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Soffer’s inequality and the transversely polarized Drell-Yan process at next-to-leading order
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We check numerically if Soffer’s inequality for quark distributions is preserved by next-to-leading order
QCD evolution. Assuming that the inequality is saturated at a low hadronic scale, we estimate the maximal
transverse double-spin asymmetry for Drell-Yan muon pair production to next-to-leading-order accuracy.
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I. INTRODUCTION

The transversity distributiondq(x,Q2) is the only com-
pletely unknown twist-2 parton distribution function of th
nucleon. In a transversely polarized nucleon it counts
number of quarks with spin parallel to the nucleon spin m
nus the number of quarks with antialigned spin@1#. In field
theory the transversity distribution is defined by the expec
tion value of a chiral-odd operator between nucleon sta
which is the reason why it is not experimentally accessible
inclusive deep inelastic lepton-nucleon scattering~DIS!
@2,3#. The most promising hard process allowed by t
chirality selection rule seems to be Drell-Yan dimuon p
duction, and exactly this reaction will be utilized for attemp
ing a first measurement ofdq(x,Q2) at the BNL Relativistic
Heavy Ion Collider~RHIC! @4#. What actually will be mea-
sured is not the transversity distribution itself, but the tra
verse double-spin asymmetryATT5dds/ds, where the po-
larized and unpolarized hadronic cross sections are defi
as

dds[ 1
2 ~ds↑↑2ds↑↓!, ds[ 1

2 ~ds↑↑1ds↑↓!. ~1!

In perturbative QCD~PQCD! ATT can be expressed in term
of unpolarized parton distributions, the yet unknown tra
versity distributions, and the relevant partonic cross sectio
Although the latter have been known to next-to-leadin
order ~NLO! accuracy in the strong coupling for sever
years by now@5–7#, consistent NLO calculations were no
possible because of the lack of the two-loop transver
splitting functions. This situation changed only very recen
@8–10#, allowing for the first time a consistent calculation
PQCD corrections to the transverse double-spin asymm
for the Drell-Yan process.

The unpolarized, longitudinally and transversely polariz
quark distributions (q, Dq, dq) of the nucleon are expecte
to obey the rather interesting relation

2udq~x!u<q~x!1Dq~x! ~2!

*Present address: Department of Physics, University of Durh
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derived by Soffer@11#. It has been recently clarified tha
Soffer’s inequality is preserved by leading-order~LO! QCD
evolution, i.e., if Eq.~2! is valid at some scaleQ0, it will also
be valid at Q.Q0 @12#. To NLO the situation is not as
simple. The parton distributions are now subject to t
choice of the factorization scheme which one may fix ind
pendently forq, Dq, anddq. One can therefore always fin
‘‘sufficiently incompatible’’ schemes in which a violation o
Eq. ~2! occurs. However, in Ref.@8# it was shown with ana-
lytical methods that the inequation for valence densities
preserved by NLO QCD evolution in a certain ‘‘Drell-Ya
scheme’’ in which the NLO cross sections for dimuon pr
duction maintain their LO forms, and also in the modifie
minimal subtraction~MS! scheme. An analytical check o
the sea part is difficult since the singlet mixing betwe
quarks and gluons has to be taken into account for the un
larized and longitudinally polarized quantities on the righ
hand-side~RHS! of Eq. ~2!. In Sec. II of this article we shal
show numerically that Soffer’s inequation for sea quarks
also preserved under NLO evolution.

Estimates ofATT suffer of course from the fact that n
experimental information on the transversity distribution
available at the moment. Therefore one has to rely on ans¨tze
or model calculations ofdq(x,Q2) at some reference scal
Q0 @13#. For example, a popular assumption isdq(x,Q0

2)
5Dq(x,Q0

2) which, however, is in general incompatib
with Soffer’s inequality~2!, in particular in a situation in
which Dq(x,Q0

2)'2q(x,Q0
2). Our aim in Secs. III and IV

will be to estimate within LO and NLO an upper bound o
the transverse double-spin asymmetry for the Drell-Yan p
cess. To do so, we will first of all assume the validity
Soffer’s inequality, which seems reasonable and is corro
rated by our finding of Sec. II that the NLO evolution t
Q2.Q0

