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Electroweak symmetry restoration at high temperature in a four-generation
fermion condensate scheme
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We research the gap equation at finite temperature in a four-generation fermion condensate scheme and find
that the critical temperatureTc for electroweak symmetry restoration in this scheme may be lower than in the
top-quark condensate scheme. The critical chemical potentials of relevant fermions in the zero-temperature
limit will submit to an elliptic equation. In the zero chemical potential case, we obtainTc.257 GeV and prove
that the dynamical fermion masses nearTc have a (Tc

22T2)1/2 behavior with an additional factor dependent on
the temperatureT and momentum cutoffL. This indicates that, in spite of the extra factor, the symmetry
restoration is a second-order phase transition in this scheme.@S0556-2821~98!01405-2#

PACS number~s!: 12.15.2y, 11.15.Ex, 12.60.Fr
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I. INTRODUCTION

It has been known that the top-quark condensate sch
@1# of electroweak symmetry breaking at zero-temperat
may have a version of the four-generation fermion extens
in which the fine-tuning problem of the coupling consta
could be greatly alleviated owing to the enormous descen
the compositeness momentum scale@2#. Therefore, just as
research on the top-quark condensate scheme at finite
perature@3#, it is certainly interesting to research the fou
generation fermion condensate scheme at finite tempera
from both field theory itself and cosmological implication
@4#. Generally, in a dynamically symmetry breaking mod
of the Nambu–Jona-Lasinio~NJL! form @5#, as is discussed
here, restoration of symmetry could happen at high temp
ture. In this paper we will research this problem by means
the gap equation of the dynamical fermion masses which
related to the order parameter responsible for electrow
symmetry breaking. Without loss of essentiality of t
model, the whole discussions will be conducted in the fer
onic bubble graph approximation and the color interactio
will be completely neglected.

II. GAP EQUATION IN N-GENERATION SCHEME

In an n-generation fermion condensate scheme one
sumes that electroweak symmetry breaking is induced
effective four-fermion interactions of the n generations
fermions at some high momentum scaleL @6#. At zero-
temperature, the neutral scalar sector of the effective fo
fermion Lagrangian

L4F
Ns5

1

4 (
Q,Q8

gQ8Q8
1/2 gQQ

1/2 ~Q̄8Q8!~Q̄Q!,

Q8,Q5Ua ,Da ~a51, . . . ,n! ~2.1!

will generate the dynamical mass of theQ fermion
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mQ~0!52
1

2
gQQ

1/2 (
Q8

gQ8Q8
1/2 ^Q̄8Q8&0 , ~2.2!

where^Q̄8Q8&0 represents the vacuum expectation value
Q̄8Q8 ~the Q8-fermion condensates!, if the combined con-
densates(Q8gQ8Q8

1/2 ^Q8̄Q8&0Þ0. From Eq.~2.2! we can ob-
tain the relations

mQ~0!/mQ8~0!5gQQ
1/2 /gQ8Q8

1/2 ,

Q,Q85Ua ,Da ~a51, . . . ,n! ~2.3!

and the gap equation

15(
Q

gQQI Q
0 , ~2.4!

where

I Q
0 52

1

2mQ~0!
^Q̄Q&05

dQ~R!

2mQ~0!
E d4k

~2p!4
tr

i

k”2mQ~0!1 i«
~2.5!

and dQ(R) denotes the dimension of the color SUc(3) rep-
resentationR.

The generalization to the case of finite temperature me
to replace the vacuum expectation value^Q̄Q&0 by the ther-
mal expectation valuêQ̄Q&T . Thus the dynamical mas
mQ(T,mQ) of the Q-fermion at finite temperatureT and fi-
nite chemical potentialmQ can be expressed by

mQ~T,mQ!52
1

2
gQQ

1/2 (
Q8

gQ8Q8
1/2 ^Q̄8Q8&T . ~2.6!

