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Analysis of two-body nonleptonicB decays involving light mesons in the standard model
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We report a theoretical analysis of the exclusive nonleptonic decays 8fttedB® mesons into two light
mesons, some of which have been measured recently by the CLEO Collaboration. Our analysis is carried out
in the context of an effective Hamiltonian based on the standard m{&Hd), using next-to-leading order
perturbative QCD calculations. We explicitly take into account@{ers) penguin-loop diagrams of all four-

Fermi operators and the(«,) tree-level diagram of the chromomagnetic dipole operator, and give a prescrip-
tion for including their effects in nonleptonic two-body decays. Using a factorization ansatz for the hadronic
matrix elements, we show that existing data, in particular, the branching (®s — »'K*), B(B*

— K%, B(B%B%—=7"K*), and B(B*— wh*)(h*=x*,K*), can be accounted for in this approach.
Thus, theoretical scenarios with a substantially enhanced Wilson coefficient of the chromomagnetic dipole
operator(as compared to the SMand/or those with a substantial color-singdnat_ component in the wave
function of " are not required by these data. We predict, among other decay rates, the branching ratios for the
decaysB°(B®%)— 7= 7* andB* — #%#*, which are close to the present experimental limits. Implications of
some of these measurements for the parameters of the CKM matrix are prefBa&sh-282198)05905-0

PACS numbes): 13.25.Hw, 12.38.Bx

I. INTRODUCTION one we use here is based on the idea of factoriz484(85,
in which the final-state interactions are assumed to be absent,
Recently, the CLEO collaboration reported first measureand hence the hadronic matrix elements in the deBay
ments in a number of exclusive decay, — n'K*, B* —M 1M, factorize into a product of two comparatively more
KO, BO(E—> 7°K*, B*—w h*(h*=7"K?), tractable matrix elements. These are then taken either from
. . Oht o0 EOet T ) data or calculated in well-defined theoretical contexts, such
B — K'h +-B — mh~, BY(B)h™7~, and the inclu- 55 QCD sum rules and potential mods13,36—4Q This
sive decayB™— 7' +X [1-3], which involve the so-called framework does remarkably well in accounting for nonlep-
QCD penguin operators. In addition, a number of relateqonic two-bodyB decays involving the current-current opera-
decays such aB°(B®%) — 7 #* andB*— =~ «° are on the tors O, [4,7] (see Sec. Il for definition Recent analyses
verge of measuremef8]. On the theoretical side, consider- have shown that data on two-body nonleptoBicdecays
able effort has gone into studies of nonleptonic weak decaysn the so-called heavy-to-heavy transitions, such Bas
in terms of estimating decay ratg4—13 and the inherent —(D,D*)h,B—(D,D%)D,B—J/¢h (with h being a light
direct and indirectCP asymmetried10,14—-22. Since the hadron, can be described in terms of two phenomenological
first measurements of the above-mentioned decays, theorepiarameters, anda, [4], whose values seem to be universal
cal interest in this subject has surged, and recent literature [21,13. Techniques based on heavy quark effective theory
rife with all kinds of interesting interpretations of data, both [42] allow us in some limited cases to “derive” such factor-
within and beyond the standard mod@M) [23-29. Of  ization propertie§43] and yield results which are in agree-
these, the decay mod&™ — »'K™ is conspicuous due to its ment with data.
reported high branching ratioB(Bi—my’Ki):(?.lfgf Motivated by the phenomenological success of factoriza-
+0.9)x107° [3]. tion in the heavy-to-heavy nonleptori® decays, we would
The standard theoretical framework to study nonleptonidike to pursue this framework further in the domain of the
B decays is based on the effective Hamiltonian approactso-called heavy-to-light transition8,—h1h,, whereh; and
which allows us to separate the short- and long-distance corr, are light hadrons. The recently measuBdecayq1-3]
tributions in these decays using the Wilson operator produdbelong to this category, and they should be analyzed on their
expansiorf30]. QCD perturbation theory is then used in de- own, without prejudice about the suggested values of the
riving the renormalization-group improved short-distanceeffective parameters from the heavy-to-heavy transitions.
contributions[31]. This program has now been carried out The decaysB—h;h, in most cases involve mixing among
up to and including the next-to-leading order terf82,33, the current-current, QCD penguin operators and the chromo-
but the long-distance part in the two-body hadronic decaysnagnetic operators. Our hope is that once perturbative QCD
B—M;M, involves the transition matrix elements corrections are taken into account, these decays may allow
(M;M,|0;|B) at a typical hadronic scale, whef® is an  themselves to be described in terms of a few phenomenologi-
operator in the effective Hamiltoniafsee below. Calculat- cal parameters. Related work along these lines concerning
ing these matrix elements from first principles is a true chal-QCD penguin diagrams in nonleptoni® decays was done
lenge in theory which remains to be met. In view of this, aprior to this analysi§8,10], which we make use of here,
number of approximate schemes has been put forward. Thenprove upon, and extend.
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Our analysis is based on the following three main ingre-estimated to be|f(77°)|22_3 MeV in the conventional
dients: (7,7')-mixing formalism, andf{"|=0.93 MeV in the 1N,

