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We study the oscillations of neutrinos in a model in which the neutrino is coupled to a localized, idealized
source and detector. By varying the spatial and temporal resolution of the source and detector we are able to
model the full range of source and detector types ranging from coherent to incoherent. We find that this
approach is useful in understanding the interface between the quantum mechanical nature of neutrino oscilla-
tions on the one hand and the production and detection systems on the other hand. This method can easily be
extended to study the oscillations of other particles such as the n&utsald B mesons. We find that this
approach gives a reliable way to treat the various ambiguities which arise when one examines the oscillations
from a wave packet point of view. We demonstrate that the conventional oscillation formula is correct in the
relativistic limit and that several recent claims of an extra factor of 2 in the oscillation length are incorrect. We
also demonstratexplicitly that the oscillations of neutrinos which have separated spatially may be “revived”
by a long coherent measuremef80556-282(198)01005-4

PACS numbds): 14.60.Pq, 13.15:.g, 23.40.Bw

I. INTRODUCTION lations are described by some sort of wave packets.
Despite the success of the wave packet approach in clari-
The flavor oscillations of particles are a fascinating dem-fying many aspects of the phenomenon of particle oscilla-
onstration of quantum mechanics in the macroscopic worldtions [6—9], the approach is not without its own difficulties.
Flavor oscillations can generically occur when the state§he results of a given calculation will depend, for example,
which are produced and detected in a given experiment aren the details of the initial mass eigenstate wave packets
superpositions of two or more eigenstates which have differ{including their shape, spectrum and relative normalization
ent masses. The oscillations kif and B mesons have been One particularly difficult problem which arises is the conver-
observed experimentalljl] and have been used to place sion of the final time-evolved wave packets into an experi-
stringent constraints on physics beyond the standard modehentally observable quantity: Since it is generally filue of
If neutrinos are massive, they too may oscillate, and thigarticles which is measured in an experiment, one is required
could lead to resolution of the well-known solar neutrinoto calculate a current density rather than a probability
problem[2—4]. More recently, the discussion of particle os- density! The difference between a current density and a
cillations has been extended to include supersymmetric paprobability density, at least naively, involves a factor of the
ticles in supersymmetric extensions of the standard modelelocity v, which is very significant if the mass eigenstates
[5]. have quite different masses. Thus, if one would calculate the
The phenomenon of particle oscillations has been studiegdrobability density at the detector and integrate it over time,
extensively and is generally thought to be very well underthe resulting expression would have factors of Xre-
stood. There nevertheless remain several subtle issues whiatultiplying the various terms, leading to an enhancement of
continue to cause some confusion. The key to a completthe terms corresponding to heavier mass eigenstates. In the
understanding of any such issue lies in treating correctly thease of neutrinos, as was noted[8-10, this would skew
necessary interplay between the “classical” and “quantum” the usual oscillation formula quite dramatically if one of the
natures of the particles which are interfering to produce thenass eigenstate neutrinos was non-relativistic. Efforts to
oscillations. Thus, for example, the interference effect itseliconstruct an appropriate current density which retains the
is purely “quantum” in nature(it requires that the particles necessary wave packet features have had mixed success. A
be described by wavesand yet the resulting oscillations in calculation in the kaon case appears to give reliable results
space are only observable if the particles are sufficiently lof11], but it can be shown that unphysical effects arise if one
calized in spacg6]. This example highlights the fact that any attempts to define a suitable current when the mass eigen-
discussion of particle oscillations implicitly assumes that the
mass eigenstates which are interfering to produce the oscitt————
lwave packet calculations lead naturally to expressions for the
probability density, which are appropriately integrated over space,
*Email address: kiers@bnl.gov not time. For oscillations in space one wants a quantity which is
TEmail address: weissn@post.tau.ac.il appropriately integrated over time, i.e., a current.
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states have very different mas44g]. eigenstate wave packets have completely separated spatially
There is another very striking apparent “ambiguity” [18].2 Thus, wave packets arriving at the “classically” sepa-

which arises if one does not treat the delicate interplay berated times; andt,—and having negligible overlap in their

tween the classical and quantum natures of the particles cowave packets—may still interfere to give rise to oscillations.

rectly. In this case the “ambiguity” leads to an alleged error There is then some sense in which wave functions corre-

by a factor of “2” in the calculation of the oscillation length sponding to different space-time points may interfere.

[13]. In order to understand the source of the ambiguity, we ' | jight of the issues presented above, it is our view that a

follow the discussion given by Lipkifl4]. Suppose we con- roner treatment of the quantum-classical interface of par-

sider the oscillations in time of a system for which the initial ¢ oscillations should incorportate the source and the de-

and final states are not eigenstates of the free Hamiltoniana o, a5 key components of the system. In this paper we
The phase of the interference term will then be given by,

F RN T present a simple model for a particle source-detector system
$(t)=(E1—E)t, whereE;=(p“+m;) ™" Detectors do not \yhich addresses many of the above issues in a very natural
measure oscillations directly as a function of time, howevergnq self-consistent way. We shall, for concreteness, consider
and so one needs somehow to convert this expression into Re case of neutrino oscillations, but our approach could eas-
oscillation in terms of space. We may then, as is conventiony pe adapted to other situations. The source and detector
ally done, sex=vt, with v=2p/(E,+E;) representing a | pe modeled by simple harmonic oscillators which are
sort of average velocity. We then obtain the following phaseje-excited or excited by emitting or absorbing neutrinos of a
in terms ofx: given flavor. (Two-level “fermionic” source-detector sys-

tems could also be considerg#laving defined the model, it
will be straightforward to calculate the oscillation probability

(m?—m2)x as a function of the distance between the source and detector.
Deond X) = T (1.1)  The resulting expressions will be found to exhibit all of the
P known “wave packet” characteristics in the relativistic limit,

but will also give useful insight into cases in which one or

his is th . q it for the oh more of the mass eigenstates is non-relativistic. In particular,
This is the conventionaland corredt result for the phase \ye il find no evidence for the enhancement of non-

difference. Let us now attempt to incorporate a classical as|4tivistic neutrinos which can occur in conventional wave
pect of the problgm and argue that since the'two mass e'ger|5'alcke'[ analyses. Including the source explicitly in the calcu-
states travel at different speeds, they will arrive at the deteqyion gives the added benefit that the characteristics of the
tor at different times t, and t, related by x=pt;/E; jnitial wave packets corresponding to the various mass
=Ppt,/E;. Taking the phase of the interference term 0 begjgenstates are completely determined by the characteristics
¢(t1,t2) =Eqty — Estp, we then obtain of the source and need not be put in by hand. Our approach
is similar in spirit to the calculations in Refgl9,20, but is
5 more transparent due to the simplified model which we con-
bronf X) = (mi—m;)x (1.2 sider.(See also Ref.21] for a similar calculation performed
ne p ’ ' within the context of elementary quantum mechaniGne
advantage of our simplified approach is that the dependence
on the time resolution of the detector is very clear. This will
which differs from the conventional phase difference, Eqg.allow us to verify explicitly that a long coherent measure-
(1.2), by a factor of 2. This result, were it correct, would ment in time may be used to revive the oscillations of par-
indeed be rather remarkable. ticles whose wave packets have separated spatialfe
The first resolution of this ambiguity was given by Lipkin shall also settle the issue of the “factor of Zhopefully)
[14] (see also Ref{15]) who argued, on physical grounds, once and for all.
that the energie§ather than the momentaf the two mass We begin in the next section by analyzing a simple model
eigenstates should be set equal. In this case the oscillatiofirs which the neutrino is described by a complex scalar field.
are described in terms of distances diredince it is the This field is coupled to two localized simple harmonic oscil-
momenta of the two eigenstates which diffand the “cor-  lators, representing the source and detector. Modeling the
rect” oscillation formula is obtained. Lowet al. [16] and  neutrino by a complex scalar field allows for a simpler and
Kayser[17] have extended this discussion and have arguethore complete evaluation of physical quantities than if a
that the key to avoiding ambiguities is to ensure that onespinor field is used. In Sec. Il A we study the case of a single
evaluates the wave functions of the mass eigenstates at prieeutrino species coupled to the source and detector. This
cisely the same space-time point. That is, even though clagdlows for a careful analysis of the efficiency of our system
sically the mass eigenstates will arrive at the detector at dif-
ferent times, quantum mechanically the wave functions
corresponding to different space-time points cannot interfere. 2This behavior is analogous to what happens when a Gighs-
Indeed the analysis leading to the expression in @f) cillator gets hit by two successive pulses. The first pulse sets the
involves interfering the wave functions for the two massoscillator in motion, causing it to oscillate for a time determined by
eigenstates at the same position difterenttimes and hence its Q value. If the oscillator is still oscillating when the second
gives the incorrect result. This issue is, in fact, quite subtlepulse arrives, the resulting oscillations will exhibit an interference
For example a long coherent measurement in time may bgattern.
used to ‘“revive” particle oscillations even after the mass 3A recent paper has also demonstrated this effect explic@y.
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at producing and detecting neutrinos of different masses. Al“coherence time” of the physical source or detector.

