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Neutrino oscillations in a model with a source and detector
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We study the oscillations of neutrinos in a model in which the neutrino is coupled to a localized, idealized
source and detector. By varying the spatial and temporal resolution of the source and detector we are able to
model the full range of source and detector types ranging from coherent to incoherent. We find that this
approach is useful in understanding the interface between the quantum mechanical nature of neutrino oscilla-
tions on the one hand and the production and detection systems on the other hand. This method can easily be
extended to study the oscillations of other particles such as the neutralK and B mesons. We find that this
approach gives a reliable way to treat the various ambiguities which arise when one examines the oscillations
from a wave packet point of view. We demonstrate that the conventional oscillation formula is correct in the
relativistic limit and that several recent claims of an extra factor of 2 in the oscillation length are incorrect. We
also demonstrateexplicitly that the oscillations of neutrinos which have separated spatially may be ‘‘revived’’
by a long coherent measurement.@S0556-2821~98!01005-4#

PACS number~s!: 14.60.Pq, 13.15.1g, 23.40.Bw
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I. INTRODUCTION

The flavor oscillations of particles are a fascinating de
onstration of quantum mechanics in the macroscopic wo
Flavor oscillations can generically occur when the sta
which are produced and detected in a given experiment
superpositions of two or more eigenstates which have dif
ent masses. The oscillations ofK and B mesons have bee
observed experimentally@1# and have been used to plac
stringent constraints on physics beyond the standard mo
If neutrinos are massive, they too may oscillate, and
could lead to resolution of the well-known solar neutri
problem@2–4#. More recently, the discussion of particle o
cillations has been extended to include supersymmetric
ticles in supersymmetric extensions of the standard mo
@5#.

The phenomenon of particle oscillations has been stud
extensively and is generally thought to be very well und
stood. There nevertheless remain several subtle issues w
continue to cause some confusion. The key to a comp
understanding of any such issue lies in treating correctly
necessary interplay between the ‘‘classical’’ and ‘‘quantum
natures of the particles which are interfering to produce
oscillations. Thus, for example, the interference effect its
is purely ‘‘quantum’’ in nature~it requires that the particle
be described by waves!, and yet the resulting oscillations i
space are only observable if the particles are sufficiently
calized in space@6#. This example highlights the fact that an
discussion of particle oscillations implicitly assumes that
mass eigenstates which are interfering to produce the o
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lations are described by some sort of wave packets.
Despite the success of the wave packet approach in c

fying many aspects of the phenomenon of particle osci
tions @6–9#, the approach is not without its own difficulties
The results of a given calculation will depend, for examp
on the details of the initial mass eigenstate wave pack
~including their shape, spectrum and relative normalizatio!.
One particularly difficult problem which arises is the conve
sion of the final time-evolved wave packets into an expe
mentally observable quantity: Since it is generally theflux of
particles which is measured in an experiment, one is requ
to calculate a current density rather than a probabi
density.1 The difference between a current density and
probability density, at least naively, involves a factor of t
velocity v, which is very significant if the mass eigenstat
have quite different masses. Thus, if one would calculate
probability density at the detector and integrate it over tim
the resulting expression would have factors of 1/v pre-
multiplying the various terms, leading to an enhancemen
the terms corresponding to heavier mass eigenstates. In
case of neutrinos, as was noted in@8–10#, this would skew
the usual oscillation formula quite dramatically if one of th
mass eigenstate neutrinos was non-relativistic. Efforts
construct an appropriate current density which retains
necessary wave packet features have had mixed succe
calculation in the kaon case appears to give reliable res
@11#, but it can be shown that unphysical effects arise if o
attempts to define a suitable current when the mass ei

1Wave packet calculations lead naturally to expressions for
probability density, which are appropriately integrated over spa
not time. For oscillations in space one wants a quantity which
appropriately integrated over time, i.e., a current.
3091 © 1998 The American Physical Society
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3092 57KEN KIERS AND NATHAN WEISS
states have very different masses@12#.
There is another very striking apparent ‘‘ambiguity

which arises if one does not treat the delicate interplay
tween the classical and quantum natures of the particles
rectly. In this case the ‘‘ambiguity’’ leads to an alleged err
by a factor of ‘‘2’’ in the calculation of the oscillation lengt
@13#. In order to understand the source of the ambiguity,
follow the discussion given by Lipkin@14#. Suppose we con
sider the oscillations in time of a system for which the init
and final states are not eigenstates of the free Hamilton
The phase of the interference term will then be given
f(t)5(E12E2)t, whereEi[(p21mi

2)1/2. Detectors do not
measure oscillations directly as a function of time, howev
and so one needs somehow to convert this expression in
oscillation in terms of space. We may then, as is convent
ally done, setx5vt, with v52p/(E11E2) representing a
sort of average velocity. We then obtain the following pha
in terms ofx:

fconv~x!5
~m1

22m2
2!x

2p
. ~1.1!

This is the conventional~and correct! result for the phase
difference. Let us now attempt to incorporate a classical
pect of the problem and argue that since the two mass ei
states travel at different speeds, they will arrive at the de
tor at different times t1 and t2, related by x5pt1 /E1
5pt2 /E2. Taking the phase of the interference term to
f(t1 ,t2)5E1t12E2t2, we then obtain

fnew~x!5
~m1

22m2
2!x

p
, ~1.2!

which differs from the conventional phase difference, E
~1.1!, by a factor of 2. This result, were it correct, wou
indeed be rather remarkable.

The first resolution of this ambiguity was given by Lipk
@14# ~see also Ref.@15#! who argued, on physical ground
that the energies~rather than the momenta! of the two mass
eigenstates should be set equal. In this case the oscilla
are described in terms of distances directly~since it is the
momenta of the two eigenstates which differ! and the ‘‘cor-
rect’’ oscillation formula is obtained. Loweet al. @16# and
Kayser@17# have extended this discussion and have arg
that the key to avoiding ambiguities is to ensure that o
evaluates the wave functions of the mass eigenstates at
cisely the same space-time point. That is, even though c
sically the mass eigenstates will arrive at the detector at
ferent times, quantum mechanically the wave functio
corresponding to different space-time points cannot interf
Indeed the analysis leading to the expression in Eq.~1.2!
involves interfering the wave functions for the two ma
eigenstates at the same position butdifferenttimes and hence
gives the incorrect result. This issue is, in fact, quite sub
For example a long coherent measurement in time may
used to ‘‘revive’’ particle oscillations even after the ma
-
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eigenstate wave packets have completely separated spa
@18#.2 Thus, wave packets arriving at the ‘‘classically’’ sep
rated timest1 andt2—and having negligible overlap in thei
wave packets—may still interfere to give rise to oscillation
There is then some sense in which wave functions co
sponding to different space-time points may interfere.

In light of the issues presented above, it is our view tha
proper treatment of the quantum-classical interface of p
ticle oscillations should incorportate the source and the
tector as key components of the system. In this paper
present a simple model for a particle source-detector sys
which addresses many of the above issues in a very na
and self-consistent way. We shall, for concreteness, cons
the case of neutrino oscillations, but our approach could e
ily be adapted to other situations. The source and dete
will be modeled by simple harmonic oscillators which a
de-excited or excited by emitting or absorbing neutrinos o
given flavor. ~Two-level ‘‘fermionic’’ source-detector sys
tems could also be considered.! Having defined the model, i
will be straightforward to calculate the oscillation probabili
as a function of the distance between the source and dete
The resulting expressions will be found to exhibit all of th
known ‘‘wave packet’’ characteristics in the relativistic limi
but will also give useful insight into cases in which one
more of the mass eigenstates is non-relativistic. In particu
we will find no evidence for the enhancement of no
relativistic neutrinos which can occur in conventional wa
packet analyses. Including the source explicitly in the cal
lation gives the added benefit that the characteristics of
initial wave packets corresponding to the various m
eigenstates are completely determined by the characteri
of the source and need not be put in by hand. Our appro
is similar in spirit to the calculations in Refs.@19,20#, but is
more transparent due to the simplified model which we c
sider.~See also Ref.@21# for a similar calculation performed
within the context of elementary quantum mechanics.! One
advantage of our simplified approach is that the depende
on the time resolution of the detector is very clear. This w
allow us to verify explicitly that a long coherent measur
ment in time may be used to revive the oscillations of p
ticles whose wave packets have separated spatially.3 We
shall also settle the issue of the ‘‘factor of 2’’~hopefully!
once and for all.

