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Proof of factorization for diffractive hard scattering
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A proof is given that hard-scattering factorization is valid for deep-inelastic processes which are diffractive
or which have some other condition imposed on the final state in the target fragmentation region.
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[. INTRODUCTION inelastic processéskactorization for diffractive scattering is
a special casfl5] of fracture function factorization.
. , Furthermore, it is possible to discuss any of the normal
, l_n this paper, I §how hOW, to prove hard-scattering faCtor,'hard scattering processes which are lepton induced: in addi-
ization for diffractive deep-inelastic processes, and certaifion o the deep-inelastic cross section itself, the proof ap-
related processes. This is an important topic because it I§jies, for example, to the case where jets of large transverse
known [1-4] that factorization fails for hard processes in mementum are detected and where particular particles in the
diffractive hadron-hadron scatterth¢such as the diffractive “current fragmentation region” are detected.
Drell-Yan process Moreover, the violation of factorization The proof in the present paper justifies, from fundamental
appears to be confirmed by experim¢6t-9). So we must  principles, the analysif16,17 of diffractive deep-inelastic
determine those diffractive processes, if any, for which facprocesses in terms of parton densities in the Pomeron. Note
torization is actually predicted by QCD. that the only real use of the Pomeron in these analyses is as
The precise form of the factorization property that | provea label for a particular power law for thg, dependence of
has been stated by Kunszt and Stirlifi@], and by Berera diffractive cross sections, with the exponent actually being a
and Soper[11,12, as a full QCD generalization of the free power. Indeed, the QCD analysis by HB], which has
Ingelman-Schlein moddl13], but shorn of the Regge hy- two phenomenological power laws, is also covered by the
potheses. It is the same as factorization for inclusive hargheorem proved in this paper. However, | will not at all ad-
processes, except that parton densities are replaced by dffress the separate and important question of whéegge
fractive parton densities. We can say that Ingelman-Schleiffctorization is also valid. Regge factorization relates, for
[13] factorization is hard-scattering factorization, such as i£x@mple, the power ok, measured in diffractive deep-
proved in the present paper, together with Regge factorizdnelastic scattering to the power sfmeasured in hadron-

tion for the Pomeron exchange. hadron elastic scattering. _ hat h
| will prove the theorem not only for diffractive deep- Berera and Sopef12] provided arguments that hard-

inelastic processes, but for any deep-inelastic process Wheﬁie\';ljt:e;:jng Isgteosnszeastlognsdhciﬁf bfetsr:r(?t 'ns'férraitgﬁ Ilzgé?sn:[he
a requirement is imposed on the final state in the target fragﬁroof Thr()e bulk of'the proof ?ollows tﬁepusual mpethods

mentation region. Any requirement that is fixed relative to[5 18] for proving factorization, and, as pointed out by Ber-

the peam IS allowed: €.g., that there pe detected_ pagiae era and Sopdrl2], the only new element that is needed is a
particular kinds) carrying some particular fraction of the roper treatment of the soft-gluon cancellation for the pro-

beam’s momentum and carrying some given transverse Mssqes in question. The essential point of the present paper is
mentum. Hence the proof applies to the fracture functiong ghow that there exists a contour deformation that permits

II. FACTORIZATION, PARTON DENSITIES

In this section, | will review the factorization theorem that

*Electronic address: collins@phys.psu.edu. is to be proved.

Note that this knowledge predates QCD. Within the context of
pre-QCD parton-model ideas it was shown that there are
factorization-breaking termidl] in both the diffractive and nondif- Note that since factorization fails for diffractive hard processes in
fractive parts of the Drell-Yan process, and that these terms cancéladron-hadron scattering, it follows that the fracture function for-
[2,3] in the inclusive cross section, which is the sum of the diffrac-malism also fails in hadron-hadron scattering. The proof given by
tive and nondiffractive parts. This result forms part of the proof of Trentadue and Veneziano does not treat the soft exchanges which
factorization for inclusive hard processes in Q). break factorization in hadron-hadron scattering.
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As stated above, the factorization theorem for diffractive
hard processes has the same form as for inclusive processes.
For example, for diffractive deep-inelastic scatteria p
—e'+X+p’, we havé

