PHYSICAL REVIEW D VOLUME 57, NUMBER 5 1 MARCH 1998

Electroweak symmetry restoration at high temperature in a four-generation
fermion condensate scheme
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We research the gap equation at finite temperature in a four-generation fermion condensate scheme and find
that the critical temperatur€, for electroweak symmetry restoration in this scheme may be lower than in the
top-quark condensate scheme. The critical chemical potentials of relevant fermions in the zero-temperature
limit will submit to an elliptic equation. In the zero chemical potential case, we ofig#257 GeV and prove
that the dynamical fermion masses néahave a (Fg—Tz)l’2 behavior with an additional factor dependent on
the temperaturd and momentum cutoff\. This indicates that, in spite of the extra factor, the symmetry
restoration is a second-order phase transition in this schg30856-282(98)01405-2
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I. INTRODUCTION 1
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It has been known that the top-quark condensate scheme % ¢ (Q"Q")o 22
[1] of electroweak symmetry breaking at zero-temperature L
may have a version of the four-generation fermion extensiovhere(Q’'Q’), represents the vacuum expectation value of

in which the fine—tun!ng prob_lem of the coupling constan ?Q’ (the Q'-fermion condensatgsif the combined con-
could be greatly alleviated owing to the enormous descent o 12 (Q—’Q’) £0. From Eq.(2.2) we can ob
0 . . . =

the compositeness momentum scid Therefore, just as densateEq g
research on the top-quark condensate scheme at finite tef@in the relations
perature[3], it is certainly interesting to research the four-
generation fermion condensate scheme at finite temperature
from both field theory itself and cosmological implications
[4]. Generally, in a dynamically symmetry breaking model
of the Nambu—Jona-LasinidNJL) form [5], as is discussed .
here, restoration of symmetry could happen at high tempers2Nd the gap equation
ture. In this paper we will research this problem by means of

the gap equation of the dynamical fermion masses which are
related to the order parameter responsible for electroweak
symmetry breaking. Without loss of essentiality of theWhere
model, the whole discussions will be conducted in the fermi-
onic bubble graph approximation and the color interactions
will be completely neglected. |
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In an n-generation fermion condensate_ scher_ne one asanddg(R) denotes the dimension of the color §B) rep-
sumes that electroweak symmetry breaking is induced byesentatiorR.

effective four-fermion interactions of the n generations of The genera"zation to the case of finite temperature means

fermions at some high momentum scale [6]. At ZEro- g replace the vacuum expectation va(@Q)o by the ther-
temperature, the neutral scalar sector of the effective four- —
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Il. GAP EQUATION IN N-GENERATION SCHEME

fermion Lagrangian

1 — _
Lys= ZQZQ, Jo:0'965(Q"Q1(QQ),

Q',Q=U,,D, (a=1,...n) (2.9
will generate the dynamical mass of tRefermion
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mal expectation valuédQQ);. Thus the dynamical mass
Mqo(T,ug) of the Q-fermion at finite temperaturé and fi-
nite chemical potentighg can be expressed by

> g
Qf

12

w2 (2.6

_ 1 1/2 ~N'A’
mQ(TquQ)__Eg Q'Qr<Q Q >T'

Equation(2.6) will lead to a relation similar to E¢q2.3), i.e.,

Mo(T, Q)Mo (T,ng) =000/901g (27

and the gap equation at finite temperature
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where
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wq= (K2 +mg)1?,
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+exr[,8(wQ+ mo)]+1

(2.9

which is obtained from Eq(2.5) by the substitution§7]
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I3(Ygq,+rq)
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with

WhenT—0, Eqg.(2.13 will be reduced to the gap equation
at zero-temperaturb]:

2 2 2
do(R)A [1_ me(0), ( A +1) |
gm® |© A2 |md(0)

1:% 9qq
(2.19

lll. CRITICAL TEMPERATURE AND CHEMICAL
POTENTIALS

Combining Eq.(2.13 with Eq. (2.16), we obtain

% 9oado(RI{m3(0)IN[A%/m3(0)+1]
—  —(k+m —2mw8(K? —m?2 2/ m?2
k—mQ(O)-l-isH( o KR—mitic ( moln[A%/mg+1]
_8T2[|3(YQ,_TQ)‘Hs(yQ,rQ)]}:O- (3.1
2\ i 0
ma)sinf(k°, uq) |. 21D gince Joo>0 [6], a physically reasonable solution of Eq.
(3. is
where m&(0)IN[ A2/m3(0) + 1]=m3In[ A%/mj+1]
+8T7[l ,—
) A(KO) [13(Yg,—To)
Si o) =
#Q exil B~ o)1+ 1 +15(yq.rq)l, foreachQ.
(3.2
+ ok (2.12 i i
exp{,@(—ko+,uQ)]+ 1’ . We see from Eq(3.2) that sincel 3(yq,+rg) are positive-