We begin in the next section by analyzing a simple mo
in which the neutrino is described by a complex scalar fie
This field is coupled to two localized simple harmonic osc
lators, representing the source and detector. Modeling
neutrino by a complex scalar field allows for a simpler a
more complete evaluation of physical quantities than i
spinor field is used. In Sec. II A we study the case of a sin
neutrino species coupled to the source and detector.
allows for a careful analysis of the efficiency of our syste

2This behavior is analogous to what happens when a highQ os-
cillator gets hit by two successive pulses. The first pulse sets
oscillator in motion, causing it to oscillate for a time determined
its Q value. If the oscillator is still oscillating when the secon
pulse arrives, the resulting oscillations will exhibit an interferen
pattern.

3A recent paper has also demonstrated this effect explicitly@22#.
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57 3093NEUTRINO OSCILLATIONS IN A MODEL WITH A . . .
at producing and detecting neutrinos of different masses.
though no oscillations are possible in this case, this calc
tion will be essential in interpreting the results when neutr
oscillations are present. In Sec. II B we couple several n
trino fields to the source and detector. This gives rise i
natural way to oscillations~as a function of the distance be
tween the source and detector! in the probability for the
source to decay and the detector to be excited. These a
course ‘‘neutrino oscillations.’’ Section II C contains a bri
analysis of the non-relativistic case. We then extend
analysis in Sec. III to a more realistic model in which t
neutrinos are described by Dirac spinor fields. These res
are compared to the ones with a complex scalar field.
conclude in Sec. IV with a summary and discussion of o
results.

II. MODEL FOR A NEUTRINO SOURCE AND DETECTOR

The idea of using an idealized detector to clarify phy
cally measurable quantities in quantum field theory has b
used extensively in the analysis of quantum fields in n
inertial frames and in gravitational backgrounds@23#. In our
idealized model, we have chosen to couple the neutrino fi
to two harmonic oscillators, one representing a neutr
‘‘source,’’ and the other representing a neutrino ‘‘detecto
The neutrinos are first taken to be complex scalar fie
which simplifies the calculations considerably.4

The physical picture which we have in mind is the fo
lowing: We imagine our ‘‘source’’ and ‘‘detector’’ to be
microscopic on the scale of some macroscopic ‘‘bul
source and detector, but to also be very massive compare
the energy of the exchanged neutrino~so that the dynamica
degrees of freedom of the source and detector may be
nored!. Thus, for example, the source~detector! could repre-
sent some nucleus inside a bulk sample which underg
beta decay~inverse beta decay!. The spatial ‘‘widths’’ of the
source and detector in our calculation are then widths ap
priate to, say, nuclear or atomic dimensions. In principle,
oscillation probability which we calculate here should sub
quently be averaged incoherently over the physical dim
sions of the macroscopic source and detector, although
do not perform this average. If the size of the macrosco
source and detector are much smaller than the neutrino
cillation length ~which they need to be in order to obser
oscillations!, then this averaging would have only a sm
effect.

The interactions at the source and detector will be m
explicitly time dependent so that they may be turned ‘‘o
and ‘‘off.’’ This is in keeping with our physical picture. In
general a real~microscopic! source or detector will be in an
environment which is ‘‘noisy,’’ so that the coherent emissi
or absorption of a neutrino gets cut off after some time d
to the interactions of the source or detector with its surrou
ing environment@9,18#. The amount of time which the mode
source or detector spend being ‘‘on’’ is then related to

4The main drawback of this approach is that it ignores the neu
no’s spin and the characteristicV2A nature of neutrino interac
tions.
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‘‘coherence time’’ of the physical source or detector.5

Our calculation proceeds as follows. We first write a L
grangian which couples the source and detector to the n
trino field. In the initial state of the system, the source is
its first excited state~ready to emit a neutrino! and the de-
tector is in its ground state. We then calculate the probab
that at some time far in the future the source will be found
be in its ground state and the detector in its first excited st
The model will be constructed in such a way that this int
action will correspond to exactly one neutrino being e
changed between the source and detector~to first non-
vanishing order in perturbation theory.! In this approach,
then, the neutrinos themselves are not observed, but are
ply the exchange particles in the source-detector interact

A. Single species of neutrino

To describe our model, we begin with a single compl
scalar fieldf(x) and two oscillatorsq1(t) andq2(t) describ-
ing the source and detector, respectively. The action for
model is given by

S5E d4x~Lf
0 1Lint!1E dtLq

0 , ~2.1!

where

Lf
0 52f†~x!~h1m2!f~x!, ~2.2!

Lq
05q̇1

†~ t !q̇1~ t !2V1
2q1

†~ t !q1~ t !1q̇2
†~ t !q̇2~ t !

2V2
2q2

†~ t !q2~ t !, ~2.3!

Lint52e1~ t !@f†~x!q1~ t !h1~x!1f~x!q1
†~ t !h1* ~x!#

2e2~ t !@f†~x!q2~ t !h2~x!1f~x!q2
†~ t !h2* ~x!#.

~2.4!

The functionse i(t) are explicit functions of time which al-
low us to ‘‘turn on’’ and ‘‘turn off’’ the interactions, and the
functions h1(x) @h2(x)# are smooth functions ofx which
vanish outside the source@detector#.

We quantize thefree fields in the usual way, requiring

@f~x,t !,p~y,t !#5 id3~x2y!, ~2.5!

@qi~ t !,pi~ t !#5 i . ~2.6!

All other commutators are taken to vanish. The field ope
tors may then be expressed in terms of creation and ann
lation operators as follows:

f~x!5E d k̃@a~k!e2 ik•x1b†~k!eik•x#, ~2.7!

i-

5The explicit turning on and off of the source and detector viol
energy conservation microscopically, but that is natural since
interactions of the source and detector with their respective e
ronments involve the exchange of energy. If we choose to loo
the source or detector in isolation, this exchange of energy app
as energy non-conservation.
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3094 57KEN KIERS AND NATHAN WEISS
qi~ t !5
1

2V i
~Aie

2 iV i t1Bi
†eiV i t!, ~2.8!

where

d k̃[
d3k

~2p!32E
~2.9!

and where the annihilation and creation operators satisfy
commutation relations

@a~k!,a†~k8!#5@b~k!,b†~k8!#5~2p!32Ed3~k2k8!,
~2.10!

@Ai ,Ai
†#5@Bi ,Bi

†#52V i . ~2.11!

We interpreta†(k) anda(k) in the usual way as the opera
tors which create and annihilate, respectively, a neutr
state with four-momentumk. b†(k) and b(k) act similarly
with respect to the anti-neutrino states. The operatorsAi

† and
Ai andBi

† andBi interpolate between the energy levels of t
harmonic oscillators.6

We take as our initial state

us,2`&5u0;1;0&[u0&f ^ u1&1^ u0&2 ~2.12!

in which

u1& i[Ai
†u0& i ~2.13!

represents the first excited state of the oscillatori and in
which u0&f is the neutrino vacuum state. We wish to calc
late the amplitude for the process in which the source
excites to its ground state and the detector is excited to
first excited state. That is,

A[^0;0;1us,`&

5K 0;0;1UTexpF2 i E
2`

`

HS~ t8!dt8GUs,2`L ,

~2.14!

in which HS represents the Hamiltonian in the Schro¨dinger
picture. The modulus squared of this amplitude is the pr
ability for the transition to take place.

We shall assume the couplings in the interaction Ham
tonian to be sufficiently small that the amplitude in E
~2.14! is always much less than unity. This is of course
ways the case in the real-world situation which we are
tempting to model—neutrino interactions are so weak t
perturbation theory is always valid. It is then straightforwa
to evaluate Eq.~2.14! using standard techniques to obtain
leading order and up to an overall unobservable phase,

A52
1

2 K 0;0;1UTF E
2`

`

dt8dt9H int
H ~ t8!H int

H ~ t9!GU0;1;0L ,

~2.15!