FP) (x4,Q.%p, 1) =2, C®fP+nonleading power ofQ.
I
D

Here, x,; and Q are the usual deep-inelastic variables,
xp=1—q-p’'/q-p is the fractional loss of longitudinal mo-
mentum by the diffracted protdhand t=(p—p’)? is the
invariant momentum transfer from the diffracted proton,

while ® signifies a convolution of the hard-scattering coef- FIG. 1. Leading regions for diffractive DIS.

ficient C,; with the diffractive parton densityiD. The fac-

torization theorem applies whe@ is made large whilex;, coefficient for the process, times fragmentation func-
Xp, andt are held fixed. It asserts not only that an expansion tions if necessary. Thus the theorem applies to the lon-
of the form of Eq.(1) is true, but also that gitudinal structure functionF?, and to differential

cross sections for jet production in the “current frag-

C,; is the samehard scattering coefficient as in ordi- mentation region.”

nary (inclusive deep-inelastic scatterindIS), with i

being a label for parton flavaigluon, u-quark, etc). The first generalization implies that the theorem applies at
The diffractive parton densitie’ are those defined by all x, away from zero, and not just to the diffractive region
Berera and Sopef12], as suitable “cut matrix ele- Of smallx;. This justifies the analys[€6] given by H1, who
ments” of the same operators that define ordinary paranalyzedFE in terms of two powers ok, both a leading

ton densities. diffractive power, and a nonleading power. It also justifies
They therefore obey exactly the same DGLAP evolu-the fracture function formalism of Trentadue and Veneziano
tion equations as ordinary parton densities. [14], but only for deep-inelastic processes. Note that Trenta-

due and Veneziano define their cross sections to be inte-
Generalizations of the theorem that are covered by th@rated over the transverse momentum of the final-state had-
proof in this paper are of two kinds: ron p’. This complicates the formalism: Whereas the
diffractive parton densities without the integral over trans-
The requirement that there be a diffracted propérin - verse momentum obey standard Dokshitzer-Gribov-Lipatov-
the final state may be replaced by any other requireAltarelli-Parisi (DGLAP) evolution equations, the corre-
ment in the “target fragmentation region” that is fixed sponding equations for fracture functions[it4] are more
relative to the initial hadron. For examplg, may be a  complicated, since the outgoing partig$ may be at large
neutron, or it may be replaced by a two-pion state oftransverse momentum and thus be associated with the hard
some invariant mass that has a fraction X, of the  scattering. The theorem proved here does not need the inte-
longitudinal momentum op and that has some given gral over the transverse momentumot
value of t. (Longitudinal momentum must be inter-
preted in the sense of the appropriate light-cone mo-
mentum, so that the definition of the parton densities is
invariant under longitudinal boos}s. As was explained by Berera and Sop&?], the proof of

Any other standard hard process may be consideredactorization for diffractive hard processes is the same as for

Then the coefficienC.,; is replaced by the appropriate inclusive hard process¢Ss], except for the treatment of the
cancellation of soft exchanges.

Ill. PERTURBATIVE PROOF

3For the purposes of this paper, | defiﬁ@ to be the value oF, A. Regions

computed from those events containing a final-state prptowith The leading regions of Feynman graphs for amplitudes for
the specified kinematics. So the use of the word “diffractive” to diffractive deep-inelastic scattering may be represented as in
describe the process is not really correct. Our definition is the Ongig. 1, the analysi§19] being independent of the diffractive
used by the H1 experimefi6], and it contrasts with the definition requirement. There is a subgraphconsisting of lines col-
used by the ZEUS experimefit7], which subtracts the nondiffrac-  |inear to p andp’. One parton from A is incident on the

tive contribution. Of course, given the “diffractive’F? defined hard subgraph, consisting of lines of virtuality of Ord@z

here, one can extract the leading power at smallwhich, atleast -1 tad 10 the virtual photon. Fradfhare produced one or

for our present purposes, is the definition of the truly diffractive . . .
part. Factorization for the completézD, as defined here, implies more lines that go into jet subgrapti,,... . There may be

factorization for the purely diffractive part, with the diffractive par-
ton densities‘P being replaced by their diffractive components.

40f course, the proton may be replaced by any other hadronic 5Plus arbitrarily many gluons with scalar polarizatid@), if we
state, e.g., a nucleus. are in a covariant gauge. These gluons are a gauge artifact.
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FIG. 2. Soft gluon attaching to jet.

FIG. 3. Soft gluon attaching anywhere to jet subgraph.

a soft subgraplts (not necessarily connectedonsisting of

low momentum lines(in the Breit frameg; it is joined by

gluon lines to the “jet subgraphs”A and J;. Some lines
from S may go into the final state.

