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Analysis of two-body nonleptonicB decays involving light mesons in the standard model

A. Ali and C. Greub
Deutsches Elektronen Synchrotron DESY, Hamburg, Germany

~Received 8 July 1997; published 6 February 1998!

We report a theoretical analysis of the exclusive nonleptonic decays of theB6 andB0 mesons into two light
mesons, some of which have been measured recently by the CLEO Collaboration. Our analysis is carried out
in the context of an effective Hamiltonian based on the standard model~SM!, using next-to-leading order
perturbative QCD calculations. We explicitly take into account theO(as) penguin-loop diagrams of all four-
Fermi operators and theO(as) tree-level diagram of the chromomagnetic dipole operator, and give a prescrip-
tion for including their effects in nonleptonic two-body decays. Using a factorization ansatz for the hadronic
matrix elements, we show that existing data, in particular, the branching ratiosB(B6→h8K6), B(B6

→p6K0), B„B0(B0̄)→p7K6
…, andB(B6→vh6)(h65p6,K6), can be accounted for in this approach.

Thus, theoretical scenarios with a substantially enhanced Wilson coefficient of the chromomagnetic dipole

operator~as compared to the SM! and/or those with a substantial color-singletc c̄ component in the wave
function ofh8 are not required by these data. We predict, among other decay rates, the branching ratios for the

decaysB0(B0̄)→p6p7 andB6→p0p6, which are close to the present experimental limits. Implications of
some of these measurements for the parameters of the CKM matrix are presented.@S0556-2821~98!05905-0#

PACS number~s!: 13.25.Hw, 12.38.Bx
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I. INTRODUCTION

Recently, the CLEO collaboration reported first measu
ments in a number of exclusive decays,B6→h8K6, B6

→p6K0, B0(B0̄)→p7K6, B6→v h6(h65p6,K6),

B6 → K0h6,B6 → p0h6, B0(B0̄)h6p7, and the inclu-
sive decayB6→h81X @1–3#, which involve the so-called
QCD penguin operators. In addition, a number of rela

decays such asB0(B0̄)→p7p6 andB6→p6p0 are on the
verge of measurement@3#. On the theoretical side, conside
able effort has gone into studies of nonleptonic weak dec
in terms of estimating decay rates@4–13# and the inherent
direct and indirectCP asymmetries@10,14–22#. Since the
first measurements of the above-mentioned decays, theo
cal interest in this subject has surged, and recent literatu
rife with all kinds of interesting interpretations of data, bo
within and beyond the standard model~SM! @23–29#. Of
these, the decay modeB6→h8K6 is conspicuous due to it
reported high branching ratioB(B6→h8K6)5(7.122.1

12.5

60.9)31025 @3#.
The standard theoretical framework to study nonlepto

B decays is based on the effective Hamiltonian approa
which allows us to separate the short- and long-distance
tributions in these decays using the Wilson operator prod
expansion@30#. QCD perturbation theory is then used in d
riving the renormalization-group improved short-distan
contributions@31#. This program has now been carried o
up to and including the next-to-leading order terms@32,33#,
but the long-distance part in the two-body hadronic dec
B→M1M2 involves the transition matrix elemen
^M1M2uOi uB& at a typical hadronic scale, whereOi is an
operator in the effective Hamiltonian~see below!. Calculat-
ing these matrix elements from first principles is a true ch
lenge in theory which remains to be met. In view of this
number of approximate schemes has been put forward.
570556-2821/98/57~5!/2996~21!/$15.00
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one we use here is based on the idea of factorization@34,35#,
in which the final-state interactions are assumed to be abs
and hence the hadronic matrix elements in the decayB
→M1M2 factorize into a product of two comparatively mo
tractable matrix elements. These are then taken either f
data or calculated in well-defined theoretical contexts, s
as QCD sum rules and potential models@4,13,36–40#. This
framework does remarkably well in accounting for nonle
tonic two-bodyB decays involving the current-current oper
tors O1,2

c @4,7# ~see Sec. II for definition!. Recent analyses
have shown that data on two-body nonleptonicB decays
on the so-called heavy-to-heavy transitions, such asB
→(D,D* )h,B→(Ds ,Ds* )D,B→J/ch ~with h being a light
hadron!, can be described in terms of two phenomenologi
parametersa1 anda2 @4#, whose values seem to be univers
@41,13#. Techniques based on heavy quark effective the
@42# allow us in some limited cases to ‘‘derive’’ such facto
ization properties@43# and yield results which are in agree
ment with data.

Motivated by the phenomenological success of factori
tion in the heavy-to-heavy nonleptonicB decays, we would
like to pursue this framework further in the domain of th
so-called heavy-to-light transitions,B→h1h2, whereh1 and
h2 are light hadrons. The recently measuredB decays@1–3#
belong to this category, and they should be analyzed on t
own, without prejudice about the suggested values of
effective parameters from the heavy-to-heavy transitio
The decaysB→h1h2 in most cases involve mixing amon
the current-current, QCD penguin operators and the chro
magnetic operators. Our hope is that once perturbative Q
corrections are taken into account, these decays may a
themselves to be described in terms of a few phenomenol
cal parameters. Related work along these lines concer
QCD penguin diagrams in nonleptonicB decays was done
prior to this analysis@8,10#, which we make use of here
improve upon, and extend.
2996 © 1998 The American Physical Society
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57 2997ANALYSIS OF TWO-BODY NONLEPTONICB DECAYS . . .
Our analysis is based on the following three main ing
dients:

We work at next-to-leading logarithmic~NLL ! precision,
taking into account theO(as) one-loop penguin-type dia
grams of all four-Fermi operators in the effective Ham
tonian and some process-independent parts of the vertex
rection diagrams associated with these four-Fermi opera
We also take into account the effect of theO(as) tree-level
matrix element associated with the chromomagnetic dip
operator via the processb→sg→s q̄8q8.

To calculate the hadronic matrix elements, we propos
simple factorization ansatz which allows us to include
effects of theO(as) matrix elements just discussed above

In calculatingB decays involving anh8 or h meson, such
asB6→h8K6 andB6→hK6, we include the contribution
from the decayb→s(c c̄)→s(h,h8) @44,45#. The required
decay constants and mixing parameters are estimated u
data on the radiative decaysJ/c→hcg,h8g,hg and the
two-photon decays of theh,h8, and hc @46#. Concerning
(h,h8) mixing, we discuss both the conventional~one
mixing-angle! formalism @47,48# and the one involving two
mixing angles in this sector, which is suggested by the 1Nc
improvedU(3)^ U(3) chiral perturbation theory framewor
@49,50#. Since the latter formalism is also favored by a rec
phenomenological analysis@51# of the data on thehg and
h8g form factors@52–55#, we use it in our estimates forB
decays involvingh8 andh mesons.

We would like to make a number of remarks pointing o
the overlaps and differences with earlier analyses and
plaining our factorization ansatz. Concerning the QCD p
turbative part, we note that our calculations come close to
derivation given in Ref.@10#, but are more complete as far a
the NLL contribution is concerned. We find that the NL
improvements implemented by us reduce the scale de
dence in various nonleptonic decay rates. This result is
line with what was demonstrated in the radiative decaysB
→Xs1g in the same accuracy@56#. Further, the complete
NLL contribution is important numerically, both compare
to the leading-order result and the NLL result obtained
keeping only the charm penguin contributions from the o
eratorsO1,2

c . We show this quantitatively in the context o
the branching ratioB(B6→Kp6), comparing it with the
estimates of the same based on keeping only theO1,2

c pen-
guins @28#.

Concerning the second point noted above, we remark
our factorization prescription introduces just one free para
eter, calledj, which is supposed to compensate for the n
glect of color octet-octet contribution in evaluating the ha
ronic matrix elements in the heavy-to-light sectorB→h1h2.
This modifies the strength of the effective coefficien
a1 , . . . ,a6 from their perturbatively calculated values~see
Sec. III!. Clearly, this is the simplest ansatz, and may have
be modified eventually as more precise data on heavy to l
B decays become available.

We discuss the last point mentioned above concerning
decaysB6→h8(K6,K* 6) andB6→h(K6,K* 6). Express-
ing the charm quark content in theh8 meson in terms of the
matrix element̂ h8u c̄gmg5cu0&52 i f h8

(c)qm , we find using

data on theJ/c→hcg and J/c→h8g decays thatu f h8
(c)u

.5.8MeV. The corresponding decay constant forh meson is
-
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estimated to be u f h
(c)u.2.3 MeV in the conventional

(h,h8)-mixing formalism, andu f h
(c)u.0.93 MeV in the 1/Nc

improved approach. The decrease in the value ofu f h
(c)u re-

flects the small value of the singlet mixing angleu0, which
makes theh an almost pure octet state@49#, hence also re-

ducing thec c̄ component of theh meson. Our estimate
u f h8

(c)u.5.8 MeV is to be contrasted with the rangef h8
(c)

5(50– 180) MeV obtained in Ref.@23#. ~Likewise, we find
u f h8

(c)/ f h8u.0.08, which is also an order of magnitude smal
than the one given in Ref.@24#.! We note that our estimate
of u f h

(c)u is consistent with the bounds265 MeV< f h
(c)

<15 MeV, which were obtained in the meanwhile from a
analysis of theQ2 dependence of the electromagnetic for
factor ofh8 @51#. Likewise, data on the electromagnetic for
factor of h are consistent withu f h

(c)u being small@51#. With
our estimate ofu f h

(c)u, we find that this charm-induced con
tribution does not dominate the matrix element forB6

→h8K6; the penguin operators play a more important ro
numerically in this decay.

The branching ratioB(B6→h8K6), as well as those of
the related onesB6→h8K* 6, B6→hK6, and B6

→hK* 6, depend upon the interference of the amplitud
arising from the chainb→s( c̄ c)→s(h8,h), and the ones
arising from calculating the matrix elements of the rest of
operators. Concentrating on the decayB6→h8K6, we note
that the sign of the term involving theb→s( c̄ c)→s(h8,h)
in the full amplitude is not determineda priori. Since the
solutions with constructive or destructive interference ter
are both logical possibilities, we have estimatedB(B6

→h8K6) for both cases, with the positive-f h8
(c) solution

yielding a marginally larger rate. However, more impo
tantly, we find that the rate in this decay~and in some others!
depends significantly on the parameterj. Hence, to make
absolute predictions, the phenomenological value of this
rameter has to be determined. We study a number of m
suredB→h1h2 decays to estimate a range forj which, given
the present experimental errors and theoretical accurac
our approach estimated by us as a factor 2 in rates, is un
standably not very precise at this stage. The range 0<j
<0.5 is consistent with data.