definite, asT increasesng will decrease and finally could
become zero. At this point, symmetry restoraton will be at-
with 8=1/T. In the above derivation we have used the real+tained. Now multiplyingdo(R) to each term of Eq(3.2) and
time formalism of the thermal field theory which is identical doing the sum ofQ we will obtain

to the imaginary-time formalism in the present simple prob-
lem [3]. When|k|—, only the first integral in Eq(2.9) is
divergent. This allows us to take the momentum cutoff
merely in the first integral and, as a good approximation,
extend the integral limit ofk| toward infinite in the second
one[3]. After the wick rotation and the angular integration,
the gap equatio2.8) will take the form

% do(R)M3(0)IN[A2/m3(0)+1]

= % do(R{m3In[ AZ/m3+1]

+8TI3(yq,— o) +1a(Yo.ro)I}- (3.3
Equation(3.3) can be regarded as an equivalent equation to
the gap equatiori2.13 and is applicable to the case bof
generations of fermions. In the following we will limit our-
selves to the four-generation fermion condensate scheme
where the heavy fermions relevant to the fermion conden-
sates are only the top-quark and a mass-degenerate fourth
generation DiradJ-fermions. Considering the basic relation
where A is the four-dimension Euclidean momentum cutoff which defines the vacuum expectation vailuef the effec-

and tive Higgs scalar field in this schenfg],

_8p[|3(yQ,_TQ)+|3(VQ1|’Q)]J, (2.13
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4\/5772
& - 8miv?= Q;u,t f odo(R)M3(0)IN[ AZ/m3(0)+1],
(3.9

whereGg is the Fermi constant anfg, is the flavor number
of the Q-fermion withf,=2 andf,=1, we may change Eq.
(3.3 into

SWZUZZQZZU : fodo(RI{mIN[A%/m&+1]

+8T7[I5(Yq. o) +13(Yo.r)1}. (3.5

We may assume that when some critical temperaiyrés

arrived, the combined condensa@ggé%{QQ)T=0; then
based on Eq(2.6) all the mg will become zeros. Therefore,
the equaton which determines the critical temperafyrand
the critical chemical potentialg . and u. may be obtained
by taking my—0, ;—0 (i.e., yy—0, y;—0) in Eq. (3.5
and has the form

WZUZITZQ_EU . deQ(R)[l 3(0,— rQ)+ |3(0’rQ)]'
' (3.9

By means of the formulé8]

1= X
14077075 i1

= %exp(irQ)CD[—exp(irQ),Z,l] (3.7

expressed by the Lerch’s transcendent functibfe,s,a]
=Ef<°zoz"/(k+ a)® Eq. (3.6) can be changed into

277202:T2Q:2U : fodo(RI{exp Buq) P[—exp Buqg),2,1]

+qu_BMQ)CD[_eXF(_IBMQ)vzil]} (38)
or
_ o 1 (” X
277'21)2_Q:2U,t deQ(R),LLQ %fo dx W
X
* expx+rq)+1]|" 3.9

In the special case with ;= w;=0 we may obtain from Eq.
(3.8) that

T2=120?/[2dy(R) +d(R)]. (3.10

If the Higgs vacuum expectation value=246 GeV is taken,
then we get, from Eq(3.10),
257 GeV if dy(R)=4 and d;(R)=3,

Te=1492Gev  if dy(R)=0 and dy(R)=3.
(3.11)

The results show that the value ©f in the four-generation
fermion condensate scherhe,(R)=4] is only almost one
half of the one in the top-quark condensate schethgR)
=0]. Hence, inclusion of the fourth generation of fermions
in the scheme will be able to make the temperature of elec-
troweak symmetry restoration go down evidently. The same
conclusion is true for the case with nonzero chemical poten-
tials. This can be seen from E¢3.8). Since the functions
D[ —expBug),2,1](Q=U,t) are positive-definite by Eq.
(3.7), for the left-handed side of Eq3.8) being kept to be
the constant Z2v?2, the addition of the terms witkl,(R)
will necessarily cause the descentTgf.

On the other hand, in the special case when0 or
equivalentlyr o= uq/T— if uq is finite, we have the lim-
its

1 (- :
lim —f dX——=9 . 3.1
,Qﬁwré 0 expxwrg)+1 0 (312
As a result, Eq(3.9) will give
A7v%=2dy(R) ud .+ d(R) u.. (3.13

Hence, whenl=0 the critical chemical potentialg . and

i Will satisfy an elliptic equaton. Similar to variation of the
critical temperature as scheme, we can see from(&4.3

that the critical chemical potentiakg. of some given
Q-fermions in the four-generation scheme is always less than
the corresponding one in the scheme in which only the
Q-fermions are included. This conclusion is also valid in the
case ofT#0 if we note that wherT is fixed, the two terms

in the right-handed side of Eq(3.9) are respectively
positive-definite and monotonically increasing function of

My and gy .

