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Proof of factorization for diffractive hard scattering

John C. Collins*
Penn State University, 104 Davey Lab, University Park, Pennsylvania 16802

~Received 14 October 1997; published 6 February 1998!

A proof is given that hard-scattering factorization is valid for deep-inelastic processes which are diffractive
or which have some other condition imposed on the final state in the target fragmentation region.
@S0556-2821~98!00507-4#
PACS number~s!: 13.85.Ni, 12.38.Aw, 13.60.2r
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I. INTRODUCTION

In this paper, I show how to prove hard-scattering fact
ization for diffractive deep-inelastic processes, and cer
related processes. This is an important topic because
known @1–4# that factorization fails for hard processes
diffractive hadron-hadron scattering1 ~such as the diffractive
Drell-Yan process!. Moreover, the violation of factorization
appears to be confirmed by experiment@6–9#. So we must
determine those diffractive processes, if any, for which f
torization is actually predicted by QCD.

The precise form of the factorization property that I pro
has been stated by Kunszt and Stirling@10#, and by Berera
and Soper@11,12#, as a full QCD generalization of th
Ingelman-Schlein model@13#, but shorn of the Regge hy
potheses. It is the same as factorization for inclusive h
processes, except that parton densities are replaced by
fractive parton densities. We can say that Ingelman-Sch
@13# factorization is hard-scattering factorization, such as
proved in the present paper, together with Regge factor
tion for the Pomeron exchange.

I will prove the theorem not only for diffractive deep
inelastic processes, but for any deep-inelastic process w
a requirement is imposed on the final state in the target f
mentation region. Any requirement that is fixed relative
the beam is allowed: e.g., that there be detected particle~s! of
particular kind~s! carrying some particular fraction of th
beam’s momentum and carrying some given transverse
mentum. Hence the proof applies to the fracture funct
formalism of Trentadue and Veneziano@14#, for deep-

*Electronic address: collins@phys.psu.edu.
1Note that this knowledge predates QCD. Within the context

pre-QCD parton-model ideas it was shown that there
factorization-breaking terms@1# in both the diffractive and nondif-
fractive parts of the Drell-Yan process, and that these terms ca
@2,3# in the inclusive cross section, which is the sum of the diffra
tive and nondiffractive parts. This result forms part of the proof
factorization for inclusive hard processes in QCD@5#.
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inelastic processes.2 Factorization for diffractive scattering i
a special case@15# of fracture function factorization.

Furthermore, it is possible to discuss any of the norm
hard scattering processes which are lepton induced: in a
tion to the deep-inelastic cross section itself, the proof
plies, for example, to the case where jets of large transv
momentum are detected and where particular particles in
‘‘current fragmentation region’’ are detected.

The proof in the present paper justifies, from fundamen
principles, the analysis@16,17# of diffractive deep-inelastic
processes in terms of parton densities in the Pomeron. N
that the only real use of the Pomeron in these analyses
a label for a particular power law for thexP dependence of
diffractive cross sections, with the exponent actually bein
free power. Indeed, the QCD analysis by H1@16#, which has
two phenomenological power laws, is also covered by
theorem proved in this paper. However, I will not at all a
dress the separate and important question of whetherRegge
factorization is also valid. Regge factorization relates,
example, the power ofxP measured in diffractive deep
inelastic scattering to the power ofs measured in hadron
hadron elastic scattering.

Berera and Soper@12# provided arguments that hard
scattering factorization should be true in diffractive lepto
induced processes, and the present paper completes
proof. The bulk of the proof follows the usual method
@5,18# for proving factorization, and, as pointed out by Be
era and Soper@12#, the only new element that is needed is
proper treatment of the soft-gluon cancellation for the p
cesses in question. The essential point of the present pap
to show that there exists a contour deformation that perm
the methods of Collins and Sterman@18# to be used.

II. FACTORIZATION, PARTON DENSITIES

In this section, I will review the factorization theorem th
is to be proved.

f
e

el
-
f

2Note that since factorization fails for diffractive hard processes
hadron-hadron scattering, it follows that the fracture function f
malism also fails in hadron-hadron scattering. The proof given
Trentadue and Veneziano does not treat the soft exchanges w
break factorization in hadron-hadron scattering.
3051 © 1998 The American Physical Society
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As stated above, the factorization theorem for diffract
hard processes has the same form as for inclusive proce
For example, for diffractive deep-inelastic scatteringe1p
→e81X1p8, we have3

F2
~D !~xbj ,Q,xP ,t !5(

i
C2i ^ f i

D1nonleading power ofQ.

