PHYSICAL REVIEW D VOLUME 57, NUMBER 5 1 MARCH 1998

Soffer’'s inequality and the transversely polarized Drell-Yan process at next-to-leading order
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We check numerically if Soffer's inequality for quark distributions is preserved by next-to-leading order
QCD evolution. Assuming that the inequality is saturated at a low hadronic scale, we estimate the maximal
transverse double-spin asymmetry for Drell-Yan muon pair production to next-to-leading-order accuracy.
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I. INTRODUCTION derived by Soffer{11]. It has been recently clarified that
Soffer's inequality is preserved by leading-orde©) QCD
The transversity distributiodq(x,Q?) is the only com- evolution, i.e., if Eq(2) is valid at some scal®, it will also
pletely unknown twist-2 parton distribution function of the be valid atQ>Q, [12]. To NLO the situation is not as
nucleon. In a transversely polarized nucleon it counts thgimple. The parton distributions are now subject to the
number of quarks with spin parallel to the nucleon spin mi-chpice of the factorization scheme which one may fix inde-
nus the number of quarks with antialigned splj. In field  pendently forg, Aq, and 8q. One can therefore always find
theory the transversity distribution is defined by the eXpeCta“sufficientIy incompatible” schemes in which a violation of
tion vqlue of a chiral—od_d .operator bgtween nucleon ;tatg%q_ (2) occurs. However, in Ref8] it was shown with ana-
which is the reason why it is not experimentally accessible inica) methods that the inequation for valence densities is
inclusive deep inelastic lepton-nucleon scatterifiglS) preserved by NLO QCD evolution in a certain “Drell-Yan
[2,3]. The most promising hard process allowed by thisscheme” in which the NLO cross sections for dimuon pro-
chirality selection rule seems to be Drell-Yan dimuon pro-y, .on maintain their LO forms, and also in the modified

duction, and exactly this reaction will be utilized for attempt- ~ o o— )
ing a first measurement diy(x,Q?) at the BNL Relativistic minimal subtraction(MS) scheme. An analytical check of

Heavy lon Collider(RHIC) [4]. What actually will be mea- the sea part is difficult since the _singlet mixing between
sured is not the transversity distribution itself, but the trans9uarks and gluons has to be taken into account for the unpo-

verse double-spin asymmetAs=ddo/do, where the po- larized and longitudinally polarized quantities on the right-

larized and unpolarized hadronic cross sections are defindtfnd-Sid&RHS of Eq. (2). In ,Sef:- Il of this article we shall
as show numerically that Soffer's inequation for sea quarks is

also preserved under NLO evolution.
Estimates ofA;; suffer of course from the fact that no
dso=3(do''—do'!), do=3(do''+do'™"). (1)  experimental information on the transversity distribution is
available at the moment. Therefore one has to rely ontaasa
In perturbative QCOPQCD Ar can be expressed in terms or model calculations 06q(x,Q?) at some reference scale
of unpolarized parton distributions, the yet unknown transq [13]. For example, a popular assumption dg(x,Q2)
versity distributions, and the relevant partonic cross sect_ions:Aq(X,Qg) which, however, is in general incompatible
Although the latter haye been known to .next-to-leadmg-with Soffer's inequality(2), in particular in a situation in
order (NLO) accuracy in the strong coupllng for several which Aq(x,Q2)~ —q(x,Q2). Our aim in Secs. Iil and IV
years by now[5-7], consistent NLO calculations were not will be to estimate within LO and NLO an upper bound on

pogs!ble because of_the_ Iaqk of the two-loop transversn){he transverse double-spin asymmetry for the Drell-Yan pro-
splitting functions. This situation changed only very recentlycess_ To do so, we will first of all assume the validity of

[8-10, allowmg for the first time a consistent ce}lculatlon of Soffer's inequality, which seems reasonable and is corrobo-
PQCD corrections to the transverse double-spin asymmetry. . 4 by our finding of Sec. Il that the NLO evolution to

for the Drell-Yan process. 2 2 . . o e
The unpolarized, longitudinally and transversely polarized >Qq preserves the inequation once it is satisfied at the

C Input scale. The maximal asymmetAs can then be esti-
?ouirbkesl‘:ﬁgbru;;ﬁgf :?neArcelst?r?g)] ?;g,:%: ucleon are expected mated by further assumingaturation of the Soffer bound