Equation~2.6! will lead to a relation similar to Eq.~2.3!, i.e.,

mQ~T,mQ!/mQ8~T,mQ8!5gQQ
1/2 /gQ8Q8

1/2 ~2.7!

and the gap equation at finite temperature
3171 © 1998 The American Physical Society
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15(
Q

gQQI Q , ~2.8!

where

I Q52dQ~R!H E d4k

~2p!4

i

k22m21 i«

2E d3k

~2p!32vQ
H 1

exp@b~vQ2mQ!#11

1
1

exp@b~vQ1mQ!#11J J ,

vQ5~k21mQ
2 !1/2, ~2.9!

which is obtained from Eq.~2.5! by the substitutions@7#

mQ~0!→mQ~T,mQ![mQ , ~2.10!

i

k”2mQ~0!1 i«
→~k”1mQ!F i

k22mQ
2 1 i«

22pd~k2

2mQ
2 !sin2~k0,mQ!G , ~2.11!

where

sin2~k0,mQ!5
u~k0!

exp@b~k02mQ!#11

1
u~2k0!

exp@b~2k01mQ!#11
, ~2.12!

with b51/T. In the above derivation we have used the re
time formalism of the thermal field theory which is identic
to the imaginary-time formalism in the present simple pro
lem @3#. When uku→`, only the first integral in Eq.~2.9! is
divergent. This allows us to take the momentum cut
merely in the first integral and, as a good approximati
extend the integral limit ofuku toward infinite in the second
one @3#. After the wick rotation and the angular integratio
the gap equation~2.8! will take the form

15(
Q

gQQ

dQ~R!L2

8p2 H 12
mQ

2

L2
lnS L2

mQ
2

11D
28

T2

L2
@ I 3~yQ ,2r Q!1I 3~yQ ,r Q!#J , ~2.13!

whereL is the four-dimension Euclidean momentum cuto
and
l-

-

f
,

I 3~yQ ,7r Q!

5
1

2E0

`

dx
x2

~x21yQ
2 !1/2

1

exp@~x21yQ
2 !1/27r Q#11

~2.14!

with

yQ5bmQ , r Q5bmQ . ~2.15!

WhenT→0, Eq. ~2.13! will be reduced to the gap equatio
at zero-temperature@6#:

15(
Q

gQQ

dQ~R!L2

8p2 F12
mQ

2 ~0!

L2
lnS L2

mQ
2 ~0!

11D G .

~2.16!

III. CRITICAL TEMPERATURE AND CHEMICAL
POTENTIALS

Combining Eq.~2.13! with Eq. ~2.16!, we obtain

(
Q

gQQdQ~R!$mQ
2 ~0!ln@L2/mQ

2 ~0!11#

2mQ
2 ln@L2/mQ

2 11#

28T2@ I 3~yQ ,2r Q!1I 3~yQ ,r Q!#%50. ~3.1!

Since gQQ.0 @6#, a physically reasonable solution of E
~3.1! is

mQ
2 ~0!ln@L2/mQ

2 ~0!11#5mQ
2 ln@L2/mQ

2 11#

18T2@ I 3~yQ ,2r Q!

1I 3~yQ ,r Q!#, for each Q.

~3.2!

We see from Eq.~3.2! that sinceI 3(yQ ,7r Q) are positive-
definite, asT increasesmQ will decrease and finally could
become zero. At this point, symmetry restoraton will be
tained. Now multiplyingdQ(R) to each term of Eq.~3.2! and
doing the sum ofQ we will obtain

(
Q

dQ~R!mQ
2 ~0!ln@L2/mQ

2 ~0!11#

5(
Q

dQ~R!$mQ
2 ln@L2/mQ

2 11#

18T2@ I 3~yQ ,2r Q!1I 3~yQ ,r Q!#%. ~3.3!

Equation~3.3! can be regarded as an equivalent equation
the gap equation~2.13! and is applicable to the case ofn
generations of fermions. In the following we will limit our
selves to the four-generation fermion condensate sch
where the heavy fermions relevant to the fermion cond
sates are only the top-quark and a mass-degenerate fo
generation DiracU-fermions. Considering the basic relatio
which defines the vacuum expectation valuev of the effec-
tive Higgs scalar field in this scheme@2#,
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4A2p2

GF
58p2v25 (

Q5U,t
f QdQ~R!mQ

2 ~0!ln@L2/mQ
2 ~0!11#,

~3.4!

whereGF is the Fermi constant andf Q is the flavor number
of theQ-fermion with f U52 andf t51, we may change Eq
~3.3! into

8p2v25 (
Q5U,t

f QdQ~R!$mQ
2 ln@L2/mQ

2 11#

18T2@ I 3~yQ ,2r Q!1I 3~yQ ,r Q!#%. ~3.5!