~1!

Here, xbj and Q are the usual deep-inelastic variable
xP512q•p8/q•p is the fractional loss of longitudinal mo
mentum by the diffracted proton,4 and t5(p2p8)2 is the
invariant momentum transfer from the diffracted proto
while ^ signifies a convolution of the hard-scattering co
ficient C2i with the diffractive parton densityf i

D . The fac-
torization theorem applies whenQ is made large whilexbj ,
xP , andt are held fixed. It asserts not only that an expans
of the form of Eq.~1! is true, but also that

C2i is the samehard scattering coefficient as in ord
nary ~inclusive! deep-inelastic scattering~DIS!, with i
being a label for parton flavor~gluon,u-quark, etc.!.

The diffractive parton densitiesf i
D are those defined by

Berera and Soper@12#, as suitable ‘‘cut matrix ele-
ments’’ of the same operators that define ordinary p
ton densities.

They therefore obey exactly the same DGLAP evo
tion equations as ordinary parton densities.

Generalizations of the theorem that are covered by
proof in this paper are of two kinds:

The requirement that there be a diffracted protonp8 in
the final state may be replaced by any other requ
ment in the ‘‘target fragmentation region’’ that is fixe
relative to the initial hadron. For example,p8 may be a
neutron, or it may be replaced by a two-pion state
some invariant mass that has a fraction 12xP of the
longitudinal momentum ofp and that has some give
value of t. ~Longitudinal momentum must be inte
preted in the sense of the appropriate light-cone m
mentum, so that the definition of the parton densities
invariant under longitudinal boosts.!

Any other standard hard process may be conside
Then the coefficientC2i is replaced by the appropriat

3For the purposes of this paper, I defineF2
D to be the value ofF2

computed from those events containing a final-state protonp8 with
the specified kinematics. So the use of the word ‘‘diffractive’’
describe the process is not really correct. Our definition is the
used by the H1 experiment@16#, and it contrasts with the definition
used by the ZEUS experiment@17#, which subtracts the nondiffrac
tive contribution. Of course, given the ‘‘diffractive’’F2

D defined
here, one can extract the leading power at smallxP , which, at least
for our present purposes, is the definition of the truly diffract
part. Factorization for the completeF2

D , as defined here, implie
factorization for the purely diffractive part, with the diffractive pa
ton densitiesf i

D being replaced by their diffractive components.
4Of course, the proton may be replaced by any other hadro

state, e.g., a nucleus.
es.
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coefficient for the process, times fragmentation fun
tions if necessary. Thus the theorem applies to the l
gitudinal structure functionFL

D , and to differential
cross sections for jet production in the ‘‘current fra
mentation region.’’

The first generalization implies that the theorem applies
all xP away from zero, and not just to the diffractive regio
of smallxP . This justifies the analysis@16# given by H1, who
analyzedF2

D in terms of two powers ofxP , both a leading
diffractive power, and a nonleading power. It also justifi
the fracture function formalism of Trentadue and Venezia
@14#, but only for deep-inelastic processes. Note that Tren
due and Veneziano define their cross sections to be i
grated over the transverse momentum of the final-state h
ron p8. This complicates the formalism: Whereas t
diffractive parton densities without the integral over tran
verse momentum obey standard Dokshitzer-Gribov-Lipat
Altarelli-Parisi ~DGLAP! evolution equations, the corre
sponding equations for fracture functions in@14# are more
complicated, since the outgoing particlep8 may be at large
transverse momentum and thus be associated with the
scattering. The theorem proved here does not need the
gral over the transverse momentum ofp8.

III. PERTURBATIVE PROOF

As was explained by Berera and Soper@12#, the proof of
factorization for diffractive hard processes is the same as
inclusive hard processes@5#, except for the treatment of th
cancellation of soft exchanges.

A. Regions

The leading regions of Feynman graphs for amplitudes
diffractive deep-inelastic scattering may be represented a
Fig. 1, the analysis@19# being independent of the diffractiv
requirement. There is a subgraphA consisting of lines col-
linear to p and p8. One parton5 from A is incident on the
hard subgraphH, consisting of lines of virtuality of orderQ2

connected to the virtual photon. FromH are produced one o
more lines that go into jet subgraphs,J1 ,... . There may be

e

ic 5Plus arbitrarily many gluons with scalar polarizations@20#, if we
are in a covariant gauge. These gluons are a gauge artifact.