2 preserves the inequation once it is satisfied at
input scale. The maximal asymmetryATT can then be esti-
mated by further assumingsaturation of the Soffer bound
~2!. The result obtained forATT under this assumption obvi
ously strongly depends on the value chosen forQ0. If Q0 is
taken to be large, i.e., of the order of the invariant massM of
the lepton pair which sets the typical hard scale for the Dr
Yan process, the largest possible values forATT will be
reached. However, for several reasons it does not seem
vincing to assume saturation of Eq.~2! by the input distribu-
,
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57 3085SOFFER’S INEQUALITY AND THE TRANSVERSELY . . .
tions employing such a highQ0
2;M2: Firstly, evolving

backwards toQ2,Q0
2 — which should be a completely le

gitimate procedure ifQ0 is not small — will under such
circumstances immediately yield a violation of Soffer’s i
equality. Second, the RHS of Eq.~2! will almost certainly
lead to an overestimation for thedq if saturation is assumed
at a largeQ0. For instance, for sea quarks the first mome
(x integral! of the RHS of Eq.~2! will diverge, which is not
expected for the integral overd q̄ at anyQ2. Therefore, to
obtain a realistic estimate for an upper bound onATT by
assuming saturation of Soffer’s inequation, two requireme
have to be met:~i! The saturation should be adopted only
a rather low ‘‘hadronic’’ input scale where~ii ! the integral
over the RHS of~2! is finite. Both demands are automatical
satisfied if we choose the unpolarized and longitudinally
larized input parton distributions of the radiative part
model analyses@14–16# and set1

2dq~x,Q0
2!5q~x,Q0

2!1Dq~x,Q0
2!, ~3!

whereQ0 now is identified with the input scalem;O(0.6
GeV! of the radiative parton model@14#, and is considered
the smallest scale from which perturbative evolution can
performed, such that no backward evolution fromm makes
sense. While we are aware that our approach, with its ra
small Q0, may lead to an underestimation of the maxima
possibleATT , we still believe our results to be built on a firm
basis, given the large phenomenological success@15,16# of
the radiative parton model for theq, Dq. In any case, our
results forATT under the assumption of Eq.~3! are the larg-
est the radiative parton model can predict, and will provid
useful target for future experiments. We emphasize that
NLO results presented in Sec. IV are, to our knowledge,
first ones to be obtained to true and consistent NLO ac
racy. Section IV will also provide a discussion of other po
sible uncertainties of our results.

In Sec. V we will present our conclusions.

II. PRESERVATION OF SOFFER’S INEQUATION
BY NLO EVOLUTION

Unlike the case of the more familiar unpolarized and lo
gitudinally polarized densities, all transversity distributio
obey simple non-singlet-type evolution equations beca
there is no corresponding gluonic quantity due to angu
momentum conservation@17,3#. Introducing

dq6~x,Q2![dq~x,Q2!6d q̄~x,Q2!, ~4!

and Mellin momentsdq6
n (Q2)[*0

1dxxn21dq6(x,Q2), the
evolution equations are given by@5#

Q2
d

dQ2
dq6

n ~Q2!5dPqq,6
n

„as~Q2!…dq6
n ~Q2!. ~5!

1The possibility of choosing a different sign in front of the righ
hand side of Eq.~3! will be discussed later.
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The Mellin moments of the transverse splitting functio
dPqq,6

n are taken to have the following perturbative expa
sion:

dPqq,6
n ~as!5S as

2p D dPqq
~0!,n1S as

2p D 2

dPqq,6
~1!,n1•••, ~6!

i.e., both are equal to LO. We use the following NLO e
pression for the strong-coupling constant:

as~Q2!

2p
5

2

b0lnQ2/L2S 12
b1

b0
2

lnlnQ2/L2

lnQ2/L2 D , ~7!

whereL is the QCD scale parameter andb051122nf /3 and
b15102238nf /3, with nf being the number of active fla
vors. The solution of Eq.~5! is then simply given by@5#

dq6
n ~Q2!5F11

as~Q0
2!2as~Q2!

pb0
S dPqq,6

~1!,n2
b1

2b0
dPqq

~0!,nD G
3S as~Q2!

as~Q0
2!
D 22dPqq

~0!,n/b0

dq6
n ~Q0

2!. ~8!

Needless to say, the LO evolutions are entailed in the ab
equations when we set the NLO quantitiesdPqq,6

(1),n , b1 to
zero.