6Note that we have allowed theqi to be complex. Had we no
done this, the source and detector would have exchanged both
trinos and anti-neutrinos.
e

o

-
-

ts

-

l-
.
-
t-
t

whereH int
H (t) refers to the interaction Hamiltonian evaluate

in terms of the free fields in the Heisenberg picture at timet.
The above expression may be evaluated explicitly in term
neutrino propagators@19,20# for arbitrary turn-on and turn-
off functionse i(t). We find it simpler, however, to ‘‘design’’
the turn-on and turn-off functions so that the source and
tector are never on at the same time, and, furthermore, so
the source always turns on first and only then the detec
~This avoids the unphysical situation in which the detec
emits an anti-neutrino which is subsequently absorbed by
source. The amplitude for this process would in any case
very small since it violates energy conservation.! Under this
assumption only one of the time orderings in the propaga
gets picked up andA may be evaluated using Eqs.~2.7!,
~2.8!, ~2.10!, ~2.11! and ~2.13! to obtain

A52 K 0;0;1U E dt8dt9d3x8d3x9e1~ t8!e2~ t9!f~x9!

3q2
†~ t9!h2* ~x9!f†~x8!q1~ t8!h1~x8!U0;1;0L ~2.16!

52E dt8dt9d3x8d3x9d k̃e1~ t8!e2~ t9!h1~x8!h2* ~x9!

3exp@2 i ~E2V2!t91 i ~E2V1!t81 ik•~x92x8!#.

~2.17!

Since the amplitude is proportional to^0uf(x9)f†(x8)u0&, it
is clear from Eq.~2.7! that this interaction corresponds to th
creation and subsequent annihilation of a single neutrino

In order to proceed further we chooseh1, h2 ande1 to be
Gaussians since this allows many of the integrals to
evaluated exactly. Setting

h1~x!5~A2psx1
!23e2uxu2/2sx1

2
, ~2.18!

h2~x!5~A2psx2
!23e2ux2xDu2/2sx2

2
, ~2.19!

e1~ t !5e1
0e2t2/2s t1

2
~2.20!

we obtain

A52S A2pe1
0s t1

4p2xD
D E

2`

`

dt9e2~ t9!E
m

`

dEexpF2 i ~E2V2!t9

2
1

2
~E2V1!2s t1

2 2
1

2
k2~sx1

2 1sx2

2 !Gsin~kxD!, ~2.21!

where

k[AE22m2. ~2.22!

Before choosing an explicit form fore2(t), which deter-
mines characteristics of the detector, let us make a few
servations regarding the above expression for the amplitu
First of all, for largexD , the amplitude decreases likexD

21 so
that the probability falls likexD

22 , as expected on geometr
cal grounds in three dimensions. At the origin, however,
amplitude does not diverge~despite the 1/xD factor!, due to

eu-
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57 3095NEUTRINO OSCILLATIONS IN A MODEL WITH A . . .
the sine function in the integrand. A second observation
that conservation of energy at the source and conservatio
momentum at both the source and detector are governe
the relative sizes ofs t1

, sx1
and sx2

. This situation is in
accordance with the uncertainty principle~and is in fact nec-
essary, as discussed above, in order to observe oscillati!.
In general, neither energy nor momentum need be conse
exactly if the source and detector are localized in space
time. The specific setup which we have chosen favors e
gies close to the energy of the excited source,V1, and mo-
menta close to zero. This latter point is due to the fact t
our source and detector have no dynamical degrees
freedom—they cannot recoil when a neutrino is emitted
absorbed—and thus the neutrino gets all of its momen
from the uncertainties in the positions of the source and
tector. In order to avoid the problem that low momenta
favored, we shall typically choose to sets t1

@sx1,2
in our

numerical work below.7 When several neutrino fields ar
coupled to the source and detector, this will mean that
energies of the mass eigenstates will be approximately eq
while their momenta will be determined by their energie
Furthermore, the sizes of the neutrino wave packets will t
be determined more by the amount of time for which t
source emits an uninterrupted wave train than by the lo
ization of the source-field interaction in configuration spa
In Sec. III, when we extend our analysis to fermionic neu
nos, we will allow the source to decay by emitting both
neutrino and its associated lepton. In this case the neutri
momentum will no longer be centered aboutk'0.

Let us now study the system as a function of the coh
ence time of the detector. At one extreme we can imag
that a given~microscopic! detector is turned on for the entir
time that the neutrino ‘‘wave packet’’ passes by. This is
ultimately ‘‘coherent’’ detection event. Another possibility
that a given microscopic detector turns on and off witho
sampling the entire wave packet. In order to model
former scenario we use a simple step function fore2, while
for the latter case we use a Gaussian:

e2
step~ t ![e2

0u~ t22t !u~ t2t1!, ~2.23!

e2
Gauss~ t ![e2

0e2~ t2tD!2/2s t2

2
. ~2.24!

The step function detector turns on abruptly at timet1 and
off again abruptly at timet2 ~with t1 andt2 chosen such tha
the entire wave packet passes by while the detector is!,
while the Gaussian detector turns on and off gradually a
time centered aroundtD . Since the coherent~step function!
detector ‘‘catches’’ the entire wave packet, there is no n
to integrate the resulting expression for the probability o
time. This is not the case for the incoherent~Gaussian! de-
tector: Since each individual microscopic detector sees o
a piece of the wave packet, one must sum incoherently o

7This is a ‘‘trick’’ which we use to get sensible results, but it
also not unreasonable on physical grounds. According to the
cussion in Ref.@18#, for example, this condition is satisfied b
several orders of magnitude ifsx is taken to be on the order o
nuclear sizes. The reader is also referred to the discussion of Li
@14#, where this same point is emphasized.
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all of the microscopic detectors in order to correctly mod
the response of the bulk detector. If there are many mic
scopic detectors in the bulk detector, this incoherent s
corresponds to integrating the expression for the probab
over tD .

It is straightforward to evaluate the amplitudes for bo
types of detectors and we obtain

Astep5Ñ~ t22t1!E
m

`

dE
sin@~E2V2!~ t22t1!/2#

@~E2V2!~ t22t1!/2#

3expF2
i

2
~E2V2!~ t11t2!2

1

2
~E2V1!2s t1

2

2
1

2
k2~sx1

2 1sx2

2 !Gsin~kxD!, ~2.25!

AGauss5ÑA2ps t2Em

`

dEexpF2
1

2
~E2V1!2s t1

2

2
1

2
~E2V2!2s t2

2 2
1

2
k2~sx1

2 1sx2

2 !

2 i ~E2V2!tDGsin~kxD!, ~2.26!

where

Ñ[2
e1

0e2
0s t1

~2p!3/2xD

. ~2.27!

It is not possible in general to obtain analytic closed-fo
solutions of these integrals, but they are simple to evalu
numerically. In so doing, we obtain exact~to second order in
perturbation theory! solutions to the problem which we ar
studying, including all effects due to the spreading of t
neutrino wave packets. Alternatively, we may, in som
cases, find reliable approximations for these integrals. S
is the case for the step function detector if the neutrin
mass is not too close to the production and detection thre
olds (m!V i21/s t1

). Taking t1 to be a time before the firs

bit of neutrino flux arrives at the detector andt2 to be a time
after the entire neutrino wave packet has passed~formally,
t2→`), we find

lim
t2→`

Astep~xD ,t1 ,t2!.2 iÑpexpF i k̄ xD2
1

2
~V22V1!2s t1

2

2
1

2
~V2

22m2!~sx1

2 1sx2

2 !G , ~2.28!

where k̄[(V2
22m2)1/2. ~The details of this calculation ma

be found in the Appendix!. Note that the coherent detecto
‘‘picks out’’ momenta corresponding to the energyV2.
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The modified ‘‘probability’’ associated with the abov
amplitude is given by

Pstep~xD![uAstep~xD!u2/Ñ2, ~2.29!

where we have dropped the implicit dependence ont1 andt2.
We have also divided through byÑ2 because the value o
that constant~including the falloff asxD

22) is not really of
interest to us since in any calculation of the oscillation pro
ability Ñ2 always factors out. Taking the ratio of this pro
ability for two different values of the mass reveals that t
system is more efficient at producing and detecting high
mass neutrinos:

Pstep~m;xD!

Pstep~m8;xD!
.exp@~m22m82!~sx1

2 1sx2

2 !#. ~2.30!