FIG. 1. Leading regions for diffractive DIS.
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57 3053PROOF OF FACTORIZATION FOR DIFFRACTIVE HARD . . .
a soft subgraphS ~not necessarily connected! consisting of
low momentum lines~in the Breit frame!; it is joined by
gluon lines to the ‘‘jet subgraphs’’A and Ji . Some lines
from S may go into the final state.

It is important that it is only necessary to consider regio
where the contours of the integrations over loop mome
are trapped. To define a unique contribution from each
gion of the form of Fig. 1, subtractions should be devised
avoid double counting from the different regions that co
tribute for a single graph. This issue is the same as for n
diffractive scattering, so we do not need to treat it here.

To analyze the process quantitatively, we use light-co
coordinates6 in the Breit frame so that

qm5S 2
Q

&

,
Q

&

,0TD ,

pm5S Q

xbj&
,

m2xbj

Q&
,0TD , ~2!

p8m5S ~12xP!Q

xbj&
,

~m21pT
2!xbj

Q&~12xP!
,pTD .

B. Single soft gluon attaching to jet

By definition a soft momentumkm is one all of whose
components are much less thanQ in the Breit frame:
ukmu!Q.

As a first example, which is readily generalized, let t
hard scattering be the Born graph and let a soft gluon
momentumkm attach to the outgoing quark~Fig. 2!. We will
show that after a suitable approximation in the jet subgra
a Ward identity can be applied to factor out the soft atta
ment. The relevant factor in the jet subgraph is

Jm~ l ,k!5
1

~ l 2k!22m21 i e
Gm, ~3!

where m is the quark mass, andGm is the vertex which
couples the gluon to the jet subgraph, together with the
tached numerator factors. The jet momentuml m is
(0,Q/&,0T), plus terms that are smaller by a power ofQ.
The largest component ofGm is G2 ~by a power ofQ!, so it
is a good approximation to replaceGm by G2nJ

m , where
(nJ

1 ,nJ
2 ,nTJ)5(0,1,0T).

Suppose first that all components ofkm are comparable in
size. Then it is a good approximation to repla

6Vm5(V1,V2,VT), whereV65(V06Vz)/&.

FIG. 2. Soft gluon attaching to jet.
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( l 2k)22m21 i e by l 22m222l 2k11 i e, that is, to replace
km by its 1 component everywhere inJ. Thus

Jm~ l ,k!5J2
„l ,~k1,0,0T!…nJ

m1power correction

5k1J2
„l ,~k1,0,0T!…

nJ
m

k1 1power correction.

~4!

The k1J2 factor is of a form to which a Ward identity ca
be applied: a Green function of the gluon field contrac
with the gluon’s momentum. If Eq.~4! is correct, then we
can apply the argument used by Collins and Sterman in
proof of factorization for inclusivee1e2 annihilation @18#,
and factorization would be true for our process also.

To derive Eq.~4!, we assumed that all components ofkm

are comparable, so that the largest term ink222J•k is
22J2k1. The argument fails ifk1 is too small compared to
the other components ofk. Exactly the same problem had t
be overcome in the proofs of factorization for inclusiv
e1e2 annihilation @18# and for the Drell-Yan cross sectio
@5#, etc.

Now, in the dangerous regionuk1k2u!kT
2 ,7 so that the

only nearby pole ink1 is the explicit pole in Eq.~3!. We
may therefore deform thek1 integration contour away from
the pole and out of the dangerous region. This is exactly
same argument used fore1e2 annihilation by Collins and
Sterman@18#. We must interpret thenJ

m/k1 factor in Eq.~4!
asnJ

m/(k12 i e), so that the pole atk150 does not interfere
with the contour deformation.

The soft approximation Eq.~4! therefore applies over the
whole of the soft region fork, on the deformed contour.

Exactly the same contour deformation and the same
proximation can be applied to all attachments of the s
gluon to a final-state jet subgraph, Fig. 3. The reason is
@18#, just as ine1e2 annihilation, all interactions of sof
gluons with the jet are in the final state relative to the ha
scattering. Because the direction of the contour deforma
is the same in all cases, Ward identities8 can be applied con-

7This region was called the Coulomb region in@18#. Note that if
k1 is smaller than the other components ofk but uk1k2u is com-
parable withkT

2 , thenuk2/k1u@1, so thatk is collinear toJ rather
than being in the soft region, which is our present concern.

8To implement the Ward identities correctly, account must
taken of graphs where the hard scattering is coupled to the jet
graphJ by extra gluons of scalar polarization as well as the exp
itly written quark line. This part of the argument is identical to th
same part of the argument for inclusive scattering, and so we do
need to go into the details.