This paper is organized as follows. In Sec. II, we revie
the effective Hamiltonian for the nonleptonicB decays, and
calculate the matrix elements of the operators at the qu
level in the NLL precision. In Sec. III, we formulate ou
factorization ansatz to calculate the hadronic matrix eleme
in the two-body decaysB→h1h2. The matrix elements for
various decay modes of interest are also detailed here
gether with a brief review of the mixing formalism for th
h2h82hc sector. Our estimates of the decay constantsf h8

(c)

and f h
(c) relevant for the decaysB6→(h8,h)(K6,K* 6) are

also given here. Section IV contains our numerical resu
The input values for the various quantities~coupling con-
stants, form factors, and quark masses! are collected here in
several tables. We compare the branching ratios with
CLEO data varying the factorization-related parameterj and
parameters of the Cabibbo-Kobayashi-Maskawa~CKM! ma-
trix @57#. The potential impact of some of these decays
the CKM phenomenology is illustrated in terms of the rati
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2998 57A. ALI AND C. GREUB
of the branching ratios, which are more reliably calculab

In particular, the ratiosR1[B„B0(B0̄)→p7K6
…/B(B6

→p6K) andR2[B„B0(B0̄)→p7h6
…/B(B6→p6K), con-

strain the CKM-Wolfenstein parametersr and h @58#. The
potential importance ofR1 in determining the angleg was
emphasized by Fleischer and Mannel@28,29#. Interestingly,
within the theoretical framework presented here, the m
sured ratioR150.6560.40 suggests~at 61s) that r>0,
which in turn implies g<90°, where g is one of the
CP-violating angles of the unitarity triangle. We also com
ment on the effect of an~assumed! enhanced coefficient o
the chromomagnetic operator,C8(mW), in nonleptonic two-
bodyB decays. This scenario has been discussed in the
text of new physics effects inB decays@59–61#. We find,
using the decay B6→Kp6, that varying the ratio
C8(mW)/C8(mW)SM in a large range (610) has no appre
ciable effect on the branching ratio within the present ac
racy. Finally, we conclude with a summary in Sec. V.

II. EFFECTIVE HAMILTONIAN FOR THE NONLEPTONIC
DECAYS B˜h1h2

We write the effective HamiltonianHeff for the DB51
transitions as

Heff5
GF

A2
S VubVuq* ~C1O1

u1C2O2
u!

1VcbVcq* ~C1O1
c1C2O2

c!2VtbVtq* (
i 53

8

CiOi D ,

~2.1!

whereq5d,s, andCi are the Wilson coefficients evaluate
at the renormalization scalem; the current-current operator
O1

u,c andO2
u,c read

TABLE I. Wilson coefficientsCi(m) at the renormalization
scalem55.0 and 2.5 GeV in the naive dimensional regularizat
~NDR! scheme.C1–C6 are in NLL accuracy, whileC7

eff and C8
eff

are in LL precision. Foras(m) @in the modified minimal subtraction

MS̄ scheme# we used the two-loop expression with five flavors a

as
MS̄(mZ)50.118;mt

MS̄(mt)5165 GeV~equivalent tomt,pole5175
GeV).

Ci(m) m55.0 GeV m52.5 GeV

C1
NLL 1.070 1.117

C2
NLL 20.166 20.257

C3
NLL 0.011 0.017

C4
NLL 20.031 20.044

C5
NLL 0.009 0.011

C6
NLL 20.037 20.056

C7
eff,LL 20.303 20.338

C8
eff,LL 20.144 20.158
.

a-

n-

-

O1
u5~ ūaba!V2A~ q̄bub!V2A ,

O1
c5~ c̄ aba!V2A~ q̄bcb!V2A ,

~2.2!

O2
u5~ ūbba!V2A~ q̄aub!V2A ,

O2
c5~ c̄ bba!V2A~ q̄acb!V2A ,

while the QCD penguin operatorsO32O6 are

O35~ q̄aba!V2A(
q8

~ q̄b8qb8 !V2A ,

O55~ q̄aba!V2A(
q8

~ q̄b8qb8 !V1A ,

O45~ q̄bba!V2A(
q8

~ q̄a8qb8 !V2A ,

O65~ q̄bba!V2A(
q8

~ q̄a8qb8 !V1A . ~2.3!

Finally, the dipole operatorsO7 andO8 read

O75~e/8p2!mb s̄smn~11g5!bFmn ,
~2.4!

O85~gs/8p2!mb s̄asmn~11g5!~lab
A /2!bbGmn

A .

Here a and b are the SU~3! color indices andlab
A ,A

51, . . . ,8, are theGell-Mann matrices. The subscriptsV
6A represent the chiral projections 16g5. Thus, in Eqs.
~2.2! and ~2.3!, ( ūabb)V2A5 ūagm(12g5)bb , etc. In Eq.
~2.4! Fmn andGmn

A denote the photonic and the gluonic fie
strength tensor, respectively. We note that we neglect
effects of the operatorO7 in the present analysis as well a
the so-called electroweak penguin~four-Fermi! operators
which we did not list explicitly. Likewise, the effect of wea
annihilation and exchange diagrams will be neglected h
This is in line with the investigations reported in the liter
ture @19#. Working consistently to NLL precision, the coe
ficientsC1–C6 are needed in NLL precision, while it is suf
ficient to use the leading logarithmic~LL ! value forC8. The
relevant Wilson coefficients to the desired accuracy are lis
in Table I for the two scalesm55.0 and 2.5 GeV, where
C7

eff5C72C5/32C6 andC8
eff5C81C5.

Quark-level matrix elements

The Wilson coefficients of the four-Fermi operators d
pend on the renormalization scale; in addition, in NLL pr
cision, they also depend on the renormalization sche
These unphysical dependences are compensated for in
ciple by a corresponding scheme or scale dependence o
matrix elements of the operators. However, when using
factorization ansatz for the hadronic matrix elements of
operators, these cancellations do not take place in prac
because the factorized matrix elements of the operators
expressed in terms of decay constants and form factors,
are as such scheme or scale independent. To achieve
cancellation, we include perturbative QCD corrections to
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57 2999ANALYSIS OF TWO-BODY NONLEPTONICB DECAYS . . .
partonic matrix element before doing the factorization st
We fully calculate the one-loop penguinlike diagrams in F
1~a!, and some process-independent parts~see below! of the
vertex correction diagrams associated with the four-Fe
operators, as shown in Fig. 2~a!. These two classes of cor
rections are sufficient concerning the cancellation of
scheme or scale dependences. Furthermore, the contrib
associated with the operatorO8, where the gluon splits into a
quark-antiquark pair, as shown in Fig. 1~b!, is of the same
order inas as the corrections just mentioned, and is theref
also taken into account in our analysis.

As we use in this paper the Wilson coefficients obtain
in the naive dimensional regularization~NDR! scheme with
anticommutingg5, we also have to evaluate the vario
O(as) corrections in this scheme. These corrections can
absorbed into effective Wilson coefficientsCi

eff , which for a
general SU(N) color group can be written as

C1
eff5C11

as

4pS r V
T1gV

Tln
mb

m D
1 j

Cj1•••,

C2
eff5C21

as

4pS r V
T1gV

Tln
mb

m D
2 j

Cj1•••,

C3
eff5C32

1

2N

as

4p
~Ct1Cp1Cg!

1
as

4pS r V
T1gV

Tln
mb

m D
3 j

Cj1•••,

C4
eff5C41

1

2

as

4p
~Ct1Cp1Cg!

1
as

4pS r V
T1gV

Tln
mb

m D
4 j

Cj1•••, ~2.5!

C5
eff5C52

1

2N

as

4p
~Ct1Cp1Cg!

1
as

4pS r V
T1gV

Tln
mb

m D
5 j

Cj1•••,

C6
eff5C61

1

2

as

4p
~Ct1Cp1Cg!

1
as

4pS r V
T1gV

Tln
mb

m D
6 j

Cj1•••.

FIG. 1. ~a! Penguin-type diagrams associated with the fo
Fermi operatorsOi ( i 51, . . . ,6).~b! Tree-level matrix element o
the chromomagnetic dipole operatorO8.
.
.

i

e
ion

e

d

e

We separated the contributionsCt , Cp , andCg arising from
the penguin-type diagrams of the current-current opera
O1,2, the penguin-type diagrams of the operatorsO3–O6,
and the tree-level diagram of the dipole operatorO8, respec-
tively. The process-independent contributions from t
vertex-type diagrams are contained in the matricesr V and
gV . HeregV is that part of the anomalous matrix which
due to the vertex~and self-energy! corrections. This part can
be easily extracted fromĝ (0) in Ref. @33#:

gV5S 22 6 0 0 0 0

6 22 0 0 0 0

0 0 22 6 0 0

0 0 6 22 0 0

0 0 0 0 2 26

0 0 0 0 0 216

D . ~2.6!

The matrix r V contains constant, i.e., momentum
independent parts associated with the vertex diagrams.
matrix can be extracted from the matrixr̂ defined in Eq.
~2.12! @and given explicitly in Eq.~4.6! in Ref. @33##,

r V51
7

3
27 0 0 0 0

27
7

3
0 0 0 0

0 0
63

27
2

63

9
0 0

0 0 27
7

3
0 0

0 0 0 0 2
1

3
1

0 0 0 0 23
35

3

2 . ~2.7!

Note that them dependence and the scheme dependenc
the vertex correction diagrams are fully taken into accoun
Eq. ~2.5! by the terms involving the matricesgV and r V ,
respectively. There are, however, still scheme-independ
process-specific terms omitted, as indicated by the ellip
When calculating inclusive quantities, such as the semil
tonic branching ratios andB-hadron lifetimes, it is straight-
forward how to take these corrections into account. The
tual corrections are infrared divergent on their own, b

FIG. 2. ~a! Vertex correction diagrams to the four-Fermi oper
tors Oi ( i 51, . . . ,6). ~b! Corresponding Bremsstrahlung corre
tions.

-
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3000 57A. ALI AND C. GREUB
together with the Bremsstrahlung contributions in Fig. 2~b!,
they lead to a finite and well-definedO(as) correction,
which is found to be small. However, it is less obvious ho
to include them in exclusive two-body decays. The poin
that the division of the final states with and without the ex
gluon is ambiguous, and can be meaningfully defined o
with a cutoff. As such, a separation into virtual correctio
and soft gluon Bremsstrahlung contributions is arbitrary a
how, and we only take into account the terms involvinggV
and r V . The explicit O(as) contributions which emerge
from the penguin operators involving aq q̄ pair in the loop
are infrared finite on their own, and hence do not requir
cutoff.

The quantitiesCt , Cp , andCg given by the diagrams
shown in Fig. 1 read, in the NDR scheme@after modified

minimal subtraction (MS̄) renormalization#,

Ct52C1S VcbVcq*

VtbVtq*
C̃t~mc!1

VubVuq*

VtbVtq*
C̃t~mu!D ,

C̃t~m!5
2

3
1

2

3
ln

m2

m2
2DF1S q2

m2D , ~2.8!

Cp5C3F4

3
1

2

3
ln

mq
2

m2
1

2

3
ln

mb
2

m2
2DF1S q2

mq
2D

2DF1S q2

mb
2D G1~C41C6! (

i 5u,d,s,c,b
F2

3
ln

mi
2

m2

2DF1S q2

mi
2D G , ~2.9!

Cg52
2mb

A^q2&
C8

eff , ~2.10!

with C8
eff5C81C5. The functionDF1(z) is defined as

DF1~z!524E
0

1

dx x~12x!ln@12zx~12x!2 i e#.

