, and between fast modes in terms of a simplified Lagrangian. The three-mode
interaction between fast modes is a magnetohydrodynamic analogue of the QED process of photon splitting,
but occurs in background magnetic fields of arbitrary strength. The scaling behavior of an Whve cascade
in a box is derived, paying close attention to boundary conditions. This result also applies to nonrelativistic
MHD media and differs from those obtained by previous authors in the nonrelativistic regime. Finally, we
briefly outline the physical processes which determine the inner scale of such a cascade in neutron star
magnetospheres, black hole accretion disks, gnaly burst sources. At low charge density, the waves at the
inner scale may become charge starved; whereas Compton drag is the dominant dissipative mechanism at large
optical depth to electron scattering. A turbulent cascade leads to effective dissipation even in optically thick
media, and in particular can significantly raise the entropy-baryon ratio in the relativistic outflows that power
cosmologicaly-ray bursts[S0556-282198)03806-3

PACS numbgs): 95.30.Qd, 11.10.Lm, 11.2¥d, 52.35.Bj

[. INTRODUCTION i.e., the conducting medium is force-free. The normal modes
of the magnetofluid then simplify dramaticaflyin the case

Relativistic formulations of magnetohydrodynamics of a uniform background magnetic fieBy=B,z, they are
(MHD) generally accommodate the effects of both mattethe two Alfven modesA™ and A~ (with dispersion relation
and field inertia. We focus here on the extreme relativistico= =k, and polarization transverse to the background mag-
limit, in which matter inertia can be neglected. This is annetic field and the fast modé (with dispersion relation
excellent approximation in the magnetosphere of a neutrom?=k? and single polarization statéE-B,=0). In each
star, for example, even when the density of charge carriers isase, the magnitude of the group velocity equals the speed of
more than sufficient to enforce the MHD condition light.

In marked contrast with the behavior of vacuum electro-
magnetic waves, these three modes undergo nonlinear inter-
actions even at the classical level. The lowest order pertur-
bative interactions turn out to be

The equation of motion in the extreme relativistic limit states
that the net Lorentz force on the charge carriers vanishes, AT+A AT HAT, 1.3

E.-B=0. (1.0

J“F u=3,FP*F,,=0; 1.2 AT+A —F,

Throughout this paper we use Heaviside-Lorentz units With ~ 2For a derivation of these normal modes in the nonrelativistic
=c=1. case, see, for exampfé].
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and described in this paper, and because of this the a¢fich
turns out to be a direct four-dimensional analogue of the
F+F<F. (1.4 action of a relativistic string.
) ) o In the nonrelativistic, incompressible case, it has been
These interactions are nonvanishing for the fully four-gh4wn that collidingd modes are subject to nonlocal kine-
dimensional MHD modes, namely, those with nonvanishingyatic interactions in addition to the more familiar resonant
momentumk, perpendicular to the background magnetic 4ynamical interactionfs, 6. In the relativistic case, we show
field: the current-carryindh modes and th& mode. Analo-  nat the additional freedom to choose a time slicing leads us
gous interactions between Alfwavaves in the nonrelativis- 5 5 gauge in which these kinematic interactions drop out, so

tic regime have been studied by a number of auth@rsl. 4t the coordinate transformatioet(xZ) is incompressible

This work focused on incompressible fluids, and has genery, - sour-dimensional sense.

ated a continuing debate on the role of nonperturbative ef- 11,4 structure of this paper is as follows. The Lagrangian
fects. hi devel ival iational f formulation of relativistic MHD is presented in Sec. Il, and
In this paper we develop two equivalent variational for-y,o ayionic formulation in Sec. Ill. The nonlinear collision
mulations of extreme relativistic MHD, calculate the form of p.iveen two Alfiva wave packets is calculated in Sec. IV
the interactiond1.3) and (1.4), and derive the scaling rela- o the equivalence of the two formalisms is demonstrated.
tions for relativistic Alfven turbulence. Since there is no such In Sec. V we consider wave interactions including the rela-

thing as an incompressible relativistic fluid, our work Pro- tivistic fast mode, and summarize the lowest order interac-
vides the first exact treatment of the effects of compreSS|b|IﬁOnS in a simplified Lagrangian. We then derive the scaling
ity on nonlinear MHD mode interactions. relations for relativistic Alfven turbulence in Sec. VI, em-

The limitations of the fIUId description .Of- rEIatiViStiC- haSiZing how the cascade properties depend sensitively on
MHD deserve to be emphasized at the beginning. The eXi;,,nqary conditions. This work also has applications to non-
tence of current-carrying modes with group velocity equal to

. . ; ) relativistic, incompressible MHD turbulence. Finally, we dis-
the speed of light requires the existencenuissles®lectric 55 astrophysical applications of our results in Sec. VI,
charge carrierSWe show that, in tum, this allows a greatly including wave damping in neutron star magnetospheres and
simplified description of the dynamics in terms of the elec'cosmologicaly-ray burst sources.
tromagnetic field coupled to a pseudoscaétadonlike) field.
The neglect of the inertia of the charge carriers implies a
restriction tolong wavelengthmodes, with perpendicular
momentumk, too small to excite individual fermions from

II. LAGRANGIAN PERTURBATIONS
OF A RELATIVISTIC MHD FLUID

the lowest energy statéwith longitudinal momentumpl| As is well known in the nonrelativistic cad®,7] one

=E) into higher Landau states. obtains a simple solution to the constraint equations
The advection of magnetic field lines by a perfectly con-

ducting fluid provides an equivalent description of the dy- V-B=0; VXE+4B/gt=0 (2.1

namics. To achieve a Lagrangian description of this physical

model, one must choose between treating the perturbed pby labeling fluid particles with Lagrangian coordinates
sitionsx* of the fluid particles as field variables in a space

defined by the initial coordinateg; , or vice versa. The first X=X+t &(Xo,1). (2.2

route leads to a simple covariant action ) o . . )
In other words is the initial position of a fluid particle and

1 - - & its displacement. The solution is
S=+7 J d*XFAF (1.5
1 9x
N = . . =3 7% Boi» 2.3
in which the dualF,, of the field strength tensor is ex- IXoj
pressed as a function of the*. This is a direct four- .
dimensional generalization of the standard Lagrangian for®" €duivalently,
mulation of nonrelativistic MHD [7]. An equivalent B=J"YBo+ (By- V)£, 2.4

Lagrangian description of the perturbed magnetofluid in
which theunperturbecdcoordinates appear as dynamical vari-
ables was worked out several years ago by Achterb@kg
This second description involves the electric variable,
and is therefore related by a duality transformation. The net J=del( s, +9& 19xg)). (2.5
effect of this transformation is to cause the initial and final e e

coordinatesg andx* to exchange roles as field variable and The vanishing of in the fluid rest frame implies
background spacetime. The perturbed Lagrangian coordi-

nates are the dynamical fields in the “magnetic” formalism dx

E=— 4 ¥B. (2.6

Here,J is the Jacobian of the transformation frog to x:
ie.,

%In practice, the dynamics is very nearly equivalent if the charge A simple variational principle for nonrelativistic MHD,
carriers are massive, but their space density is much larger than thased on these Lagrangian variables, was written down long
minimum valueJ/e needed to support a current density ago by Newcomly7]. Starting from the action



57 MAGNETOHYDRODYNAMICS IN THE EXTREME . .. 3221

1
2P

T (2.7

S= f dtd®x

(dx)2 1 2} -=—  (uality transformation ~——3
-5 B2,

and substitutingd®x=Jd®x,, p=po/J, and Eq.(2.3), one

x X
obtains
2 2
- s |Po(dX)7 19X
S fdtd Xo > | gt >3 Boj 7o) (2.8

when the background fluid is static. Varying EG.8) with
respect tox; yields the usual MHD equation. We focus in magnetic variables electric variables
this paper on wave propagation and interactions in a static

medium with a uniform magnetic field FIG. 1. In the action employing magnetic Lagrangian variables
(2.11), the perturbed coordinateg* of the magnetofluid play the