The mass dependence of the source-detector system a
due to the fact that our source and detector favor neut
states with momenta close to zero. This feature was predi
already in the discussion following Eq.~2.21! and is due to
the fact that the source and detector in our model can
‘‘recoil’’ and thus the neutrino gets all of its momentu
from the uncertainty in the positions of the source and de
tor. Thus the upper limit on the neutrino’s momentum
given by kmax;1/sx1,2

. Note that this preference for non
relativistic neutrinos is essentially a quirk of our model a
should not be viewed as a physical effect. The mass de
dence of the system can be minimized by settingsx1,2

to be

much less thanV1,2
21 . In such cases, the step function dete

tor becomes nearly ‘‘ideal’’; that is, it detects neutrinos
different masses with nearly the same efficiency.

We now turn to the Gaussian detector and define a m
fied probability in analogy with Eq.~2.29!

PGauss~xD ,tD ,s t2
![uAGauss~xD ,tD ,s t2

!u2/Ñ2.
~2.31!

This expression gives the probability that a given mic
scopic detector—turned on for a times t2

centered around

the timetD—is excited. We need to convert this expressi
into one giving the probability that the bulk detector ‘‘d
tects’’ the neutrino~i.e., that one of the microscopic dete
tors is excited!. We assume that the bulk detector is ‘‘on’’ fo
all tD.0—in the sense that at any given time many of t
microscopic detectors are ‘‘on’’—but that the microscop
detectors themselves turn on and off randomly, so that
number which are ‘‘on’’ at any given time is roughly con
stant. Then the probability that the bulk detector ‘‘detect
the neutrino is proportional to the integral of Eq.~2.31! over
-

r-

ses
o
ed

ot

c-

n-

-
f

i-

-

e

’

tD .8 We thus refer to this type of bulk detector as an ‘‘inc
herent’’ detector, since we sum the probability incoheren
over different times.

The time integral of Eq.~2.31! may actually be done ex
plicitly. Let us define the following~unnormalized! time-
integrated probability:

Pincoh~xD ,s t2
![E

0

`

dtDPGauss~xD ,tD ,s t2
!. ~2.32!

Since the integrand is symmetric undertD→2tD , we may
formally extend the integration to negative infinity and d
vide by 2. The time integral then reduces to a delta funct
in energy and allows us to perform one of the energy in
grations. As a result, we obtain

Pincoh~xD ,s t2
!52p2s t2

2 E
m

`

dEexp@2~E2V1!2s t1
2

2~E2V2!2s t2
2 2k2~sx1

2 1sx2

2 !#sin2~kxD!.

~2.33!

If m!V i21/s t i
and s t1,2

@sx1,2
~the latter condition is

always assumed!, then we may approximate the above e
pression by setting sin2(kxD)'1/2 to yield

Pincoh~xD ,s t2
!.

p5/2s t2
2

~s t1
2 1s t2

2 1sx1

2 1sx2

2 !1/2

3exp@m2~sx1

2 1sx2

2 !#

3expF ~V1s t1
2 1V2s t2

2 !2

~s t1
2 1s t2

2 1sx1

2 1sx2

2 !

2V1
2s t1

2 2V2
2s t2

2 G . ~2.34!

8Consider first a simpler case in which there areN detectors,
turning on and off at times centered aboutt1,t2,•••,tN . Each
of them has probabilitye to detect the neutrino, butonly if one of
the previous detectors has not already detected it. Then the p
ability that none of them detects the neutrino is (12e)N, that the
last one detects it is (12e)N21e, that the second last one detects
is (12e)N22e, and so on. The probabilities for theN11 distinct
possibilities sum to unity, as required. The probability that the n
trino is detected is then 12(12e)N5Ne2N! e2/(N
22)!2!1•••.Ne if Ne!1, that is, if the probability of detecting
the neutrino in the bulk detector is much less than one~which is
certainly the case!. In the case at hand suppose thatt1 corresponds
to a time before any appreciable flux has arrived at the detector
tN5t11T to a time after all of the flux has passed. Then

(
i51

N

P~xD ,t i ![
~N21!

T (
i 51

N

P~xD ,t i !Dt

.
~N21!

T E
t1

t11T

dtDP~xD ,tD!.



ia
nc

o

ty
r-
v-

F
he
ac
o

eu
it

e

he
th

s
-

ta
r

th
rn

d to

eal-
rent
to a
a-

ts

ould

en
in

but
In

a
. In
s an
at

be

e
id
es

57 3097NEUTRINO OSCILLATIONS IN A MODEL WITH A . . .
Thus, under the above conditions the ‘‘incoherent’’ Gauss
detector has the same mass dependence as the step fu
detector does@cf. Eq. ~2.30!#:

Pincoh~m;xD ,s t2
!

Pincoh~m8;xD ,s t2
!

.exp@~m22m82!~sx1

2 1sx2

2 !#.

~2.35!

This fact is rather remarkable and shows again that it is c
rect to perform the time integral in Eq.~2.32!.

Figure 1 shows a plot of the time-integrated probabili
Eq. ~2.33!, as a function of the neutrino mass for two diffe
ent values ofsx1,2

. This probability may be regarded as gi
ing a measure of theefficiencywith which the system pro-
duces and detects a neutrino of a given mass.
convenience, the probabilities have been normalized to t
values atm50. In each case, the solid line gives the ex
result and the dashed line shows the approximation for n
threshold masses derived in Eq.~2.34!. Clearly the approxi-
mation is quite good if the mass is not too close to the n
trino production and detection thresholds. Furthermore,
clear that this detector can be made ‘‘ideal’’~that is, the
probability to detect a neutrino may be made mass indep
dent! by using suitably small values forsx1,2

. The mass de-

pendence for largesx1,2
occurs for the same reason as in t

case of the step function detector and is due to the fact
the source and detector in our model cannot recoil@see the
discussion following Eq.~2.30!#. The dash-dotted line show
a plot of 1/v(m) for comparison. This would be the analo
gous efficiency found in a wave packet calculation@8#. Since
our detector may be made mass independent by a sui
choice of thesxi

, we see that a ‘‘well-designed’’ detecto
will not exhibit such an effect.

B. Several neutrinos

Now that we have studied the characteristics of
source-detector system in the single-neutrino case, we tu

FIG. 1. Plot of the ‘‘incoherent probability’’Pincoh @Eq. ~2.33!,
normalized to its value atm50# as a function of mass for the cas
of a single neutrino, takingsx1,2

50.1,0.05. In each case, the sol
line shows the exact result and the dashed line shows the r
obtained in the approximation of Eq.~2.34!. The dash-dotted line
shows a plot of 1/v(m) for comparison.
n
tion

r-

,

or
ir
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n-

-
is

n-
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e
to

the case in which there are several neutrino fields couple
the source and detector. Suppose that there areN different
neutrino mass eigenstates. Then, in order to model the r
life situation, we suppose that there are also several diffe
types of sources and detectors, each of which couple
‘‘weak eigenstate’’ which is a given unitary linear combin
tion of the neutrino mass eigenstates. The action of Eq.~2.1!
is then generalized to

S5E d4x~Lf
0 1Lint!1E dtLq

0 , ~2.36!

where

Lf
0 52(

i
f i

†~x!~h1mi
2!f i~x!, ~2.37!

Lq
05(

a
@ q̇1

a†~ t !q̇1
a~ t !2V1

a2q1
a†~ t !q1

a~ t !1q̇2
a†~ t !q̇2

a~ t !

2V2
a2q2

a†~ t !q2
a~ t !#, ~2.38!

Lint52(
a,i

$e1~ t !@Ua i* f i
†~x!q1

a~ t !h1~x!

1Ua if i~x!q1
a†~ t !h1* ~x!#1e2~ t !@Ua i* f i

†~x!q2
a~ t !h2~x!

1Ua if i~x!q2
a†~ t !h2* ~x!#%, ~2.39!

and in whichU is a unitary matrix. Note that the subscrip
‘‘1’’ and ‘‘2’’ on the functions e andh and on the fieldsq
refer, respectively, to the source and detector. These sh
not be confused with the subscripts on the fieldsf which
refer to the mass eigenstates. Also note that we have take
andh to be independent of the flavor or mass eigenstate
question. In principle there could be such a dependence,
including it would unnecessarily complicate our analysis.
what follows, we shall also setV i

a5V i , for all a, in order to
‘‘idealize’’ our sources and detectors.