~2.11!

Two remarks are in order here. First, our expressions
Ci

eff in Eq. ~2.5! are written in terms of the Wilson coeffi
cients in the NDR scheme. Analogous expressions~but with
r V50, gV50, andCg50) were obtained earlier in the lit
erature@10#. Comparing the expressions given here with t
ones in Ref. @10#, where the corresponding quantitie
c3

eff , . . . ,c6
eff are expressed in terms of the so-call

renormalization-scheme-independent Wilson coefficientsc̄ i
introduced in Ref.@33#, one notices that the constant term
appearing explicitly inCt andCp in the two papers are dif
ferent. As the scheme dependence cancels automati
when including the one-loop matrix elements discus
above, we prefer to work with the Wilson coefficients in t
NDR scheme.
s

ly

-

a

r

e

lly
d

Second, we have to explain the assumption which allo
us to absorb the tree-level diagramb→sg→s q̄8q8 associ-
ated with the operatorO8 into the contributionCg appearing
in the expressions forCi

eff . It is straightforward to write
down the matrix element

^s q̄8q8uO8ub&52
as

p

mb

q2 S s̄agmq” ~11g5!
lab

A

2
bbD

3S q̄g8gm
lgd

A

2
qd8D , ~2.12!

where q is the momentum transferred by the gluon to t
(q8, q̄8) pair. In the factorization model to be described b
low, q8 and q̄8 cannot go into the same meson in the proc
B→h1h2 due to color, i.e.,q8 goes intoh1, while q̄8 goes
into h2, or vice versa@see Fig. 1~b!#. The quantitiesCt , Cp
andCg depend on the momentumq. Since we are intereste
here only in two-body decays, we assume, for simplici
that the three momenta ofq8 and q̄8 are equal in magnitude
but opposite in direction in the rest frame of theb quark. The
momentum transferq is then proportional topb , i.e.,

qm5A^q2&
pb

m

mb
, ~2.13!

where^q2& is an averaged value ofq2. Inserting Eq.~2.13!
into Eq. ~2.12!, and using the equations of motion, the e
pression forCg in Eq. ~2.10! is readily obtained. To be con
sistent, we should also replaceq2 by ^q2& in the expressions
for Ct andCp in Eqs.~2.8! and ~2.9!, respectively. To esti-
mate the theoretical uncertainty introduced thereby, we t
^q2& as a parameter which varies in the rangemb

2/4
<^q2&<mb

2/2, following the prescriptions in literature
@16,17#.

To summarize: The variousO(as) corrections have been
absorbed into effective Wilson coefficientsCi

eff

( i 51, . . . ,6);these coefficients are scheme independent,
the term;aslnm, which dominates the scale dependence
the original Wilson coefficientsCi and the one-loop matrix
elements, is absent inCi

eff . What remains to be done is t
estimate the hadronic matrix elements^h1h2uCi

effOi uB& for
i 51, . . . ,6. Thenumerical values of the quantitiesCi

eff are
given in Table V in Sec. IV A 4.

FIG. 3. D1 and D2 are the two diagrams contributing in th
factorization approximation. See text.
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III. FACTORIZATION ANSATZ FOR THE MATRIX
ELEMENTS IN B˜h1h2

We now have to work out the hadronic matrix elements
the operatorsOi ( i 51, . . . ,6) for theprocesses of interes
We use the factorization approximation, which we brie
explain for a specific example. Consider the matrix elem
due to theu-quark contribution of the operatorO5 for the
processB2→K2v, i.e.,

^K2vuO5
~u!uB2&, O5

~u!5@ s̄gm~12g5!b#@ ūgm~11g5!u#.
~3.1!

There are two contributing diagramsD1 and D2 shown in
Fig. 3. The factorization approximation forD1 is readily ob-
tained:

D15^vu ūgm~11g5! uu0&^K2u s̄gm~12g5!buB2&

5^vu ūu2u0&^K2u s̄b2uB2&, ~3.2!

where here and in the following the short-hand notationq̄q28
stands for

q̄q28 5 q̄gm~12g5!q8. ~3.3!

To obtain D2 in the factorization approximation, we firs
write the operatorO5

(u) in its Fierzed form

O5
~u!522@ ūb~12g5!ba#@ s̄a~11g5!ub#

522F 1

N
@ ū~12g5!b#@ s̄~11g5!u#

1 1
2 @ ū~12g5!lb#@ s̄~11g5!lu#G , ~3.4!

wherel denotes a color matrix. Only the first term in th
square brackets in Eq.~3.4! ~being color singlet-singlet! con-
tributes in the factorization approximation. One obtains

D252
2

N
^vu ū~12g5!buB2&^K2u s̄~11g5!uu0&;

~3.5!

using the Dirac equation, we can writeD2 as

D252
2

N

mK
2

~ms1mu!~mb1mu!
^vu ūb2uB2&^K2u s̄u2u0&.

~3.6!

Doing analogous manipulations, the complete matrix e
mentM for B2→vK2, defined as

M5^vK2uHeffuB2&,

Heff5
GF

A2
FVubVus* ~C1

effO1
u1C2

effO2
u!2VtbVts* (

i 53

6

Ci
effOi G ,

~3.7!

is then easily obtained. One obtains
f

t

-

M5
GF

A2
H VubVus* ~a1^K

2u s̄u2u0&^vu ūb2uB2&

1a2^K
2u s̄b2uB2&^vu ūu2u0&!

2VtbVts* F S a42
2a6mK

2

~ms1mu!~mb1mu!
D

3^K2u s̄u2u0&^vu ūb2uB2&12~a31a5!

3^K2u s̄b2uB2&^vu ūu2u0&G J . ~3.8!

The quantitiesai ( i 51, . . . ,6) are thefollowing combina-
tions of the effective Wilson coefficients in Eq.~2.5!:

a2i 215C2i 21
eff 1

1

N
C2i

eff , a2i5C2i
eff1

1

N
C2i 21

eff , i 51,2,3.

~3.9!

The explicit 1/N terms in Eq.~3.9! are always accompanie
by an octet-octet contribution; this can be seen explicitly
Eq. ~3.4!. As one discards this octet-octet contribution in t
factorization approximation, one usually replaces 1/N by j
and treatsj as a free parameter with the hope to compens
phenomenologically for the omitted octet-octet contributi
in terms of a rescaled value ofj. Note, however, that the 1/N
factors appearing explicitly in the~perturbative! expressions
for the effective Wilson coefficients in Eq.~2.5! are not re-
placed byj in our work, in contrast to Ref.@10#, where these
1/N factors were also replaced byj. We think that also re-
placing these 1/N terms byj destroys the scheme indepe
dence of the effective Wilson coefficients.

It is worth pointing out that the factorization ansatz ju
discussed is the simplest one. Also, it is implicitly assum
that the relative strong phases~such as the ones arising from
the final state interactions, but also due to the nonpertu
tive contributions to the charm penguin diagrams!, contrib-
uting to the differentai ’s are small. Of course, this does n
mean that the strong interaction phases are assumed ab
The ones generated by the next-to-leading order perturba
QCD contributions from the charm penguin diagrams
taken into account. It remains to be seen if the nonpertur
tive phases from the competing tree and penguin contr
tions in the processes discussed here are indeed small.

Finally, before giving the matrix elements of the vario
exclusive two-body decays, we discuss the parametriza
of the decay constants and form factors which appear in
factorized form of the hadronic matrix elements. The fo
factors are parametrized as

^P~p8!uVmuB~p!&5F ~p1p8!m2
mB

22mP
2

q2
qmGF1~q2!

1
mB

22mP
2

q2
qmF0~q2!, ~3.10!
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^V~e,p8!u~Vm2Am!uB~p!&

5
2

mB1mV
i emnabe* npap8bV~q2!2~mB1mV!

3S em* 2
e* q

q2
qmD A1~q2!1

e* q

mB1mV
S ~p1p8!m

2
mB

22mV
2

q2
qmD A2~q2!2e* q

2mV

q2
qmA0~q2!, ~3.11!

whereP(V) is a pseudoscalar~vector! meson,q5p2p8,

A0~0!5
mB1mV

2mV
A1~0!2

mB2mV

2mV
A2~0!, ~3.12!

and F1(0)5F0(0). Thedecay constantsf P and f V are de-
fined as

^0uAmuP~p!&5 i f Ppm , ^0uVmuV~e,p!&5 i f VmVem .

~3.13!

With these definitions, we are in a position to write down t
formulas for the matrix elements for the two-body deca
They are given below explicitly for the four generic dec
modes: B→pp, B→Kp, B6→K6v,p6v, and B6

→(K6,K* 6)(h,h8), which are also the ones we calcula
numerically in Sec. III A. However, the formalism give
here is general and applicable to all two-bodyB decays of
the typeB→PP, B→PV, andB→VV.

A. B˜pp

In this section we discuss the processesB6→p6p0,

B0(B0̄)→p6p7, andB0(B0̄)→p0p0.

1. B6
˜p6p0

The matrix elementM for B2→p2p0 involves the op-
eratorsO1

u andO2
u and reads@neglecting SU~2! breaking ef-

fects#

M5
GF

A2
VubVud* ~a11a2!^p2u d̄u2u0&^p0u ūb2uB2&,

~3.14!

with

^p2u d̄u2u0&^p0u ūb2uB2&5 i f p~mB
22mp

2 !F0
B→p0

~mp
2 !.

~3.15!

The branching ratioB(B2→p2p0) is then given by the
expression

B~B2→p2p0!5tB

1

8p
uM u2

upu

mB
2

, ~3.16!

where tB is the lifetime of theB0 meson andupu is the
absolute value of the 3-momentum of thep2 ~or thep0) in
the rest frame of theB0 meson. This expression for th
.

branching ratio holds for other two-body decays being d
cussed, with obvious changes of the indicated quantit
Hence we shall give subsequently only the matrix eleme
M . Also, we shall give only the amplitudes for the decays

B2 andB0̄, and the matrix elements for the charge-conjug
processes are then obtained by complex conjugating
CKM factors. Since we are not addressing the question
CP violation in this paper, all decay rates given later are
be interpreted in terms of the averaged branching rat
Thus, for example, the branching ratioB(B6→p6p0) is
defined as

B~B6→p6p0!5 1
2 @B~B2→p2p0!1B~B1→p1p0!#.

~3.17!

2. B0(B0̄)˜p1p2

The matrix elementM for B0̄→p2p1 reads

M5
GF

A2
FVubVud* a12VtbVtd* S a41

2a6mp
2

~mb2mu!~mu1md!
D G

3^p2u d̄u2u0&^p1u ūb2uB̄0&, ~3.18!

with

^p2u d̄u2u0&^p1u ūb2uB̄0&5 i f p~mB
22mp

2 !F0
B→p2

~mp
2 !.

~3.19!