It is important that it is only necessary to consider regions
where the contours of the integrations over loop momenta
are trapped. To define a unique contribution from each re-
gion of the form of Fig. 1, subtractions should be devised to
avoid double counting from the different regions that con-
tribute for a singl h. This i [ - @)

gle graph. This issue is the same as for non

diffractive scattering, so we do not need to treat it here.  Thek*J~ factor is of a form to which a Ward identity can
To analyze the process quantitatively, we use light-conge applied: a Green function of the gluon field contracted

(I-k)2—m?+ie by 1?>—m?—2l k" +ie, that is, to replace
k# by its + component everywhere ih Thus

J4(1,k)=J3"(,(k™,0,0r))n% + power correction

"
ng )
-+ power correction.

=k*J37(,(k",007)) Vil

coordinate$in the Breit frame so that
Q Q
( ‘/i 1 ‘/i yOT) 1
Q mZij
ijx/f, Q\/z ,
p’l-": (

B. Single soft gluon attaching to jet

"—

q

Or )
)

By definition a soft momentunk* is one all of whose
components are much less th& in the Breit frame:
k#[<Q.

p,”'

(1-xp)Q  (M?+pH)xy;
XpvV2 ,Q‘/Q(l_X\P),

As a first example, which is readily generalized, let the
hard scattering be the Born graph and let a soft gluon o

momentunk* attach to the outgoing quarkig. 2). We will

show that after a suitable approximation in the jet subgraph,

a Ward identity can be applied to factor out the soft attach
ment. The relevant factor in the jet subgraph is

J#(1,k)= mw, ()

where m is the quark mass, anb* is the vertex which

with the gluon’s momentum. If Eq4) is correct, then we
can apply the argument used by Collins and Sterman in the
proof of factorization for inclusivee*e™ annihilation[18],

and factorization would be true for our process also.

To derive Eq.(4), we assumed that all componentskdf
are comparable, so that the largest termkin-2J-k is
—2J7k*. The argument fails ik* is too small compared to
the other components & Exactly the same problem had to
be overcome in the proofs of factorization for inclusive
ete” annihilation[18] and for the Drell-Yan cross section
[5], etc.

Now, in the dangerous regiofk "k~ |<k3,” so that the
only nearby pole irk* is the explicit pole in Eq(3). We
may therefore deform thie* integration contour away from
the pole and out of the dangerous region. This is exactly the
same argument used fe e~ annihilation by Collins and
Sterman18]. We must interpret the4/k* factor in Eq.(4)
asn4/(k" —ie), so that the pole & =0 does not interfere
¥vith the contour deformation.

The soft approximation Ed4) therefore applies over the
hole of the soft region fok, on the deformed contour.

Exactly the same contour deformation and the same ap-
proximation can be applied to all attachments of the soft
gluon to a final-state jet subgraph, Fig. 3. The reason is that
[18], just as ine*e” annihilation, all interactions of soft
gluons with the jet are in the final state relative to the hard
scattering. Because the direction of the contour deformation
is the same in all cases, Ward identifiean be applied con-

W

couples the gluon to the jet subgraph, together with the at-—__

tached numerator factors. The jet momentuti is
(0,Q/v2,05), plus terms that are smaller by a power@f
The largest component & is I'~ (by a power ofQ), so it
is a good approximation to repladé* by I' 'n§, where
(ny ,ny ,ngy)=(0,10r).

Suppose first that all componentsldf are comparable in
size. Then it is a good approximation to

Bye=(V* V™, Vq), whereV== (V= V?)/v2.

replace

"This region was called the Coulomb region[it8]. Note that if
k* is smaller than the other componentskobut |k*k ™| is com-
parable withk? , then|k~/k*|>1, so thatk is collinear toJ rather
than being in the soft region, which is our present concern.

8To implement the Ward identities correctly, account must be
taken of graphs where the hard scattering is coupled to the jet sub-
graphJ by extra gluons of scalar polarization as well as the explic-
itly written quark line. This part of the argument is identical to the
same part of the argument for inclusive scattering, and so we do not
need to go into the details.
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FIG. 4. Result of summing over all graphs of the form of Fig. 3. .
FIG. 5. Soft gluon exchange between proton subgraph and jet

sistently to factor the soft gluon out of the jet subgraph. TheSUbgraph'

result is shown in Fig. 4, where the double line represents a

s e _ : _ _
eikonalized quark propagator, Kfi—ie). Pr |>|r~|, which is not part of the soft region. This is suf

ficient to show that there is no pinch in the soft region at
_ smallr ~. Hence we can use the soft approximation at both
C. General soft gluon attachments to jet subgraphs the A andJ ends of the soft gluon.