(2). The result obtained folrt under this assumption obvi-
ously strongly depends on the value chosenQgr If Qg is
2|89(x)|<q(x)+Aq(x) (2)  taken to be large, i.e., of the order of the invariant mdssf
the lepton pair which sets the typical hard scale for the Drell-
Yan process, the largest possible values Agi will be
*Present address: Department of Physics, University of Durhanteached. However, for several reasons it does not seem con-
Durham, DH1 3LE, England. vincing to assume saturation of E@) by the input distribu-
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57 SOFFER'’S INEQUALITY AND THE TRANSVERSELY ... 3085
tions employing such a higlQ3~M?: Firstly, evolving The Mellin moments of the transverse splitting functions
backwards taQ?< Qg — which should be a completely le- 5qu,i are taken to have the following perturbative expan-
gitimate procedure ifQ, is not small — will under such sion:

circumstances immediately yield a violation of Soffer’s in-

equality. Second, the RHS of E{) will almost certainly o w2
lead to an overestimation for th# if saturation is assumed 5qu (= _5) 5pg%>,n+(_s) 5pglq>g+ (6)
at a largeQ,. For instance, for sea quarks the first moment . 2m 2m

(x integra) of the RHS of Eq(2) will diverge, which is not

expected for the integral ovetq at any Q2. Therefore, to
obtain a realistic estimate for an upper bound Ap; by
assuming saturation of Soffer’s inequation, two requirements

i.e., both are equal to LO. We use the following NLO ex-
pression for the strong-coupling constant:

have to be met i) The sa'turation should bg adopt_ed only at ay(Q?) 2 / B, InINQ2/A2
a rather low “hadronic” input scale wher@i) the integral 5 = s I @
over the RHS of2) is finite. Both demands are automatically ™ BolnQ*/A \ Bo INQ/A

satisfied if we choose the unpolarized and longitudinally po-

larized input parton distributions of the radiative partonwhereA is the QCD scale parameter afg=11-2n/3 and

model analysefl14—16 and set B1=102—38n;/3, with n; being the number of active fla-
vors. The solution of Eq(5) is then simply given by5]

250(x,Q3)=a(x,Q5) +Ad(x,Qp), 3) e ;

n ¥s\%0) ™ s 1),n 1 0),n
where Qg now is identified with the input scalg~O(0.6 09:(Q9)=| 1+ B0 (5P51q>+ 280 5ch|) ”
GeV) of the radiative parton modé¢lL4], and is considered o
the smallest scale from which perturbative evolution can be ay(Q?)| a1
performed, such that no backward evolution fregmmakes > 5q';(Q(2)). (8)
sense. While we are aware that our approach, with its rather as(Qp)

small Qq, may lead to an underestimation of the maximally

pOSSIb|eATT, we still believe our results to be built on a firm Needless to say, the LO evolutions are entailed in the above
basis, given the large phenomenological suc§ésslé of — equations when we set the NLO quantitiéB(y)", 5 to

the radiative parton model for thg, Ag. In any case, our Z€ro.

results forA;t under the assumption of EB) are the larg- Equation (8) can be very conveniently employed for a
est the radiative parton model can predict, and will provide &numerical calculation of the NLO evolution of the transver-
useful target for future experiments. We emphasize that ousity distributions. As discussed in Sec. I, we will assume
NLO results presented in Sec. IV are, to our knowledge, thé&aturation of Soffer’s inequality at the input scale; see Eq.
first ones to be obtained to true and consistent NLO accut3). Our choice for the RHS of Ed3) will then be the NLO
racy. Section IV will also provide a discussion of other pos-MS radiative parton model inputs fay(x, QO) of Ref.[15]

sible uncertainties of our results. and for the longitudinally polarized q(x, QO) of the “stan-
In Sec. V we will present our conclusions. dard” scenario of Ref[16] af’ QS:M§L020-34 Ge\2. For
simplicity we will slightly deviate from the actua1(x,Q§)
Il. PRESERVATION OF SOFFER’S INEQUATION of [15] in so far as we will neglect the breaking of &)in

BY NLO EVOLUTION the input sea quark distributions originally present in this set.