3. B0(B0̄)˜p0p0

The matrix elementM for B0̄→p0p0 reads

M5
GF

A2
FVubVud* a21VtbVtd* S a41

a6mp
2

md~mb2md!
D G

32^p0u ūu2u0&^p0u d̄b2uB̄0&, ~3.20!

with

^p0u ūu2u0&^p0u d̄b2uB̄0&5 i
f p

A2
~mB

22mp
2 !F0

B→p0
~mp

2 !.

~3.21!

When calculating the decay width, we have to take into
count an extra factor12 due to the two identical particles in
the final state.

B. B˜Kp, B˜KK

1. B6
˜Kp6

The matrix elementM for B2→p2K̄0 reads

M52
GF

A2
VtbVts* Fa41

2a6mK
2

~mb2md!~ms1md!
G^p2u d̄b2uB2&

3^K̄0u s̄d2u0&, ~3.22!
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with

^p2u d̄b2uB2&^K̄0u s̄d2u0&5 i f K~mB
22mp

2 !F0
B→p2

~mK
2 !.

~3.23!

2. B0(B0̄)˜K6p7

The matrix elementM for B0̄→p1K2 reads

M5
GF

A2
FVubVus* a12VtbVts*

3S a412a6

mK
2

~mb2mu!~ms1mu!
D G

3^p1u ūb2uB̄0&^K2u s̄u2u0&, ~3.24!

with

^p1u ūb2uB̄0&^K2u s̄u2u0&5 i f K~mB
22mp

2 !F0
B→p2

~mK
2 !.

~3.25!

3. B6
˜K6p0

The matrix elementM for B2→K2p0 is given by

M5
GF

A2
FVubVus* S a11a2

f p

A2 f K

mB
22mK

2

mB
22mp

2

F0
B→K2

~mp
2 !

F0
B→p0

~mK
2 !

D
2VtbVts* S a412a6

mK
2

~mb2mu!~ms1mu!
D G

3^p0u ūb2uB2&^K2u s̄ u2u0&, ~3.26!

with

^K2u s̄u2u0&^p0u ūb2uB2&5 i f K~mB
22mp

2 !F0
B→p0

~mK
2 !.

~3.27!

4. B6
˜K0K6

The matrix elementM for B2→K0K2 is given by

M52
GF

A2
VtbVtd* S a412a6

mK
2

~mb2ms!~ms1md!
D

3^K2u s̄b2uB2&^K0u d̄s2u0&, ~3.28!

with

^K0u d̄s2u0&^K2u s̄b2uB2&5 i f K~mB
22mK

2 !F0
B→K~mK

2 !.
~3.29!
C. B6
˜K6v,p6v

1. B6
˜K6v

The matrix elementM for B2→K2v reads

M5
GF

A2
FVubVus* S a11a2

F1
B→K2

~mv
2 !

A0
B→v~mK

2 !

f v

A2 f K
D

2VtbVts* S 2~a31a5!
F1

B→K2

~mv
2 !

A0
B→v~mK

2 !

f v

A2 f K

1a4

2
2a6mK

2

~mb1mu!~ms1mu!D G ^vu ūb2uB2&^K2u s̄u2u0&,

~3.30!

with

^vu ūb2uB2&^K2u s̄u2u0&52 i f K2mv~pBev* !A0
B→v~mK

2 !.
~3.31!

There is only one nonvanishing helicity amplitude. In t
rest frame of the decayingB meson only longitudinally po-
larizedv ’s are produced.pBev* is then given by

pBev* 5
mB

mv
upu, ~3.32!

whereupu is the absolute value of the 3-momentum of thev
~or theK2) in the B rest frame.

2. B6
˜p6v

The matrix elementM for B2→p2v reads

M5
GF

A2
FVubVud* S a11a2

F1
B→p2

~mv
2 !

A0
B→v~mp

2 !

f v

A2 f p
D

2VtbVtd* S ~2a31a412a5!
F1

B→p2

~mv
2 !

A0
B→v~mp

2 !

f v

A2 f p

1a4

2
2a6mp

2

~mb1mu!~md1mu!D G ^vu ūb2uB2&^p2u d̄u2u0&,

~3.33!

with

^vu ūb2uB2&^p2u d̄u2u0&52 i f p2mv~pB•ev* !A0
B→v~mp

2 !.
~3.34!

D. Mixing in the h2h82hc system and the decaysB6

˜K6h „8…,K* 6h „8…

Before we write the matrix elements forB6→K6h8,
B6→K* 6h8, B6→K6h, andB6→K* 6h in the factoriza-
tion approximation, we give a short discussion about theh
2h82hc system. Our main interest for the decays me
tioned above is to compute the hadronic matrix eleme

^0u( c̄gmg5)uh& and ^0u( c̄gmg5)uh8&. The conventional
(h,h8)-mixing formalism involves a single mixing angl
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~called henceforthu), and it has been argued that it provid
a satisfactory description of the decays involvingh andh8
@47,48#. However, recently the inadequacy of this mixin
formalism was pointed out in the context of th
1/Nc-improved chiral U(3)^ U(3) perturbation theory
@49,50#. Instead, a formalism which involves two mixin
angles in the SU~3!-octet and -singlet sectors~called hence-
forth u8 andu0) is proposed. Since, the SU~3!-singlet com-
ponentuh0& in general mixes with theuc c̄& component, in-
troducing another angle~called uc c̄), we shall term the
resulting mixing formalisms as the two-angle~involving u
anduc c̄) and three-angle~involving u0 ,u8, anduc c̄) frame-
works.

1. h2h82hc system in the two-angle mixing formalism

Here, the physicalh andh8 states are considered as mi
tures of theh8 andh0 states@47#,

uh&5cosuuh8&2sin uuh0&, uh8&5sin uuh8&1cosuuh0&,

~3.35!

whereh8 belongs to the SU~3! octet of the light pseudoscala
~Goldstone! mesons, whileh0 is an SU~3! singlet. In the
quark basis they are given by

uh8&5
1

A6
uu ū1d d̄22s s̄&, uh0&5

1

A3
uu ū1d d̄1s s̄&.

~3.36!

The mixing angleu can be extracted from the measur
ratios @47#

G~h→gg!

G~p0→gg!
518S mh

mp
D 3

f p
2 S cosu

f 8

eu
21ed

222es
2

A6

2
sin u

f 0

eu
21ed

21es
2

A3
D 2

~3.37!

and

G~h8→gg!

G~p0→gg!
518S mh8

mp
D 3

f p
2 S sin u

f 8

eu
21ed

222es
2

A6

1
cosu

f 0

eu
21ed

21es
2

A3
D 2

, ~3.38!

whereei are the quark charges, andf p , f 8, and f 0 are the
decay constants of the pion, the eighth component of
octet, and the singlet, respectively. Usingf 8 / f p51.34
60.03 @62# and the measured decay widths@46# G(p0

→gg)5(7.760.55) eV, G(h→gg)5(0.4660.04) keV,
G(h8→gg)5(4.2660.19) keV, one obtains

u5221.3°62.5°,
f 0

f p
51.0960.05. ~3.39!

It has been suggested in the context of the radiative
cays J/c→hg,h8g that they can be enacted by modelin
them on the decay chainJ/c→hcg→(h,h8)g, involving
the Zweig-rule-violating virtual transitionhc→h and hc
e

e-

→h8. One can visualize these transitions taking place via
two-gluon intermediate state. Since, only the SU~3!-singlet
component of theh andh8 eigenstates is involved, one ob
tains a relation for the ratioRJ/c(h/h8),

RJ/c~h/h8![
G~J/c→h8g!

G~J/c→hg!
5S kh8

kh
D 3 1

tan2u
, ~3.40!

wherekh8 and kh denote the 3-momenta ofh8 and h, re-
spectively. From the measured ratio@RJ/c(h/h8)55.060.8]
@46#, a value ofuuu521.9° can be extracted. Thus one o
tains a consistent result from Eqs.~3.39! and ~3.40!.

This Zweig-rule-violating transition amplitude can also
formulated by postulating that the physicalh8 ~as well as the
h) has a small effective charm component, which sho
enable us to enact transitions of the type we are intereste
namelyb→(c c̄)s→(h,h8)s. Thus there is a contribution o
the operatorsO1,2

c to the decay amplitude for the process
B→(K,K* )(h8,h), which can be modeled in much th
same way as the decaysJ/c→(h,h8)g.

For B6→K6h8, for example, this yields, in the factoriza
tion approximation,

M52
GF

A2
VcbVcs* a2^h8~q!u c̄gmg5cu0&

3^K~p8!u s̄gmbuB~p!&. ~3.41!

The crucial quantity is the decay constantf h8
(c) , defined

through the equation

^h8~q!u c̄gmg5cu0&52 i f h8
~c!qm . ~3.42!

The charm component comes in through the SU~3! singlet
uh0&, which has a small charm admixture characterized
the mixing angleuc c̄ :

uh0&5
1

A3
uu ū1d d̄1s s̄& cosuc c̄1uc c̄& sin uc c̄ .

~3.43!

The orthogonal statehc is then given by

uhc&52
1

A3
uu ū1d d̄1s s̄& sin uc c̄1uc c̄& cosuc c̄ .

~3.44!

Anticipating that the mixing angleuc c̄ is small, and dropping
the sin2ucc̄ term,

1
Eq. ~3.43! reads approximately as

uh0&5
1

A3
uu ū1d d̄1s s̄& cosuc c̄1uhc& tan uc c̄ .

~3.45!

f h8
(c) and f hc

are then related through the equation

1If the mixing angleuc c̄ indeed turns out to be small, the extra
tion of the angleu discussed above is not significantly altered.
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f h8
~c!

5cosu tan uc c̄ f hc
, ~3.46!

where f hc
is defined aŝhc(p)u c̄gmg5cu0&52 i f hc

pm . We
estimate the right-hand side~RHS! of Eq. ~3.46! using ex-
perimental data. First, the mixing angleuc c̄ can be extracted
from the measured ratio

RJ/c~hc /h8![
B~J/c→hcg!

B~J/c→h8g!
5

~1.360.4!31022

~4.3160.30!31023

.S khc

kh8
D 3

1

cos2utan2uc c̄

, ~3.47!

which on using the central values of the measurements g
uuc c̄u50.014. Second, the decay constantf hc

can be ex-
tracted from the measured decay width@46#

G~hc→gg!5
4~4pa!2f hc

2

81pmhc

57.521.4
11.6 keV, ~3.48!

which, again for the central values, leads tof hc
5411 MeV.

Equation~3.48! is the result obtained using the standard no
relativistic approach. This result also follows if one assum
that the shape of the distribution amplitudes for the cha
and anticharm quarks in thehc ,h8, andh mesons are very
similar. This gives

u f h8
~c!u5ucosu tan uc c̄ f hc

u.5.8 MeV. ~3.49!

Similarly, we can estimate the charm content of theh me-
son,

^h~q!u c̄gmg5cu0&52 i f h
~c!qm , ~3.50!

with

u f h
~c!u5usin u tan uc c̄ f hc

u.2.3 MeV. ~3.51!

Note that this method does not allow us to determine
signs of f h8

(c) and f h
(c) because only the absolute value of t

mixing angleuc c̄ can be extracted. To illustrate this amb
guity in the numerical results, we show, in the case ofB6

→K6h8, the branching ratios for both signs.