though no oscillations are possible in this case, this calcula- Our calculation proceeds as follows. We first write a La-
tion will be essential in interpreting the results when neutrinograngian which couples the source and detector to the neu-
oscillations are present. In Sec. Il B we couple several neutrino field. In the initial state of the system, the source is in
trino fields to the source and detector. This gives rise in ats first excited statdready to emit a neutrinoand the de-
natural way to oscillationgas a function of the distance be- tector is in its ground state. We then calculate the probability
tween the source and detegtan the probability for the that at some time far in the future the source will be found to
source to decay and the detector to be excited. These are bé in its ground state and the detector in its first excited state.
course “neutrino oscillations.” Section Il C contains a brief The model will be constructed in such a way that this inter-
analysis of the non-relativistic case. We then extend oumction will correspond to exactly one neutrino being ex-
analysis in Sec. Ill to a more realistic model in which thechanged between the source and dete¢tor first non-
neutrinos are described by Dirac spinor fields. These resultganishing order in perturbation theoryin this approach,

are compared to the ones with a complex scalar field. Wé¢hen, the neutrinos themselves are not observed, but are sim-
conclude in Sec. IV with a summary and discussion of oumply the exchange particles in the source-detector interaction.
results.

A. Single species of neutrino

To describe our model, we begin with a single complex

Il. MODEL FOR A NEUTRINO SOURCE AND DETECTOR scalar fieldg(x) and two oscillators); (t) andg,(t) describ-
) ) ) ) ) _ing the source and detector, respectively. The action for our
The idea of using an idealized detector to clarify physi-model is given by

cally measurable quantities in quantum field theory has been

used extensively in the analysis of quantum fields in non- 4, n0 0

inertial frames and in gravitational backgrouri@s]. In our S:J d X(£¢+£im)+J dtlg, 2.9
idealized model, we have chosen to couple the neutrino field

to two harmonic oscillators, one representing a neutrinovhere

“source,” and the other representing a neutrino “detector.”

The neutrinos are first taken to be complex scalar fields £5=—¢'0)(0+m?) ¢(x), 2.2
which simplifies the calculations consideraBly.

The physical picture which we have in mind is the fol- Lg:ﬂ(t)%(t)—QEQI(U%(UJFQE(U%(U
lowing: We imagine our “source” and “detector” to be
microscopic on the scale of some macroscopic “bulk” —0503(t)ga(t), 2.3
source and detector, but to also be very massive compared to
the energy of the exchanged neutriso that the dynamical Li=—e1(D[dT()qq(t)hy(X) + ¢(x)q{(t)h’1‘(x)]
degrees of freedom of the source and detector may be ig- : + .
nored. Thus, for example, the sour¢detectoy could repre- —&2(1)[ ¢ (X)q2(t)ho(X) + (x) (1) h3 (X)].
sent some nucleus inside a bulk sample which undergoes (2.4)

beta decayinverse beta decayThe spatial “widths” of the

source and detector in our calculation are then widths approfhe functionse;(t) are explicit functions of time which al-
priate to, say, nuclear or atomic dimensions. In principle, théow us to “turn on” and “turn off” the interactions, and the
oscillation probability which we calculate here should subsefunctions h;(x) [h,(x)] are smooth functions ok which
quently be averaged incoherently over the physical dimenvanish outside the sourddetectot.

sions of the macroscopic source and detector, although we We quantize thdree fields in the usual way, requiring
do not perform this average. If the size of the macroscopic

source and detector are much smaller than the neutrino os- [p(x,t),7(y,t)]=i8%(x—Y), (2.5
cillation length (which they need to be in order to observe

oscillations, then this averaging would have only a small [qi(t),pi(t)]=1. (2.6
effect.

The interactions at the source and detector will be madéll other commutators are taken to vanish. The field opera-
explicitly time dependent so that they may be turned “on” tors may then be expressed in terms of creation and annihi-
and “off.” This is in keeping with our physical picture. In lation operators as follows:
general a realmicroscopi¢ source or detector will be in an
environment which is “noisy,” so that the coherent emission
or absorption of a neutrino gets cut off after some time due
to the interactions of the source or detector with its surround-
ing environmenf9,18]. The amount of time which the model
source or detector spend being “on” is then related to the SThe explicit turning on and off of the source and detector violate

energy conservation microscopically, but that is natural since the

interactions of the source and detector with their respective envi-

“The main drawback of this approach is that it ignores the neutrironments involve the exchange of energy. If we choose to look at

no’s spin and the characteristi¢—A nature of neutrino interac- the source or detector in isolation, this exchange of energy appears
tions. as energy non-conservation.

¢(x)=f dk[a(k)e **+bT(k)ek ], 2.7
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1 P whereH i (t) refers to the interaction Hamiltonian evaluated

qi(t)= 55 (Ale i+ Bje™), (2.8 in terms of the free fields in the Heisenberg picture at time

' The above expression may be evaluated explicitly in terms of
where neutrino propagatorgl9,2Q for arbitrary turn-on and turn-
off functionse;(t). We find it simpler, however, to “design”

d3k the turn-on and turn-off functions so that the source and de-

m (2.9 tector are never on at the same time, and, furthermore, so that
the source always turns on first and only then the detector.

and where the annihilation and creation operators satisfy thelhis avoids the unphysical situation in which the detector

dk

commutation relations emits an anti-neutrino which is subsequently absorbed by the
source. The amplitude for this process would in any case be
[a(k),a’(k")]=[b(k),bT(k")]=(27)32E8%(k—k'), very small since it violates energy conservatjddnder this

(2.10 assumption only one of the time orderings in the propagator
: : gets picked up andd may be evaluated using Egq&.7),
[Ai A ]1=[B;,B{]=2Q;. (211 (2.9, (2.10, (2.11) and(2.13 to obtain

We interpreta’(k) anda(k) in the usual way as the opera-
tors which create and annihilate, respectively, a neutrino A=—<0;0;1
state with four-momentunk. b'(k) andb(k) act similarly
with respect to the anti-neutrino states. The operaﬁérand
A; and Bfr andB; interpolate between the energy levels of the
harmonic oscillatorS§.

We take as our initial state

f dt,dt"dsxldaxﬁfl(t,)Ez(t”)gb(X”)

X a3(t")h3 (X") ¢ (x)ax(t)hy(x)|0;1 ;0> (2.16

=— f dt’dt"d®x’ d3x"d ke; (t') ex(t")hy (X' )h% (X")
Xexd —i(E—Q)t"+i(E—Q)t" +ik-(X"—x")].