The argument in the previous section, Ill B immediately ~ Notice that it is not necessary to specify the sign of an
generalizes, exactly as in the prdd] of factorization for ~ for the 1f~ factor in Eq.(5). Once subtractions are made to
inclusive e™e™ annihilation, to any attachments of the soft define the soft factor unambiguously, to remove the collinear
subgraph to any of the final-state jets subgraphs in Fig. 1contributions, our proof implies that the soft factor is zero at
Provided that we can also apply the argument to soft-gluofi~ =0, and thus the i/" pole is cancelled.
attachments to thé subgraph, a sum over real and virtual
emission of soft gluons can be used, just asfi®e~ annihi- E. General soft attachment toA
lation, to cancel the complete soft gluon factors. The cancel- For th | £ soft al hi h
lation only concerns a kinematic region unaffected by the or the most genera case 0 soft gluons attac_ ing to the
diffractive requirement on the final state. subgraph, we refer_bialc_k to Fig. 1. To get the desired result

As explained out by Berera and Sogd2], the desired we nlust show that if  is very small,_ th_en we can defo_rm
factorization theorem immediately follows. ther contOL_lr to another region. This is a t_)lt tricky, since

the deformation may be restricted by poles in other parts of
the soft subgraph, and these give restrictions that are more
severe than those imposed by the poles in the jet subgraphs.

However, we cannot apply the same argument to the at- The first point to notice is that by hypothesis we start in a
tachment of a soft gluon to th& subgraph, since this sub- part of the soft region whene;>r~, the part where Eq5)
graph contains both initial- and final-state interactions. Thefails. This implies that the pole of the propagator for the line
graph of a typical leading region, Fig. 1 illustrates this. Wer does not restrict the deformation.

D. Single soft attachment toA

have labeled one of the soft gluons attachingAtday its Moreover, ther ™ contour isnot trapped by theA sub-
momentumr. The appropriate soft approximation is graph. So any pinch would arise from a pinch by other soft
lines or by jet lines. It would occur only in a situation like
NA Fig. 7, where we suppose that the lings-r andl,—r both

iz =r At - A
AP, )= A0 ,00)0p, ) r- have positive— components of momenta. Moreovéf, and

|3 must not be much larger thari andl; andl, must not
be so small that the lines are in the Coulomb region.

But if we do have such a pinch, then we can reroute the
momentum as in Fig. 8, unless the left-hand lipe I, is an
External momentum.

So we now have a prescription for avoiding a pinch, if it
is possible at all. This is to start at the top end of the line
and to router back against the flow of~ momentum, as in
ﬁig. 8. If by this procedure we do not arrive at the bottom

+power correction, (5)

whereni=(1,00y). This approximation is valid only if ~

is not too small. The obvious generalization of the argumen
in Sec. Il B would have us deform™ away from the poles
of denominators irA to avoid the region where the approxi-
mation fails. Precisely becauge contains both initial- and
final-state interactions, there are nearby poles in both th
upper and lower half-planes, and we cannot deformrthe o4 of the Jiner, then we arrive at one of the two incoming

contour to where the soft apprOX|m§t|on is valid. .. lines, either the proton or the virtual photon. In either case
Instead, we appeal to a deformation of the other longitu-

dinal momentum componenmt”. The simplest case is the J

exchange of a single soft gluon, Fig. 5. We already know X X X %
that to obtain the soft approximation where this gluon at- X X
taches to thdinal-statejet subgraph, we must deform thé S&A S&A

contour away from théfinal-state poles in the jet subgraph.
The limits to this deformation are when the contour reaches

the pole in the putative soft gluon propagator &t=r%/2r - FIG. 6. Contour deformation for gluon momenturh in Fig. 5.

or one of the poles in thé subgraph at *~Q: Fig. 6. In The poles are labeled by A, S or J according to the subgraph that
either case the contour is deformed to a region whereauses them.
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graphs increases at least as fast a® kat largeQ.