FIG. 3. Soft gluon attaching anywhere to jet subgraph.
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3054 57JOHN C. COLLINS
sistently to factor the soft gluon out of the jet subgraph. T
result is shown in Fig. 4, where the double line represents
eikonalized quark propagator, 1/(k12 i e).

C. General soft gluon attachments to jet subgraphs

The argument in the previous section, III B immediate
generalizes, exactly as in the proof@18# of factorization for
inclusive e1e2 annihilation, to any attachments of the so
subgraph to any of the final-state jets subgraphs in Fig
Provided that we can also apply the argument to soft-gl
attachments to theA subgraph, a sum over real and virtu
emission of soft gluons can be used, just as ine1e2 annihi-
lation, to cancel the complete soft gluon factors. The can
lation only concerns a kinematic region unaffected by
diffractive requirement on the final state.

As explained out by Berera and Soper@12#, the desired
factorization theorem immediately follows.

D. Single soft attachment toA

However, we cannot apply the same argument to the
tachment of a soft gluon to theA subgraph, since this sub
graph contains both initial- and final-state interactions. T
graph of a typical leading region, Fig. 1 illustrates this. W
have labeled one of the soft gluons attaching toA by its
momentumr . The appropriate soft approximation is

Am~r ,p, . . . !5r 2A1
„~0,r 2,0T!,p, . . . …

nA
m

r 2

1power correction, ~5!

wherenA
m5(1,0,0T). This approximation is valid only ifr 2

is not too small. The obvious generalization of the argum
in Sec. III B would have us deformr 2 away from the poles
of denominators inA to avoid the region where the approx
mation fails. Precisely becauseA contains both initial- and
final-state interactions, there are nearby poles in both
upper and lower half-planes, and we cannot deform ther 2

contour to where the soft approximation is valid.
Instead, we appeal to a deformation of the other long

dinal momentum componentr 1. The simplest case is th
exchange of a single soft gluon, Fig. 5. We already kn
that to obtain the soft approximation where this gluon
taches to thefinal-statejet subgraph, we must deform ther 1

contour away from the~final-state! poles in the jet subgraph
The limits to this deformation are when the contour reac
the pole in the putative soft gluon propagator atr 15r T

2/2r 2

or one of the poles in theA subgraph atr 1;Q: Fig. 6. In
either case the contour is deformed to a region wh

FIG. 4. Result of summing over all graphs of the form of Fig.
e
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ur 1u@ur 2u, which is not part of the soft region. This is su
ficient to show that there is no pinch in the soft region
small r 2. Hence we can use the soft approximation at b
the A andJ ends of the soft gluon.

Notice that it is not necessary to specify the sign of ani e
for the 1/r 2 factor in Eq.~5!. Once subtractions are made
define the soft factor unambiguously, to remove the collin
contributions, our proof implies that the soft factor is zero
r 250, and thus the 1/r 2 pole is cancelled.

E. General soft attachment toA

For the most general case of soft gluons attaching to
subgraphA, we refer back to Fig. 1. To get the desired res
we must show that ifr 2 is very small, then we can deform
the r 1 contour to another region. This is a bit tricky, sinc
the deformation may be restricted by poles in other parts
the soft subgraph, and these give restrictions that are m
severe than those imposed by the poles in the jet subgra

The first point to notice is that by hypothesis we start in
part of the soft region wherer T@r 2, the part where Eq.~5!
fails. This implies that the pole of the propagator for the li
r does not restrict the deformation.

Moreover, ther 1 contour isnot trapped by theA sub-
graph. So any pinch would arise from a pinch by other s
lines or by jet lines. It would occur only in a situation lik
Fig. 7, where we suppose that the linesl 11r and l 22r both
have positive2 components of momenta. Moreover,l 1

1 and
l 2

1 must not be much larger thanr 1 and l 1
2 and l 2

2 must not
be so small that the lines are in the Coulomb region.

But if we do have such a pinch, then we can reroute
momentum as in Fig. 8, unless the left-hand linel 11 l 2 is an
external momentum.

So we now have a prescription for avoiding a pinch, if
is possible at all. This is to start at the top end of the liner ,
and to router back against the flow of2 momentum, as in
Fig. 8. If by this procedure we do not arrive at the botto
end of the liner , then we arrive at one of the two incomin
lines, either the proton or the virtual photon. In either ca

FIG. 5. Soft gluon exchange between proton subgraph and
subgraph.

FIG. 6. Contour deformation for gluon momentumr 1 in Fig. 5.
The poles are labeled by A, S or J according to the subgraph
causes them.
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57 3055PROOF OF FACTORIZATION FOR DIFFRACTIVE HARD . . .
we can finish the construction of the route forr by taking it
on lines in theA subgraph. Since by definition these ha
large 1 momenta, whiler 1 is small, none of these line
contribute to a possible pinch ofr 1.