(2.17

Since the amplitude is proportional ¢6] ¢(x") ¢(x')|0), it
represents the first excited state of the oscilldtand in  is clear from Eq(2.7) that this interaction corresponds to the
which |0),, is the neutrino vacuum state. We wish to calcu-creation and subsequent annihilation of a single neutrino.
late the amplitude for the process in which the source de- In order to proceed further we choadsg h, ande; to be
excites to its ground state and the detector is excited to it§aussians since this allows many of the integrals to be

in which

11);=A]|0); (2.13

first excited state. That is, evaluated exactly. Setting
A=(0;0;1]s,%) hy(x)= (V20 ) e~ M2, (2.18
=<O;O;l Tex;{—iJst(t’)dt’ s,—oo>, hz(x):(‘/zngz)*Se*IX*xD\Z/thiz, (2.19
(214 € (t)= 62e—t2/20t21 (2.20

in which HS represents the Hamiltonian in the Satlirger )
picture. The modulus squared of this amplitude is the probWe obtain
ability for the transition to take place. 0
We shall assume the couplings in the interaction Hamil- \/Efﬂftl AU . .
tonian to be sufficiently small that the amplitude in Eq. A= | — 2. fﬁwdt et )fdeex —I(E-Qo)t
(2.19 is always much less than unity. This is of course al-
ways the case in the real-world situation which we are at- 1 a2 1, 5
tempting to model—neutrino interactions are so weak that 5 (E—Q4)%0y = k(o5 + 0%
perturbation theory is always valid. It is then straightforward
to evaluate Eq(2.14 using standard techniques to obtain to ywnere
leading order and up to an overall unobservable phase,

2
4 XD

sinkxp),  (2.21)

k= E?—m?. (2.22

0’1’0>’ Before choosing an explicit form fog,(t), which deter-
(2.15 mines characteristics of the detector, let us make a few ob-
servations regarding the above expression for the amplitude.
First of all, for largexp , the amplitude decreases Iikg1 o)
SNote that we have allowed thg to be complex. Had we not that the probability falls likexy?, as expected on geometri-
done this, the source and detector would have exchanged both negal grounds in three dimensions. At the origin, however, the
trinos and anti-neutrinos. amplitude does not divergelespite the X factor), due to

A= ! 0;0;4T
__E 1V

J, dt’dt"HP(t )R ")
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the sine function in the integrand. A second observation isll of the microscopic detectors in order to correctly model
that conservation of energy at the source and conservation tifie response of the bulk detector. If there are many micro-
momentum at both the source and detector are governed ksgopic detectors in the bulk detector, this incoherent sum
the relative sizes oirtl, Oy, and Oy, This situation is in  corresponds to integrating the expression for the probability

accordance with the uncertainty princigghnd is in fact nec- OVertp.

essary, as discussed above, in order to observe oscillations It is straightforward to evaluate the amplitudes for both
In general, neither energy nor momentum need be conservdyPes of detectors and we obtain

exactly if the source and detector are localized in space and

time. The specific setup which we have chosen favors ener- .
gies close to the energy of the excited souf@e, and mo- Ao Nt t )fwdESW[(E—Qz)(tz—tl)/Z]
menta close to zero. This latter point is due to the fact that step 2 Y T T (E=Qy)(t,—1)/2]
our source and detector have no dynamical degrees of

freedom—they cannot recoil when a neutrino is emitted or
absorbed—and thus the neutrino gets all of its momentum
from the uncertainties in the positions of the source and de-

i 1 2 2
xXex _E(E_QZ)(tl+t2)_§(E_Ql) O'tl

tector. In order to avoid the problem that low momenta are 1, 2 23 |

. . - -k + sin(kxp), 2.2
favored, we shall typically choose to set >0, , in our 2 (03,1 0%,) |sin(kxp) 2.29
numerical work below. When several neutrino fields are
coupled to the source and detector, this will mean that the
energies of the mass eigenstates will be approximately equal, = * 1 s 2
while their momenta will be determined by their energies. Agauss NV2mar, deex - E(E_Ql) Ty

Furthermore, the sizes of the neutrino wave packets will then
be determined more by the amount of time for which the 3 1 B 2 2 1, , )
source emits an uninterrupted wave train than by the local- 5(E Q) 0, §k (05, T %)
ization of the source-field interaction in configuration space.
In Sec. lll, when we extend our analysis to fermionic neutri-
nos, we will allow the source to decay by emitting both a
neutrino and its associated lepton. In this case the neutrino’s
momentum will no longer be centered abdut 0.

Let us now study the system as a function of the coherwhere
ence time of the detector. At one extreme we can imagine
that a given(microscopi¢ detector is turned on for the entire 290,
time that the neutrino “wave packet” passes by. This is an N=—— % (2.27)
ultimately “coherent” detection event. Another possibility is (2m)¥%xp
that a given microscopic detector turns on and off without
sampling the entire wave packet. In order to model the
former scenario we use a simple step functiondgrwhile It is not possible in general to obtain analytic closed-form

—i(E—Q,)tp [sin(kxp), (2.26

for the latter case we use a Gaussian: solutions of these integrals, but they are simple to evaluate
‘o o numerica_lly. In so doing,_ we obtain exatd secon_d order in
€ Nt =e€0(t,— 1) O(t—ty), (2.23  perturbation theorysolutions to the problem which we are
- studying, including all effects due to the spreading of the
€525 t) = ede (17t0) 201, (2.24  neutrino wave packets. Alternatively, we may, in some

cases, find reliable approximations for these integrals. Such
The step function detector turns on abruptly at tipeand s the case for the step function detector if the neutrino’s
off again abruptly at time, (with t; andt, chosen such that mass is not too close to the production and detection thresh-
the entire wave packet passes by while the detector jis onolds (m<(,;— 1lo,). Takingt, to be a time before the first
while the Gaussian detector turns on and off gradually at ;i of neutrino flux arrives at the detector angto be a time

time centered arount}, . Since the cohereristep functiol  afier the entire neutrino wave packet has pagéednally,
detector “catches” the entire wave packet, there is no neeqz_)oo) we find

to integrate the resulting expression for the probability over
time. This is not the case for the incoheré@aussiah de-

tector: Since each individual microscopic detector sees only _ 1
a piece of the wave packet, one must sum incoherently over lim AgedXp ,t1,t5)=—iN wex;{i kxp— 5(92—01)2031
to—
"This is a “trick” which we use to get sensible results, but it is — —(Q%—mz)(a')z( —|—0'>2( ), (2.28
also not unreasonable on physical grounds. According to the dis- 2 ! 2

cussion in Ref[18], for example, this condition is satisfied by o

several orders of magnitude i, is taken to be on the order of Wherek=(Q5—m?)2 (The details of this calculation may
nuclear sizes. The reader is also referred to the discussion of Lipkihe found in the Appendjx Note that the coherent detector
[14], where this same point is emphasized. “picks out” momenta corresponding to the enerf.
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The modified “probability” associated with the above ty .8 We thus refer to this type of bulk detector as an “inco-

amplitude is given by herent” detector, since we sum the probability incoherently
over different times.
Pstep(XD)ElAste[(XDNZ/NZy (2.29 The time integral of Eq(2.31) may actually be done ex-

plicitly. Let us define the following(unnormalizedl time-

where we have dropped the implicit dependence;andt,. integrated probability:

We have also divided through by because the value of "

that constantincluding the falloff asxy?) is not really of Pincor XD "’tz)EJ dtpPoaustXp to,01,) . (2.32
interest to us since in any calculation of the oscillation prob- 0

ability N2 always factors out. Taking the ratio of this prob- _ ) ) )

ability for two different values of the mass reveals that theSiNce the integrand is symmetric undgr— —tp, we may

system is more efficient at producing and detecting highertqrmally extend.the .integration to negative infinity and d|
mass neutrinos: vide by 2. The time integral then reduces to a delta function

in energy and allows us to perform one of the energy inte-
grations. As a result, we obtain