This seems reasonable as(@)Jusymmetry was also assumed
gitudinally polarized densities, all transversity distributionsfor theAq(x,Qp) of Ref. [16], which in that case was due to

obey simple non-singlet-type evolution equations becausg]e fact that in the longitudinally polarlzed case there are no
there is no corresponding gluonic quantity due to angulaflta yet that could discriminate betwedn and Ad. We
momentum conservatidri 7,3]. Introducing therefore prefer also to assumﬁm(x QO) sd( (X, Qo) for

the transversity input. We will examine the possible effects

5 5 — of SU(2) breaking later. The moments of the resulting input
60 (x,Q%)=69(x,Q%) + 6q(x,Q), (4)  distributions 8q(x,Q2) are easily taken, and thég"(Q2)

) oo o1 . 5 are then evolved to higher scal€8>Q3 with the help of
and Mellin momentssq’ (Q%)=/pdxX"""69.(x,Q), the  Eq. (8). A standard inverse Mellin transformation finally
evolution equations are given %] gives the desired transversity distributionxiispace. In order

to perform this inverse Mellin transformation, E@) has to
be analytically continued to complax[14]. The evolutions

8q1(Q?) = 5pnq+(aS(Q )SqL(Q?). (5)  of the a(x,Q3) [neglecting the S(2) breakind and the

Unlike the case of the more familiar unpolarized and lon-

QdQZ

2Note that for the purpose of checking the preservation of Soffer's
The possibility of choosing a different sign in front of the right- inequality by evolution the choice of the initial scall% is actually
hand side of Eq(3) will be discussed later. irrelevant.
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Aq(x,Qé), which both involve the singlet mixing between . [a(Q?)—a (Qg)]
quarks and gluons, proceed as explained in Ha#%-16. 2(6u—68d)"(Q%)=— e - (8PGe "~ oPL)
In order to numerically check the preservation of Eg), 0
Fig. 1 shows the ratio ( OIS(QZ)) _25pg%)v”/,80
2159%.Q0)| ag(Qf)
q(x,
Rq(x,Q%) = (9) X (8u,— 8d,)"(Qp). (10
’ a(x, Q%) +Ad(x,Q?) °

Figure 2 displays the resulting effect via the ratio
as a function ok for several differenQ? values forq=u,
=u_, u=(u,—-u.)2,d,=d_, andd=(d, —d_)/2 [cf. 5 5u_(x,Q2) — 5d_(x,Q2)
Eq.(4)]. If NLO evolution preserves Soffer’s inequality, then oD(x,Q%) = 50(x.0%) 1 5d(x.0?)
Rq(x,Qz) should not become larger than 1 for a@ﬁan. ' '
As we already know from Re{8], this is the case for the for variousQ2. One can see that — apart from the region of
inequality is indeed also preserved for sea distributions. Fursma|l, and could in reality well be entirely masked by the

thermore, in Fig. 1 we see that evolution leads to a strongypjicit breaking in the nonperturbative sea inpu.
suppression oRq(x,QZ) at small values ok, in particular

(11)

for the sea quarks. Thi.s can be. understood by the fact that lll. UPPER BOUNDS ON A;;: FRAMEWORK
OPgq,+(X) has a very mild behavior for— 0 [8], and by the
well-known sharp smalk rise of the unpolarized sea distri-  Now that we have shown that NLO evolution preserves

butions in the denominator &}, due toQ? evolution. We  Soffer’s inequation, we want to utilize it to derive upper

note that our numerical results for the sea quarks became o

somewhat unstable at large probably caused by the fact 10 0 2

that the sea distributions are obtained here as differences of | T ‘;B(x’igz gezz)

two much larger quantities. ﬁ AAAAAAAAA éDg’lo“ szz;
As is obvious from Eq/(2), Soffer's inequality only re- 10 i

stricts the absolute value of the transversity distribution.
Therefore, we are free to choose a different sign in front of
the RHS of Eq(3), and have to check the results for the two
distinct possibilities 59, (x,Q2)>0, 6q(x,Q3)>0 and
69,(x,Q3)>0, 8q(x,Q3)<0. Our results do not noticeably
depend on the actual choice.