We may assume that when some critical temperatureTc is
arrived, the combined condensates(QgQQ

1/2 ^Q̄Q&T50; then
based on Eq.~2.6! all the mQ will become zeros. Therefore
the equaton which determines the critical temperatureTc and
the critical chemical potentialsmUc andm tc may be obtained
by taking mU→0, mt→0 ~i.e., yU→0, yt→0) in Eq. ~3.5!
and has the form

p2v25T2 (
Q5U,t

f QdQ~R!@ I 3~0,2r Q!1I 3~0,r Q!#.

~3.6!

By means of the formula@8#

I 3~0,7r Q!5
1

2E0

`

dx
x

exp~x7r Q!11

5
1

2
exp~6r Q!F@2exp~6r Q!,2,1# ~3.7!

expressed by the Lerch’s transcendent functionF@z,s,a#
5(k50

` zk/(k1a)s Eq. ~3.6! can be changed into

2p2v25T2 (
Q5U,t

f QdQ~R!$exp~bmQ!F@2exp~bmQ!,2,1#

1exp~2bmQ!F@2exp~2bmQ!,2,1#% ~3.8!

or

2p2v25 (
Q5U,t

f QdQ~R!mQ
2 H 1

r Q
2 E0

`

dxF x

exp~x2r Q!11

1
x

exp~x1r Q!11G J . ~3.9!

In the special case withmU5m t50 we may obtain from Eq.
~3.8! that

Tc
2512v2/@2dU~R!1dt~R!#. ~3.10!

If the Higgs vacuum expectation valuev5246 GeV is taken,
then we get, from Eq.~3.10!,

Tc5H 257 GeV if dU~R!54 and dt~R!53,

492 GeV if dU~R!50 and dt~R!53.
~3.11!
The results show that the value ofTc in the four-generation
fermion condensate scheme@dU(R)54# is only almost one
half of the one in the top-quark condensate scheme@dU(R)
50#. Hence, inclusion of the fourth generation of fermio
in the scheme will be able to make the temperature of e
troweak symmetry restoration go down evidently. The sa
conclusion is true for the case with nonzero chemical pot
tials. This can be seen from Eq.~3.8!. Since the functions
F@2exp(bmQ),2,1#(Q5U,t) are positive-definite by Eq
~3.7!, for the left-handed side of Eq.~3.8! being kept to be
the constant 2p2v2, the addition of the terms withdU(R)
will necessarily cause the descent ofTc .

On the other hand, in the special case whenT→0 or
equivalently,r Q5mQ /T→` if mQ is finite, we have the lim-
its

lim
r Q→`

1

r Q
2 E0

`

dx
x

exp~x7r Q!11
5H 1

2

0
. ~3.12!

As a result, Eq.~3.9! will give

4p2v252dU~R!mUc
2 1dt~R!m tc

2 . ~3.13!

Hence, whenT50 the critical chemical potentialsmUc and
m tc will satisfy an elliptic equaton. Similar to variation of th
critical temperature as scheme, we can see from Eq.~3.13!
that the critical chemical potentialmQc of some given
Q-fermions in the four-generation scheme is always less t
the corresponding one in the scheme in which only
Q-fermions are included. This conclusion is also valid in t
case ofTÞ0 if we note that whenT is fixed, the two terms
in the right-handed side of Eq.~3.9! are respectively
positive-definite and monotonically increasing function
mU andm t .

IV. CRITICAL BEHAVIOR OF FERMION MASSES
NEAR Tc

We will only consider the case of zero chemical pote
tials. Equation~3.5! is thus reduced to

8p2v25 (
Q5U,t

f QdQ~R!@mQ
2 ln~L2/mQ

2 11!

116T2I 3~yQ,0!#. ~4.1!