Pstep(m;XD)

Pincol Xp ,01,) = 2720, f dEex| —(E- Q)07
m
PeedM'5Xp)

~exd (m?— m'z)(a§l+ aiz)]. (2.30
—(E—Qp)%0¢ — k(0% + 0% ) Isim(kxp).
(2.33

The mass dependence of the source-detector system arises .
due to the fact that our source and detector favor neutrino " M<i~ 1o and oy, >0y, , (the latter condition is
states with momenta close to zero. This feature was predicteways assumedthen we may approximate the above ex-
already in the discussion following E(R.21) and is due to  Pression by setting sftkx,)~1/2 to yield

the fact that the source and detector in our model cannot

“recoil” and thus the neutrino gets all of its momentum 775’2(7?

from the uncertainty in the positions of the source and detec- Pinco(Xp 101) =——— 22 BT
tor. Thus the upper limit on the neutrino’s momentum is (Utl+0t2+0xl+0x2)
given by Ky~ 1/oy . Note that this preference for non- s 2 )

L . L2 . . Xexgm(oy +o%.)]
relativistic neutrinos is essentially a quirk of our model and Xy X
should not be viewed as a physical effect. The mass depen- Qio? + o2
dence of the system can be minimized by setiing, to be (Qy07, +Qz07)

N : X ex
much less thaf); 3. In such cases, the step function detec- (of +op +0% T )

tor becomes nea'rly “ideal”; that is, it detects neutrinos of
different masses with nearly the same efficiency.

We now turn to the Gaussian detector and define a modi- —Qigf —Qggf ] (2.34
fied probability in analogy with Eq(2.29 ! 2

8Consider first a simpler case in which there &fedetectors,
turning on and off at times centered aboutt,<---<ty. Each
PaauskXp »tp ,Utz)ElAGausng 1o !Ut2)|2/N2- of them has probability to detect the neutrino, buinly if one of
(2.3)) the previous detectors has not already detected it. Then the prob-
ability that none of them detects the neutrino is{d)", that the
last one detects it is (2 €)N "¢, that the second last one detects it
is (1—€)N"2¢, and so on. The probabilities for thé+1 distinct

. . . - . ..~_possibilities sum to unity, as required. The probability that the neu-
This expression gives the probability that a given micro trno is detected is then 4(1—e)N=Ne—N!eZ/(N

scopic detector—turned on for a time, centered around 5, _ N if Ne<1, that s, if the probability of detecting
the timetp—is excited. We need to convert this EXPressIOoNthe neutrino in the bulk detector is much less than amkich is
into one giving the probability that the bulk detector “de- certainly the case In the case at hand suppose thatorresponds

tects” the neutrina(i.e., that one of the microscopic detec- y 5 time before any appreciable flux has arrived at the detector and
tors is excitegl We assume that the bulk detector is “on” for ¢ _ 1 T to a time after all of the flux has passed. Then

all tp>0—in the sense that at any given time many of the N N

microscopic detectors are “on”—but that the microscopic > Pixo ,ti)s(N_l)E P(xp b)) At
detectors themselves turn on and off randomly, so that the =1 T =

number which are “on” at any given time is roughly con- (N—1) (u+T

stant. Then the probability that the bulk detector “detects” =~ J’ dtpP(Xp ,tp).
the neutrino is proportional to the integral of E8.31 over T )y
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2 B B BN AR the case in which there are several neutrino fields coupled to
| 0=0,=10 { _ the source and detector. Suppose that thereNadifferent
R /i 1 neutrino mass eigenstates. Then, in order to model the real-

6 M71° S 7] life situation, we suppose that there are also several different
L Lo i types of sources and detectors, each of which couple to a
- 1 “weak eigenstate” which is a given unitary linear combina-

ar ] tion of the neutrino mass eigenstates. The action of(Eq)
. ] is then generalized to

2r -] _ 4y, 0 0

S= | d%(Ly+ Lin) + | dilg, (2.3
i 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 ‘ 1 o ]
0
0 2 4 6 8 10 12 where
m
T 2
FIG. 1. Plot of the “incoherent probability"Picon [EQ. (2.33), _Ei ¢ () (L +m?) ¢i(x), (237

normalized to its value ah=0] as a function of mass for the case
of a single neutrino, takm@-x ,=0.1,0.05. In each case, the solid
line shows the exact result and the dashed line shows the result? = 2 [a$"(Has () — Qs (Hag)+agT(Has(t)
obtained in the approximation of E.34). The dash-dotted line
shows a plot of /(m) for comparison.

-05%q5"(Hag(v)], (2.38
Thus, under the above conditions the “incoherent” Gaussian
gziggtg: Bgzstckf é:ﬁg;&g&a}ss dependence as the step func m?: _; {en(DU~, qbfr(x)qi‘(t)hl(x)
P MiX 1 00) U405 (O (x)]+ e DU 4 (X) a5 (Dha(%)
R 2 2y 2 2
=ex(m"—m"™)(03, +o%,) - +Uai ()05 (DS 0T), (2.39

7)inco}"(m, XD vo'tz)

(2.35

This fact is rather remarkable and shows again that it is cor-
rect to perform the time integral in E€2.32. refer, respectively, to the source and detector. These should

Figure 1 shows a plot of the time-integrated probability, "0t P& confused with the subscripts on the fieelsvhich
Eq. (2.33, as a function of the neutrino mass for two differ- refer to the mass eigenstates. Also note that we have taken
ent values ofr,. . This probability may be regarded as giv- andh to be independent of the flavor or mass eigenstate in
ing a measureléf thefficiencywith which the system pro- question. In principle there could be such a dependence, but

including it would unnecessarily complicate our analysis. In
duces and detects a neutrino of a given mass. For 9 Y b Y

convenience, the probabilities have been normalized to thei’r\/halt follows, we shall also sé1;°={);, for all a, in arder to

values atm=0. In each case, the solid line gives the exact 'd_?_ﬁlézix Oeurrirﬁgﬁ{;ez;:d cjf;iﬁovrvse' wish to consider is a

result and the dashed line shows the approximation for non— P P

threshold masses derived in B@.34. Clearly the approxi- simple generalization of that given in the previous section. In

mation is quite good if the mass is not too close to the neuthls case we |mag|ne that the initial state of the system has an

trino production and detection thresholds. Furthermore, it rﬁ] fl?vorl sour(;]e os?;llator‘fg its fIrS'[”eXCIt.ﬁd sta_\te_anf(_j that
clear that this detector can be made “idedfthat is, the € final state has Aa-flavor “detector™ oscillator in its first
probability to detect a neutrino may be made mass indeperf excited state. The amplitude for this process may then be
denf by using suitably small values far, . The mass de- calculated as in the single-neutrino case and we find

pendence for IargeX ,oceurs for the same reason as in the

case of the step function detector and is due to the fact that Agep=—2 uﬁjujzi<0;0;1ﬁ‘f dt’dt"d’x" d®x" e (t')
the source and detector in our model cannot ref@@e the "
discussion following Eq(2.30]. The dash-dotted line shows
a plot of 1b(m) for comparison. This would be the analo-

and in whichi/ is a unitary matrix. Note that the subscripts
“1" and “2” on the functions € andh and on the fieldg

X €x(1") ¢ (X") g5 (t")h3 (X") T (X )af(t")

gous efficiency found in a wave packet calculati8h Since 01 -0 (2.40
our detector may be made mass independent by a suitable e '
choice of theoxi, we see that a “well-designed” detector
will not exhibit such an effect. ~
=—Z uﬂiuﬁ;if dt’dt”d3x" d3x"dk; e, (")
I
B. Several neutrinos X ex(t)hy(X' Yt (X")exd —i (E;— Q)"
€ X xX"Yexd —i
Now that we have studied the characteristics of the 2 ! 2
source-detector system in the single-neutrino case, we turn to +i(Ei—Q )t +ik-(X"—x")], (2.4
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in which we have defined