The experimental setup which we wish to consider is
simple generalization of that given in the previous section
this case we imagine that the initial state of the system ha
a-flavor ‘‘source’’ oscillator in its first excited state and th
the final state has ab-flavor ‘‘detector’’ oscillator in its first
excited state. The amplitude for this process may then
calculated as in the single-neutrino case and we find

Aa→b52(
i , j
Ub jUa i* K 0;0;1bU E dt8dt9d3x8d3x9e1~ t8!

3e2~ t9!f j~x9!q2
b†~ t9!h2* ~x9!f i

†~x8!q1
a~ t8!

3h1~x8!U0;1a ;0L ~2.40!

52(
i
Ub iUa i* E dt8dt9d3x8d3x9d k̃ie1~ t8!

3e2~ t9!h1~x8!h2* ~x9!exp@2 i ~Ei2V2!t9

1 i ~Ei2V1!t81 ik•~x92x8!#, ~2.41!

ult
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in which we have defined

Ei[Ak21mi
2. ~2.42!

Taking h1, h2 ande1 to be Gaussians with widthssx1
, sx2

ands t1
as in the single-neutrino case@see Eqs.~2.18!, ~2.19!

and ~2.20!#, we may further simplify this expression to

Aa→b52S A2pe1
0s t1

4p2xD
D(

i
Ub iUa i* E

2`

`

dt9e2~ t9!E
mi

`

dE

3expF2 i ~E2V2!t92
1

2
~E2V1!2s t1

2

2
1

2
ki

2~sx1

2 1sx2

2 !Gsin~kixD!, ~2.43!

where

ki[AE22mi
2. ~2.44!

This expression is clearly just a simple generalization of
~2.21!. The final step in our calculation is to substitute t
expressions~2.23! and ~2.24! for e2(t) in the step function
and Gaussian detector cases. This yields

Aa→b
step 5Ñ~ t22t1!(

i
Ub iUa i* E

mi

`

dE
sin@~E2V2!~ t22t1!/2#

@~E2V2!~ t22t1!/2#

3sin~kixD!expF2
i

2
~E2V2!~ t11t2!2

1

2
~E

2V1!2s t1
2 2

1

2
ki

2~sx1

2 1sx2

2 !G , ~2.45!

Aa→b
Gauss5ÑA2ps t2(i

Ub iUa i* E
mi

`

dEexpF2
1

2
~E2V1!2s t1

2

2
1

2
~E2V2!2s t2

2 2
1

2
ki

2~sx1

2 1sx2

2 !

2 i ~E2V2!tDGsin~kixD!, ~2.46!

whereÑ is defined in Eq.~2.27!.
We are finally in a position to define the oscillation pro

ability as a function of distance for the two cases. In bo
cases our definition of the probability is a ‘‘physical’’ on
We imagine that the source produces neutrinos of typea
(a5e,m,t, . . . ) and that we set ab-neutrino detector a
some distancexD from the source. We prepare the source~or
an ensemble of identically prepared sources! in an excited
state, wait a long period of time, and then check to see if
detector has been excited. After repeating this experim
enough times to get good statistics, we repeat the proce
with a b8-neutrino detector, and so on. The probability
observe ab neutrino is then simply the number of even
observed in ‘‘b mode’’ divided by the total number of even
in all modes. Since we have attempted to make our sou
detector system as ‘‘ideal’’ as possible, there are no furt
corrections for detector efficiencies or other effects of t
.

h

e
nt
re

e-
r
t

nature. The normalized coherent and incoherent oscilla
probabilities may then be defined as

Pa→b
coh ~xD!5 lim

t2→`

uAa→b
step ~xD ,t1 ,t2!u2

(
b8

uAa→b8
step

~xD ,t1 ,t2!u2

, ~2.47!

Pa→b
incoh~xD ,s t2

!5

E
0

`

dtDuAa→b
Gauss~xD ,tD ,s t2

!u2

(
b8

E
0

`

dtDuAa→b8
Gauss

~xD ,tD ,s t2
!u2

.

~2.48!

It is understood in the first expression thatt1 is taken to be
some time before the first bit of neutrino ‘‘flux’’ arrives a
the detector.

The expressions which we have derived for our two typ
of detectors are in forms which are amenable to numer
calculation. The coherent probability may be found afte
single integration over energy and the incoherent probab
requires two integrations, one over energy and one over ti
In the two-neutrino case, the time integral in Eq.~2.48! may
be done by hand, but this is not possible in general for m
neutrinos. The reason for this is that the integrand is
longer symmetric undertD→2tD due to the possible pres
ence of phases in the mixing matrixU.

Let us examine the case with two flavors in some det
In this case, the matrixU may be taken to be a real orthogo
nal matrix parametrized by one angle,u. The time integral in
the numerator of Eq.~2.48! may be performed explicitly and
we find

E
0

`

dtDuAa→b
Gauss~xD ,tD ,s t2

!u2

52p2s t2
2 Ñ2(

i , j
Ub iUb jUa iUa j

3E
max~mi ,mj !

`

dEsin~kixD!sin~kjxD!

3exp$2~E2V1!2s t1
2

2~E2V2!2s t2
2

2@E22~mi
21mj

2!/2#~sx1

2 1sx2

2 !%. ~2.49!

Figure 2 shows several plots of the flavor-conserv
probabilityPe→e(xD) as a function ofxD for two relativistic
neutrinos, using both the ‘‘coherent’’ and the ‘‘incoheren
detectors. The various parameters chosen for the plot ar
indicated in the figure. Recall thatV1 and V2 ~set equal
here! are the energies of the excited source and detec
respectively. Since we have chosen to setsxi

!s t i
, the ener-

gies of the mass eigenstates are approximately equal tV
and their momenta are determined by their energies.
values employed here foru, m1 and m2 are chosen merely
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for the purpose of illustration. Note that the curves do not
all the way toxD50, since our formulas are not valid fo
very smallxD .9

Figures 2~a! and 2~b! show plots of the probability for
detecting the same-flavor neutrino as was emitted in the
of an ‘‘incoherent’’ detector@see Eq.~2.48!# for several dif-
ferent values of the time resolution of the detector,s t2

. The
dotted curve in Fig. 2~b! is the analogous result derived usin
the wave packet approach@8#. This appears to be a goo
approximation to our result in the limit ass t2

→0. It is clear
from these plots that the coherence length of the oscillati
is dependent on the time resolution of the detector; that is
was noted in Ref.@18#, a long coherent measurement in tim
is capable of ‘‘reviving’’ oscillations of neutrinos whos
mass eigenstate wave packets have become physically
rated. This effect is particularly striking in the case of t
probability detected by the coherent detector, shown by
solid curve in Fig. 2~c!. In this case the oscillations appear
have beencompletely revivedeven after, according to a
‘‘incoherent’’ measurement~dotted curve!, the wave packets
have completely separated.

We have already discussed to some extent how it is p
sible for a long coherent measurement in time to revive

9Recall that we require the source to turn off before the dete
turns on in order that we may drop one of the time orderings in
neutrino propagator. The reader is referred to the discussion fol
ing Eq. ~2.15! for more details on this point.

FIG. 2. Oscillation probabilities as a function of distance. T
two curves in~a! correspond to the ‘‘incoherent’’ detector with tim
resolutionss t2

51,2. The solid curve in~b! gives the ‘‘incoherent’’
probability for s t2

50.1. The dotted curve shows the analogous
sult obtained in the wave packet approach. The solid curve in~c!
shows the probability measured by the ‘‘coherent’’ detector.
o

se

s
as

pa-

e

s-
e

oscillations of neutrinos even after the mass eigenstates
separated spatially. Essentially, the accurate measureme
the energy picks out the plane wave in the wave pac
which has existed coherently through both pulses@18#. Our
present approach allows for a complementary way to v
the situation. The question of whether the wave packets
responding to two mass eigenstates have separated o
depends on the temporal and spatial resolution of the de
tor. We may demonstrate this effect by way of an examp
Let us take a ‘‘snapshot’’ of the wave packets correspond
to two different mass eigenstates at a fixed timetD5150
using the incoherent detector with different widths,s t2

. Fig-
ures 3~a! and ~b! show the detection probabilities@given by
Eq. ~2.31!, but separately normalized overxD# for the two
mass eigenstates. In Fig. 3~a!, the time resolution of the de
tector is taken to bes t2

51 and there is almost no overla
between the two wave packets. Indeed, comparison with
2~a! shows that, forxD'150, the oscillations have been a
most completely damped out. If the detector is taken to h
a broader time resolution as in Fig. 3~b!, however, the wave
packets appear to have a non-negligible overlap. In this c
the width due to the finite time resolution of the detector h
been added to the original widths of the wave packets. Co
parison with Fig. 2~a! shows that in this case the oscillation
have not yet been wiped out forxD'150. From this point of
view, then, it is not surprising that the conventional ‘‘wav
packet’’ approach for relativistic neutrinos agrees with t
source-detector approach@see Fig. 2~b!# for very smalls t2

.
The wave packet approach simply ignores the finite ti
resolution of the detector.