Bo= Boi_ (2.9 role of dynamical fields in a background spacetime labeled by the
unperturbed coordinateg . The roles ofx* andxj are reversed by
The Jacobian) plays a crucial role in this formalism. a duality transformation into the electric Lagrangian variables
Without it, the action depends only on derivatives with re-(2.16.
spect to two coordinatgsandz,. All the terms in the MHD ] ] . ] )
equation involving derivatives with respect to the transverse 1he nonlinear interactions between fully four-dimensional

coordinates arise from the variation &f MHD waves are encoded in the factor Ofml. Without |t,
This action has a simple covariant generalization wherthe dynamics is essentially two-dimensional and equivalent
the inertia of the conducting fluid can be neglected, to that of noninteracting waves on relativistic Nambu-Goto

strings. One immediate benefit of introducing the new time
L w1 PR RPN coordinatet is that by an appropriate choice of time slicings
S —_f d*x P Fe Fﬂv_f d”x 2 (E°=B%). one can setl,=1 everywhere in the equations of motion,
(2.10 after introducing appropriate longitudinal components of the
displacement functiog”. We demonstrate this for the col-
To make sense of this expression, we must introduce a backsion between two Alfve wave packets in Sec. Ill, and for
ground time coordinate (e.g., the time coordinate far from a the collision between twé& modes in Sec. IV.
localized region of perturbed magnetoflyiéand allow for An equivalent Lagrangian description of the perturbed
variable time slicings of the fluid. Then the dual of the field magnetofluid involves the dual variakifé*” [8],
strength tensor takes the simple form
&Xoa &Xoﬂ

Frr=FgP :
O gx, ox,

FAV/= - ghPIF  =—-——> (2.11
2 PTJy OXS OxE’ : : . . I
0 770 This expression arises from the fact that the Lie derivative of

_ ; ; . the field strength two-formF=3%F  dx*0dx” vanishes
whereJ, = det@x*/dX,,) is the Jacobian of the correspondin 25 v
4= detoxlox,) PONAING ~long the fluid four-velocity, if the MHD conditiofil.1) is

coordinate transformation. This is the four-dimensional gen<"~"'3. _ ) L
eralization of Eq(2.3) and(2.6). In parallel with the nonrel- satisfied. The corresponding electric current density is
ativistic case, the equation of motigh.2) follows by vary- Jo= _Fefnx .17
ing S’ with respect toc*, as is demonstrated in Appendix A. 0 0 =708 '
In the case of a uniform background magnetic fié@®) iy the unperturbed coordinate system. This vanishes unless
k?#0, which is possible only foA modes that are sheared
(2.12 perpendicular tB,, namely, those wittk, #0. The trans-
formations(2.11) and(2.16 both preserve the MHD condi-
_ o _ tion. In addition, the Lorentz scaldt’—B? is everywhere
and the magnetic and electric fields can be written separatetyegative if the unperturbed field is magnetic; as follows from
as the inequality @x“/d7- 9x*19zp)>— (Ix* I7)*(Ix* 9z0)?
<0.
= Bo (a_t 9% a_tﬁ); (2.13 The important thing to note here is that, in the actions
Jy \d7dz9  9Z9 IT built out of Egs.(2.11) and(2.16), the initial and final coor-
dinatesx§ and x* play opposite roles as field variable and
Ez—% (ﬁ ﬁ) (2.14 background spacetimé-ig. 1). The perturbed Lagrangian
Ja \ o7 09zp)° ' coordinates are the dynamical fields in the “magnetic” for-
mula(2.11), and so the corresponding acti¢h15 provides
Making these substitutions in E(.10 yields a more direct four-dimensional analog of the action of a rela-
tivistic string.
The connection betwee(2.15 and the classical string
action is obvious when the latter is written in the following
form [10]:

EMV:E
Ja

T (920 ot &ZO

IXF gx¥ X ax“)

B2 1
S, = _0 d4XO -
Js

X ax>2 (at X  at ax)z
. _

_X_ _—
ot 520 or 1920 (920 T
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physical degrees of freedofithe components oE and B
perpendicular tdB, for the A modes, and the components
(2.18 perpgndicular tk for thQF r_node. _ o
It is remarkable that, in direct analogy with nonrelativistic
(in flat space Here, T is the string’s tension and is the MHD, Eq. (2.20 admitsexactnonlinear solutions. For tha
coordinate along the string. The dynamics of a thin magnetignode,
flux tube is essentially two dimensional, with the excitations
of the tube being limited to transverse modes that are equiva-
lent (in the extreme relativistic limjtto Nambu-Goto waves.
The stress energy tensor averaged over the transverse coor-
dinates of the tubéor string satisfieg Ty;)= —(T,,) in both E=+pbX% (2.23
cased. By contrast, the fully four-dimensional MHD modes
(the F mode and the current-carrying mode$ undergo  (with b- z=V-b=0). This describes a wave propagating in a
nonlinear interactions that Nambu-Goto waves do not. In thigingle direction along the background magnetic field. On the
sense, four-dimensional relativistic MHD provides a highly other hand, two waves traveling in opposite directions cannot
nontrivial generalization of Nambu-Goto dynamics. Thesepe superposed and still remain an exact nonlinear solution.
wave interactions are the main subject of this paper. modes withk parallel toB, may be viewed as vacuum elec-
The dynamics of a perfect fluid composed of strings hasromagnetic waves. However, the shear between neighboring
been studied previously by Stach#P], although the precise field lines in a wave withk X Bo#0, or in a collection of

correspondence between the two actions was not writte§uch waves, is supported by a current density aBgg
down by him. The main result of the preceding discussion is

2 (ot ax It ox\?
Jr do Jdo It

oxX ox
—_ X_
Jr Jdo

SSchiId:Tf drdo

B=By+b(z+t,x,y) (2.22

that this correspondence is remarkably simple: . [dby dby) . 22
=y (224
Jodya, d2X<—>fd4X. 2.1 , ,
277 J 0 0 219 The fast magnetosonic modes are essentially vacuum

electromagnetic waves, with zero charge and current densi-

The dynamics of a perfect fluid composedkeflimensional  ties, Hence they also constitute exact nonlinear solutions. For
objects inD-dimensional spacetime was investigate 18], plane waves these are given by

by employing energy flux and “particle” flux as the basic
variables. In the specific cake=1, D=4, it was shown that B=By+ b(I2~x—t) (2.25
the dynamics is given by equations that are formally equiva-
lent to the force free equatiail.2) and the constraint equa- and
tions (2.1). However, this approach is less useful for study- R
ing interactions between waves, and will not be adopted E=—kXb, (2.26
here. Finally, the dynamics of a relativistic superfluid has . .
been studied recently if14]. The basic variable in this for- wherek is a constant unit vectolV -b=0, andb- (kX By)
malism is a Kalb-Ramond field that couples to the vorticity. = 0. In contrast with true vacuum electromagnetic waves, the
One new complication that arises in the relativistic regimeplasma responséi.e., E-B=0) prevents superposed fast
is that the displacement current and the electrostatic forcgodes with arbitrank from being an exact solution.
both play important dynamical roles. As a result, the equa- Gjven the existence of the exact nonlinear solutions, we
tion of motion is fourth order ir§, as compared with second expect thatA modes propagating in the same direction along
ordt_ar in the nonrelanwsnc case. This is seen most easily by will be noninteractingA modes propagating in different
writing Eq. (1.2) in component form: directions will interact with each other and also wikh
modes.F modes will undergo nonlinear interactions, unless
(V-BE)E+(VXB)XB—aEXB=0, (2.20 they are traveling in the same direction.
E-(VXB=dE)=0. (2.2 I1l. AXIONIC FORMULATION OF RELATIVISTIC MHD
The first of these equations has only two independent com- yntil now we have assumed the presence of electromag-
ponents, given the MHD conditioB- B=0, and the second netic fields and charged matter which enforces the MHD
is a straightforward consequence of the first. From this, ongondition E- B=0, but made no further attempt to prescribe
expects that the propagating MHD modes have only twahe charged fields. These fields must have modes which
propagate at the speed of light in both directions along the
background magnetic field. Massless, electrically charged
4Indeed, a number of years ago, when considering the dynamid€rmions of chargee in a background magnetic fielByz
of thin magnetic flux tubes, Nielsen and Olegéa] wrote down a have one zero mode with dispersion relatioh= ki and spin
related expression fdF ,, , but without the factor of 4) . o,=eBy/|eBy| (e.g.,[15]). Thus, we require at least two
5This field is physically distinct from the pseudoscalar field intro- SPecies of fermions with opposite helicitigs= ok, /|k,|,
duced below, which is excited only in the presence of an electrosince particles and antiparticles have identical values of
magnetic current—that is, only if the magnetofluid supports waves(/e=sgn(<2)/|e|.
that are sheared perpendicular to the background magnetic field. ~ Because these fermi zero modes are effectively two di-
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mensional, we can apply the technique of bosonizatiorA kinetic term for @ is absent because we are neglecting the