EiE k2+ m|2

(2.42

Taking h4, h, and €; to be Gaussians with Widthsxl, Oy,
andatl as in the single-neutrino cafeee Eqs(2.18), (2.19
and(2.20], we may further simplify this expression to

\/Efg(ftl

U L{*fw dt"e,(t" wdE
4772XD 2I A e - 62( ) m;

Aaﬂﬂ: _(

. 1 2
Xexg —i(E—Q)t"— E(E_Ql)zatl

1, 2 23 |
—Eki(axl+ sz) sin(kiXp), (2.43
where
ki=+\E2—m?. (2.44
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nature. The normalized coherent and incoherent oscillation
probabilities may then be defined as

step 2
PO (x0)— lim | AL (Xp s 11, 1)) |
a—fB ’

X AT (Xt )2
,BI

(2.47

fdtD|ASTZfXD:tD'Ut2)|2

: 0
PR ) = |
> j dtp| A, 5 (X0 ,tp 0|2
g0
(2.48

It is understood in the first expression thatis taken to be
some time before the first bit of neutrino “flux” arrives at
the detector.

The expressions which we have derived for our two types
of detectors are in forms which are amenable to numerical

This expression is clearly just a simple generalization of Egcalculation. The coherent probability may be found after a
(2.21). The final step in our calculation is to substitute thesingle integration over energy and the incoherent probability

expressiong2.23 and (2.249 for e,(t) in the step function
and Gaussian detector cases. This yields

”dESir{(E_Qz)(tz_tl)/z]
i T [(E-Qy)(t,—t1)/2]

Azti)BZN(tz_tl)Zi Ugildy, J

XSin(kixD)ex;{ — IE(E—Qz)(tl-i—tz)— %(E

1
— Q%07 — Ski(oy + %)

, (2.45

— @ 1
AZ=N szt; Ugilll; f m_dEexp[ -5 (E- 0)%0f
1 1
— 5(E=Qp)%0¢,— ski(o} +0%)
—iI(E—Q))tp

sin(kixp), (2.406

whereN is defined in Eq(2.27).

We are finally in a position to define the oscillation prob-
ability as a function of distance for the two cases. In both
cases our definition of the probability is a “physical” one.
We imagine that the source produces neutrinos of type
..) andthat we set aB-neutrino detector at

(a=¢e,u,T, .
some distance&p from the source. We prepare the soufoe
an ensemble of identically prepared soujciesan excited

requires two integrations, one over energy and one over time.
In the two-neutrino case, the time integral in Eg.48 may
be done by hand, but this is not possible in general for more
neutrinos. The reason for this is that the integrand is no
longer symmetric undet,— —tp due to the possible pres-
ence of phases in the mixing matdik

Let us examine the case with two flavors in some detail.
In this case, the matri&d may be taken to be a real orthogo-
nal matrix parametrized by one angle,The time integral in
the numerator of E(2.48 may be performed explicitly and
we find

| dtolagtno o0
— 2 _2N12
_27T O'tZN Z,] Z/lﬁiugjuaiuaj

xj dEsin(kiXp) sin(k;Xp)
ma)(mi ) J)
xexp{—(E—Qy)%0f
~(E-Qy)%07

—[E?—(m{+m})/2](o% + 0% )}

(2.49

Figure 2 shows several plots of the flavor-conserving

state, wait a long period of time, and then check to see if th@robability P_¢(xp) as a function okp for two relativistic
detector has been excited. After repeating this experimerteutrinos, using both the “coherent” and the “incoherent”
enough times to get good statistics, we repeat the proceduftgtgctors._The various parameters chosen for the plot are as
with a 8’-neutrino detector, and so on. The probability toindicated in the figure. Recall thd?, and (2, (set equal
observe a8 neutrino is then simply the number of events here are the energies of the excited source and detector,
observed in ‘8 mode” divided by the total number of events 'espectively. Since we have chosen tosgt oy, the ener-

in all modes. Since we have attempted to make our sourcegies of the mass eigenstates are approximately equél to
detector system as “ideal” as possible, there are no furtheand their momenta are determined by their energies. The
corrections for detector efficiencies or other effects of thawvalues employed here fa&f, m; andm, are chosen merely
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1F B 05 [ T T T T T T T .
0.9 3 E 04 F 0,=0,=10 =
08 F - r 0y =0x,=-05 1
: 3 03 [ -l 3
0.7 £ 3 F t,=150 ]
0.6 ; —f 02 | m=3 m=1 9,=1 -
05 B L L TR R 04 f_ _f
0 50 100 150 200 F 1
(@) ob o v N L ]
L L L I 120 140 @ 160 180
09 F E
E E 05 T — — 7
0.8 E ,=0.1 3 E 3
0.7 =Y wave packet - 0.4 :_ a,=2 _:
S B B B s ]
0.6 £ 3
0 200 03 1
1 02 F =
F H o m=3 m=1 J
09 £ g 01 [ =
08 :_ : E 1 ( ( | 1 | 1 1 E
g E E
07 F 3 120 140 160 180
= coherent 3 distance between source and detector, x;
c6 o 0,=0.1 E (b)
0.5 E 1 1 1 1 ‘ L 1 L | 1 1 1 1 | L 1 1 L 3
0 50 100 150 200 FIG. 3. “Snapshots” of two mass eigenstate wave packets using

distance between source and detector, x,

© incoherent detectors with different time resolutions. The wave

packets have been individually normalized oxgr. In (a) the time
FIG. 2. Oscillation probabilities as a function of distance. Theresolution of the detector is such that the wave packets appear to be
two curves in(@) correspond to the “incoherent” detector with time nearly separated, while i(b) the same wave packets appear to
reso|utionsgt2= 1,2. The solid curve itib) gives the “incoherent”  overlap due to the broader temporal resolution in that case.
probability forotzzo.l. The dotted curve shows the analogous re-
sult obtained in the wave packet approach. The solid curvg)in
shows the probability measured by the “coherent” detector.

oscillations of neutrinos even after the mass eigenstates have
separated spatially. Essentially, the accurate measurement of
the energy picks out the plane wave in the wave packet

for the purpose of illustration. Note that the curves do not ggvhich has existed coherently through both pulsksj. Our

all the way toxp=0, since our formulas are not valid for Present approach allows for a complementary way to view

very smallxp.° the situation. The question of whether the wave packets cor-
Figures Za) and Zb) show p|0ts of the probab”'ty for I’espondlng to two mass EIgenStat.es have §eparated or not

detecting the same-flavor neutrino as was emitted in the cagéépends on the temporal and spatial resolution of the detec-

of an “incoherent” detectofsee Eq(2.48] for several dif- tor. We may demonstrate this effect by way of an example.

ferent values of the time resolution of the detectey, The ~ Let us take a "snapshot” of the wave packets corresponding

- - ; . to two different mass eigenstates at a fixed tithe=150
dotted curve in Fig. () is the analogous result derived usin . ) A . )
the wave packetgagap)roadls]. Thisgappears to be a goodg using the incoherent detector with different W|dth$é. Fig-
approximation to our result in the limit ag,—0. Itis clear = Ures 3a) and (b) show the detection probabiliti¢given by

from these plots that the coherence length of the oscillationEq' (2'3])’ bL:t tsepzliralt:e_ly notrhmatl_lzed OVEIIS]t_fOF t?fhtwg
is dependent on the time resolution of the detector; that is, atryass eigenstates. In ig(a the time resolution ot the de-
ector is taken to ber, =1 and there is almost no overlap

was noted in Ref/18], a long coherent measurement in time
is capable of “reviving” oscillations of neutrinos whose between the two wave packets. Indeed, comparison with Fig.
mass eigenstate wave packets have become physically sep4@ shows that, foxp~150, the oscillations have been al-
rated. This effect is particularly striking in the case of themost completely damped out. If the detector is taken to have
probability detected by the coherent detector, shown by th@ broader time resolution as in Figh3, however, the wave
solid curve in Fig. 2o). In this case the oscillations appear to Packets appear to have a non-negligible overlap. In this case
have beencompletely revivedeven after, according to an the width due to the finite time resolution of the detector has

“incoherent” measuremer(‘dotted CUrVQ the wave packets been added to the Original widths of the wave paCketS. Com-
have Comp|ete|y Separated. parison with Flg Zﬂ) shows that in this case the oscillations
We have already discussed to some extent how it is podiave not yet been wiped out fap~ 150. From this point of

sible for a long coherent measurement in time to revive the&/iew, then, it is not surprising that the conventional “wave
packet” approach for relativistic neutrinos agrees with the

source-detector approa¢see Fig. 20)] for very smalloy,.