Equation ~8! can be very conveniently employed for
numerical calculation of the NLO evolution of the transve
sity distributions. As discussed in Sec. I, we will assum
saturation of Soffer’s inequality at the input scale; see E
~3!. Our choice for the RHS of Eq.~3! will then be the NLO
MS radiative parton model inputs forq(x,Q0

2) of Ref. @15#
and for the longitudinally polarizedDq(x,Q0

2) of the ‘‘stan-
dard’’ scenario of Ref.@16# at2 Q0

25mNLO
2 50.34 GeV2. For

simplicity we will slightly deviate from the actualq(x,Q0
2)

of @15# in so far as we will neglect the breaking of SU~2! in
the input sea quark distributions originally present in this s
This seems reasonable as SU~2! symmetry was also assume
for theD q̄ (x,Q0

2) of Ref. @16#, which in that case was due t
the fact that in the longitudinally polarized case there are
data yet that could discriminate betweenD ū and D d̄ . We
therefore prefer also to assumed ū (x,Q0

2)5d d̄ (x,Q0
2) for

the transversity input. We will examine the possible effe
of SU~2! breaking later. The moments of the resulting inp
distributionsdq(x,Q0

2) are easily taken, and thedq6
n (Q0

2)
are then evolved to higher scalesQ2.Q0

2 with the help of
Eq. ~8!. A standard inverse Mellin transformation finall
gives the desired transversity distribution inx space. In order
to perform this inverse Mellin transformation, Eq.~8! has to
be analytically continued to complexn @14#. The evolutions
of the q(x,Q0

2) @neglecting the SU~2! breaking# and the

2Note that for the purpose of checking the preservation of Soffe
inequality by evolution the choice of the initial scaleQ0

2 is actually
irrelevant.
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FIG. 1. The ratioRq(x,Q2) as defined in Eq.

~9! for q5uv , ū ,dv , and d̄ , and several fixed
values ofQ2.
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Dq(x,Q0
2), which both involve the singlet mixing betwee

quarks and gluons, proceed as explained in Refs.@14–16#.
In order to numerically check the preservation of Eq.~2!,

Fig. 1 shows the ratio

Rq~x,Q2!5
2udq~x,Q2!u

q~x,Q2!1Dq~x,Q2!
~9!

as a function ofx for several differentQ2 values forq5uv

5u2 , ū5(u12u2)/2, dv5d2 , and d̄5(d12d2)/2 @cf.
Eq. ~4!#. If NLO evolution preserves Soffer’s inequality, the
Rq(x,Q2) should not become larger than 1 for anyQ2>Q0

2.
As we already know from Ref.@8#, this is the case for the
two valence distributions. Figure 1 confirms that Soffe
inequality is indeed also preserved for sea distributions. F
thermore, in Fig. 1 we see that evolution leads to a str
suppression ofRq(x,Q2) at small values ofx, in particular
for the sea quarks. This can be understood by the fact
dPqq,6(x) has a very mild behavior forx→0 @8#, and by the
well-known sharp small-x rise of the unpolarized sea distr
butions in the denominator ofRq due toQ2 evolution. We
note that our numerical results for the sea quarks bec
somewhat unstable at largex, probably caused by the fac
that the sea distributions are obtained here as difference
two much larger quantities.

As is obvious from Eq.~2!, Soffer’s inequality only re-
stricts the absolute value of the transversity distributi
Therefore, we are free to choose a different sign in front
the RHS of Eq.~3!, and have to check the results for the tw
distinct possibilities dqv(x,Q0

2).0, d q̄ (x,Q0
2).0 and

dqv(x,Q0
2).0, d q̄ (x,Q0

2),0. Our results do not noticeabl
depend on the actual choice.

As we have neglected any possible SU~2! breaking in all
the sea input distributionsq̄ (x,Q0

2), D q̄ (x,Q0
2), and

d q̄ (x,Q0
2), any difference between the curves forRū , and

Rd̄ can necessarily only result from the dynamical break
of SU~2! first induced by NLO evolution. The occurrence
a small breaking from this source is well known from t
unpolarized@18# and longitudinally polarized@19# cases. For
the transversity densities it is given by
r-
g

at

e

of

.
f

g

2~d ū2d d̄ !n~Q2!5
@as~Q2!2as~Q0

2!#

pb0
~dPqq,2

~1!,n2dPqq,1
~1!,n !

3S as~Q2!

as~Q0
2!
D 22dPqq

~0!,n/b0

3~duv2ddv!n~Q0
2!. ~10!

Figure 2 displays the resulting effect via the ratio

dD~x,Q2!5
d ū~x,Q2!2d d̄~x,Q2!

d ū~x,Q2!1d d̄~x,Q2!
~11!

for variousQ2. One can see that — apart from the region
very largex — the dynamical breaking of SU~2! is rather
small, and could in reality well be entirely masked by t
explicit breaking in the nonperturbative sea input.