[16,17. In two dimensions, one can write the electric currentenergy

j2 (a=t,z) ad ,

eB (rrdp, eB pr

= (2me)e a0, (3.0 27 ) 27 P an s @8

When 6B=0, this procedure can be applied directly to theof the fluctuating fermi fields compared with the energy

fermi fields on each quantum of magnetic flux; the four- 1

dimensional current density‘is obtained by multiplying 2 - 2 27_ 2

by the transverse density of stafeB,|/27, and setting® 2 [(0B)"+(SE)"]=(5B) 3.9

=j¥=0. More generally, when the magnetic field experi- ) )

ences a long wavelength perturbatich<eB, one can find a  Of the fluctuating gauge field. The componentpe of the

The net result is thajt* can be written in a simple covariant pherpenhdicular wave numbek, of the Alfven excitation
form: throug

2 | Pl

e’B
e I _
== 6170, 6F (3.2 lil=lk oB|=5—5— (3.10

Since the electromagnetic field was force-free in the originamigﬁsgrﬁhgig:ﬁgtv?l;\%ei?Cveet;ckle ngﬁggg dthe Fermi fields is
(local) Lorentz frame, it is not surprising to find that this J y '
expression exactly satisfies Bd..2), , e?
kL < ? eB, (31])
j“F,,=€%,0(E-B)=0, (3.3 K

that is, when the perpendicular momentum of the wave is too
small to excite individual fermions into higher Landau lev-
els.
There is a physical distinction between this model for an
MHD fluid, and the picture advanced in Sec. Il, that deserves
to be emphasized. Consider, for example,Aamode with
1 e? vanishing space charg«l(By,) exerts no net force on the
—— F*F, 4+ — 0e*7P7F  F | (3.4 Fermi zero modes propagating in the same direction as the
4 4 wave, and does not perturb them. Modes of enelfly
<(eBy)? propagating against the wave receive transverse
momentump, /|| = —2ie(w|&|/By) 5B/B in the direction
. . of SE. Even for a large amplitude wave, this vanishes as
f dz(920=J dta,6=0. 3.5 ~€’w/(eB)*?in the low frequency limit that we are explor-
—® —® ing. In this case, the MHD wave can be thought of as a
vacuum electromagnetic wave superposed on a static back-
These conditions are equivalent to ground magnetic field and a static Dirac sea.

as long as the MHD condition is satisfied.

Expression(3.2) is formally equivalent to the current den-
sity induced by a spatially variable axion field in a back-
ground electromagnetic field, and indeed follows from the
action

as long as

J’ dzd,( 6B, y):f dtd,( 5B, y)=0, (3.6 IV. EQUIVALENCE OF THE TWO FORMULATIONS:
—% ’ —% ' COLLISION OF TWO ALFVE N WAVE PACKETS

We have presented two distinct formulations of magneto-

which corresponds to a vanishing net transverse displac%- drod ics in th i lativistic limit. The basi
ment of the background magnetic field lines across an’Alfve ydrodynamics In the extreme refaivistic fimit. The basic
variable in the first formulation is the displacemefit of

wave packet. An additional surface term is present otherwise . : . g - .
representing a net charge on the Alivsave packet coupled éach fluid particle from its equilibrium positiof@and time.

to a background gauge field. The effect of this term on WaVél'he second formulation involves the electromagnetic field

interactions is examined in Secs. IV and V tensorF#” as well as an axionlike field that acts as a

The 6 parameter in the actio8” has a simple interpreta- Lagrange multiplier to enforce the MHD condition. Let us

tion as a Lagrange multiplier which enforces the MHD con-"°W demonstrate the equivalence of these two formulations
dition: by calculating the collision between two Alfwevave pack-

ets + and — propagating in opposite directions aloBg.
aL We emphasize that the interaction that we now calculate
—=0=¢"""’F, F, ,=—8E-B=0. (3.7  is dynamic and will be related to third-order terms in the
90 MHD Lagrangian. Colliding Alfve waves also undergo ki-
nematic interactions that involve a mixing between the trans-
verse positions of the field lines in Lagrangian and Eulerian
SWe choose a normalization different from the conventional onecoordinates, as has been demonstrateldjrfor a nonrela-
by a factor 272 tivistic magnetofluid. The perturbative expansion of these
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additional kinematic interactions breaks down when the JEF  gEM . JEF  gEM .
transverse displacement of each field line is free to undergo a 7 = a0 TO(L); 20 9z +0(§3), (4.9

random walk alongB,. While analogous interactions are

also present in the relativistic regime, we are able to choosgg e sketch in Appendix B. In this gauge, the distorted

a temporal gauge in which they vanish, so that only the trugnagnetofiuid in the interaction region is incompressible in a
dynamical interactions survive. An additional difference be-fo,,r-dimensional sense.

tween a relativistic magnetofluid and a nonrelativigiic-
compressiblemagnetofluid is that in the relativistic regime,
the lowest order dynamical interaction is third ordegin(as
compared with fourth order in the nonrelativistic regif3g.

The displacement vectorg’ (z—t,x,y) and & (z+t,
X,y) (or, more precisely, their derivatives with respect to
z,=z+t andz_=z—t) provide a covariant generalization
of the Elsasser variables

b

"By Va

+ L
N

(Va=Bo/v4mp)

u:_

By w

4.1

commonly used in treatments of nonrelativistic MHB.g.,
[18]). We further choose a gauge in whigh =¢% =0 and

J,=1 when the wave packets are well separated. The corre-

sponding time-dependent magnetic and electric fields are

6B.=Bof.; OE.=+By(£.X2), (4.2

where

1
f;zi((?zl(?t)ftEﬁigi . 4.3

When the waves overlap, longitudinal displacements are
wave

excited, as well as a new transverse
{6B, ,6E, £ }(z,t,x,y) whose time evolution we now calcu-
late.

Substituting B=By+ 6B, +6B_+6B,, E=6E, + SE_
+ 6E, into the induction equation and the equation of motion
(2.20, one finds

V X 8E,+3,6B,=0, (4.9

and

—2V (6B, -8B_)—2(5B,-V)SB_—2(5B_-V)5B, .
(4.9

These two equations govern the collision of two Alfve
wave packets to second order dB/B.

The only technical subtlety here is that expresgidil)
for F,,, involves derivatives with respect to the unperturbed
coordinatesr andz,, whereas Maxwell’'s equations involve
derivatives with respect to the perturbed coordinatés

Even though expressiof2.11) directly solves the induc-
tion equation, the gauge choidg=1 leads to constraints on
& These are found by substitutigg= &% + &~ + &/ into ex-
pressions(2.13 and (2.14 for B and E and then into the
induction equation. Keeping all terms to second ordef.in
(note that¢, is itself second order this gives

(£L-9)€, — (& - NE+(9-£1)¢El —(9-§1) &

1 -

Since the transverse componentstofare linearly indepen-
dent, this requires

9-£4=0-§-=9-§=0 (4.9
together with
(§L-9)6,=(£L-9)¢-=0.

Here, the derivative is with respect to th@erturbedcoor-
dinatesx=x,+ &, whereasl, involves derivatives of* with
respect to theinperturbedcoordinates<,. Nonetheless it is
easy to show, as we do in Appendix B, that conditi¢hs)
and(4.9) are equivalent to the conditions

(§-90)€=0,

4.9

dg- €=0; (4.10
where @) ,= d/ ixyy . Equationg4.10) in turn guarantee that
\]4: 1

Although 9-¢.=V, - £,.=0 for the noninteracting Al-
fvén wave packets, longitudinal components are required to
enforce equationg4.9 when two A waves overlap. The
unigue choice which also satisfies E4.9) is

(k). (£1)
(o= ),

(4.1)

Ks- &

(€=~ 1), ko),

in a Fourier representatioft*= &se™ <" with k#=k*+k/*
andk{‘=(w,0,0 k,). Equation(4.11) determines the fluctu-
ating components df andz in the interaction region.