This completes the proof that the contour of integrat
over loop momenta is not trapped in a region where the
approximation Eq.~5! fails for the attachment of a soft gluo
to theA subgraph.

IV. NONPERTURBATIVE FINAL-STATE INTERACTIONS

The above proof of factorization relies strictly on th
power counting obtained in perturbation theory. We n
show that nonperturbative soft effects do not affect the pro
at least in the context of normal models, such as those
propriate to the soft Pomeron physics treated in Refs.@2,3#
for the case of the Drell-Yan process.

One of the key points that enabled us to use the
approximation, Eq.~4!, was that in finite order perturbatio
theory the only soft subgraphs that give a leading power
those which attach to the collinear subgraphs purely by gl
lines. Any such soft gluon joins two vertices with momen
of very different rapidities, so that the vertexGm in Eq. ~4!
can be replaced byG2nJ

m .
We know that there must be nonperturbative final-st

interactions that perform hadronization, and that these in
actions give a distribution of particles with several per u
rapidity. These interactions can be represented by graphs
Fig. 1 except that the soft attachments to the jets are
purely gluons joining vertices of very different rapidities.
a perturbative model of this situation, to get a contributi
that does not fall off as a power ofQ, the rapidities carried
by lines in the graph must cover the whole range from
rapidity of A to the rapidity ofJ, without large gaps. This
implies that the order of the graph must be at least of or
the available rapidity range, i.e., the order of the relev

FIG. 7. A situation giving a pinch ofr 1.

FIG. 8. Reroutingr in this way avoids the pinch given by Fig. 7
ft

f,
p-

ft

re
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e
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ot

e

r
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graphs increases at least as fast as lnQ at largeQ.
Luckily, the second part of the argument leading to t

soft approximation still applies, that is, the contour deform
tion. In general, when the momentum transfersm across the
subgraphS is associated the nonperturbative hadronizat
interactions, we expectsm to have components of orde
(L/Q2,L/Q2,L). Once we deforms1 to values of orderL
or bigger, as is the result of our argument, the jet lines
which sm flows become off-shell by orderLQ. We now
have a perturbative region where we can use the u
power-counting rules.

This argument is very similar to arguments used bef
the advent of QCD to prove that parton model formulas
valid. See, for example, Refs.@2,3,21#. In those arguments i
was assumed that the result of contour deformations suc
we perform is that the contours can be taken to infinity w
a zero result—the assumption of soft behavior of vertices
QCD we cannot take the contours to infinity, but instead
take the contours from the original region to one that we c
treat either purely perturbatively or with the aid of Wa
identities.

V. CONCLUSIONS

We have proved the factorization theorem for the gene
class of diffractive deep-inelastic processes, and genera
tions including those to which the fracture function forma
ism of Trentadue and Veneziano@14# applies. The proof in-
cludes a treatment of nonperturbative effects at the leve
Refs.@2,3,21#.

Given the results of Refs.@2,3# on the Drell-Yan process
we must not expect the theorem to be applicable to had
hadron collisions. Absorptive corrections should reduce d
fractive hard-scattering cross sections below the expectat
given by the factorization formula on the basis of dee
inelastic data. Furthermore, the ‘‘coherent Pomeron mec
nism’’ of @4,11,22# may exist. It is only when one of the
initiating particles is a lepton that the proof of factorization
valid.

The proof would appear to apply also todirect photopro-
duction of jets, etc., because the initiating particle of the h
scattering is a lepton. However, the proof does not apply
resolvedphotoproduction processes, since these are in ef
hadron-hadron processes. The lack of an absolutely un
biguous separation between direct and resolved photo
duction will presumably limit the accuracy of the applicatio
of the factorization formula to direct diffractive photopro
duction.

Note added.After completion of this paper, a paper b
Grazzini, Trentadue, and Veneziano@23# appeared, in which
the concept of an ‘‘extended fracture function’’ is define
with the aid of the cut-vertex formalism of Mueller@24#.
Extended fracture functions are exactly the same as the
fractive parton densities I define in this paper; they are fr
ture functions without the integral over the transverse m
mentum of the detected final-state hadron. Grazziniet al.
give a brief proof of factorization in the case of (f3)6 theory.
This theory is simpler than QCD since soft exchanges
power suppressed. Given this fact, the proofs and result
the paper of Grazziniet al. are completely compatible with
those in the present paper.
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