III. UPPER BOUNDS ON ATT : FRAMEWORK

Now that we have shown that NLO evolution preserv
Soffer’s inequation, we want to utilize it to derive upp

FIG. 2. The dynamical SU~2! breaking in the NLO transversity
densities expressed by the ratiodD(x,Q2) as defined in Eq.~11! for
several fixed values ofQ2.
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bounds on the transverse double-spin asymmetry to be m
sured in polarized Drell-Yan muon pair production. For th
purpose we choose again the maximally allowed value~3!
for the transversity distributions, which should yield th
maximal double-spin asymmetry. We employ the same
polarized and longitudinally polarized input distributions
in Sec. II, along with the same value for the initial scaleQ0.

The scaling variable for the Drell-Yan process ist
5M2/S, where M is the invariant mass of the produce
muon pair andAS is the center-of-mass energy of the ha
ronic collision. Since in unpolarized reactions only the co
sion axis is specified, the distribution of the produced mu
pairs cannot depend on the azimuthf. If the colliding nucle-
ons are transversely polarized, then the collision and s
axes specify a plane in space and consequently the pola
cross section will depend onf. Instead of working with
t-dependent cross sections, we again prefer Mellin mom
defined by

d~d!sn

df
[E

0

1

dttn21
td~d!s

dtdf
. ~12!

Including NLO corrections to these cross sections, one
tains the generic expression@6,7#

d~d!sn

df
5

aem
2

9S
~d!F~f!F ~d!Hq

n~QF
2 !

3S 11
as~QR

2 !

2p
~d!Cq

DY,n~QF
2 ! D

1Hg
n~QF

2 !
as~QR

2 !

2p
~d!Cg

DY,n~QF
2 !G , ~13!

where

~d!Hq
n~QF

2 ![(
q

eq
2@~d!qA

n~QF
2 !~d!q̄B

n~QF
2 !1~A↔B!#,

~14!

Hg
n~QF

2 ![(
q

eq
2@gA

n~QF
2 !„qB

n~QF
2 !1q̄B

n~QF
2 !…

1~A↔B!#. ~15!

The dependence on the azimuth is given byF(f)51 and
dF(f)5cos2f. Integration overf thus isolates the unpo
larized part, andF(f) is then replaced by 2p. On the other
hand the integration@20#

S E
2p/4

p/4

2E
p/4

3p/4

1E
3p/4

5p/4

2E
5p/4

7p/4D df

extracts the polarized cross section, anddF(f) can then be
simply substituted by 4. In the following we will alway
assume appropriate integration over the azimuth.

The unpolarized NLOMS QCD coefficients int space
can be found, e.g., in Ref.@5#. Their Mellin moments are
a-

-

-

n

in
ed

ts

b-

Cq
DY,n~QF

2 !5CFS 4S1
2~n!2

4

n~n11!
S1~n!1

2

n2
1

2

~n11!2

281
4p2

3 D 1CFF 2

n~n11!
13

24S1~n!G lnS M2

QF
2 D , ~16!

Cg
DY,n~QF

2 !5TRS 22
n21n12

n~n11!~n12!
S1~n!

1
n4111n3122n2114n14

n2~n11!2~n12!2 D
1TR

n21n12

n~n11!~n12!
lnS M2

QF
2 D , ~17!

whereCF5 4
3 andTR5 1

2. The polarized ones can be found
Ref. @8#, and read

dCq
DY,n~QF

2 !5CFF4S1
2~n!112@S3~n!2z~3!#1

4

n~n11!

281
4p2

3 G1CF@324S1~n!# lnS M2

QF
2 D ,

~18!

dCg
DY,n~QF

2 !50. ~19!

In the above formulas we used the abbreviationSk(n)
5( j 51

n j 2k. Since there is no gluon transversity distributio
for the nucleon, the gluonic part of Eq.~13! drops out for the
polarized case. The indicesA and B in Eqs. ~14! and ~15!
take into account the possibility of having two different sc
tering hadrons, although onlypp collisions are planned a
the moment. Finally,QF and QR in Eqs. ~13!–~19! are the
factorization and renormalization scales, respectively,
which we will chooseQF5QR5M unless stated otherwise

Z0 production andgZ0-interference can be easily in
cluded by the substitution~see also Ref.@7#!

eq
2→eq

228eqVlVqk
M2~M22MZ

2!