The ‘‘coherent’’ and ‘‘incoherent’’ probabilities, Eqs
~2.47! and ~2.48!, may both be reliably approximated in th

r
e
-

-

FIG. 3. ‘‘Snapshots’’ of two mass eigenstate wave packets us
incoherent detectors with different time resolutions. The wa
packets have been individually normalized overxD . In ~a! the time
resolution of the detector is such that the wave packets appear
nearly separated, while in~b! the same wave packets appear
overlap due to the broader temporal resolution in that case.
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3100 57KEN KIERS AND NATHAN WEISS
relativistic limit. SettingV[V15V2 for convenience, we
obtain10

Pa→b
coh ~xD!.

1

N(
i , j
Ub iUa iUb jUa jexp@ i ~ k̄ i2 k̄ j !xD

1~mi
21mj

2!~sx1

2 1sx2

2 !/2# ~2.50!

and

Pa→b
incoh~xD ,s t2

!.
1

N(
i , j
Ub iUa iUb jUa jexp@ i ~ k̄ i2 k̄ j !xD

1~mi
21mj

2!~sx1

2 1sx2

2 !/2#

3expF2
xD

2 ~1/v i21/v j !
2

4~s t1
2 1s t2

2 ! G ~2.51!

for the coherent and incoherent cases, respectively, wher
have defined

N5(
i
U a i

2 exp@mi
2~sx1

2 1sx2

2 !#, ~2.52!

k̄ i5AV22mi
2, ~2.53!

v i5 k̄ i /V. ~2.54!

These expressions are identical except for the damping o
cross-terms which occurs in the approximation for the ‘‘
coherent’’ case, Eq.~2.51!. Note that the oscillation length
which may be extracted from either of these expression
exactly what one finds in the usual approach, with no sp
ous factor of ‘‘2.’’ The approximation for the ‘‘coherent’
case contains no damping whatsoever, demonstrating th
infinitely long coherent measurement does indeed co
pletely revive the oscillations of the neutrinos. We also n
that, while our expression for the incoherent case, Eq.~2.51!,
bears some resemblance to the analogous expression
tained in the wave packet approach~see, for example,@8#!,
our expression has an intrinsic dependence on the temp
and spatial resolution of the detector which is ignored in
wave packet approach.~This dependence on the detectio
process has also been investigated recently in@22#.! Finally,
we note the absence of factors of 1/v i pre-multiplying the
exponentials such as can occur in wave packet calculati

C. Nonrelativistic case

It is worthwhile to consider briefly the oscillations of non
relativistic neutrinos in our toy model. Let us assume t
one of the mass eigenstates is relatively light and let us s
the behavior of the oscillation probability as the mass of
other neutrino~in the two-neutrino case! is varied. Further-

10We have used the approximate form ofAstepgiven in Eq.~2.28!
in order to derive Eq.~2.50!. Also, in deriving Eq.~2.51! we have
dropped the highly oscillatory terms in the integrand since they
strongly damped forxD.s t1

1s t2
. Recall that our calculation is

only sensible forxD.s t1
1s t2

.

we
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more, let us restrict our attention to the case of the incohe
detector, which is the more realistic of the two detec
types. As the mass of the heavier neutrino increases,
packets separate more quickly and, for sufficiently no
relativistic neutrinos, the oscillations are damped out alm
immediately. It is convenient, then, to simply study th
asymptotic expression

P a→b
` ~s t2

![ lim
xD→`

P a→b
incoh~xD ,s t2

!. ~2.55!

The main non-relativistic effect in our toy model is due
the model’s dependence onsx1,2

rather than being related t
nonrelativistic effects of the oscillations themselves. Rec
from our discussion in Sec. II A that our source and detec
are more efficient at producing and detecting non-relativis
neutrinos~see also Fig. 1!. This dependence skews the r
sults for the oscillations, as one might expect.

In Fig. 4 we have plotted the probability for ane to be
detected as ane in the limit asxD→` @P e→e

` in Eq. ~2.55!#
as a function of the mass of the heavier neutrino. The vari
curves correspond to different values ofsx1,2

, the spatial
resolution of the source and detector. For larger values
sx1,2

, this probability is indeed skewed quite dramatica
due to the fact that the heavier mass eigenstate start
dominate the probability distribution. Recall our earlier e
planation as to why this occurs in our model. Since o
source and detector do not ‘‘recoil’’ when the neutrino
emitted or absorbed, the upper limit on the neutrino’s m
mentum is given bykmax;1/sx1,2

@the reader is referred to
the discussion following Eq.~2.30!#. We emphasize, how
ever, that this effect is an artifact of our model and would n
be expected to occur in more realistic models. We shall d
cuss this point further below when we consider how o
approach might be extended to the more realistic case
which the neutrino is not the only decay particle emitte
Note also that asm2 increases above the productio
detection threshold all of the solid curves approach the sa
value of cos2u. ~How abrupt the threshold is depends on ho

re

FIG. 4. Plot of the constant flavor-conserving probabilit
P e→e

` , defined in Eq.~2.55! as a function of the mass of the heavi
neutrino. The solid lines correspond to spatial widthssx1,2

50.01,
0.05, 0.1, 0.15 and the dotted line shows the value obtained in
wave packet approach if the contributions corresponding to
various mass eigenstates are weighted by 1/v i .
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larges t1
ands t2

are, of course.! The dotted curve shows, fo
comparison, the result which is obtained if the detection
ficiencies for the mass eigenstates are weighted by 1/v i . We
see no evidence in our model for this type of behavior.

III. TOWARDS A MORE REALISTIC CALCULATION

In this section we show how the bosonic model of t
previous section may be modified to account correctly for
fermionic nature of the neutrinos~which we shall assume to
be Dirac neutrinos! and for theV2A nature of neutrino in-
teractions. This will have the added benefit of preferring n
trinos with non-zeromomentum. Once again the source a
detector will be modeled by harmonic oscillators. This tim
however, the oscillators will be coupled to the usualV2A
leptonic current rather than simply to the neutrino field. A
result, the interactions at the source and detection points
involve both the neutrino and its associated charged lep
It is convenient to take the initial state to consist only of t
source and detector, both in their first excited states.
source decays by emitting a neutrino and its associa
charged anti-lepton, and the detector decays by absorbin
neutrino and emitting another charged lepton:

~source!*→n~k!1 l a
1~p1!1~source!

�n~k!1~detector!*→ l b
2~p2!1~detector!.

~3.1!

This sequence of events is illustrated schematically in Fig
The system may be described by the following action:

S5E d4x~Ln
01Lint!1E dtLq

0 , ~3.2!

where

Ln
05(

i
n̄ i~x!~ i ]”2mi !n i~x!, ~3.3!

FIG. 5. A schematic illustration of the sequence of events in
source-detector system for fermionic neutrinos considered in
III. The excited source decays by emitting a neutrino and its as
ciated anti-lepton. The detector subsequently absorbs the neu
and emits a lepton.
f-

e

-

,

a
ill
n.

e
d

the

5.

Lq
05(

a
@ q̇1

a†~ t !q̇1
a~ t !2V1

2q1
a†~ t !q1

a~ t !1q̇2
a†~ t !q̇2

a~ t !

2V2
2q2

a†~ t !q2
a~ t !#, ~3.4!

Lint52(
a

@e1~ t !q1
a~ t !h1~x! j a

0~x!