%Recall that we require the source to turn off before the detectoThe wave packet approach simply ignores the finite time
turns on in order that we may drop one of the time orderings in theresolution of the detector.
neutrino propagator. The reader is referred to the discussion follow- The “coherent” and “incoherent” probabilities, Egs.
ing Eq.(2.15 for more details on this point. (2.47 and (2.48, may both be reliably approximated in the
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relativistic limit. SettingQQ=Q,=Q, for convenience, we 1 ' T L I T
obtain'® . -
08 7
aﬂﬁ(XD) IE Ugildoild gl i€l i (K — Kj)Xp i ]
! 06 [ b
+(mf+m?)(of + 0 )I2] (2.50 : :
04 [~ -
and [ ]
incoh 1 L, 0.2 N ]
Pasp(Xp ,atz):mEj Ugillpild il jexld i (K — Kj)Xp i ]
' L 1 | 1 1 | 1 1 ‘ 1 1 1 ‘ 1 1 1 ]
0
+(mf+m?)(of +0%)/2] 4 6 o 10 12
2
x5 (1l —1lv;)? ) FIG. 4. Plot of the constant flavor-conserving probability,
Xexp - 4(02 +o2) (2.5 Pe_.e. defined in Eq(2.55 as a function of the mass of the heavier
b Th neutrino. The solid lines correspond to spatial W|dth(s =0.01,

h v9 05, 0.1, 0.15 and the dotted line shows the value obtalned in the
where
wave packet approach if the contributions corresponding to the
various mass eigenstates are weighted by .1/

for the coherent and incoherent cases, respectively,
have defined

N=2 U?exd mi(og + o5 )], (2.52  more, let us restrict our attention to the case of the incoherent
! detector, which is the more realistic of the two detector
_ types. As the mass of the heavier neutrino increases, the

ki= Qz_miz’ (2.53 packets separate more quickly and, for sufficiently non-
L relativistic neutrinos, the oscillations are damped out almost
vi=k;/Q. (2.59 immediately. It is convenient, then, to simply study the

. ) , ) asymptotic expression
These expressions are identical except for the damping of the )
incol

cross-terms which occurs in the approximation for the “in- Pzﬁﬁ(atz)z lim P~ s(Xp ,otz) (2.595
coherent” case, Eq(2.51). Note that the oscillation length Xp—®

which may be extracted from either of these expressions is i L ) ]

exactly what one finds in the usual approach, with no SpurlThe main non-relativistic effect in our toy mpdel is due to
ous factor of “2.” The approximation for the “coherent” the model's dependence ax , rather than being related to
case contains no damping whatsoever, demonstrating that awnrelativistic effects of the oscnlatlons themselves. Recall
infinitely long coherent measurement does indeed comfrom our discussion in Sec. Il A that our source and detector
pletely revive the oscillations of the neutrinos. We also noteare more efficient at producing and detecting non-relativistic
that, while our expression for the incoherent case,(E61),  neutrinos(see also Fig. )1 This dependence skews the re-
bears some resemblance to the analogous expression dits for the oscillations, as one might expect.

tained in the wave packet approagdee, for exampl€,8]), In Fig. 4 we have plotted the probability for g to be

our expression has an intrinsic dependence on the tempordétected as &, in the limit asxp—« [P, _, in Eq. (2.59]

and spatial resolution of the detector which is ignored in theas a function of the mass of the heavier neutrino. The various
wave packet approactiThis dependence on the detection curves correspond to different values o; the spatial

process has also been investigated recent[2#) Finally,  resolution of the source and detector. For larger values of
we note the absence of factors oblpre-multiplying the oy, , this probability is indeed skewed quite dramatically

exponentials such as can occur in wave packet calculatlon%.ue to the fact that the heavier mass eigenstate starts to

o dominate the probability distribution. Recall our earlier ex-
C. Nonrelativistic case planation as to why this occurs in our model. Since our
It is worthwhile to consider briefly the oscillations of non- source and detector do not “recoil” when the neutrino is
relativistic neutrinos in our toy model. Let us assume tha€mitted or absorbed, the upper limit on the neutrino’s mo-
one of the mass eigenstates is relatively light and let us studgentum is given by~ 1/oy , [the reader is referred to
the behavior of the oscillation probability as the mass of thehe discussion following Eq(2. 30)] We emphasize, how-
other neutrina(in the two-neutrino cagds varied. Further- ever, that this effect is an artifact of our model and would not
be expected to occur in more realistic models. We shall dis-
cuss this point further below when we consider how our
0we have used the approximate form4f¢given in Eq.(2.28  approach might be extended to the more realistic case in
in order to derive Eq(2.50. Also, in deriving Eq.(2.51) we have  which the neutrino is not the only decay particle emitted.
dropped the highly oscillatory terms in the integrand since they ardNote also that asm, increases above the production-
strongly damped foxp> 0y +0y,. Recall that our calculation is  detection threshold all of the solid curves approach the same
only sensible foxp> o, + o, value of codd. (How abrupt the threshold is depends on how
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source detector

Lo=2 Laz"(Daz() - 0fa (Daz(0) +ag" (Va5 (D)
— 0303 (Ha5(1)], (3.4

L=~ [e(Daf()1(x)j%(x)

il
q aq

re— Ty + e,(1)g5(t)h,(x)j 2T(x) + H.cl], (3.5
and wherej 2(x) is the zeroth' component of the leptonic
V—A current,
It I
FIG. 5. A schematic illustration of the sequence of events in the jﬁ(X)EEi Ui ViV P, lo=e T, .o,
source-detector system for fermionic neutrinos considered in Sec. (3.6)

lll. The excited source decays by emitting a neutrino and its asso-

ciated anti-lepton. The detector subsequently absorbs the neutringith P, =(1— 75)/2_ Once againfl(z) and h1(2) are func-

and emits a lepton. tions which parametrize the temporal and spatial couplings
of the neutrino and lepton fields to the sourdetectoy.

larges anday, are, of course.The dotted curve shows, for The calculation of the amplitude proceeds in complete

comparison, the result which is obtained if the detection efanalogy with the calculation for the bosonic case and we

ficiencies for the mass eigenstates are weighted 5y, We ~ Shall omit most of the details. As above, we takgt)

see no evidence in our model for this type of behavior.  [€2(t)] to be a Gaussian of width; [0 ] centered at=0
(t=tp) and hy(x) [hy(x)] to be a Gaussian of widthr,,

lIl. TOWARDS A MORE REALISTIC CALCULATION [oy,] centered atx=0 [x=xp] [see Egs.(2.18, (2.19,
) , . (2.20 and (2.24]. Thus, we omit here the case of theo-