~M22MZ
2!21GZ

2MZ
2

116~Vl
21Al

2!~Vq
26Aq

2!k2
M4

~M22MZ
2!21GZ

2MZ
2

,

~20!

where

k[
A2GFMZ

2

16paem
, Vf[Tf

322efsin2QW , Af[Tf
3 .

~21!
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The positive sign in front of theAq
2 term is appropriate for

the unpolarized cross section, the negative sign for the
larized one. As usual,GF denotes the Fermi constant,QW

the Weinberg angle (sin2QW50.224), andTf
3 the third com-

ponent of the weak isospin.
For examining the perturbative stability of our results, w

will also calculate the cross section at LO. In this case o
simply needs to set the QCD coefficients to zero in the ab
formulas, and to replace the NLO parton distributions
ones evolved in LO. As LO input distributions for Eq.~3!,
we will use the unpolarized LO parametrizations of Ref.@15#
@neglecting again the SU~2! breaking in the quark sea# and
the polarized ones of Ref.@16# at the LO input scaleQ0

2

50.23 GeV2.

IV. RESULTS

Figure 3 shows the transversely polarizedpp cross sec-
tion and the ‘‘maximal’’ double-spin asymmetryATT for
AS540 GeV, corresponding to the proposed@21# HERA-NW
fixed target experiment which would utilize the possib
forthcoming polarized 820-GeV proton beam at the DE
ep collider HERA on a transversely polarized target. W
show results at both LO and NLO. For illustration we ha
also included the expected statistical errors for a meas
ment ofATT by HERA-NW , which can be estimated from

dATT5
1

PBPTALse
, ~22!

wherePB and PT are the beam and target polarizations,
which we will usePB5PT50.7. L is the anticipated inte-
grated luminosity ofL5240 pb21, s the unpolarized cross
section integrated over bins ofM , ande the detection effi-
ciency for which we will take for simplicitye5100%. Note
that full 4p coverage of the detector is assumed. Figur
shows that the maximal asymmetry for HERA-NW is actually
fairly large, and would be accessible in that experiment.

In Fig. 4 we present results similar to Fig. 3, but now f
AS5150 GeV, corresponding to the RHIC collider. W

FIG. 3. NLO and LO maximal polarized Drell-Yan cross se

tions and asymmetries for HERA-NW . The error bars were calculate
according to Eq.~22!, and are based onL5240 pb21, 70% polar-
ization of the beam and target, and 100% detection efficiency.
o-

e
e

y

e-

r

3

note that the region 9 GeV&M&11 GeV will presumably
not be accessible experimentally, since it will be domina
by muon pairs from bottomonium decays. Again the p
dicted maximal asymmetry is of the order of a few perce
From the expected error bars calculated again for 70% b
polarization,L5240 pb21 and e5100%, one concludes
that asymmetries of this size should be also well measur
at RHIC.

Figure 5 shows similar results for the high-energy end
RHIC, AS5500 GeV, where the integrated luminosity
expected to beL5800 pb21. It turns out that the asymme
tries become smaller as compared to the lower energies
thanks to the higher luminosity the error bars become re
tively smaller as well, at least in the region 5 GeV&M
&25 GeV, where the errors are approximately1

10 of the
maximal asymmetry. One can also clearly see in Fig. 5
effect of Z exchange and theZ resonance.

We have already mentioned before that Soffer’s ineq
tion does not determine the sign ofdq(x,Q2), so that in
principle we have to check all different combinations in o
der to find the ‘‘true’’ maximal value forATT . It turns out,
e.g., that keeping a positive sign only forduv(x,Q2) leads to
a reduction ofuATTu at smallM , but to an enhancement at th
experimentally unaccessible region of largeM . We have
checked that for smallM the asymmetry takes its large
values if all signs are chosen to be positive, as was don
Eq. ~3! and in the above plots.

FIG. 4. As in Fig. 3, but for RHIC atAS5150 GeV assuming
L5240 pb21, 70% polarization of each beam, and 100% det
tion efficiency.

FIG. 5. As in Fig. 4, but for AS5500 GeV and L
5800 pb21.
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A comparison of the LO and NLO results in Figs. 3–
answers one key question concerning the transversely p
ized Drell-Yan process: Our predictions for the maximalATT
show good perturbative stability, i.e., the NLO corrections
the cross sections andATT are of moderate size, albeit no
negligible. There seems to be a general tendency tow
smaller corrections when the energy is increasing, wh
should be mainly due to the larger invariant masses pro
and to a resulting smalleras(M2).