As we have neglected any possible (8JUbreaking in all
the sea input distributionsq(x,Q3), Aq(x,Q3), and

5q(x,Q2), any difference between the curves Ry, and 10°2 s10%2 51002 51022 51072 s

R4 can necessarily only result from the dynamical breaking X

of SU(2) first induced by NLO evolution. The occurrence of

a small breaking from this source is well known from the FIG. 2. The dynamical S() breaking in the NLO transversity
unpolarized 18] and longitudinally polarizefi19] cases. For densities expressed by the rafib (x,Q?) as defined in Eq(11) for
the transversity densities it is given by several fixed values dD?.
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bounds on the transverse double-spin asymmetry to be mea-

sured in polarized Drell-Yan muon pair production. For this CDY M(Q2)=Cg| 4S2(N)— —————S;(n) +

purpose we choose again the maximally allowed vdR)e n(n+1) nz (n+1)?

for the transversity distributions, which should yield the 5

maximal double-spin asymmetry. We employ the same un- —8+ Ai e 2 +3

polarized and longitudinally polarized input distributions as 3 Fln(n+1)

in Sec. Il, along with the same value for the initial sc@lg

The scaling variable for the Drell-Yan process is M2

=M?/S, where M is the invariant mass of the produced —45,(n) |In 2/’ (16)

muon pair andy/S is the center-of-mass energy of the had- -

ronic collision. Since in unpolarized reactions only the colli-

sion axis is specified, the distribution of the produced muon bY.n B nZ+n+2

pairs cannot depend on the azimuthlf the colliding nucle- Cq (QR)=Tr| — stl(”)

ons are transversely polarized, then the collision and spin

axes specify a plane in space and consequently the polarized n*+11n3+22n?+ 14n+4

cross section will depend og. Instead of working with 5 5 5

r-dependent cross sections, we again prefer Mellin moments n“(n+1)%(n+2)

defined by N2+ 142 M2
Tre————= In| — |, (17

d(5)0,n_j1 nfle(é)O' ( ) n(n+l)(n+2) QIZ:
de drdé¢ whereCr= % andTg= 1. The polarized ones can be found in

Ref.[8], and read
Including NLO corrections to these cross sections, one ob-

tains the generic expressif,7]

5COYN(Q2)= CF[4s§(n) +12S5(n)—¢(3) ]+

2 n(n+1)
d(ﬁ)a'n_ em N, ~2
44 =58 (D@ (IHYQD) a "2
<QR> v Q?
x| 1+ == o) ”(Q;)) 8
+H S(QR) DY,n DY,n 2\ _
g(QF) (5)Cg"™"QP)|, (13 6Cq " (QF)=0. (19

In the above formulas we used the abbreviatiBg(n)
=E?:1j ~k_ Since there is no gluon transversity distribution
for the nucleon, the gluonic part of EGL3) drops out for the
no~2 5 N D) =TT 2 polarized case. The indices and B in Egs. (14) and (15)
(5)Hq(QF)E% €3l (8)AA(QR)(9)qe(Qr) + (A=B)], take into account the possibility of having two different scat-
(14) tering hadrons, although onlgp collisions are planned at
the moment. FinallyQr and Qg in Egs.(13)—(19) are the
factorization and renormalization scales, respectively, for
N A2\ — 2r N A2\ (a2 4 AT A2 which we will chooseQr=Qg=M unless stated otherwise.
HE(QF) =2 effA(QR)(@3(Q?) +ap(Q?) Z° production andyZC-interference can be easily in-
cluded by the substitutiofsee also Refl.7])

where

+(A=B)]. (15)
The dependence on the azimuth is givendgs)=1 and . M2(M2—M2)
5@ () =cos2p. Integration overg thus isolates the unpo- eq_’eq_squIVqK(Mz_M2)2+F2Mz
larized part, andP(¢) is then replaced by 2. On the other z zrz
hand the integratiofi20] M4

+16(Vi+A]) (Ve AZ) k2 ,
6(V] i( @) (MZ—M§)2+F§M§

A S N M L @

. . where
extracts the polarized cross section, afl( ¢) can then be

simply substituted by 4. In the following we will always

assume appropriate integration over the azimuth.  V2GeMJ V.= T3 20.5i70 A—T3
The unpolarized NLOMS QCD coefficients inr space = Temag, ' of f cESIMOw, A=l

can be found, e.g., in Ref5]. Their Mellin moments are (21
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FIG. 3. NLO and LO maximal polarized Drell-Yan cross sec-  F|G. 4. As in Fig. 3, but for RHIC at/S=150 GeV assuming
tions and asymmetries for HERA:N'he error bars were calculated £ =240 pb %, 70% polarization of each beam, and 100% detec-
according to Eq(22), and are based 06=240 pb !, 70% polar- tion efficiency.
ization of the beam and target, and 100% detection efficiency.