The equation of motion now takes a much simpler form.
ExpressingB andE in terms of&#= ¢4 + &% + &, and mak-
ing use of the constraintg.8) and(4.9), we obtain

(F—02)&—V (V. -§)=2V (¢.-€). (412

This demonstrates that the physical components,oére

These derivatives are equivalent for the noninteracting waveurely transverse. Without loss of generality, we may ex-

packets, but one generically finds that r and z+# z; when

press & as the sum of irrotational and solenoidal vector

two MHD modes overlap. Nonetheless, it is possible tofields, i.e.,

choose a temporal gauge in whidh=1 and the derivatives
remain identical to a high order iy

§=V. . Xy2)+V x=&A)+&(F). (413
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Here s and y are scalar fields, which we have respectively L B

identified with theA and F modes produced in the interac- =g 2 [k XB_+k XB.];

tion. Equation(4.12 now becomes 0

(=D &EA) +(F =V E(F)=2V (&, -&1). Py 5.[kfx6B_—k XoB,]. (4.2
(4.14 Bo

OperatingV, x on both sides of Eq4.14) shows that only A new longitudinal electric-field enforces the MHD condi-
the F mode is sourcedd™ +A~ < F. The main advantage of 10N
this formalism is that it allows us to separate the gauge- 2
dependent longitudinal componentséthat are excited dur- SE;==[6B,.xX6B_]. (4.22
ing the interaction, from the physical transverse wéytat Bo
survives asymptotically.

Now let us repeat this calculation in the axionic formula-
tion of MHD. To begin, it is useful to rederive the sheared
modes and evaluatgexplicitly. We look for a single fourier

mode 8B, sExe” " The gradient of¢ can be decom-
posed as

Substituting K#=K#%+K*, g*9=9"9, and E=JE,

+ 8E_+ SE, into Eq.(4.17), and then takingx, leads to the
following time evolution equation for the transverse field
components:

‘92(5BI)J__VL5BIZ+2X‘9I5EI:B£ [V, (6B.-6B_)

=K H(K)+ik 508 Kn ", (4.15 0
—(6B_-V)éB,—(6B.-V)éB_]. (4.23

where the first(spatially constantterm depends only on

(some components pk*. The absence of a constant current This is equivalent to Eq4.5).

or charge density impliek®=K?=0. Then one has

V. OTHER WAVE INTERACTIONS

;0
;=V0-B=|K-5B+|k25080, (4.19 There is, in addition to the three-mode interaction be-
tween twoA modes analyzed in the last section, a three-
and mode interaction betwee modes,
F(1)+F(2)<~F(3). (5.0

j - . .
—=—(0B+VOXE)=—iK, XE+iwdbB,, (4.1 L. . . C
e’ ( ) + @ 0, (417 This is easier to calculate, since none of the participating

. . modes supports an electric current. The incident waves are
where we defineK, =K —K,z and make use of the con-

straintswdB—k X 6B=0 andk- 6B=0. 6B1 ;= BC0S 0, 5€] »;

This shows thaj* is precisely first order idB. Further-
more, the induction equation and the MHD condition to- A . A
gether guarantee th&: B,=0, and soj is parallel toB,. 0E12= 55 01, B1,2X2=Bo(£1,2}2), (5.2
(We could have guessed this at the beginning, since the cur- '
rent carrying Fermi zero modes propagate parallel to the urwhere@ is the angle between the wave propagation direction
perturbed magnetic field; but the result is more geneR#d.  and the background magnetic field, a&ig &k-x—t). The
nally, dividing k into components perpendicular and parallelMHD condition is satisfied in the zone where the waves

to 6E, and making use of the Maxwell equation overlap only if a third, interaction component to the electric
j=i(k, setkyse)X B+iwdE=ik, ;£X B, (4.18 fietd,
5B, X 6B,
one sees that the Poynting fI&¥E X 5B lies parallel toB,. OBI=~ B cosf.cos g, (COS 01— COS b)), (5.3
To obtain the shearedl modes, it is sufficient to setf=0 ovER TR T2
and take is present. The equation of motiq@.20 for the new fast

. mode then becomes
Ki=(Ki), =*x(zXks). (4.19

Bo[ (VX 8Bg) X 2— 9, 0E3X Z]
Now consider the interactions between two modes

{6B, ,K,} and{6B_,K_}. One observes new interaction _ C0s6,—Cos b R
terms in the expression for the charge density ~ C0S6,C0S 6, (9B, X 9B,) X 2. 4
Aj° As with two colliding Alfven waves, the gaug,=1 can

e iK-0B_+iK_-6B, . (4.20 be imposed by shifting the displacement functions in a man-

ner analogous to Eq4.11),
In order to cancel these terngand the corresponding terms K K
in j?) it is necessary to introduce a fluctuating longitudinal 8¢=— 2_’51 ki, 8é=— 1_’52 K, . (5.5)
component 0f*6, ky-kz ko Ky
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(This givesk,- 6¢,=k,- 6£,=0 for F modes and charge- the resulting Lagrangian is exact to fourth ordegjiecause

free A modes withk?=0.) The equation of motioK5.4) then  the gauge choicé4.11) is precisely equivalent td,=1.

becomes in Lagrangian coordinates The various mode interactions can now easily be read off
from the action. The third order terms represent the three-
mode coupling45.1) and

2_ 92 £,—V (V-
(05— 07)&—V (V- &) AT +A"SF: (5.9

iz ety etz and the fourth order terms represent the two four-mode cou-
=(C0os 0;—c0s 01) [ £(&1)"— &1(€2)°], (5.9 plings

AT(D)+A (D)—AT(2)+A(2), (5.9
to second order i ,. The right side of Eq(5.6) vanishes
when ;= 6, and the waves propagate at the same angle witgnd
respect tdB, (whether or nok,; andk, are in fact alignef AT (1)+A (1) F(L)+F(2). (5.10

This classical process is the magnetohydrodynamic ana-
logue of the QED process of photon splittifid]. There are, The three-mode coupling®.8) and (5.1) are nonvanishing
nonetheless, a number of distinctions with photon splittingpacause thé& mode hast?#0 (except for the degenerate
First, the spontaneous rate folFamode to split into twad caseklBy).
modes vanishes, as tfiemode is an exact, nonlinear solu-  the corresponding conservation equations for the longitu-
tion to the MHD equations. Second, the polarization selecgjng components of energy-momentum are
tion rules are different: whereas all the participatthghodes
have electric vector perpendicularBg, the allowed photon o, to_=wg, K+ki=w,-w_=ki (511
splitting channels in a vacuum ate—_1 +|l and L <+l _

In a dense plasma, the selection rules are obtained by intefor reaction(5.8)
changingL and|.” (Here, L andl denote the orientation of _ _
&B with respect taByxK.) or(Dro (D=0 (2)to(2);

When considering all possible interactions betweenihe K2 Z 4y —12 z

. . - : 1+k“Z(1)= D-w_(1)=k%(2)+k%(2

modes and= modes, it is useful to simplify the higher order Dk (D=0 (Do (D)=k(2)+k(2)
terms in the Lagrangian by imposing the constraint of four- =w,(2)—w_(2) (5.12
dimensional incompressibility. We follow the Lagrangian
formalism developed in Sec. Ill. Although the general formfor reaction(5.9), and similarly for reactior{5.10
of the action(2.15 is fairly complicated due to the presence  The third order terms 8’ require further discussion. We
of the Jacobian factal,, we have seen that, in practice, it is might also consider the following three-mode interaciich
possible to choose a time-slicing correspondingte 1. In ~ [5)):
this gauge,

gaug A*(1)+A (1) =A*(2)+A (1), (5.13
in which only one of the Alfva wave packets is distorted