By the standard technique of high temperature expansio
thermal integrals@9,10#, we find

I 3~yQ,0!5~p2/24!1~yQ
2 /8!$ ln~yQ /p!1g21/2

1O@~yQ/2p!2#%, Q5U,t, ~4.2!

whereg50.5772 is the Euler constant and we have used
fact that at the temperatureT&Tc , bothmU andmt are small
so that the terms of the ordersO@(yQ/2p)2#
5O@(mQ/2pT)2# and above could be neglected. Consid
ing the definition of yQ in Eq. ~2.15! and L/mQ@1(Q
5U,t), we get, from Eq.~4.1! and the equation~3.10! of Tc
whenmU5m t50,
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@2dU~R!mU
2 1dt~R!mt

2#@ ln~L/Tp!1g21/2#

5~p2/3!@2dU~R!1dt~R!#~Tc
22T2!. ~4.3!

It is indicated that the combination Eq.~2.3! and Eq.~2.7!
will lead to

mU /mt5mU~0!/mt~0![l, ~4.4!

i.e., the mass ratiomU /mt is temperature-independent. Wit
this relation we may obtain from Eq.~4.3!

mU
2 5l2mt

2

5
p2

3

@2dU~R!1dt~R!#

@2dU~R!1dt~R!/l2#

~Tc
22T2!

@ ln~L/Tp!1g21/2#
.

~4.5!

In addition, from Eq.~2.6! we also have

(
Q

gQQ
1/2 ^Q̄Q&T52

2mQ

gQQ
522

S (
Q

mQ
2 D 1/2

S (
Q

gQQD 1/2

522
~2mU

2 1mt
2!1/2

~2gUU1gtt!
1/2

. ~4.6!

Equations~4.5! and ~4.6! show that atT&Tc , all the dy-
namical fermion massesmQ(Q5U,t) and the combined
thermal expectation value(QgQQ

1/2 ^Q̄Q&T as the order param
eter responsible for symmetry breaking, have (Tc

22T2)1/2 be-
havior with an additional factor dependent on ln(L/Tp). This
result is identical to the one obtained in the top-quark c
densate scheme and different from the one obtained in
standard electroweak model with elementary Higgs sc
field @10# by the extra factor. However, based on a gene
argument, it may be shown that the extra factor does
change the fact that the symmetry restoration is a seco
order phase transition. We first note that the momentum
off or the compositeness scaleL is simply a fixed finite
Ka
nd

tt
-
he
ar
l

ot
d-
t-

constant in a given model and the critical temperatureTc
Þ0, so the extra factor containing ln(L/Tp) has no singular-
ity. In addition, owing to Eq.~4.4! there is essentially only a
single order parameter for symmetry breaking in th
scheme, hence, consistent with Eqs.~4.5! and~4.6!, we may
generally write the order parameter by

h5 f ~T!~Tc
22T2!1/2, f ~T!5b/@ ln~L/Tp!1g21/2#1/2,

~4.7!

where b is a positive constant. Then we may expand t
thermodynamical potentialV(T,h)[V(T,m50,h) into
power-series ofh near the critical temperature~phase tran-
sition point! as @11,3#

V~T,h!5V0~T!1a~T2Tc!h
21@a/4Tcf 2~Tc!#h

41•••,
~4.8!

wherea is a positive constant. It is easy to verify that th
thermodynamical potential of the form~4.8! will lead to the
temperature behavior~4.7! of h and it is indeed able to de
scribe the system considered. From Eq.~4.8! we can prove
that the entropy of the systemS52@]V(T,h)/]T#V is con-
tinuous but the special heatcv5T(]S/]T)V is not and will
reduce a finite quantity whenT acrossesTc increasely. This
fact indicates that the symmetry restoration is indeed
second-order phase transition. The extra factor contain
ln(L/Tp) has no effect on such feature. Since the feature
the phase transition is determined essentially by theTc

2

2T2)1/2 temperature behavior of the unique order parame
h in the scheme, it is conjectured that the above conclus
of the second-order symmetry retoring phase transition
be maintained when all the gauge interactions are ope
Therefore, it is conceivable that the thermodynamics of
four-generation fermion condensate scheme will be the s
as the one of the four-generation standard electroweak m
with elementary Higgs scalar field.
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