Let us finally address some of the main uncertainties
our predictions for the maximal asymmetryATT . The first
issue is the scale dependence of the results. This is exam
in Fig. 6 for the caseAS5150 GeV. Here we plot the maxi
mal asymmetry in LO and NLO, varying the renormalizati
and factorization scales in the rangeM /2<QF5QR<2M .
One can see that already the LO asymmetry is fairly sta
with respect to scale changes, which is in accordance w
the finding of generally moderate NLO corrections. T
NLO asymmetry even shows a significant improvement,
that ATT becomes largely insensitive to the choice of sca

In order to obtain a rough idea about the uncertai
caused by our imperfect knowledge of the longitudinally p
larized parton densitiesDq(x,Q2) and Dg(x,Q2), we also
calculated the asymmetries using the NLO ‘‘valence’’ sc
nario input distributions of@16# instead of the ‘‘standard’’
ones in Eq.~3!. As can be seen in Fig. 7 for the caseAS
5150 GeV, the difference for experimentally significantM
turns out to be quite small, with the predictions based on
‘‘valence’’ scenario distributions having slightly smalle
asymmetries.

As we already mentioned in Sec. II, neither the ‘‘sta
dard’’ nor the ‘‘valence’’ scenario parametrizations take in
account a possible SU~2! breaking in the polarized sea be
cause only neutral current polarized DIS data are availab
the moment. This led us also to neglect any SU~2! breaking
in the transversity input densities for our calculations, j
keeping the dynamical SU~2! breaking produced by NLO
evolution ~cf. Fig. 2!. On the other hand, it seems rath
likely that a certain amount of SU~2! breaking — possibly

FIG. 6. Scale dependence of the LO and NLO asymmetrie
AS5150 GeV. The renormalization and factorization scales
Eqs.~13!–~15! were chosen to beQR5QF5M /2, M , and 2M . The
solid line is as in Fig. 4.
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much more than the one generated by evolution — could
realized in nature. One possible way of estimating the unc
tainty entering our predictions forATT through this source, is
to reintroduce the hitherto neglected amount of SU~2! break-
ing in the unpolarized input densities as fixed in the origin
input distributions of@15#. The SU~2! breaking will also in-
fluence the transversity input via Eq.~3!. The resulting asym-
metry is also depicted in Fig. 7. As can be seen, the effec
sizable only at rather largeM .

V. CONCLUSIONS

We have shown numerically that Soffer’s inequation
preserved by NLO QCD evolution, provided it is satisfied
the input distributions. For the first time, to our knowledg
we have presented a complete and consistent NLO calc
tion of the transverse double spin asymmetryATT for the
Drell-Yan process, employing the NLO corrections to t
hard subprocess cross sections as well as performing theQ2

evolutions in NLO. Here we have estimated the maxima
possibleATT in the framework of the radiative parton mod
by assuming that Soffer’s inequality is saturated at a l
hadronic scale. ForAS540 GeV the maximal value ofATT
for pp collisions was found to be approximately 4%, with a
expected statistical error for HERA-NW of about 1% at an
invariant mass ofM54 GeV. The situation for RHIC with
AS5150 GeV turned out to be rather similar. The prospe
of measuringATT somewhat improved when going toAS
5500 GeV where the maximal asymmetry is of the order
1% for smallM with an expected relative statistical error
approximately 1/10. We emphasize again, however, that
results only represent anupper boundon ATT , so that the
‘‘true’’ asymmetry may well be much smaller and even e
perimentally not measurable.

Comparing to corresponding LO calculations, we fou
that QCD corrections turn out to be moderate but no
negligible, putting our predictions on a firm basis. We ha
also examined the main uncertainties of our predictions, s
as the scale dependence of the asymmetry and our impe

FIG. 7. The NLO asymmetry atAS5150 GeV, using the ‘‘stan-
dard’’ and ‘‘valence’’ sets of Ref.@16# for theDq(x,Q0

2) in Eq. ~3!.
Also shown is the change caused by not neglecting the SU~2!
breaking in theq(x,Q0

2) of Ref. @15# ~see text!. The solid line is as
in Fig. 4.
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knowledge of the longitudinally polarized parton densities
be utilized for the saturation of Soffer’s inequality at th
input scale. We found that these uncertainties seem to h
rather little impact on our results in the regions hopefu
accessible in future experiments with transversely polari
protons.

Note added.After completing this work, we received Re
@22#, in which a mathematical proof of the preservation
Soffer’s inequality under NLOQ2 evolution is given.
tt
ve

d

f
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