1e2~ t !q2
a~ t !h2~x! j a

0†~x!1H.c.#, ~3.5!

and wherej a
0(x) is the zeroth11 component of the leptonic

V2A current,

j a
m~x![(

i
Ua i* n̄ ig

mPLl a~x!, l a5e,m,t, . . . ,

~3.6!

with PL[(12g5)/2. Once again,e1(2) and h1(2) are func-
tions which parametrize the temporal and spatial coupli
of the neutrino and lepton fields to the source~detector!.

The calculation of the amplitude proceeds in compl
analogy with the calculation for the bosonic case and
shall omit most of the details. As above, we takee1(t)
@e2(t)# to be a Gaussian of widths t1

@s t2
# centered att50

(t5tD) and h1(x) @h2(x)# to be a Gaussian of widthsx1

@sx2
# centered atx50 @x5xD# @see Eqs.~2.18!, ~2.19!,

~2.20! and ~2.24!#. Thus, we omit here the case of the~co-
herent! ‘‘step function’’ detector and consider only the~in-
coherent! ‘‘Gaussian’’ detector. Also, recall that the energi
of the source and detector areV1 andV2, respectively. The
amplitude to detect a neutrino of flavorb given that a neu-
trino of flavor a was emitted at the source is then given b

Aa→b5~2p!e1
0e2

0s t1
s t2(i

Ub iUa i* E d3k

~2p!32Ei

3expF2
1

2
@V12E~p1!2Ei #

2s t1
2

2
1

2
@V21Ei2E~p2!#2s t2

2

2
1

2
uk1p1u2sx1

2 2
1

2
uk2p2u2sx2

2 2 iEi tD1 ik•xDG
3 ūb~p2!g0PL~k”1mi !g

0PLva~p1!, ~3.7!

in which the subscripts on theu andv spinors refer to their
flavors; the spinors also have an implicit spin index whi
has been suppressed.

The above expression for the amplitude is qualitativ
similar to the analogous expression, Eq.~2.46!, derived pre-
viously in the bosonic model, with a few notable exceptio
On a technical note, we see first that it is no longer poss
to perform the angular parts of thek integration exactly as

11In a more realistic calculation, one might perhaps couple theV2

A current to a current representing the initial and final nucleus@19#.
If these nuclei are sufficiently non-relativistic, then it is a go
approximation to consider only the zeroth component of the curr

e
c.

o-
ino



f t

t
un
m

e.
s
ine
-
h
n

n
m
e
-
h

s
-

b

in
e
th
is

ith
th

gh
ur
ri

e
th
th

he
il
w

ue

nd

e
e
’s
are

ting

on.
m-
r-
tive

os-

-
ne

he
ith
-
s is

eu-

ua-
n
ex-

i-
east

is
el

not
qs.
d
con-
rva-

3102 57KEN KIERS AND NATHAN WEISS
was done in the previous case. This occurs because o
presence of the momenta of the charged leptons,p1 andp2,
which complicate the integrand somewhat. A related poin
that now the neutrinos’ momenta are not centered aro
zero, as was the case above. Rather, we have for the
menta

k'2p1 , ~3.8!

k'p2 ~3.9!

and for the energies

V1'E~p1!1Ei , ~3.10!

Ei1V2'E~p2!, ~3.11!

whereEi is the energy of thei th neutrino mass eigenstat
The relations~3.8!–~3.11! are only approximate equalitie
since the degree to which each of them holds is determ
by the relative sizes ofsx1

, . . . ,s t2
. The fact that the neu

trinos’ momenta are not centered about the origin is rat
encouraging because it indicates that this model would
be expected to have the~unphysical! feature that it favors
non-relativistic neutrinos, as was the case in the boso
model of the previous section. The final difference, co
pared to the bosonic case, is the presence of the matrix
ment, ūb•••va , which contains all of the information re
garding the neutrinos’ spins. It is interesting to note t
presence of the factor

~k”1mi !

2Ei
, ~3.12!

which arises in this case in part due to the sum over spin
the neutrinou spinors,(su

s(ki) ū s(ki). This same factor ap
pears in the field theoretic calculation of Ref.@19#, but in that
case is due to an integral in the complexk0 plane which
extracts the pole of the propagator@24#. We need not do any
such integration since we always insist that our source
turned ‘‘off’’ before our detector is turned ‘‘on.’’ This forces
the neutrinos to always be on shell.

It would be possible at this point to proceed as we did
the previous section. First we could examine the respons
the detector to the source by looking very carefully at
case in which there is only one neutrino. Armed with th
knowledge we could define the probability in analogy w
the bosonic case and study its behavior as a function of
various parameters of the theory. While this progam mi
be deserving of future study, for now we shall content o
selves with a more qualitative examination of the gene
features of this model.

As we have noted, two of the main qualitative differenc
between this model and our former bosonic model are
different energy-momentum conservation equations and
presence of the matrix element in the integrand. A furt
difference is that in order to obtain the oscillation probab
ity, we now need to integrate over the momenta of the t
outgoing charged leptons. Since thek integral in the expres-
sion for the amplitude is expected to be dominated by val
of k which are parallel toxD @20#, the p1 and p2 integrals
would similarly be dominated by values anti-parallel a
he
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parallel, respectively, toxD , due to the damping terms in th
exponential of Eq.~3.7!. In order to get some idea of th
effect of the matrix element as a function of the neutrino
mass, then, let us evaluate it when all of the momenta
parallel~or anti-parallel! to xD . ~A somewhat similar analy-
sis to the following may be found in Ref.@25#.! Choosing an
explicit representation for the gamma matrices and adop
the normalization conditions of Itzykson and Zuber@26, pp.
57, 145–614, 201#, we find that only two of the four helicity
combinations of the leptons survive, yielding

Ma→b
11 ~mi !52~Ei2k!

3
@E~p1!1ma1p1#@E~p2!1mb2p2#

2$4mamb@E~p1!1ma#@E~p2!1mb#%1/2
,

~3.13!

Ma→b
22 ~mi !52~Ei1k!

3
@E~p1!1ma2p1#@E~p2!1mb1p2#

2$4mamb@E~p1!1ma#@E~p2!1mb#%1/2
,

~3.14!

wherek[uku, etc., and where the ‘‘11 ’’ and ‘‘ 22 ’’ su-
perscripts refer to the helicities of the lepton and anti-lept
In the limit as the neutrino mass goes to zero, only the co
bination in which both leptons have negative helicity su
vives, since the exchanged neutrino can only have nega
helicity in that limit. For non-zero masses it becomes p
sible to also produce lepton pairs with positive helicity.

The quantities which will occur in the oscillation prob
ability are the squares of the matrix elements. Let us defi

ha→b
1 ~mi !5uMa→b

11 ~mi !u2/uMa→b
22 ~0!u2, ~3.15!

ha→b
2 ~mi !5uMa→b

22 ~mi !u2/uMa→b
22 ~0!u2. ~3.16!

Thenh1 (h2) gives some measure of the probability that t
source-detector interaction gives rise to two leptons w
positive ~negative! helicity. Since the efficiency of the sys
tem at producing and detecting neutrinos of a given mas
determined to some extent by the functionsh6, it is useful to
plot them as a function of the mass of the exchanged n
trino.

It turns out that the energy-momentum conservation eq
tions, Eqs.~3.8!–~3.11!, are overcomplete. Thus, for give
values of the charged lepton and neutrino masses, for
ample,V1 andV2 may be found such that all of the cond
tions are met, but when the neutrino mass is varied, at l
one of the conditions needs to be violated. This problem
related to the difficulty which occurred in the bosonic mod
~where momenta close to zero were favored! and has its root
in the fact that our source and detector are fixed and do
recoil. For the purposes of our plot, let us require that E
~3.8!, ~3.10! and ~3.11! hold exactly—so that energy an
momentum are conserved at the source and energy is
served at the detector—and allow the momentum conse
tion at the detector, Eq.~3.9!, to be violated. As in our pre-
vious model, this can again be allowed by settingsx2

to be
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somewhat small.12 For the plot let us takea5b5e, so that
both the source and detector are sensitive to electron ne
nos. We then set

V150.6 MeV, V250.5 MeV,

ma5mb5me50.511 MeV. ~3.17!