In this section we show how the bosonic model of thepereny “step function” detector and consider only th-
previous section may be modified to account correctly for thg,sherent “Gaussian” detector. Also, recall that the energies
fermionic nature of the neutrindsvhich we shall assume t0 ¢ the source and detector afy and(),, respectively. The
be Dirac neutringsand for theV —A nature of neutrino in-  ampitude to detect a neutrino of flavgr given that a neu-
teractions. This will have the added benefit of preferring neUsring of flavor & was emitted at the source is then given by
trinos with non-zeromomentum. Once again the source and

detector will be modeled by harmonic oscillators. This time,
however, the oscillators will be coupled to the usiatA Aaﬂﬁ=(2w)egegatlat22 L{Biuzif
leptonic current rather than simply to the neutrino field. As a :

result, the interactions at the source and detection points will 1

involve both the neutrino and its associated charged lepton. Xex;{ ——[Q,—E(py) —Ei]?0?
It is convenient to take the initial state to consist only of the 2 !
source and detector, both in their first excited states. The 1

source decays by emitting a neutrino and its associated — Z[Q,+E—E(py)]%0?
charged anti-lepton, and the detector decays by absorbing the 2 2
neutrino and emitting another charged lepton:

d3k
(27)32E;

1 1 ) .
- §|k+p1|20)2(1— §|k_p2|20'>2<2_|EitD+|k'xD
(source* — (k) +1% (p,)+ (source L
X U g(P2) ¥YPPL(k+m) ¥°PLv . (py), (3.7

in which the subscripts on the andv spinors refer to their
flavors; the spinors also have an implicit spin index which

. . . .. _has been suppressed.
This sequence of events is illustrated schematically in Fig. 5. the apove expression for the amplitude is qualitatively

The system may be described by the following action: similar to the analogous expression, E2.46), derived pre-
viously in the bosonic model, with a few notable exceptions.
On a technical note, we see first that it is no longer possible
to perform the angular parts of theintegration exactly as

—v(K) + (detectoy* —1 5 (p,) + (detectoy.
(3.9

s:f d4x(£2+,cim)+f dtL?, (3.2

where 1 o ) )
In a more realistic calculation, one might perhaps couplé/fthe

A current to a current representing the initial and final nucl@ég9s
»’38:2 V_i(x)(i/?—mi)vi(x), (3.3 If thesg nu_clel are sqfﬂmently non-relativistic, then it is a good
i approximation to consider only the zeroth component of the current.



3102 KEN KIERS AND NATHAN WEISS 57

was done in the previous case. This occurs because of thgirallel, respectively, t&y , due to the damping terms in the
presence of the momenta of the charged leptppsindp,,  exponential of Eq(3.7). In order to get some idea of the
which complicate the integrand somewhat. A related point iseffect of the matrix element as a function of the neutrino’s
that now the neutrinos’ momenta are not centered arounghass, then, let us evaluate it when all of the momenta are
zero, as was the case above. Rather, we have for the mearallel (or anti-paralle) to xp . (A somewhat similar analy-
menta sis to the following may be found in R€R25].) Choosing an
explicit representation for the gamma matrices and adopting

k~=p, (3.8 the normalization conditions of ltzykson and Zulpaé, pp.
Kk~ 3.9 57, 145-614, 2011 we find that only two of the four helicity
~P2 ' combinations of the leptons survive, yielding
and for the energies
0 (o 310 ML p(m)=—(Ei—k)
1%E pl +E; y 3.1
I [E(p1) +mM,+p1][E(p2) + Mg—p,]
Ei+Q2=E(p2), .13 2{4m,mg[E(py) + m,I[E(py) +mg]} 2

whereE; is the energy of théth neutrino mass eigenstate. (3.13

The relations(3.8—(3.11) are only approximate equalities
since the degree to which each of them holds is determinedM;;B(mi): —(E;+k)

by the relative sizes o:frxl, O The fact that the neu-

trinos’ momenta are not centered about the origin is rather % [E(py) +m,—pi][E(P2) + Mg+ po]
encouraging because it indicates that this model would not 2{4mamB[E(p1)+ma][E(p2)+mﬁ]}1’2'
be expected to have th@nphysical feature that it favors (3.14
non-relativistic neutrinos, as was the case in the bosonic '

model of the previous section. The final difference, com-

pared to the bosonic case, is the presence of the matrix elg\(here](5|k|, etc., and W.“‘?Te the ¥+" and * —— Su-
— hich . Il of the inf , perscripts refer to the helicities of the lepton and anti-lepton.
ment, Ug- - -v,, Which contains all of the information re- |, yhe |imit as the neutrino mass goes to zero, only the com-

garding thef r;]euftrinos' spins. It is interesting to note theyination in which both leptons have negative helicity sur-
presence of the factor vives, since the exchanged neutrino can only have negative
_ helicity in that limit. For non-zero masses it becomes pos-
(k+m) . - L L
, (3.12 sible to also produce lepton pairs with positive helicity.
2E; The quantities which will occur in the oscillation prob-
0e%bility are the squares of the matrix elements. Let us define

which arises in this case in part due to the sum over spins
the neutrinou spinors,> u3(k;) u3(k;). This same factor ap-
pears in the field theoretic calculation of RElf9], but in that
case is due to an integral in the compliex plane which
extracts the pole of the propagaf@4]. We need not do any ha (M) =M~ g(m)|%| M, 4(0)]%.  (3.18
such integration since we always insist that our source be
turned “off” before our detector is turned “on.” This forces Thenh™ (h™) gives some measure of the probability that the
the neutrinos to always be on shell. source-detector interaction gives rise to two leptons with
It would be possible at this point to proceed as we did inpositive (negative helicity. Since the efficiency of the sys-
the previous section. First we could examine the response @#ém at producing and detecting neutrinos of a given mass is
the detector to the source by looking very carefully at thedetermined to some extent by the functidns it is useful to
case in which there is only one neutrino. Armed with thisplot them as a function of the mass of the exchanged neu-
knowledge we could define the probability in analogy with trino.
the bosonic case and study its behavior as a function of the It turns out that the energy-momentum conservation equa-
various parameters of the theory. While this progam mightions, Egs.(3.8—(3.11), are overcomplete. Thus, for given
be deserving of future study, for now we shall content our-values of the charged lepton and neutrino masses, for ex-
selves with a more qualitative examination of the genericample,Q); and(}, may be found such that all of the condi-
features of this model. tions are met, but when the neutrino mass is varied, at least
As we have noted, two of the main qualitative differencesone of the conditions needs to be violated. This problem is
between this model and our former bosonic model are theelated to the difficulty which occurred in the bosonic model
different energy-momentum conservation equations and thevhere momenta close to zero were favoradd has its root
presence of the matrix element in the integrand. A furtheiin the fact that our source and detector are fixed and do not
difference is that in order to obtain the oscillation probabil-recoil. For the purposes of our plot, let us require that Eqgs.
ity, we now need to integrate over the momenta of the twa3.8), (3.10 and (3.11) hold exactly—so that energy and
outgoing charged leptons. Since théntegral in the expres- momentum are conserved at the source and energy is con-
sion for the amplitude is expected to be dominated by valueserved at the detector—and allow the momentum conserva-
of k which are parallel toxy [20], the p; and p, integrals tion at the detector, Eq3.9), to be violated. As in our pre-
would similarly be dominated by values anti-parallel andvious model, this can again be allowed by setting to be

ha . g(M) =M g(m) [P M, 5(0)]%,  (3.15
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T ticularly if the spin of the leptons were to be measured in a
certain experiment, one could expect there to be quite strong
mass effects for non-relativistic neutrinos. In our case, for
example, there is a suppression of the negative helicity final
states for large mass and a mild enhancement of the positive
helicity ones.
Since in this model the neutrinos no longer have their
momenta centered about tkenphysical value of “zero,”
one would expect in this case that the non-relativistic neutri-
nos would not be favored, as was found to be the case in the
i bosonic model studied above. In fact, it is possible that there
I N B e would be a suppression for non-relativistic neutrinos due to
0 20 40 60 80 the phase space suppression of the final state leptons, for
Neutrino Mass (keV) small momenta. This question could really only be answered