note that the region 9 Ge¥M =11 GeV will presumably
The positive sign in front of the‘\ﬁ term is appropriate for NOt be accessible experimentally, since it will be dominated
the unpolarized cross section, the negative sign for the pd2y Muon pairs from bottomonium decays. Again the pre-
larized one. As usualGe denotes the Fermi constaréh,, dicted maximal asymmetry is of the order of a few percent.
the Weinberg angle (si®,,=0.224), andr? the third com- From the expefted error_li)ars calciulategj again for 70% beam
ponent of the weak isospin. polarization, £L=240 pb * and e=100%, one concludes
For examining the perturbative stability of our results, wethat asymmetries of this size should be also well measurable

will also calculate the cross section at LO. In this case on@t RHIC.

simply needs to set the QCD coefficients to zero in the above F19ure 5 shows similar results for the high-energy end of
formulas, and to replace the NLO parton distributions byRHIC, VS=500 GeV, where the integrated luminosity is

— 1
ones evolved in LO. As LO input distributions for E(g),  €xpected to b&£=800 pb ~. It turns out that the asymme-
we will use the unpolarized LO parametrizations of R&5] tries become smaller as compared to the lower energies, but
[neglecting again the SB) breaking in the quark séand thanks to the higher luminosity the error bars become rela-

the polarized ones of Ref16] at the LO input scaIeQS tively smaller as well, at least in the region 5 GsW
—0.23 Ge\l. =25 GeV, where the errors are approximately of the

maximal asymmetry. One can also clearly see in Fig. 5 the
effect of Z exchange and th& resonance.
We have already mentioned before that Soffer's inequa-

. . . . - 2 .
Figure 3 shows the transversely polarizep cross sec- fion does not determine the sign 6fj(x,Q%), so that in
tion and the “maximal”’ double-spin asymmetrg;; for  Principle we have to check all different combinations in or-

: N find the “true” maximal value foA;;. It turns out
VS=40 GeV, corresponding to the propogetl] HERA-N der to . N T, '
fixed target experiment which would utilize the possibly €.9., thaf[ keeping a positive sign only 18u,(x,Q7) leads to
forthcoming polarized 820-GeV proton beam at the DESYA reduction ofA+1] at smallM, but to an enhancement at the

ep collider HERA on a transversely polarized target. Weexperlmentally unaccessible region of larye We have
show results at both LO and NLO. For illustration we haveCNecked that for smalM the asymmetry takes its largest

also included the expected statistical errors for a measur alues if aII_S|gns are chosen to be positive, as was done in
d. (3) and in the above plots.

ment of At by HERA-N, which can be estimated from

IV. RESULTS

N @ "
PBPT Loe E

—

Arr(M) [%]

wherePg and Py are the beam and target polarizations, for =

which we will usePg=P1=0.7. L is the anticipated inte- §
grated luminosity ofC=240 pb !, o the unpolarized cross §10'3
section integrated over bins &, and e the detection effi- =
. . . . L 10* t RHIC (p-p)
ciency for which we will take for simplicitye=100%. Note 12 _
. . S =500 GeV
that full 47 coverage of the detector is assumed. Figure 3 |y° ;
R > . 20 40 60 80 100 20 40 60 80 100
shows that the maximal asymmetry for HERAiNactually M [GeV] M [GeV]

fairly large, and would be accessible in that experiment.
In Fig. 4 we present results similar to Fig. 3, but now for  F|G. 5. As in Fig. 4, but for S=500 GeV and L
JS=150 GeV, corresponding to the RHIC collider. We =800 pb L.
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FIG. 7. The NLO asymmetry atS= 150 GeV, using the “stan-
dard” and “valence” sets of Ref.16] for the Aq(x,Q3) in Eq. (3).