Figure 6 shows a plot ofhe→e
1 (m) andhe→e

2 (m) as a func-
tion of the neutrino mass. The ‘‘threshold’’ in this case
determined by the conditionV15me1m, where m is the
neutrino mass. The upper curve corresponds to the neg
helicity case and approaches unity asm→0. The lower curve
disappears in the same limit. For neutrino masses close
threshold, fairly substantial deviations from them50 case
are observed to occur.

The plot in Fig. 6 should of course be treated with so
caution, since it shows only the square of the matrix elem
evaluated at some ‘‘optimal’’ energy and momentum co
figuration. In general, the oscillation probability will als
receive contributions due to energy and momentum confi
rations which are non-optimal. Furthermore, it has be
found that the procedure which we have followed can lead
non-sensical results if the neutrino mass is taken to be la
compared to the lepton mass.13 In any case, however, th
plot doesdemonstrate something which might be regarded
‘‘typical’’: For non-relativistic neutrinos there will be a non
zero probability to produce charged leptons in the final s
which have the ‘‘wrong’’ helicity configurations. Thus, pa

12On physical grounds we would prefer to allow momentum co
servation to be violated somewhat rather than energy conserva
The reason for this is that in the former case, the small value
quired forsx is still of a reasonable magnitude compared to nucl
scales~it is on the order of several hundred fm in the examp
considered here!, but the value which would be required fors t

would be far too small compared to any time scales in the phys
problem.

13This occurs because, in our prescription,k and p2 need not be
the same. For very heavy neutrinos this starts to cause problem
this approach.

FIG. 6. Plot of the two functionshe→e
1 andhe→e

2 as a function of
the neutrino mass. These provide a measure of the probabilit
produce lepton pairs with helicity11 and 21, for h1 and h2,
respectively.
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ticularly if the spin of the leptons were to be measured in
certain experiment, one could expect there to be quite str
mass effects for non-relativistic neutrinos. In our case,
example, there is a suppression of the negative helicity fi
states for large mass and a mild enhancement of the pos
helicity ones.

Since in this model the neutrinos no longer have th
momenta centered about the~unphysical! value of ‘‘zero,’’
one would expect in this case that the non-relativistic neu
nos would not be favored, as was found to be the case in
bosonic model studied above. In fact, it is possible that th
would be a suppression for non-relativistic neutrinos due
the phase space suppression of the final state leptons
small momenta. This question could really only be answe
by performing a thorough numerical analysis of the mod
which we shall not do at this time.

IV. DISCUSSION AND CONCLUSIONS

Most phenomenological work in the field of particle (n,
K, B, . . . ) oscillations describes the oscillations as a fun
tion of time and then converts the time dependence of
results to a space dependence. There have been man
tempts in the literature to improve on these calculations
explicitly including the spatial dependence of the wave fun
tion. These approaches have necessarily led to the des
tion of the wave function as a wave packet. It has be
shown that several recent claims that such wave packet
proaches lead to different results than the simple tim
oscillation approach, are incorrect and that aproper wave
packet calculation leads to the ‘‘expected’’ results.

In this paper we have presented a novel approach to
study of the spatial dependence of neutrino~and other par-
ticle! oscillations. We have done this by coupling the ne
trino field to an idealized, localized model of a source a
detector which we have chosen to describe as simple
monic oscillators which can be excited or de-excited by
absorption or emission of a neutrino. The system begins w
the source in the first excited state and the detector in
ground state. We then compute the probability that at a m
later time the source is in its ground state~so that it has
emitted a neutrino! and the detector is in its first excited sta
~so that it has absorbed a neutrino!. This probability is evalu-
ated as a function of the distance between the source an
detector and it depends, in detail, on the spatial extent of
source and the detector as well as on the length of time
which each is on. We have seen how to use this depend
to obtain a better understanding of how neutrino oscillatio
depend on the time resolution and the coherence prope
of the source and the detector. We have also seen how
approach is useful in clarifying several subtle issues rela
to the quantum mechanics of neutrino oscillations.
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APPENDIX: APPROXIMATE AMPLITUDE
FOR THE COHERENT DETECTOR

In this appendix we shall derive an approximation for t
t2→` limit of the integral given in Eq.~2.25! and investi-
gate under what circumstances the approximation is vali

The form for the integral given in Eq.~2.25! is convenient
for numerical work, but is not particularly convenient for th
limit which we wish to consider. Let us instead go back
the definition of this expression, obtained by inserting E
~2.23! into Eq. ~2.21!. We may now formally take the limit
as t2→` by giving V2 a small imaginary piece. This yield

Astep~xD ,t1 ,`!52 iÑE
m

` dE

E2V22 i e
expF2

1

2
~E2V1!2s t1

2

2
1

2
k2~sx1

2 1sx2

2 !2 i ~E2V2!t1Gsin~kxD!,

~A1!

where the limite→01 is understood. This integral may b
simplified by employing the relation

1

E2V22 i e
5 ipd~E2V2!1PP

1

E2V2
~A2!

to obtain

Astep~xD ,t1 ,`!5ÑpexpF2
1

2
~V22V1!2s t1

2 2
1

2
~V2

22m2!

3~sx1

2 1sx2

2 !Gsin~ k̄ xD!

2 iÑPPE
m

` dE

E2V2
expF2

1

2
~E2V1!2s t1

2

2
1

2
k2~sx1

2 1sx2

2 !2 i ~E2V2!t1Gsin~kxD!,

~A3!

where we have defined

k̄[AV2
22m2. ~A4!

In order to approximate Eq.~A3! it is useful to make a
change of variables. On the interval (m,V2) we define
Ẽ5V22E and on (V2 ,`) we defineẼ5E2V2. Then the
integral in Eq.~A3! may be approximated by
y
n
te
l

.

iÑE
0

V22mdẼ

Ẽ
H expF i Ẽ t12

1

2
~ Ẽ2DV!2s t1

2

2
1

2
@~ Ẽ2V2!22m2#~sx1

2 1sx2

2 !G
3sin@A~ Ẽ2V2!22m2xD#

2expF2 i Ẽ t12
1

2
~ Ẽ1DV!2s t1

2

2
1

2
@~ Ẽ1V2!22m2#~sx1

2 1sx2

2 !G
3sin@A~ Ẽ1V2!22m2xD#J , ~A5!

whereDV[V22V1 and where the only approximation s
far is that the interval (V2 ,`) has been truncated t
(V2,2V22m). This approximation is valid if the major con
tribution to the integral comes from energies close toV2. In
order to further approximate the integral, let us make
ansatz that the integral in Eq.~A5! is dominated by values so
close to Ẽ50 that is valid to setẼ50 in the Gaussian
pieces. At the end of the calculation we will be able to see
which cases this is a reasonable approximation. When d
ing with the oscillating terms we must be a bit more caref
Writing the sine in terms of exponentials and Taylor expan
ing the arguments to first order inẼ ~which essentially
amounts to ignoring the spreading of the wave packets! leads
to the following approximation for Eq.~A5!:

1

2
ÑexpF2

1

2
~V22V1!2s t1

2 2
1

2
~V2

22m2!~sx1

2 1sx2

2 !G
3E

0

V22mdẼ

Ẽ
@eiẼt1~ei ~ k̄ 2Ẽ/ v̄ !xD2e2 i ~ k̄ 2Ẽ/ v̄ !xD!

2e2 i Ẽ t1~ei ~ k̄ 1Ẽ/ v̄ !xD2e2 i ~ k̄ 1Ẽ/ v̄ !xD!#

52 iÑexp@•••#E
0

V22mdẼ

Ẽ
H ei k̄ xDsinF ẼS xD

v̄
2t1D G

1e2 i k̄ xDsinF ẼS xD

v̄
1t1D G J , ~A6!

where

v̄ [
AV2

22m2

V2
. ~A7!

The final step in the approximation is to note that, if

xD

v̄
6t1@s t1

~A8!
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and if uDVs t1
u is less than or of order unity, then we ma

approximate the sine terms by delta functions, since

lim
L→`

sin~xL!

x
5pd~x!. ~A9!

This brings us to the desired result
g,

-
by
r-

he
do

,

B

Astep~xD ,t1 ,`!.2 iÑpexpF i k̄ xD2
1

2
~V22V1!2s t1

2

2
1

2
~V2

22m2!~sx1

2 1sx2

2 !G . ~A10!

Note that the condition in Eq.~A8! simply requires that
the detector be turned on before any appreciable amoun
flux reaches it.
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