S’:f d*%o[ (9,&X 2)2_((?205)2_2((775(92052_ angaZ()gt) QUring the collision. Unli!<e the Fhre('a—mode couplikg.8)
involving the F mode, this reaction is not resonant unless

F (9 EXD) - (9-EX . E)—20 89, &2 A7 (1) contains a zero-frequency component(1)=0 [2—
(0:6%2)-(0:6X 9558) £ (928) 4]. The third order terms in Ed5.7) are proportional to
t 2
+205,8(9:8 97,8) +(9,6X 05 8) expli[kt (1) + k™ (1)—k™(2)]-x} (5.14
_(‘9T§t‘920§_ azoftafg)z]- (5.7) and vanish in the spatial integration unless the resonance

condition is satisfied.
The F mode is absent in an incompressible, non-
Note that the assumption of four-dimensional incompressrelativistic magnetofluid, as are dynamical three-mode cou-
ibility implies that £?#0 in a region where two or mor&@  plings involving Alfven waves in the Lagrangian description
waves are interactingSec. V). The correct interactions are [3]. Dynamical three-mode couplings emerge in the nonrel-
obtained by substituting into E5.7) the modified wave ativistic case when the assumption of incompressibility is
displacement functiongt.11). It should be emphasized that relaxed. Furthermore, in the nonrelativistic Lagrangian for-
malism of[ 3] the longitudinal component @f excited during
a collision betweerA modes 1, 2 has a wave vectork;
"Photon splitting is, however, of limited importance in this sec- T K2 and is expressed indirectly in terms of the initial and
ond, plasma-dominated regime: if the magnetic field is strongfinal transverse wave displacements through the incompress-
enough to induce a significant splitting rat®> 10'2 G) then the  Ibility condition J3=1. By contrast, in the relativistic case
dielectric tensor is dominated by the plas(‘m{her than by vacuum the additional freedom of choosing atime slicing allows one
polarization only at very high particle densities, so high that pho- to pick longitudinal components separately for the two inci-
tons lose energy predominantly via the Compton recoil rather thalent waves, with the result that the propagating interaction
by splitting [20]. component, is purely transverse.
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To demonstrate that the simplified Lagrangi&ni7) does  plings differs from that obtained by Ng and Bhattachaffge
give the correct dynamics, we consider once again the colliand Goldreich and Sridhd6], due in part to our different
sion between twoA modes. Substituting Eq(4.11) for  treatment of boundary conditions. The simplest way to excite
amogt*z and expressing the derivativesandazo interms of A modes in the box is to move its boundaries. This implies
light-cone derivatives. , the third order terms in Eq5.7)  that energy can be transported into the box from the medium
become outside. Self-consistency demands that energy also be trans-

ported out of the box; i.e., that the reflection coefficiBnbf

waves incident on the boundary is less than unity. We as-

S;= —4J d*%ofd, & [(9_& V)El+d_&[(9. & V)E]. sume for simplicity thaR~  and that the energy flow into
(5.15 the box balances the flow out of the botowever, the

time-averaged positions of the magnetic footpoints remain
As for the second order terms Bl (whose variation gives fixed, except for an initial transverse shift. An explicit real-
rise to the kinetic terms for the interaction componépt  ization of this model is a parallel series of boxes separated by
one can self-consistently choose the ga&je0, since¢/* is  partially reflecting membranes. By contrast, Goldreich and
the linear superposition of modes that asymptotically Aare Sridhar[6] assume that the magnetic field lines are pinned
modes andE modes. In this gaUgeZzO&S: -V, &, and rigic_jly at th_e walls of the box, with _the turbulence be_ing
the second order terms become excited by internal body forces. This boundary condition

forces 3-mode coupling&oth dynamical and kinemajit¢o

vanish near the outer scale, and in turn reduces the overall

S;= —J d*xo[40. &, -0-&  + (V.- & 1)%]. cascade rate.
(5.16 We assume that the turbulence is injected with some char-

acteristic wavelength 2/k, smaller by a factoN than the
Varying S;+ S with respect to | , one regains the equa- sizeL of the box. When.th-e boundaries move, thig is directly
tion of motion (4.12) for & . related to the characteristic frequency of the motions. he
power spectrum is then cutoff below a wave numbeiNZL
in the absence of a long term, secular displacement of the
magnetic footpoints. By contrast, the transverse positions of

Now let us consider an ensemble of Alfvevaves in a the field lines are assumed ﬁﬁ] to undergo a random walk
box. The waves are injected at some outer scale and devel@pong the background magnetic field, with this random walk
a range of wave numbers. In general, the shape of the pow&¢eing forced to vanish at the boundaries. This leads to a
spectrum at a given wave number depends on whether tH8uch broader power spectrum that is cut off only kat
coupling between two Alfue waves isveakor strong—that ~ =2w/L. These differing assumptions about the excitation
is, whether the fractional distortion suffered by a wavemechanism lead to significant differences in the cascade scal-
packet is small or of the order of unity. A similar effect ing, because thé&, power spectrum is conserved during
occurs in a nonrelativistic MHD fluid, as has been analyzedveak collisions between Alfwe waves. Redistribution of
in [3,6]. When the coupling is weak, conservation of energypower occurs neither during the dynamic interactiombich
and longitudinal momentum guarantee that each wave indipreservek, as long as the couplink, & is weak, nor during
vidually conservesw and k, during a collision[21,3], so  the kinematic interactiongwhich preserve thek, power
collisions cause onlik, to increase. In both weak and strong spectrum even while modifying thk, power spectrum
coupling regimes, the cascade is anisotropic with wave packsuch redistribution would occur if the sides of the box un-
ets becoming increasingly concentrated in the dimensionderwent some sort of gradual plastic creep that caused a
perpendicular td,. Previous attempts to derive the power secular displacement of the field lines. In the application to
spectrum of nonrelativistic MHD turbulen¢@2,23 did not ~ strongB neutron stars, this is a second-order effect which we
properly account for the anisotropy of the cascade. neglect.

Collisions betweeA modes generaté modes as well as
higher wave numbeA modes. This effect cannot be ne-
glected in the relativistic regime, as it can in the nonrelativ-
istic regime by imposing the assumption of incompressibil-  1he shape of the power spectrum depends ortter of
ity. Nonetheless, the three-mode coupling between twdhe interaction between colliding Alive wave packets
colliding F modes calculated at the beginning of Sec. V isé+(Z-,X.) andé_(z, ,x,), as well as the strength of the
smaller in amplitude by a factd /k, than the three-mode co_uplmgklg.. This is best seen by mtegratlng.the time evo-
coupling betweer modes calculated in Sec. IV. This means !ution equation(4.14 for & overz,=z+t at fixedz_=z
that in the large shear regime, the cascade proceeds almgst- In the temporal gauged.8), (4.9) only the dyanamical
entirely via collisions betweeA modes. The spectral index interactions betweer modes survive. The change &
of the A modes(andF modeswithkg~k, ») can be obtained integrated over the collision is equal to th_e _asymptot!c value
by considering thed modes in isolation. Note, finally, that of ¢, atz andt large compared to the collision coordinates
Alfvén wave emission by vibrating neutron stars is expected
to be in the large shear regime, wity /k,~c/v,~300.

Here,v ,~10% cm s !is the characteristic shear-wave veloc- 8as is appropriate for the boundary between the magnetosphere
ity in the crust[24]. and surface of a neutron star with a very strong magnetic field

The scaling we derive in the presence of three-mode cou~ 10— 10" G [24].