IV. CRITICAL BEHAVIOR OF FERMION MASSES
NEAR T,

We will only consider the case of zero chemical poten-
tials. Equation(3.5) is thus reduced to

8my?= fodo(R)[M3In(AZ/m3+1
2 Q:ZUJ odo(R)[MaIN(AZ/m+1)
+16T%15(yq,0)]. 4.2

By the standard technique of high temperature expansion of
thermal integral$9,10|, we find

13(Y0.0) = (m2/24) + (y&/8){In(yq/m) + y—1/2
+0[(yo/2m)?]}, Q=U.t, (4.2

wherey=0.5772 is the Euler constant and we have used the
fact that at the temperatules T, bothmy andm;, are small

so that the terms of the ordersO[(yQIZTr)z]
=O[(mQ/27TT)2] and above could be neglected. Consider-
ing the definition ofyg in Eq. (2.19 and A/mg>1(Q
=U,t), we get, from Eq(4.1) and the equatiof3.10 of T,
whenuy= =0,
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[2dy(R)mMZ+ d(RYMZ[In(A/Ta) + y—1/2]

=(w?3)[2dy(R) + d(R) (T2 T?). 4.3

It is indicated that the combination EQ.3) and Eq.(2.7)
will lead to

my /my=my(0)/m,(0)=N\, (4.9

i.e., the mass ratimny /m; is temperature-independent. With
this relation we may obtain from Eg4.3

mg=\?m?
> [2dy(R)+dy(R)] (T2-T2)
[2dy(R) +d,(R)/\2] [IN(A/Tar)+y—=1/2]"

(4.9

™
3

In addition, from Eq.(2.6) we also have
1/2
3 i)
172
3o
_2(2mf,+mt2)1’2

(2gyu+gw ¥

Equations(4.5 and (4.6) show that atT<T,, all the dy-

namical fermion massesg(Q=U,t) and the combined
thermal expectation valuB,gga(QQ) as the order param-
eter responsible for symmetry breaking, haVg+ T?)' be-

havior with an additional factor dependent onAf(#). This

2mQ
900

=-2

S o(QQ)=-

(4.9
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constant in a given model and the critical temperafiige
#0, so the extra factor containing W{T+) has no singular-
ity. In addition, owing to Eq(4.4) there is essentially only a
single order parameter for symmetry breaking in this
scheme, hence, consistent with EGk5) and(4.6), we may
generally write the order parameter by

p=f(TN(Te-THY2  {(T)=b/[In(A/Tm)+y—1/2]*2

(4.7

whereb is a positive constant. Then we may expand the
thermodynamical potentialQ(T,»)=Q(T,u=0,7) into
power-series ofp near the critical temperaturg@hase tran-
sition poind as[11,3]

QT ) =Qo(T)+a(T—To) * +[a/ATfX(To) 7'+,
4.8

wherea is a positive constant. It is easy to verify that the
thermodynamical potential of the for(d.8) will lead to the
temperature behavidd.7) of » and it is indeed able to de-
scribe the system considered. From E48) we can prove
that the entropy of the systeB= —[dQ (T, %)/dT]y is con-
tinuous but the special heat=T(dS/dT)y is not and will
reduce a finite quantity wheh acrossed . increasely. This
fact indicates that the symmetry restoration is indeed a
second-order phase transition. The extra factor containing
In(A/T#) has no effect on such feature. Since the feature of
the phase transition is determined essentially by ﬂﬁé (
—T?)12 temperature behavior of the unique order parameter
7 in the scheme, it is conjectured that the above conclusion
of the second-order symmetry retoring phase transition will
be maintained when all the gauge interactions are opened.
Therefore, it is conceivable that the thermodynamics of the
four-generation fermion condensate scheme will be the same

:j(?asnuslgtlz fcehn;ﬁzl ;?]éhgi f?grzrﬁb]fﬂnme?hg g:]e; tggt'gilrﬁ:jk iﬁotn as the one of the four-generation standard electroweak model
r’\‘/?/ith elementary Higgs scalar field.

standard electroweak model with elementary Higgs scalar
field [10] by the extra factor. However, based on a general
argument, it may be shown that the extra factor does not
change the fact that the symmetry restoration is a second- This work was partially supported by the National Natural
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