2. h2h82hc system in three-angle mixing formalism

It has recently been argued that the octet-singlet mix
scheme involving (h,h8) described above needs modific
tion @49,50#. More specifically, one can show that, takin
into account 1/Nc corrections in the effectiveU(3)^ U(3)
chiral perturbation theory, one needs to distinguish the m
ing angles of the octet and singlet components. Restrictin
the (h,h8) sector, one now has

uh&5cosu8uh8&2sin u0uh0&,

uh8&5sin u8uh8&1cosu0uh0&. ~3.52!

The analogous relations for the pseudoscalar decay cons
and masses can be derived from the terms quadrati
es

-
s

e

g

-
to

nts
in

f5(a50, . . . ,8l
afa in the chiral Lagrangian for the pseudo

scalar mesonsfa @herela;a51, . . . ,8 are the SU~3! Gell-
Mann matrices, andl0 is a unit matrix#. Writing the eigen-
states asfP5(af P

afa , one can show that the vector
( f h

8 , f h8
8 ) and (f h

0 , f h8
0 ), defined through the matrix elemen

involving the axial-vector currentsAm
8 andAm

0 ,

^0uAm
8 uh~p!&5 i f h

8pm ,

^0uAm
8 uh8~p!&5 i f h8

8 pm ,
~3.53!

^0uAm
0 uh~p!&5 i f h

0pm ,

^0uAm
0 uh8~p!&5 i f h8

0 pm ,

are not orthogonal to each other. Instead@49#,

~ f h
8 f h

01 f h8
8 f h8

0
!52

2A2

3
~ f K

2 2 f p
2 !@11O~d!#,

~3.54!

where O(d) representsO(1/Nc) corrections. This relation
then implies

sin~u02u8!5
2A2

3

~ f K
2 2 f p

2 !

f 8
2 @11O~d!#, ~3.55!

which yields @on using the decay widthsG(h→2g),G(h8
→2g) and the chiral perturbation theory resultf 851.28f p#
the following values@49#:

u85220.5°, u0.24.0°. ~3.56!

Thus, numerically, the octet mixing angleu8 comes out close
to the angleu, but the singlet mixing angle is quite sma
This implies that the pseudscalar mesonuh& is almost a pure
octet. Extending this formalism to the (h,h8,hc) mixing,
along the lines described in Sec. III D 1, now yields the f
lowing estimates of the quantitiesf h8

(c) and f h
(c) :

f h8
~c!

5cosu0tan uc c̄ f hc
,

f h
~c!52sin u0tan uc c̄ f hc

. ~3.57!

Using again the ratioRJ/c(hc /h8) given in Eq. ~3.47!
yields u f h8

(c)u.5.8 MeV ~the same as before!, but f h
(c)

52 f h8
(c)tan u0, which is considerably smaller than the prev

ous estimate of the same, asu0!u.
The (h,h8)-mixing framework with two anglesu0 andu8

fares better than the conventional one from a phenome
logical point of view as well. Feldmann and Kroll@51# com-
pared the two mixing frameworks in a recent analysis of
hg andh8g transition form factors using data from CLEO
@52#, L3 @53#, TPC @54#, and CELLO@55#, the decay widths
G(h→2g), G(h8→2g), and the ratioRJ/c(h/h8). They
showed that even after allowing for a moderate SU~3!-
breaking effect, one obtains a poor fit of the data in t
conventional mixing formalism~i.e., with the single angle
u). However, the mentioned data can be well fit in the tw
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angle framework for the (h,h8) mixing. Their best-fit values
yield ~with f h

(c) and f h8
(c) set to zero! @51#

u85222.2°, u0529.1°,
f 8

f p
51.28,

f 0

f p
51.20,

~3.58!

which agrees reasonably well with the estimates of th
parameters using chiral perturbation theory@49#:

u85220.5°, u0524.0°,
f 8

f p
51.28,

f 0

f p
51.25.

~3.59!

If accurate high-q2 data were available, one could determi
the coupling constantsf h

(c) and f h8
(c) from the hg and h8g

transition form factors, respectively. While the valu
f h

(c)50 is consistent with the data, the analysis in Ref.@51#

yielded the following range forf h8
(c) :

265 MeV< f h8
~c!<15 MeV. ~3.60!

This determination is somewhat model dependent, as it
pends on some parameters related to the charm wave f
tion. In the analysis reported in Ref.@51#, the shape of the
distribution amplitudes corresponding to the charm quark
the h and h8 are assumed to be the same as forhc . It is
satisfying that the value obtained by usu f h8

(c)u.5.8 MeV from
RJ/c(hc /h8) lies within the range given in Eq.~3.60!.

In what follows, we shall adhere to the 1/Nc-improved
chiral perturbation theory description of the (h,h8) mixing.
For numerical estimates, we use the best-fit values gi
in Eq. ~3.58! above. We now discuss the deca
B6(h,h8)(K6,K* 6).

3. B6
˜K6h8

The matrix elementM for B2→K2h8 reads, in the fac-
torization approximation,

M5
GF

A2H VubVus* S a21a1

mB
22mh8

2

mB
22mK

2

F0
B→h8~mK

2 !

F0
B→K2

~mh8
2

!

f K

f h8
u D

1VcbVcs* a2

f h8
~c!

f h8
u 2VtbVts* F2a322a5

1S a32a51a41
a6mh8

2

ms~mb2ms!
D f h8

s

f h8
u 2

a6mh8
2

ms~mb2ms!

1S a41
2a6mK

2

~ms1mu!~mb2mu!
D

3
mB

22mh8
2

mB
22mK

2

F0
B→h8~mK

2 !

F0
B→K2

~mh8
2

!

f K

f h8
u G J

3^K2u s̄b2uB2&^h8u ūu2u0&, ~3.61!

with
e

e-
c-

n

n

^K2u s̄b2uB2&^h8u ūu2u0&5 i f h8
u

~mB
22mK

2 !F0
B→K2

~mh8
2

!.
~3.62!

The term proportional toVcbVcs* in Eq. ~3.61! is due to the
charm content of theh8, as discussed above. In Eqs.~3.61!
and ~3.62!, the decay constantsf h8

u and f h8
s , defined as

^0u ūgmg5uuh8&5 i f h8
u pm , ^0u s̄gmg5suh8&5 i f h8

s pm ,
~3.63!

are given in terms off 8 and f 0 as

f h8
u

5
f 8

A6
sin u81

f 0

A3
cosu0 ,

~3.64!

f h8
s

522
f 8

A6
sin u81

f 0

A3
cosu0 .

We remark that the matrix element^0u s̄g5suh8&, which oc-
curs when factorizing the contributions ofO5 andO6, has to
be treated with some care. In the earlier version of this pa
we erroneously used the relation

^0u s̄g5suh8&52 i
f h8

s mh8
2

2ms
, ~3.65!

which is vitiated due to the contribution of the anomaly te
in the equation

]m s̄gmg5s52mss̄ ig5s1
as

4p
GabG̃ab . ~3.66!

To obtain the correct expression for the matrix elem

^h8u s̄g5su0&, we now use instead the anomaly-free equat
for the divergence of the octet axial-vector current,

]m~ ūgmg5u1 d̄gmg5d22 s̄gmg5s!

52i ~muūg5u1mdd̄g5d22mss̄g5s!. ~3.67!

Neglecting the terms proportional tomu andmd on the RHS
of Eq. ~3.67!, one derives

^0u s̄g5suh8&5 i
A6 f 8 sin u8mh8

2

4ms
52 i

~ f h8
s

2 f h8
u

!mh8
2

2ms
.

~3.68!

Of course, this relation can also be derived by working w
the divergence of the~anomalous! singlet axial vector cur-
rent. This gives rise to the term2a6mh8

2 /ms(mb2ms) in Eq.
~3.61!. Likewise, the amplitudes of the other processesB2

→K* 2h8, B2→Kh, andB2→K* 2h published in the ear-
lier version of this paper are also modified. The correc
amplitudes are given below. It appears that this~anomaly-
related! error has permeated the recent literature@73# and
should be corrected accordingly.

4. B6
˜K* 6h8

The matrix elementM for B2→K* 2h8 reads, in the fac-
torization approximation,
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M5
GF

A2H VubVus* S a21a1

F1
B→h8~mK*

2
!

A0
B→K* ~mh8

2
!

f K*

f h8
u D

1VcbVcs* a2

f h8
~c!

f h8
u 2VtbVts* F2a322a5

1S a32a51a42
a6mh8

2

ms~mb1ms!
D f h8

s

f h8
u

1
a6mh8

2

ms~mb1ms!
1a4

F1
B→h8~mK*

2
!

A0
B→K* ~mh8

2
!

f K*

f h8
u G J

3^K* 2u s̄b2uB2&^h8u ūu2u0&, ~3.69!

with

^K* 2u s̄b2uB2&^h8u ūu2u0&

52 i f h8
u 2mK* ~pBeK*

* !A0
B→K* ~mh8

2
!. ~3.70!

5. B6
˜K6h

The matrix elementM for B2→K2h reads, in the fac-
torization approximation,

M5
GF

A2
H VubVus* S a21a1

mB
22mh

2

mB
22mK

2

F0
B→h~mK

2 !

F0
B→K2

~mh
2 !

f K

f h
u D

1VcbVcs* a2

f h
~c!

f h
u

2VtbVts* F2a322a5

1S a32a51a41
a6mh

2

ms~mb2ms!
D f h

s

f h
u

2
a6mh

2

ms~mb2ms!

1S a41
2a6mK

2

~ms1mu!~mb2mu!
D

3
mB

22mh
2

mB
22mK

2

F0
B→h~mK

2 !

F0
B→K2

~mh
2 !

f K

f h
u G J

3^K2u s̄b2uB2&^hu ūu2u0&, ~3.71!

where

^K2u s̄b2uB2&^hu ūu2u0&5 i f h
u~mB

22mK
2 !F0

B→K2

~mh
2 !,

~3.72!

with

f h
u5

f 8

A6
cosu82

f 0

A3
sin u0 , f h

s 522
f 8

A6
cosu82

f 0

A3
sin u0 .

~3.73!

6. B6
˜K* 6h

The matrix elementM for B2→K* 2h reads, in the fac-
torization approximation,
M5
GF

A2
H VubVus* S a21a1

F1
B→h~mK*

2
!

A0
B→K* ~mh

2 !

f K*

f h
u D 1VcbVcs* a2

f h
~c!

f h
u

2VtbVts* F2a322a51S a32a51a42
a6mh

2

ms~mb1ms!
D f h

s

f h
u

1
a6mh

2

ms~mb1ms!
1a4

F1
B→h~mK*

2
!

A0
B→K* ~mh

2 !

f K*

f h
u G J

3^K* 2u s̄b2uB2&^hu ūu2u0&, ~3.74!

with

^K* 2u s̄b2uB2&^hu ūu2u0&

52 i f h
u2mK* ~pBeK*

* !A0
B→K* ~mh

2 !. ~3.75!