VI. SHEARED ALFVE N CASCADE: SCALING

A. Strength of the mode coupling



3228 CHRISTOPHER THOMPSON AND OMER BLAES 57

1 With our boundary conditions, the net transverse shift of
681 (z- x1)=5 (= ) &(Ztx)  (Zt—), the field lines across the box is comparable in amplitude to
6.1) the instantaneous displacement at any point in the box

AE(L k)~ &(k,). (6.8)

, Here,g(kl)~kz_158(kL)/Bo. The net three-mode distortion
68, (z-,x,) of the wavepacket as it crosses the box is then

1 o¢'
Y f dz, V [d-&:(z- X ) 3+ €6-(Z4 . %x,)] ?Nklf' (6.9

namely,

1 The three-mode distortions are substantially uncorrelated be-
== 5 Vild-&1(z- x)-AE-(x))]. (6.2 tween successive crossings of the box, because the shape of
the wave packet is modified at each reflection. In a steady

[Following the discussion in Sec. IV, this new mode can beState, energy transmitted out of the box at wave nurkbes
regarded as a current-fréemode(k, =0), or as arF mode  replenished by the injection of equal energy at the same
propagating alond,.] This depends on the transverse dis-Wave number. The wavé¢ then grows as a random walk,
placement of the background magnetic field lines across thand the damping time is
wave packet

tdamp

Pk £) 2 610

Agf(xl):f dz,d,& (z4 X)) (6.3
o This compares with the four-mode distortion, which is
in a similar manner to the nonrelativistic cd&d. ~[(k, /k,)(8B/Bo) 1>~ (k, £)* over one (paralle) wave-
In sum, a left-moving wavé, suffers a fractional distor- length and accumulates in a random walk of
tion

N el (6.11)
5 U = .
%~|kj+kimg (6.4) 2m
+ collisions across the box,
whenA§_+#0 and the coupling is weak. This corresponds to "2
the three-mode reactioA™(1)+A~(1)—A"(2)+A(1). (ﬁ) ~N(k, &) (6.12
Defining the dimensionless coupling parameter & -
|k +k|\[oB_ The corresponding damping time is
¢ =l riclie - ] s
|kz | BO t 1
_damp = (6.13
the condition for weak coupling can be written as L Nk, O* '
| 5E | |[Aé_| B. Cascade scaling
| ~i- & ©9 Notice that the three-mode coupling dominates in strength

o . _ o at the outer scale, unless the waves are strongly cougled (
The distortion of the right-moving wave takes a similar form. =k £~1) or N is very large. Assuming that this is not the

When A¢. is small, the four-mode couplingA™(1)  case, the constancy of the energy flgwer unit volume and

+A™(1)—»A"(2)+ A" (2) dominates, and time) implies that
5¢! k, £)2
||§,+|| ~Z. (6.7) ( LNg) (B)?k,~ const, (6.149
L
This result may be obtained by substitutingg, ~(k; ~ Which in turn implies
+k ) (€L - €2) into the right side 0f4.12). K A& K |12
Now let us estimate the net distortion suffered by an Al- ¢(ky) - &k N(_L> (6.15
fvén wave packet as it crosses a box of sizeThe three- &o A& Kio

mode distortion(6.6) depends linearly on the net transverse
shift A¢(L,k,) of the magnetic field lines across the box
(which we fourier decompose in the transverse dimengions . ;
This component of the distortion therefore depends crucialIJiur_rggdﬁ_gouD#n%S become gon;parable in strength where
on the boundary conditions at the edge of the box. It does no(t 18) » Which corresponds 1o

vanish if the walls of the box transmit wave energy, whereas K

i[t ?oes vanish for the rigid boundary conditions assumed in k_L~N71§62> 1. (6.16

6]. 10

while the cascade is weakly coupled dgd N~ const.(Here
the subscript O refers to the outer scalEhe three-mode and
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Here o=k ¢&o is the coupling parameter at the outer scale. **
At wave numbelk’, the four-mode coupling is still weak, k—*NNs/Z- (6.29
L
[KIEKDIP~N" (6.17

. . _ We can summarize as follows. When the three-mode cou-
At higher wave numbers, this weak cascade steepens infling between colliding Alfve waves discovered by Ng and
one dominated by the dynamic four-mode couplings, beBhattacharjed5] is taken into account, the cascade divides
cause the cumulative effect of those couplings grows as thgto three regimes: an outer, weakly coupled cascade driven
waves transit the box.Constant energy flux now implies by dynamical three-mode interactiohsith scaling(6.15 at
(k. £)*(8B)?k,~const, and we recover the scaling derivedy, <k <k']; an intermediate, weakly coupled cascade

in [3] for nonrelativistic Alfven turbulence driven by dynamical four-mode interactiofimith scaling
s (6.18 atk} <k, <k!™]; and an inner, strongly coupled cas-
(k) ~(k_i) (6.19  cade[with scaling (6.20(6.23 at k, >kI"]. WhenN~1
&KkY) kT ' the outer weak cascade blends directly into the inner strong
cascade.
This can be rewritten, using E¢6.16), as We emphasize that these results apply alsodiorelativ-

istic magnetofluids. In their analysis of the nonrelativistic
é(k,) ) L\ 28 incompressible case, Goldreich and Sridh@} have also
T ~N"Y&; US(k_) . (6.19  found three cascade regimes, but with dynamical 4-mode
€o L0 couplings dominating at low wave number, and kinematic
3 3-mode (and highey couplings dominating at intermediate
We therefore haveok; ™ and the cascade must eventually ave number. The basic reason for these differing conclu-

become strongly turbulent(-1). sions lies in the treatment of boundary conditions and the
At still higher wave numbers, assumedk, power spectrum, as discussed above.
k. >k} "=k, ofo N2, (6.20

C. Damping time

we will assume that the strong cascade is critically balanced These results have important implications for the damping
with the cascade time being of order the wave period angate of the wave turbulence at the outer scale. Let us suppose
{=1 (see[25] for a detailed justification of this in the non- that waves are suddenly excitéfdr example, when the crust
relativistic casg Again assuming a constant rate of energyof a neutron star fractures, sending an Affvpulse in the

cascade, we find that star's magnetosphereThen the damping time at the outer
fk,) e scale is
i o bl L
L L ~min 5, 7z (6.295
L (k &) N(k.§)

and
2B 6.2 In the presence only of four-mode couplingg,m,increases
(6.22 rapidly with decreasing wave amplituder sheay; whereas

the dependence is much weaker when the three-mode cou-
The corresponding scaling of the magnetic perturbation is pling is properly included.

N173 v

o k0 ( k,
Kio

0y Ky

SB (5% 8By [k, |\ 6o
B N® B ko (6.23 VII. APPLICATION TO ASTROPHYSICAL X-RAY
SOURCES

Notice that : :
Strongly magnetized neutron stars and accreting black

holes are plausible astrophysical sources of relativigiic
_ _ o mildly relativistic) Alfvén turbulence. For example, a large
%P. Goldreich(private communicationhas noted that one should pulse of Alfven radiation is emitted when the rigid crust of a
in principle include kinematic couplings between waves that ariseheytron star fractures, or when a magnetic flux tube rises
due to mixing between the Lagrangian and Eulerian positions of th‘i’ouoyantly out of an accretion disk close to the last stable
field lines[6]. At fourth order, these kinematic couplings would be orbit surrounding a black hole. In such a situation, the rate of

larger in magnitude than the resonant four-mode couplings consid[- ;

. » o urbulent energy release,, can be very high, so that the
ered hergby a factorN?) if the positions of the field lines were correspondin ggom actngss within a r?ildiﬁg
free to random walk across the box. However, as discussed in the P 9 P

introduction to this section, this possibility is eliminated by our

assumption that théme-averagedoositions of the field lines re-

main fixed at each side of the bdfollowing an initial Alfvén /o = Lwor

. “ W 3/ (7-1)
impulse. 4amgc>/
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exceeds unity® There are, in sum, three principal modes of MHD wave
This has three important consequences. First, the chargeésmping in highly compact astrophysical sources: first, adia-
needed to support the fluctuating magnetic field at the outebatic expansion(e.g., leakage onto open magnetic field
scale themselves generate a surprisingly large scatteririmes); second, Compton drag at lows in a dense photon
depth; second, the turbulence can be damped effectively biyeld; and, third, a nonlinear cascade to high wave number.
Compton scattering of the ambient radiation fi¢lf€omp-  When the cascade dominates, the resulting radiative signa-
ton drag”); and, third, a turbulent cascade raises the dampingure depends strongly on the scattering depth generated self-
rate even further by increasing the minimum charge densitgonsistently by the waves.
needed to support the fluctuating magnetic field.