_ B ) by performing a thorough numerical analysis of the model,
FIG. 6. Plot of the two functionl,_,, andh,_ . as a function of \ hich we shall not do at this time.

the neutrino mass. These provide a measure of the probability to
produce lepton pairs with helicity-1 and —1, for h* andh™,
respectively. IV. DISCUSSION AND CONCLUSIONS

0.8 9, =06 Mev
Q, = 0.5 MeV
0.6  m, = 0511 MeV

0.4 C

02

somewhat smali? For the plot let us take=8=e, so that Most phenomenological work in the field of particle, (

both the source and detector are sensitive to electron neutff: B: - - -) oscillations describes the oscillations as a func-
nos. We then set tion of time and then converts the time dependence of the

results to a space dependence. There have been many at-

0,=0.6 MeV, Q,=0.5 MeV, tempts in the literature to improve on these calculations by
explicitly including the spatial dependence of the wave func-
m,=mz=m=0.511 MeV. (3.17  tion. These approaches have necessarily led to the descrip-

tion of the wave function as a wave packet. It has been

Figure 6 shows a plot dfi}_(m) andh;_(m) as a func-  shown that several recent claims that such wave packet ap-
tion of the neutrino mass. The “threshold” in this case is proaches lead to different results than the simple time-
determined by the conditiofl;=m.+m, wherem is the oscillation approach, are incorrect and thapraper wave
neutrino mass. The upper curve corresponds to the negativ@cket calculation leads to the “expected” results.
helicity case and approaches unitynas-0. The lower curve In this paper we have presented a novel approach to the
disappears in the same limit. For neutrino masses closer @udy of the spatial dependence of neutriaod other par-
threshold, fairly substantial deviations from the=0 case ticle) oscillations. We have done this by coupling the neu-
are observed to occur. trino field to an idealized, localized model of a source and

The plot in Fig. 6 should of course be treated with somedetector which we have chosen to describe as simple har-
caution, since it shows only the square of the matrix elemenfnonic oscillators which can be excited or de-excited by the
evaluated at some “optimal” energy and momentum con-absorption or emission of a neutrino. The system begins with
figuration. In general, the oscillation probability will also the source in the first excited state and the detector in its
receive contributions due to energy and momentum configuground state. We then compute the probability that at a much
rations which are non-optimal. Furthermore, it has beerater time the source is in its ground sta that it has
found that the procedure which we have followed can lead t¢Mmitted a neutrinpand the detector is in its first excited state
non-sensical results if the neutrino mass is taken to be large&0 that it has absorbed a neutnin®his probability is evalu-
compared to the lepton massin any case, however, the ated as a function of the distance between the source and the

p|ot doesdemonstrate Something which m|ght be regarded agetector and it depends, in detail, on the Spatial eXten_t of the
“typical”: For non-relativistic neutrinos there will be a non- source and the detector as well as on the length of time for

zero probability to produce charged leptons in the final stat&vhich each is on. We have seen how to use this dependence
which have the “wrong” helicity configurations. Thus, par- to obtain a better understanding of how neutrino oscillations
depend on the time resolution and the coherence properties
of the source and the detector. We have also seen how our
120n physical grounds we would prefer to allow momentum con-aPProach is useful in clarifying several subtle issues related
servation to be violated somewhat rather than energy conservatiof? the quantum mechanics of neutrino oscillations.
The reason for this is that in the former case, the small value re-
quired 1‘.or.(rX is still of a reasonable magnitude compared to nuclear ACKNOWLEDGMENTS
scales(it is on the order of several hundred fm in the example
considered heje but the value which would be required for, We wish to thank H. Lipkin, J. Oppenheim and B. Reznik
would be far too small compared to any time scales in the physicalor helpful conversations. We are also particularly indebted
problem. to W. Unruh for suggesting the use of a source and detector
13This occurs because, in our prescriptitnand p, need not be  to study this problem. This work was supported in part by
the same. For very heavy neutrinos this starts to cause problems the Natural Sciences and Engineering Research Council of
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APPENDIX: APPROXIMATE AMPLITUDE xsin V(E—Q)2—m?xp]

FOR THE COHERENT DETECTOR

~ 1 _
In this appendix we shall derive an approximation for the —ex;{ —iEt,— §(E+AQ)2¢Tt2
t,—oo limit of the integral given in Eq(2.25 and investi-

gate under what circumstances the approximation is valid. 1
The form for the integral given in Eq42.25 is convenient - E[(E+Qz)2 m?](a} +¢T ,)
for numerical work, but is not particularly convenient for the
limit which we wish to consider. Let us instead go back to —
the definition of this expression, obtained by inserting Eq. xsin V(E+Qz)2—mzxo]], (AS5)

(2.23 into Eqg. (2.21). We may now formally take the limit

ast,—o by giving (), a small imaginary piece. This yields whereAQ=0,—, and where the only approximation so

far is that the interval Q,,) has been truncated to
- dE (9,,2Q0,—m). This approximation is valid if the major con-
AgtefXp 1ty ,0) = _iNf —ex;{ (E—Ql)z(ftz tribution to the integral comes from energies closép In
E-Qy—i order to further approximate the integral, let us make the
ansatz that the integral in EGAS) is dominated by values so
sin(kxp),  close toE=0 that is valid to seE=0 in the Gaussian
pieces. At the end of the calculation we will be able to see in
(A1)  which cases this is a reasonable approximation. When deal-
ing with the oscillating terms we must be a bit more careful.
where the limite—0* is understood. This integral may be Writing the sine in terms of exponentials and Taylor expand-
simplified by employing the relation ing the arguments to first order ik (which essentially
amounts to ignoring the spreading of the wave pagketsls
to the following approximation for EQA5):

1 .
- El<2(a§1+a§2)—|(E—Qz)t1

=imS(E—Q,)+PP

E_QZ_iE E_Qz (AZ)
E’Nex —E(Q -Q )ZJZ—E(QZ—mZ)(UZ +02)
to obtain 2 2\ T2 R Py 9RtR2 x1 " Ix,

XIQZ de[e|Et1 i(k—Elvxp_ g i(?—E/T)xD)
. 1 L, 1o, o E
Asied Xp 1 t1,0) =Nmexpg — 5 (Q,—Q9)%0f — 5 (Q5—m") _ _ o

2 12 e 1Bty (k+Elv)xp _ g=i(k+Elv)xp)

o

X(o% +0%) sin(kXp)

=—iNexy - ]JQZ [e"‘XDsm

'NPPJ'OO s E-Q
—i mE_—\Qzex ( )O’tl

x| =| XD
+e kogin E| =+t |, (AB)

1 U

= S K0} + 0% —I(E=Qo)ty | sin(kxp),
where
(A3)
where we have defined . \/m
k=/02-m? (A4) z

. o The final step in the approximation is to note that, if
In order to approximate EqA3) it is useful to make a

change of variables. On the intervain((},) we define
E=0Q,—E and on Q,,) we defineE=E—Q,. Then the X—iit1>ot (A8)
integral in Eq.(A3) may be approximated by v !
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and if [AQay | is less than or of order unity, then we may L 1 ,

approximate the sine terms by delta functions, since Astef Xp »t1,%2)=—iIN7exp ikxp— 5(92_91) oy,
~sin(xL) —E(Qg—mz)(oi +o2)]. (A10)
lim =mw8(X). (A9) 2 1%

L—oo

Note that the condition in E/A8) simply requires that
the detector be turned on before any appreciable amount of

This brings us to the desired result flux reaches it.
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