IV. INPUT PARAMETERS, NUMERICAL RESULTS
AND COMPARISON WITH THE CLEO DATA

A. Input parameters

The matrix elements for the decayB→h1h2 derived in
Sec. III depend on the effective coefficientsa1 , . . . ,a6,
quark masses, various form factors, coupling constants,
CKM parameters. In turn, the coefficientsai and the quark
masses depend on the renormalization scalem and the QCD
scale parameterLMS̄ . We have fixedLMS̄ using aS(MZ)
50.118, which is the central value of the present world a
erageaS(MZ)50.11860.003 @63#. The scalem is varied
betweenm5mb and m5mb/2, but, due to the inclusion o
the NLL expressions, the dependence of the decay rates om
is small and hence not pursued any further. To be spec
we usem52.5 GeV in the following. The CKM matrix will
be expressed in terms of the Wolfenstein parameters@58#
A, l, andr, and the phaseh. Since the first two are wel
determined with A50.8160.06, l5sin uC50.2205
60.0018, we fix them to their central values. The other t
are correlated and are found to lie~at 95% C.L.! in the range
0.25<h<0.52 and20.25<r<0.35 from the CKM unitar-
ity fits @64#. We take four representative points in the a
lowed (r,h) contour. Their values and the legends used
drawing the figures are as follows:~1! r50.05,h50.36,
yielding Ar21h250.36 ~drawn as a solid curve!; ~2! r
50.30,h50.42, yieldingAr21h250.51~drawn as a dashed
curve!; ~3! r50,h50.22, yieldingAr21h250.22 ~drawn
as a dashed-dotted curve!; and~4! r520.20,h50.45, yield-
ing Ar21h250.49 ~drawn as a dotted curve!. They corre-
spond to the central values of the fits in Ref.@64#, the maxi-
mum allowed value ofuVub /Vcbu with positive r, the
minimum allowed value ofuVub /Vcbu, and the maximum al-
lowed value ofuVub /Vcbu with negativer, respectively. The
CKM parameters are also an output from the measured n
leptonicB decays, and we shall illustrate the potential inte
est in this kind of analysis using some of the ratios of t
branching ratios as an exercise. The rest of the input qua
ties used in our estimates for the branching ratios are
lected in several tables. We now discuss these input val
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1. Effective coefficients in the factorization scheme

With the electroweak penguin diagrams and the so-ca
W-annihilation-exchange diagrams neglected, the amplitu
for the various decays depend on six coefficientsai , defined
in Sec. III. Eventually, one should determine each one
them ~or particular combinations thereof! by analyzing the
specific decay modes most sensitive to these coefficie
This way, one can measure the deviation in each one of t
from their values in perturbation theory, and determine if t
deviation~due to nonperturbative effects! can be described in
terms of a few universal parameters. Perhaps it should
remarked here that an analysis of the heavy-to-heavy tra
tions in two-bodyB decays can be reasonably well describ
in terms of one parameter, calledz in Ref. @13#, whose value
seems to be universal. Following this, we do the simp
thing here by assuming that a single parameterj, defined in
Sec. III, can be used to compensate for neglecting the o
octet terms in all matrix elements of the decaysB→h1h2.
This is motivated by the fact that the energy release in th
decays is comparable. It remains an open question if
parameterj introduced here in the decays such asB→Kp is
close to the corresponding parameterz, entering, for ex-
ample, in the decayB→Dp. We show the dependence of th
branching ratios in several decay modes in the range 0<j
<1, with j5 1

3 being the naive factorization value, i.e., if on
uses factorization and neglects the octet-octet contributio
the matrix elements.

2. Decay coupling constants and form factors

For the various decay constants occurring in the formu
in Sec. III, we use the numerical values shown in Table
The values forf v , f K , f K* , and f p coincide with the cen-
tral values quoted in Ref.@13#, extracted from data on th
electromagnetic decays ofv andt decays, respectively@46#.
The decay constantsf h8

u , f h8
s , f h

u , and f h
s defined in Eqs.

~3.64! and~3.73! are obtained from the values forf 0 and f 8
in Table II, and by usingu85222.2° for the (h,h8) mixing
angle@47#. The errors on the coupling constants in the ta
are small~typically 1–3 %!, except onf h8

(c) and f h
(c) , for

which present data allow a determination with an error
615% ~assuming the mixing formalism holds!.

The decays being considered here, such asB→pK, in-
volve light hadrons in the final state. The rates require
knowledge of the various form factors atq25mh

2 , wheremh

denotes a light hadron mass. Sinceq25mh
2 is rather close to

TABLE II. Decay constants in MeV.

f v f K f K* f p f 0 f 8 u f h8
(c)u u f h

(c)u

195 160 214 131 157 168 5.8 0.9
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the pointq250, and a simple pole model is mostly used
implement theq2 dependence in the form factors, we sh
neglect thisq2 dependence in the form factors, and equ
F0,1

B→h(q25mh
2)5F0,1

B→h(q250). Explicit calculations bear
this out, and prove that the variation in the stated range
indeed small@13,38,39#. The values used for the form factor
F0,1

B→h(q250) and A0
B→h(q250) in our rate estimates ar

listed in Table III. They are taken from Ref.@4#, which are
reproduced in most other calculations~see, for example,
Table I in Ref.@39#!. Note also that the SU~3!-breaking ef-
fects in the form factors are neglected. They are typically
O(20)% @38#.

3. Current and constituent quark masses

The quark masses enter our analysis in two differ
ways. First, they occur in the amplitudes involving pengu
loops. We treat the internal quark masses in these loop
constituent masses rather than current masses. For them
use the following~renormalization scale independent! val-
ues:

mb54.88 GeV, mc51.5 GeV,
~4.1!

ms50.5 GeV, md5mu50.2 GeV.

Variation in a reasonable range of these parameters doe
change the numerical results of the branching ratios sign
cantly. The value ofmb above is fixed to be the current qua
mass valuemb̄(m5mb/2)54.88 GeV, given below. Second
the quark massesmb , ms , md , and mu also appear
through the equations of motion when working out the~fac-
torized! hadronic matrix elements. In this case, the qua
masses should be interpreted as current masses. U
mb̄(mb)54.45 GeV@66# and

ms̄~1GeV!5150 MeV,

md̄~1 GeV!59.3 MeV, ~4.2!

mū~1 GeV!55.1 MeV,

from Ref. @62#, the corresponding values at the renormaliz
tion scalem52.5 GeV are given in Table IV, together wit
other input parameters needed for our analysis.

4. Numerical values for the effective Wilson coefficients Ci
eff

From Eqs.~2.8!–~2.10! it follows that the effective Wil-
son coefficientsCi

eff defined in Eq.~2.5! are in general com-
plex numbers, which depend on quarks masses and on
CKM matrix elements. Taking the quark masses listed in
~4.1! and using the central values for the CKM paramet
TABLE III. Form factors atq250.

F0,1
B→K2

F0,1
B→p2

F0,1
B→p0

F0,1
B→h8 F0,1

B→h A0
B→v

A0
B→K*

0.33 0.33 0.33

A2 0.33S sinu8

A6
1

cosu0

A3
D 0.33S cosu8

A6
2

sinu0

A3
D 0.28

A2

0.28
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TABLE IV. Quark masses and other input parameters. The running masses are given at the renor
tion scalem52.5 GeV.

mb̄ ms̄ md̄ mū
as(mZ) tB ^q2& u8 u0

4.88 GeV 122 MeV 7.6 MeV 4.2 MeV 0.118 1.60 ps mb
2/2 222.2° 29.1°
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from the unitarity fits@64# ~i.e., r50.05 andh50.36), the
effective Wilson coefficientsCi

eff at the renormalization scal
m52.5 GeV are shown in Table V. We remark that the~al-
most! identical values of these coefficients in the first tw
columns (b→s and b̄→ s̄ ) reflects that the imaginary part
of these effective Wilson coefficients are essentially gen
ated by strong interactions. The numerically differing entr
in the other two columns (b→d and b̄→ d̄ ) reflect that the
weak (CP-violating! and strong interaction phases in the
decays are comparable.

B. Numerical results and comparison with CLEO data

Having stated our theoretical framework and the inp
parameters, we now present our results for the various
cays of interest listed in Sec. III. A word of caution concer
ing the accuracy of the absolute decay rates calculated b
is in order. As just displayed, there are many parame
involved in describing exclusive nonleptonic decays, a
while the decay rates do not depend sensitively on all
them, and many input parameters are already well know
is obvious that the predicted branching ratios do depend
sitively on some for which there is no alternative at pres
to using model-dependent estimates. The particular qua
ties in question are the decay form factors. Some of th
form factors enter into other processes which have been m
sured~such as in the semileptonic and radiativeB decays!,
and the estimates being used are found to reproduce the
quite well; however, some others are not yet constrained
data directly. So the estimates given below for the abso
decay rates have to be taken with an accuracy which is
better than a factor 2. The additional uncertainty due to
parameterj cannot be judged at this stage. That can only
ascertained in the future, if this framework proves to be
reasonable way to analyze heavy-to-light transitions inB de-
cays.

However, within this framework, the ratios of the branc
ing ratios are much more stable, as many of the theore
uncertainties~such as in the form factors, various scales, a
quark masses! cancel out to a large extent. In some cases,
dependence on the parameterj also cancels, or it is very
r-
s

t
e-
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weak. Hence, the ratios are more reliable and the experim
tal information on these ratios can eventually be used me
ingfully to draw inferences on the fundamental paramete
such asr andh.

1. Branching ratios for B̃ pp modes

We shall show the branching ratios of interest as a fu
tion of the parameterj for four different set of values of the
CKM parameters. Wherever available, the present meas
ments of the branching ratios at the61s level are also
shown on these figures~thick solid lines!. All experimental
numbers are taken from Refs.@1–3#, and, in showing the
experimental results, we added the statistical and system
errors in quadrature. We start by showing in Fig. 4 t
branching ratioB(B6→p0p6). The decay rate for this
mode is sensitive to both the variation inj and the CKM
parameters. This is obvious from the quadratic depende
of the decay rate on the quantityuVubu. Also, it depends on
the combinationa11a2. Hence a measurement of this dec
rate will yield information on these quantities. In quoting
range, we shall take 0<j<0.5 ~which is suggested by the
combined analysis of all the present CLEO data onB
→h1h2 decays, which we show later!. We estimate

B~B6→p0p6!.~0.121.4!31025,

which is uncertain by over an order of magnitude. Howev
the lower range corresponds to the rather small value of
CKM factor, uVub /Vcbu50.05, and is therefore somewh
unlikely. For the central valueuVub /Vcbu50.08, we estimate

B~B6→p0p6!5~0.320.6!31025.

The present experimental upper limit is~at 90% C.L.!,

B~B6→p0p6!,2.031025.