This minimum charge density can readily be converted to A. Wave damping in an optically thick plasma:
a Thomson scattering optical depth application to cosmologicaly-ray bursts
% First let us consider wave damping in a plasma that is

(7.2 very optically thick to scattering. What dissipative process
determines the inner wave numbe(i) in this regime? On

the outer scalé, the photon and electron fluids are effec-

1 tively coupled by Compton scattering, but at sufficiently high
(SGR burst(energyEg=10" erg then wave number the scattering depth(¢) across the wave

_ap displacement becomes small enough that the moving elec-

) (7.3  tron fluid suffers significant drag. Since almost all the inertia

m is carried by the background magnetic field, the time scale

KR\ Eg \¥4 7/
TT"‘0.0 A~ T
300/\10" erg 110 k

i for Compton drag is obtained by dividing the drag force per
Here we relatesB to the total wave energl¢g and confine- hit volume 4 omng(velc)2U ,C into the energy density of

ment volume /° and estimatek, /k,~c/cs, where cq the waves
~10° cm s tis the shear wave velocity deep in the crust.

o T T e

If the wave energy is sufficient to power a softrepeater

Much larger scattering depths are generated by the cas- (6B)? ;
cade, since the current density scales with wave number as tc_(4/3)oTne(ve/c)2U < (7.7
j~k, oBock% k(% K2, (7.4 Here, @o/c)?=(5B/B)? is the mean square oscillatory

. ) speed of the electrons. Comparing with the cascadekait
in the outer(three-mode dominatgdveak cascade6.19;  strongly coupled Alfva waves, this is

the intermediate (four-mode dominated weak cascade

(6.18); and the strong cascadé.23, respectively. The inner 3 /B2 (6B/B)kZ
scale of the cascade lies at a wave nunigér) where the thkz=§ (U—) m
cascade is strongly coupled, under a wide range of condi- y /T z

tions. This implie_zs thak, 6B~k,B and, assuming that the Compton drag begins to be effective at a wave number
waves are marglnally charge stgrved at the inner scale, thgnere the photon diffusion time [ 7r(£)]¢ across the wave
scattering depth is related in a simple mannek0), displacement becomes less thak, *. This corresponds to

(7.9

_1~
i TT(/)( B |-t . [7r(&)] "'~ (B/B)y, and
i)/~ —— .
z 2 agn BQED (5B)§
. ctek,~ —— (7.9
Here a.y, is the fine-structure constant aBgep= mac3/eh U,

=4.4x 10" G. This has possible applications not only to : :
SGR’s but also to stellar-mass BH coronae. At this wayePt 1€ appropriate wave number. Notice i, /5Bo~

number, resonant wave-particle interactions are absent & “Z6(K;/Ky) ~Y?<1 [from Egs.(6.22 and (6.23]. We
long as conclude that the cascade is cutoff effectively by Compton

drag when the photon density has increased to a fraction
k(i) _3( / )1 T ( B

eBimec® 2|/

Y

(6By)2 N

Aem

-2
< 2
BQED> <1. (7.6 U (K1 oéo) (7.10
Here / =#i/mc=3.8x10"" cm is the Compton wave- ¢ e MHD wave pressure at the outer scale. It is only
|ength of the electron. This condition is eaSin satifised in theduring the ear”est phase Of SUCh an Opt|ca”y th|ck Cascade
magnetosphere of a neutron star, and is marginally satisfie@r at low optical depths in the presence of a weak back-
in the magnetic corona of a black hole accretion disk. ground photon sourgethat the cascade continues to a high
wave number where the waves becomes charge starved.
This process should provide effective heating at ex-
10This quantity equals the optical depth to electron scattering’€mely high scattering depths. For example, a cosmological
along a radial path, in the case where the plasma is composed offay burst sources involve energy release at a tafe
mildly relativistic electrongand positrons In this section we retain  ~10°* erg s'1, which in the most plausible models occurs
factors ofc for clarity. within a radius less thar- 10— 100 km.



57 MAGNETOHYDRODYNAMICS IN THE EXTREME . .. 3231

The corresponding compactness is enormeys- 10'°. first injected on closed magnetic field linéss in the softy
Moreover, if the source contains a neutron star or neutromepeater model of20]), they will couple to internal shear
torus (orbiting a black holg then this energy must be trans- waves which transport energy throughout the crigst].
ported by ordered Poynting fl& wound-up magnetic field Since the waves take many wave periods to leak (the
to avoid excessive baryon loading of the outflow. This can bdraction of open field lines being smallone can approxi-
achieved if the source has a rotation peried0 ° sec, and mate the wave amplitudéB, as being constant over the
a poloidal magnetic field of strength 10'° G [26—29. Dy-  surface of the stal and estimate the Alfwewave luminos-
namo action naturally generates magnetic fields of thidty as
strength in a variety of triggering models, including )
accretion-induced collapse of a white dwarf, binary neutron 2 o2 (9By)

: La~26 C. (7.13
star and neutron star-black hole mergers, and failed Type Ib A open ™ 8
supernovad26,30,29. The alternative process of neutrino
annihilation into pairsv+v—e*+e~ ([31], and references Here fqpenis the polar angle of the last open magnetic field
therein induces a matter outflow that is larger than the tol-line, and we approximate the external field near the star as a
erable value by a factor 10P for Lo-~10" erg s [32]. dipole with polar flux density,. .

The ratio of photon |u|’ninosi'[y_7 to (ordered Poynting The width of the bundle of open field lines is determined
luminosity L at the base of the wind is a key parameter inby the rotation periodP, in the usual manner, when the
models for the spectrum involving Compton up scattering byAlfven wave pressure is very sm83]:
hotspots in an expanding relativistic MHD wifid9,32. The
mean photon energy emerging from the flow (&,) 2 ZZWR* = & (7.14
~Lp/N,, when the baryon loading lies at the critical value e cP R
where Comptonization is effective and adiabatic losses are .
small. Near the base of the flow, the photon gas is very closElOWever, above a critical Alfve wave pressure a larger

to black body, and S¢E,) is directly related to the effective fraction of field lines are forced open by the pressure of
temperaturel =L /o AmRec at the light cylinder Alfven waves. To estimate this fraction, one balances the
€ Y '

dipole magnetic pressure with the wave pressure

L 1/4 P —-1/2
<Ey>~Teﬁ=o.8(r.Zo) 107 S) MeV. La  BRa) .19
(7.10 4WRiC 87 ’
This is remarkably close to the observed range of spectraind then notes that
break energies, after allowing for cosmological redshift. . U4
The loading of the outflow by baryon rest energy is toler- 2 Ra| ™" [ 2La (7.16
ably small only if L7<1O*2Lp at the neutrinosphere. In open | R, BZR’c )

other words, a key requirement of this model is that the wind

be reheated fromh ,<Lp to L, ~Lp well outside the neutri-  Since 6., depends implicitly orl ,, one can combine Egs.
nosphere. This is plausibly accomplished by the sort 0f7.13 and(7.16 to obtain

MHD cascade just described. The time scale for convection

and/or differential rotation in the source is comparable to the > 5B, |%*
~10"3 rotation period[26], which implies that the foot- Ooper™ B, (7.19
points of the external poloidal magnetic field move around
rapidly enough to excite strong turbulence in the externabnd
field. The resulting photon luminosity should be comparable
to the wave luminositywhen the wave coupling, £=1) so 4 53*) 83 22
LA~0. BiR:c. (7.18
that B.
L, [6B)\? 21 In this regime, the neutron star loses energy primarily by
Lp | B (712 Alvén wave and particle emission, ambt by rotational
torgques.
(these quantities being evaluated at the light cylinder Nonetheless, the usual magnetic dipole energy loss for-
mula for a rotating neutron star is modified, because the the
B. Leakage from neutron star magnetospheres poloidal field scales as