Luckily, the second part of the argument leading to the
soft approximation still applies, that is, the contour deforma-
tion. In general, when the momentum trans$éracross the
subgraphS is associated the nonperturbative hadronization

|

(> interactions, we expec$” to have components of order
rAS (A/Q? A/Q? A). Once we deforns™ to values of order
E or bigger, as is the result of our argument, the jet lines in
C \r/]vhich st flowsbbecome off—shill by ordeAQ. We now
ave a perturbative region where we can use the usual
FIG. 7. A situation giving a pinch of . power-counting rules.

This argument is very similar to arguments used before
the advent of QCD to prove that parton model formulas are
valid. See, for example, Ref2,3,21]. In those arguments it
was assumed that the result of contour deformations such as
contribute to a possible pinch of . we perform is that the contours can be taken to infinity with

This completes the proof that the contour of integrationa zero result—the assumption of soft behavior of vertices. In

over loop momenta is not trapped in a region where the Sof@CD we cannot take the contours to infinity, but instead we

N . take the contours from the original region to one that we can
i)ptpr:g),:rgittl)%?aiﬂ@ fails for the attachment of a soft gluon treat either purely perturbatively or with the aid of Ward

identities.

we can finish the construction of the route foby taking it
on lines in theA subgraph. Since by definition these have
large + momenta, whiler* is small, none of these lines

IV. NONPERTURBATIVE FINAL-STATE INTERACTIONS

L . . V. CONCLUSIONS
The above proof of factorization relies strictly on the

power counting obtained in perturbation theory. We now We have proved the factorization theorem for the general
show that nonperturbative soft effects do not affect the proof¢class of diffractive deep-inelastic processes, and generaliza-
at least in the context of normal models, such as those agions including those to which the fracture function formal-
propriate to the soft Pomeron physics treated in Rgfs3] ism of Trentadue and Veneziand4] applies. The proof in-
for the case of the Drell-Yan process. cludes a treatment of nonperturbative effects at the level of
One of the key points that enabled us to use the sofRefs.[2,3,21].
approximation, Eq(4), was that in finite order perturbation Given the results of Ref$2,3] on the Drell-Yan process,
theory the only soft subgraphs that give a leading power ar&ve must not expect the theorem to be applicable to hadron-
those which attach to the collinear subgraphs purely by gluohadron collisions. Absorptive corrections should reduce dif-
lines. Any such soft gluon joins two vertices with momentafractive hard-scattering cross sections below the expectations
of very different rapidities, so that the verté¥* in Eq. (4) given by the factorization formula on the basis of deep-
can be replaced by n% . inelastic data. Furthermore, the “coherent Pomeron mecha-
We know that there must be nonperturbative final-statélism” of [4,11,23 may exist. It is only when one of the
interactions that perform hadronization, and that these intefinitiating particles is a lepton that the proof of factorization is
actions give a distribution of particles with several per unitvalid.
rapidity. These interactions can be represented by graphs like The proof would appear to apply also d@ect photopro-
Fig. 1 except that the soft attachments to the jets are ndluction of jets, etc., because the initiating particle of the hard
purely gluons joining vertices of very different rapidities. In scattering is a lepton. However, the proof does not apply to
a perturbative model of this situation, to get a contributionresolvedphotoproduction processes, since these are in effect
that does not fall off as a power @, the rapidities carried hadron-hadron processes. The lack of an absolutely unam-
by lines in the graph must cover the whole range from thediguous separation between direct and resolved photopro-
rapidity of A to the rapidity ofJ, without large gaps. This duction will presumably limit the accuracy of the application
implies that the order of the graph must be at least of orde@f the factorization formula to direct diffractive photopro-

the available rapidity range, i.e., the order of the relevanfluction.
Note addedAfter completion of this paper, a paper by
Grazzini, Trentadue, and Veneziaf8] appeared, in which
1l the concept of an “extended fracture function” is defined,
with the aid of the cut-vertex formalism of Muell¢4].
Extended fracture functions are exactly the same as the dif-
oo fractive parton densities | define in this paper; they are frac-
C:, ture functions without the integral over the transverse mo-
Li+1-r = mentum of the detected final-state hadron. Grazeinal.
r % give a brief proof of factorization in the case ap{) 4 theory.
b This theory is simpler than QCD since soft exchanges are
L power suppressed. Given this fact, the proofs and results in
the paper of Grazzinét al. are completely compatible with
FIG. 8. Rerouting in this way avoids the pinch given by Fig. 7. those in the present paper.
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