In Fig. 5, we show the branching ratioB„B0(B0̄)
→p7p6

…. Again, this decay mode is sensitive toj and the
CKM parameters, although the resulting uncertainty is les
TABLE V. Effective Wilson coefficientsCi
eff at the renormalization scalem52.5 GeV for the various

b→q( b̄→ q̄ ) transitions. See text and Eq.~2.8!.

b→s b̄→ s̄ b→d b̄→ d̄

C1
eff 1.160 1.160 1.160 1.160

C2
eff 20.334 20.334 20.334 20.334

C3
eff 0.02110.004i 0.02110.004i 0.02010.002i 0.02210.006i

C4
eff 20.05220.011i 20.05120.011i 20.04820.007i 20.05320.017i

C5
eff 0.01610.004i 0.01610.004i 0.01510.002i 0.01710.006i

C6
eff 20.06420.011i 20.06320.011i 20.06020.007i 20.06520.017i
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this case than inB(B6→p0p6). Comparison of the mode
calculations with the present upper limit~at 90% C.L.!,

B„B0~B0̄!→p7p6
…,1.531025,

shows that this decay mode is expected to lie within a fac
2–3 of the present upper limit and hence should be meas
soon. Already, the present upper limit on this mode disfav
some extreme values of the CKM parameters correspon
to uVub /Vcbu close to or in excess of 0.11.

In Fig. 6, we show the branching ratioB„B0(B0̄)
→p0p0

…. This branching ratio is not very sensitive toj in
the region 0<j<0.5, but rises sharply asj→1. All the
curves lie, however, significantly below the present up
limit @46#:

B„B0~B0̄!→p0p0
…,9.131026.

Restricting to 0<j<0.5, our model calculation yields

B„B0~B0̄!→p0p0
….~0.522.0!31026.

2. Branching ratios for B̃ pK modes

In Fig. 7, we show the branching ratioB(B6→p6K).
This is a good decay mode, in principle, to determine
parameterj, as there is no perceptible dependence of the
on the CKM parameters. In the indicated range 0<j<1, the

FIG. 5. As in Fig. 4, but for the processB0(B0̄)→p6p7.

FIG. 4. Branching ratio forB6→p0p6 as a function ofj for
various points in the (r;h) plane. Solid curve: (r,h)
5(0.05,0.36); dotted curve: (r,h)5(20.20,0.45); dashed curve
(r,h)5(0.30,0.42); dashed-dotted curve: (r,h)5(0.00,0.22). The
horizontal thick solid line~with the arrow! shows the CLEO uppe
limit ~at 90% C.L.!.
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branching ratio varies by slightly more than a factor 2. T
experimental measurement is~at 63.2s):

B~B6→p6K !5~2.321.020.2
11.110.260.2!31025.

Our estimated branching ratio is in agreement with data,
there is a slight preference for smaller values ofj, with j
.0.7 somewhat disfavored. Since the CKM parametric
pendence is small, this decay mode is useful to show
effects of the QCD corrections. In Fig. 8, we show t
branching ratioB(B6→p6K) as a function of the scaled
variable ^q2/mb

2&, in the range 0<^q2/mb
2&<1, calculated

for j50. The dashed line corresponds to the LL approxim
tion, whereas the dotted and solid lines correspond to
truncated NLL approximation, and the complete NLL a
proximation as discussed in Sec. II, respectively. The do
curve amounts to what was used in the analysis of the de
modes (B6→p6K) in Refs.@28,29#. The effect of the com-
plete NLL corrections is numerically important, and the
tend to decrease the branching ratio as compared to wha
estimates by including the charm penguin operators alon

In Fig. 9, we show the branching ratioB„B0(B0̄)
→p6K7

…. Like its charged partner,B(B6→p6K) dis-
cussed above, this decay mode is also sensitive to the pa
eterj, though in this case there is a perceptible depende
of the rate on the CKM parameters as well. The obser
branching ratio~at 65.6s)

B„B0~B0̄!→p6K7
…5~1.520.420.1

10.510.160.1!31025,

FIG. 6. As in Fig. 4, but for the processB0(B0̄)→p0p0.

FIG. 7. Branching ratio forB6→p6K as a function ofj for
various points in the (r,h) plane. Solid line: (r,h)5(0.05,0.36);
dotted line: (r,h)5(20.20,0.45); dashed line: (r,h)
5(0.30,0.42); dash-dotted line: (r,h)5(0.00,0.22). The thick
solid lines show the CLEO measurement~with 61s errors!.
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is quite comfortably accommodated by our estimates.
Comparing Figs. 9 and 7, one sees that the dependen

these decay rates onj is very similar, and hence in the rati
of branching ratios it almost cancels out. Defining this ra
by R1,

R1[
B„B0~B0̄!→p6K7

…

B~B6→p6K !
, ~4.3!

we showR1 as a function of the CKM parameterr in Fig. 10
for two values of the CKM parameterh50.52~upper curve!
andh50.25 ~lower curve!. We note thatR1 is rather insen-
sitive to h, but it does depend sensitively onr. Using the
present CLEO measurement ofR1 ~at 61s),

R150.6560.40, ~4.4!

Fig. 10 suggests that negative values ofr are disfavored.
This can also be converted as a statement on
CP-violating phaseg. Since the Wolfenstein parameterh is
positive as determined from the constraint oneK , r.0 im-
plies g,90°. We recall that the bounds ong obtained from
the CKM unitarity fits yield symmetric constraints, center
aroundg590° ~or r50). However, it should be remarke
that the lower bound on the ratio of the weak mass diff

ences in theBs
0-Bs

0̄ andBd
0-Bd

0̄ systems,DMs /DMd , which
at present is posted asDMs /DMd.20.4 at 95% C.L.@67#,

FIG. 8. B(B6→p6K) as a function of̂ q2&/mb
2 . The dashed

line corresponds to the LL approximation. The solid and dot
lines both correspond to the Wilson coefficients evaluated in
NLL approximation; the solid line takes into account the peng
diagrams of all four-Fermi operators and the tree level matrix e
ment of O8, while the dotted line takes into account the pengu
diagrams associated with the four-Fermi operatorsO1,2

c only.

FIG. 9. As in Fig. 7, but for the processB0(B0̄)→p6K7.
of

e
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now cuts away a good part of the negative-r ~equivalently
g.90°) region. A recent analysis gives~at 95% C.L.!: 32°
<g<122° @68#, which is no longer symmetric aroundg
590°. On the other hand, the model-independent constra
on g from R1, discussed by Fleischer and Mannel@28#, are
such that they forceg to lie in the range 0°<g<gmax or
180°2gmax<g<180°, depending on the sign of cosd, where
d is the strong phase-shift difference between the tree

penguin amplitudes in the decayB0(B0̄)→p6K7. Since this
phase difference is calculated in our model, the prefer
solution is the one in whichg lies in the first quadrant, or
0°<g<gmax. Unfortunately, with the present experiment
errors, the 95% C.L. limit onr from R1 ~or on gmax) does
not allow one to draw more quantitative conclusions on
value ofg than what one obtains from the CKM fits@64,68#.
This is expected to change with improved data onR1, if the
value of R1 is found to be considerably less than 1. O
analysis, carried out in the factorization framework, und
lines the sensitive dependence ofR1 on r, with r<0 disfa-
vored ~at 61s) by the CLEO data onR1. The effect of the
present lower bound onDMs /DMd on r is qualitatively
similar to the one from the present measurement ofR1,
namely, both preferr>0. For an updated CKM fits, also se
Ref. @65#.

3. Branching ratios for the B̃ h6p and B̃ h6K modes

The decay modesB6→h6p0, B0(B0̄)→h6p7, and
B6→h6K0 have been measured with impressive precisio
We compare our model estimates with these measurem
In Fig. 11, we show the branching ratioB(B6→h6p0). The
decay rate in this case is mildly dependent onj, but more
importantly on the CKM parameters. The experimental m
surement~at 65.5s)

B~B6→p0h6!5~1.620.520.2
10.610.360.1!31025

is reproduced well by our model.
In Fig. 12, we compare our model estimates with t

CLEO measurements~at 67.8s)

B„B0~B0̄!→h6p7
…5~2.220.5

10.660.1!31025.

d
e

-

FIG. 10. The ratioR15B„B0(B0̄)→p6K7
…/B(B6→Kp6) as a

function of the Wolfenstein parameterr, for h50.25~lower curve!
and h50.52 ~upper curve!. The curves are drawn forj50. The
horizontal thick solid lines show the CLEO measurement~with
61s errors!.
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3012 57A. ALI AND C. GREUB
Agreement between our model and data is good. The
curves~dashed and dotted! which lie outside the61s bands
correspond to large values of the ratiouVub /Vcbu, namely,
uVub /Vcbu50.11, which is also outside of the61s bound
from direct measurements ofuVub /Vcbu. So, all of these dif-
ferent pieces of data are giving a consistent picture.

In Fig. 13, we show our estimates for the branching ra
for the modeB6→h6K0, which has been measured~at
4.4s)

B~B6→h6K0!5~2.421.020.2
11.110.260.2!31025.

This branching ratio has a very similar dependence onj as in
the decayB6→p6K0, and likewise has little dependence o
the CKM parameters. Model estimates are in agreement
data forj<0.7.

As another example of a ratio of branching ratios, wh
is sensitive to the CKM parameters, we define the ratioR2

R2[
B„B0~B0̄!→h6p7

…

B~B6→p6K0!
, ~4.5!

which, like R1, is less dependent on the other input para
eters, includingj. SinceB(B6→p6K0) is insensitive to the
CKM parameters, the ratioR2 reflects the CKM dependenc

of B„B0(B0̄)→h6p7
…. We plot the ratioR2 in Fig. 14 as a

function of the phaseh, for three values ofr: r50.05
~dashed curve!, r50.35~solid curve!, andr520.25, which
coincides with the caser50.35. The present experiment
value ofR2 ~at 61s) is

R250.9660.57. ~4.6!

FIG. 11. As in Fig. 7, but for the processB6→h6p0(h
5K,p).

FIG. 12. As in Fig. 7, but forB0(B0̄)→h6p7.
o

o

th
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This shows that with the stated significanceR2 disfavors
large values ofh in excess ofh>0.5.

4. Branching ratios for the B6
˜vK6 and B6

˜vh6 modes

Next we study the decaysB6→vK6 and B6→vh6

(h5p,K), which have also been measured by the CLE
collaboration@1#, with the former having branching ratios~at
63.3s)

B~B6→vK6!5~1.220.5
10.760.2!31025,

and the latter~at 66.0s)

B~B6→vh6!5~2.520.7
10.860.5!31025.

These measurements are compared with our model calc
tions in Figs. 15 and 16, respectively. Both of these dec
have an interesting dependence on the variablej. Taking the
data at face value (61s), a value forj in the range 0.15
<j<0.5 andj>0.85 is somewhat disfavored by data in th
decayB6→vK6. Curiously, the estimated branching rat
B(B6→vK6) has its lowest value in the rangej50.3
60.1, and in this range it fails to reproduce the data
almost 2s. This observation and the present measuremen
B(B6→p6K) as well asB(B6→h6K), which disfavorj
>0.7, then imply that the preferred value ofj in our model
is either in the range 0<j<0.15, or elsej.0.5. In this
range, however, the estimated branching ratio is somew
lower than the experimental one inB6→vh6, but not by a

FIG. 13. As in Fig. 7, but for the processB6→h6K.