Alfvén waves injected into the magnetosphere of a neu- R\ "2
tron star can either damp near the surface of the star, or B(R)~B(RA)(R—) (RA<R<Rye) (7.19
escape the region of closed magnetic field lines, thereby A
driving a relativistic outflow. Waves trapped near the stellar
surface can undergo a turbulent cascade. We examine these
two damping mechanisms in succession, and indicate thellgecause the transmission coefficient between crust and mag-
ranges of wave luminosities over which each dominates. netosphere depends on the strength and orientation of the surface
Alfven waves propagate along open magnetic field linesgield B, , §B, will in fact vary by a numerical factor of the order of
and their energy is lost from the star. Even if the waves arenity.
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in between the Alfva radius and the light cylinder. This Note that the stronger dependence &R, than L, [Eq.
increases the field strength at the light cylinder over the usudl7.18], as well as the additional dependencelan’k,. A
value. The rotational energy loss rate also increases to  plausible value for this last parameter~s300[24].
Alternatively, if the Alfven wave packets are harmonic
Lsq~0.1B%(Ri)RE.C~0.1LA(QRA/C)2  (Ri¢>Ry), with negligible net shift, therL & (5 instead ofZ3, and
(7.20  expression(7.24) is modified to

whereQ) =2=/P and the normalization is estimated from the 1(8B.\%/k, (R.)| %/ vR

standard magnetic dipole formula.g.,[33]). Although Ly o~ = (_*) ( L ) (VO *)BZch. (7.25
remains smaller thah, , the rotation period decreasespo- 6\ B, K c /)T

nentially with time in this regime

dinQ LLa (Ra
TR e
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emitting particles surrounding SGR 1806{3%] is powered scribed here was completed while the authors were visitors at
by such an Alfve wave-driven wind[20,35. This model the Institute for Theoretical Physics during the fall 1995 pro-
therefore suggests that the rotation period of SGR 1806-28ram on Astrophysical Gamma-Ray Sources. The ITP is sup-
may be far longer than the 8 sec period of SGR 0526466 ported by NSF Grant No. PHY 94-07194.
source of the very bright burst on March 5, 1979, which is
not surrounded by any detected plepion

The Alfven waves may also be released in a short period

of time. In particularz the initial hard Spike of the March 5,- In this appendix we prove that the action principle in the
1979 superburst which appears to have been an expandin@grangian formulation, discussed in Sec. Il, gives the cor-
relativistic fireball [20,36. However, the lack of spectral rect equations of motion. We begin by demonstrating that

evolution in the softer repeat bursts emitted by the SGReq. (2.11) for the dual of the electromagnetic field tensor
sources argues against modedsy.,[37]) in which the pho-

tons are emitted from a relativistic outflow as opposed to a
trapped plasma. Fuv—=—"" "7 Fpo (A1)

APPENDIX A

C. Turbulent cascade in neutron star magnetospheres

, e . ..is indeed an integral of the constraint equations
Alfven waves trapped on closed magnetic field lines will 9 q

cascade to high wave number, via the three-mode and four- _
mode couplings considered in Sec. VI. The wave damping gFrY
rate is a stronger function of wave amplitude than is the Ix’ =0. (A2)
leakage ratéwhich depends on the amplitude only through

Oopen- The main uncertainty in estimating this damping rateThis is true for an arbitrarynonstatic, inhomogeneousn-

involves the form of the Alfve wave packets. If the waves wurbed ref back = ided it t i
are injected directly by a sudden irreversible horizontal disPErturoed reterence bac grouRg”, provided it too satis-

placement of the crust, then the magnetic field lines undergges the cons'traint equations 'in the un.perturbed coordjnates.
a net shiftA§~k[1(6B/Bo) across each wave packet. The Substituting into the constraint equations and changing to

total cascade luminosity within a confinement volumed'ﬁerent'altlon over the unperturbed coordinates
~(4mB)R3 is

1 ox* ox¥ ~
—— —5 F§7|=0. (A3)

2 -
o (9B)” 4w g X" oxg | Ja oxE axg

Leas~ {0 g v0 3 R*. (7.22

Here 6B is related to the wave amplitude at the stellar sur—Carrylng out the differentiation

face bysB~ 6B, (B/B,)Y?= 6B, (R/R,) %2 The wave fre-

guency at the outer scale ig and the strength parameter at | —1 AR XY ax§ P | ax+ ,“:'grr
the outer scale is T, 97T axgy) X 7%o0s to m ’9_X5 3,70
(A4)
6B k.
{o(R)=—1=={0o(R,) (7.23

where we have used the antisymmetryFgf’ and the back-

sincek, (R)=k, (R.)(B/B.)Y2 Thus ground constraint equations to eliminate two terms. Because
L Rl * * . ’

1/6B,\* k, (R,)\? voR,
caswg B_, k”

22 o5 _ 1 94
BiR.c. (7.29 ax? 3, 9(ax7 %)’

(A5)
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the left-hand side of EqA4) vanishes identically, thereby Rewriting the dual in terms of the field tensor and simplify-

proving that the constraint equation is satisfied. ing, we finally obtain the equation of motion
Note that Eq.(Al) is simply the usual coordinate trans- pr=ro
formation of a tensor, apart from the Jacobian factor. This FE — =0 Al6
w5 =0- (A16)

implies that the pseudoscalgr B=0 in the perturbed fluid,
provided it is zero in the reference background. Hence Eq. The results obtained in this section follow more immedi-

(Ab)valso er:forci:s ttf:\e M',[_.'D CO’Fd'F"’l”; ately from the alternative field transformatid@.16). The
€ now turn fo the action principle: derivation will be left to the reader.

1 1o
S = _f d?x 7 FMVF#VZJ d*x 2 FMVF/.LV' (AB) APPENDIX B

. . . In this appendix we consider the interaction between 2
This may be written as an integral over the unperturbed COgp waves, and derive the relation between the quantities
ordinates d-&, (&-9)&* (involving derivatives with respect to the per-

Jo~ ~ turbed coordinates”=x} + &* of the magnetoflui and the
S’=f d*xo " F’”F,“,Ef d*xoL. (A7)  analogous quantitiegy- &, (&-dg) & (involving derivatives
with respect to the unperturbed coordinaxgs.
Extremizing this action then gives the Euler-Lagrange equa- In four dimensions, one has

tions "
aﬁ:i—&h :_igvaﬁv MPUT%%axy
d aL X, g (IX"1IXE) 6J,4 X Ixg Ixg’
— | == |=0 (A8) B1)
IXg | A(IXHIXG)
or This implies
— |+ F¥® —= — F§# B oo 7 P |=0. # 6 IXg IXG IXg IXg
IXg | Ja IxXg Ixg Xy d(IxHaxg) 4

(A9)  in a gauge wherd,=1. The last three derivatives can each
It is straightforward to showvjcf., Eq. (B1) below| that the be written as

Jacobian has the property X, d€,
= Napt (B3)
d ddy IXq Xy
—~a | ounraoar| =0 (A10) .
Ixg | d(ax*1 9xg) and so Eq.(B2) can be expanded in powers gf In the

presence of 2 MHD fourier modes, the antisymmetry of
e#*B forces all terms involving three or more factorséb
vanish. This implies

In addition, the antisymmetry of the field tensor and the
background constraint equations imply
J

v
0 = oX
IXg

o x5

0. (A11) %5“2(70,#5”4‘((70,#5”)2_((70,#51}(90,1;5“)- (B4)
Similarly one has

£19, 0= E1g , £+ (30 ,") €10 , £~ (90 ") £, E°.

Hence the Euler-Lagrange equations become

~aﬁozi(1~ya&x_@ 7 (1| (9
O oxB oxd\Js O axy axg)  a(axtlaxg) oxg \ 4 The simultaneous conditions
=0. (A12) 6'#5“:(5'“(9”)65:0 (B6)
The two derivative operators may be written are satisfied if
- X' D o~ XX D o~ 0 o "= (£1do,) E°=0. (B7)
Fof —B e =Fo’ =35 > c=JF -2 (A13)
IXg IXg IXy IXg X X The addition of a third interaction tersy (second order

in the two interacting modg¢sdoes not change these rela-

and tions. For example, in the case of two collidiAgnodes, the
9d, 9 9 interaction waveg, with time-evolution equatiori4.14 sat-
=), —. Al4 iofi .- =0 i . Simi
A IoxE) e oxF (Al14) isfies (¢.-9)& =0 in the gauge(B6) and (B7). Similarly,
inspection of Eq(B1) shows that the derivatives
Therefore 0p€"= 0, 06"+ O(£2) (88)
Ter oFu, 1 19_F2:O (A15) remain equal to third order i&.. , even though the difference
axs 4 ox+ T betweenx andxy is first order iné.
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