FIG. 6. Scale dependence of the LO and NLO asymmetries af\'SC shown is the <2:hange caused by not neglecting th€25U
J/S=150 GeV. The renormalization and factorization scales inPréaking in theq(x,Qp) of Ref.[15] (see text The solid line is as

Egs.(13)—(15) were chosen to b®g=Qr=M/2, M, and M. The N Fig. 4.
solid line is as in Fig. 4.

much more than the one generated by evolution — could be
realized in nature. One possible way of estimating the uncer-
A comparison of the LO and NLO results in Figs. 3-5 tainty entering our predictions fa&; through this source, is
answers one key question concerning the transversely polate reintroduce the hitherto neglected amount of HUbreak-
ized Drell-Yan process: Our predictions for the maxiAgl  ing in the unpolarized input densities as fixed in the original
show good perturbative stability, i.e., the NLO corrections toinput distributions of 15]. The SU2) breaking will also in-
the cross sections andl;1 are of moderate size, albeit not fluence the transversity input via E@). The resulting asym-
negligible. There seems to be a general tendency towarghetry is also depicted in Fig. 7. As can be seen, the effect is
smaller corrections when the energy is increasing, whiclsizable only at rather large!.
should be mainly due to the larger invariant masses probed
and to a resulting smallegg(M?).
Let us finally address some of the main uncertainties in

our predictions for the maximal asymmetA;. The first V. CONCLUSIONS
issue is the scale dependence of the results. This is examined h h ically th ftor's i L
in Fig. 6 for the case/S=150 GeV. Here we plot the maxi- We have shown numerically that Soffers inequation Is

preserved by NLO QCD evolution, provided it is satisfied by

the input distributions. For the first time, to our knowledge,

we have presented a complete and consistent NLO calcula-
on of the transverse double spin asymmefyy; for the

mal asymmetry in LO and NLO, varying the renormalization
and factorization scales in the rand@/2<Qr=Qr<2M.
One can see that already the LO asymmetry is fairly stabl
with respect to scale changes, which is in accordance wit . .
the finding of generally moderate NLO corrections. The rell-Yan process, employ|_ng the NLO correct|on_s to the
NLO asymmetry even shows a significant improvement, S&ard s_ubprpcess cross sections as WE?” as performln@_%he
that At becomes largely insensitive to the choice of scale.evom,t'cmS in NLO. Here we have estm.]at.ed the maximally
In order to obtain a rough idea about the uncertaintyposs'bleAT,T in the framevyvork of the; ragilatlve parton model
caused by our imperfect knowledge of the longitudinally po-2Y @ssuming that Soffer's inequality is saturated at a low
larized parton densitieAq(X,QZ) and Ag(X,QZ), we also hadronic gc_ale. FO{/§= 40 GeV the ma)flmal value mTT
calculated the asymmetries using the NLO “valence” sce-for pp collisions was found to be apEJroxmater 4%, with an
nario input distributions of16] instead of the “standard” expected statistical error for HERA-Nf about 1% at an
ones in Eq.(3). As can be seen in Fig. 7 for the cag€ invariant mass oM =4 GeV. The situation for RHIC with
— 150 GeV, the difference for experimentally significat ~ S=150 GeV turned out to be rather similar. The prospects
turns out to be quite small, with the predictions based on thef measuringAr; somewhat improved when going @S
“valence” scenario distributions having slightly smaller =500 GeV where the maximal asymmetry is of the order of
asymmetries. 1% for smallM with an expected relative statistical error of
As we already mentioned in Sec. Il, neither the “stan-approximately 1/10. We emphasize again, however, that our
dard” nor the “valence” scenario parametrizations take intoresults only represent ampper boundon A;r, so that the
account a possible SP) breaking in the polarized sea be- “true” asymmetry may well be much smaller and even ex-
cause only neutral current polarized DIS data are available gterimentally not measurable.
the moment. This led us also to neglect any(3lbreaking Comparing to corresponding LO calculations, we found
in the transversity input densities for our calculations, justthat QCD corrections turn out to be moderate but non-
keeping the dynamical SB) breaking produced by NLO negligible, putting our predictions on a firm basis. We have
evolution (cf. Fig. 2. On the other hand, it seems rather also examined the main uncertainties of our predictions, such
likely that a certain amount of SQ) breaking — possibly as the scale dependence of the asymmetry and our imperfect
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