FIG. 14. The ratioR25B„B0(B0̄)→h6p7
…/B(B6→Kp6) as a

function of the Wolfenstein parameterh, for r50.05 ~dashed
curve!, andr50.35~solid curve!. For r520.25 the corresponding
curve is almost identical to the curve forr50.35. The curves are
drawn for j50. The horizontal thick solid lines show the CLEO
measurement~with 61s errors!.
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large amount. Due to the fact that the data being discus
are the first ones of their kind and the uncertainties relate
the parameters of the present theoretical framework have
been exhaustively studied, one cannot draw too strong c
clusions on the value of the parameterj from this decay.

5. Branching ratios for the B6
˜(h,h8)(K6,K*6) modes

Finally, we take up the decayB6→h8K6, which has at-
tracted much theoretical attention recently. Compared to
decays considered so far, this decay and the related
B6→hK6, B6→h8K* 6, andB6→hK* 6 have an extra
contribution from the decay chainb→sc c̄→s(h,h8).

In Fig. 17 we show the branching ratioB(B6→h8K6) as
a function ofj, varying the CKM parameters, as indicated
Sec. IV A. Since we are not able to determine the sign of
coupling constantf h8

(c) due to the sign ambiguity in the dete

mination of the angleuc , we show the result for bothf h8
(c)

565.8MeV. Note that thej dependence of this branchin
ratio results in a factor 2 uncertainty varyingj in the range
0<j<0.5 for the positive-f h8

c solution; the branching ratio
is less sensitive toj for the negative-f h8

c case. The positive-

f h8
(c) solution yields a marginally higher branching ratio. T

CKM parametric dependence of this branching ratio is
very marked. Within the present uncertainties in the in
parameters, we obtain, atj.0

B~B6→h8K6!.~324!31025,

which, atj50.5, falls down to the range

B~B6→h8K6!.~223!31025.

FIG. 15. As in Fig. 7, but for the processB6→vK6.

FIG. 16. As in Fig. 7, but for the processB6→vh6.
ed
to
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e

t
t

This is to be compared with the CLEO measurement~at
65.5s)

B~B6→h8K6!5~7.122.1
12.560.9!31025.

Given the experimental and theoretical errors, the model
timates and data are clearly not incompatible, though, w
the values of the parameters used by us, our estimates
somewhat on the low side. Since, apart from the form f
tors, this branching ratio is sensitive to the value of t
s-quark mass, with the branching ratio increasing asms is
decreased from its default valuems(m52.5 GeV)
5122 MeV used by us, the decay rate can be made to a
with the CLEO data by optimizing these parameters in
overall fit. This is not warranted at this stage.

The branching ratios for the decaysB6→h8K* 6,
B6→hK6, andB6→hK* 6 are shown in Figs. 18, 19, an
20, respectively, for the valuesf h8

(c)
525.8 MeV and f h

(c)

520.93 MeV. The reason for selecting the negative sign
to be traced to the observation that the contribution of
amplitudeb→(c c̄)s→(h,h8)s can also be calculated usin
a QCD anomaly which fixes the signs of these constant
be negative@69#. The estimated branching ratios satisfy t
respective present experimental bounds on them@1#. For 0
<j<0.5, we predict

B~B6→h8K* 6!.~0.320.9!31026.

FIG. 17. Branching ratio forB6→h8K6 as a function ofj for
the same points in the (r,h) plane as in Fig. 7. The upper~lower!
set of curves close toj50 corresponds to the positive~negative!
solution for f h8

(c) . The horizontal thick solid lines show the CLEO
measurement~with 61s errors!.

FIG. 18. Branching ratio forB6→h8K6* as a function ofj for
the same points in the (r,h) plane as in Fig. 7. All curves corre
spond to the valuef h8

(c)
525.8 MeV. The upper limit from CLEO is

2.931024 at 90% C.L.
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3014 57A. ALI AND C. GREUB
The decaysB6→h(K6,K6* ), on the other hand, do no
depend very sensitively on the sign off h

(c) . We estimate (0
<j<0.5)

B~B6→hK6!.~1.022.8!31026,

B~B6→hK* 6!.~1.022.8!31026.

Finally, we remark that scenarios with a greatly enhan
strength of the dipole operatorO8 have been entertained i
the literature@59–61#, with the view of bringing the existing
theoretical estimates of the semileptonic branching ratios
charm counting inB decays in better rapport with data.
greatly enhanced value ofC8(mW) will influence the branch-
ing ratios in some selected nonleptonicB decay channel as
well. However, this effect is diluted due to the contributio
from other Wilson coefficients, which are assumed to ha
their SM values. Also, as emphasized in Refs.@59,60#, and
more recently in Ref.@61#, the strong mixing of the operator
O2 and O8 would require a very large enhancement
C8(mW)/C8

SM(mW), typically O(10), to have a measurabl
influence inB decays, calculated at the scalem.mb , due to
the effects of the renormalization group. Qualitatively, th
picture also holds in the analysis of the exclusive nonlepto
B decays discussed by us. We show a typical caseB6

→Kp6 in Fig. 21, where the branching ratio for this mode
plotted as a function of the variableC8(mW)/C8

SM(mW). De-
spite the large range of this variable, we find that the infl

FIG. 19. Branching ratio forB6→hK6 as a function ofj for
the same points in the (r,h) plane as in Fig. 7. All curves corre
spond to the valuef h

(c)520.93 MeV. The upper limit from CLEO
is 831026 at 90% C.L.

FIG. 20. Branching ratio forB6→hK6* as a function ofj for
the same points in the (r,h) plane as in Fig. 7. All curves corre
spond to the valuef h

(c)520.93 MeV. The upper limit from CLEO
is 2.431024 at 90% C.L.
d

d

e

ic

-

ence of such a markedly enhancedC8(mW) on nonleptonicB
decays is marginal. In future, we hope that these matters
be scrutinized much more minutely. We conclude that
nonleptonicB decays considered here do not require la
enhancements ofC8(mW), or of any other Wilson coeffi-
cient, as they are by and large compatible with data w
their SM values.

V. SUMMARY

In the first part of this paper we presented a theoret
framework to study two-body decays ofB mesons with two
light mesons in the final state. First, we took into account
complete NLL corrections at the partonic level, thereby i
proving previous calculations. In particular, we also includ
the effects of the chromomagnetic penguin operator in n
leptonicB decays. These NLL order corrections are nume
cally important in the exclusive decay rates. Second, to e
mate the hadronic matrix elements, we assum
factorization, and gave a parametrization for the so-ca
heavy-to-light transitions. In its most economic version, t
brings in a single phenomenological parameter, calledj,
which has to be determined by comparing the predictions
this model with data. We took a first look at the availab
CLEO data, and estimated that our model is compati
within the present theoretical and experimental errors w
data in the range 0<j<0.5. With more precise data on
should be able to test our model, and see if within reasona
accuracy one obtains a universal value for this quantity in
heavy-to-light sector. Alternatively, with more precise da
in several decay modes, we propose to extract the effec
coefficientsa1 , . . . ,a6 directly to determine the extent o
nonperturbative effects in each one of them.

In the second part of this paper we applied this framew
to an analysis of the exclusive two-bodyB decays, in which
QCD penguin operators play an important role. Some
these decays were recently measured by the CLEO colla
ration @1–3#, with which we compared our model calcula
tions; we also predicted the branching ratios for some rela
decay modes which have not been measured yet. While
formalism provided here is generally applicable to study
B→PP, B→PV, and B→VV decays, we restricted our
selves to discussing the four generic casesB→pp,
B→Kp, B6→vh6, andB6→(h,h8)(K6,K* 6).

FIG. 21. B(B6→Kp6) as a function ofC8(mW)/C8
SM(mW),

whereC8(mW) is the Wilson coefficient ofO8 including new phys-
ics, whileC8

SM(mW) is the standard model value. We usej50 and
(r,h)5(0.05,0.36).
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In particular, we studied at some length the last cla
involving the decayB6→K6h8 and the related ones. As th
h8 and h mesons are composed ofu, d, ands quarks, the
corresponding decay rates are particularly sensitive to in
ference effects among the several competing amplitudes
volving the current-current and the QCD penguin operato
as was pointed out by Lipkin some time ago@6#. In addition,
the operatorsO1,2

c which induce transitions of the formb

→s(c c̄)→s(h,h8) have to be included. Estimates of th
latter require a trustworthy evaluation of thec c̄ component
in the wave function of theh8 andh mesons. We used th
mixing formalism involving the (h,h8,hc) complex and
data to determine thec c̄ contents of these mesons. W
found that this charm-induced contribution does not do
nate the amplitudes for the processes involvingh8; the decay
rate is more sensitive to the penguin contributions. Our pa
provides the complete amplitudes showing all these in
vidual contributions. This can be used in future analyses
more precise data to determine thec c̄ components inh and
h8. The estimates presented here withu f h8

(c)u56 MeV yield
B(B6→K6h8)5(2 – 4)31025. This is somewhat lower
than the central value of the present measurement, but c
patible with the value obtained by fluctuating down the e
perimental error by 1s. However, a simple answer about th
large measured value ofB(B6→h8K6), a question fre-
quently asked, in terms of a single dominating amplitude
not readily available, though the penguin and singlet com
nents ofh8 are certainly at the back of the enhanced bran
ing ratio for this decay. In our analysis, we find that t
measured rate in theh8K6 mode is only marginally~say a
factor 2! larger than our model estimates, and given the t
oretical errors there is nothing anomalous about it. We a
expect that the data will evolve with time so as to reduce
present discrepancy.

We made predictions to test this interference pattern
the related decays involvingh andh8. The resulting decay
rates, which also reflect the built-in angular momentum d
ferences between the statesK* (h,h8) andK(h,h8), show a
certain hierarchy among the branching ratios. While
other three may turn out comparable with each other~within
a factor 2–3!, we predict
fe
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B~B6→h8K6!@B~B6→h8K* 6!.

The measurement ofB(B6→h8K6), being the largest mea
sured so far, is in line with our analysis based on the S
However, in our SM-based framework it would be difficu
to accommodate a much larger branching ratioB(B6

→h8K* 6) vitiating this hierarchy.
The rates for the other decays presented in our anal

are also in reasonable agreement with data, within the p
ently allowed CKM parameter space. Based on our estim

presented here, we expect the decay modeB0(B0̄)→p7p6

to be measured within a factor 2–3 below the present up
limit. We point out interesting inferences which present d
allow us to draw on the consistency of the SM. In particul
the ratiosR1 and R2 involving the Kp and pp final states
appear very promising. Present measurements on these r
are tantalizingly close to providing independent informati
on the CKM-Wolfenstein parametersr andh. Their impact
on the CKM phenomenology will only be determined wi
more precise data, to which we look forward with animat
interest. For the time being, the standard model rules
equately in the nonleptonicB decays.

Note added in proof. Since the publication of this pape
several related papers have appeared in which some o
issues discussed here are also investigated@70–73#.
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