We work at next-to-leading logarithmidNLL ) precision, . :
Lo i gy . improved approach. The decrease in the valu¢f§§?| re-
taking iinto account thé(as) one-loop penguin-type dia . flects the small value of the singlet mixing andlg, which

grams of all four-Fermi operators in the effective Hami
tonian and some process-independent parts of the vertex cdRakes then an almost pure octet stafé9], hence also re-
rection diagrams associated with these four-Fermi operatorslucing thecc component of they meson. Our estimate
We also take into account the effect of tBéa,) tree-level |f(c,)|:5.8 MeV is to be contrasted with the rangé”
matrix element associated with the chromomagnetic dipole- (50—180) MeV obtained in Ref23]. (Likewise, we find

operator via the proceds—sg—sq'q’. |£(9/f,,|=0.08, which is also an order of magnitude smaller

. . 7]
_ To calculate the hadronic matrix elements, we propose g,an, the one given in Ref24].) We note that our estimate
simple factorization ansatz which allows us to include the

‘ NS f1F9] i istent with th MeV=f(©
effects of theO(ag) matrix elements just discussed above. 11|5 ”l\/||e\I/S viﬁir::ilsw?re \é)vll)tainez igotw;d;f:nwheile fronm an
In calculatingB decays involving am’ or  meson, such !

asB*— 7'K* andB*— 7K*, we include the contribution analysis of theQ? dependence of the electromagnetic form
from the deca)b—>s(cc_)—>s(’7; 7') [44,45. The required factor of ' [51]. Likewise, data on the electromagnetic form

. e(c . .
decay constants and mixing parameters are estimated usitf1 ctor O_f 7 are C(z35|stent.W|tH1f(”)| bglng smal.l[51]. With
data on the radiative decaysy— 7.y,7 v,7y and the OUr estimate off3,’], we flnd that this charm-mduced con-
two-photon decays of they, ', and 7. [46]. Concerning trlbutlog does not _domlnate the matrix ele_ment Br
(7,7') mixing, we discuss both the conventionébne —>7],K-_; thg penguin operators play a more important role
mixing-anglé formalism[47,4§ and the one involving two numerically in _thlS depay. . .

mixing angles in this sector, which is suggested by tt¢,1/ ~ The branching ratid3(B~— »'K~), as well as those of
improvedU (3)® U(3) chiral perturbation theory framework the related onesB—#'K*~, B”—zK=, and B~
[49,50. Since the latter formalism is also favored by a recent— 7K* =, depend upon the interference of the amplitudes
phenomenological analys[§1] of the data on theyy and  arising from the chairb—s(cc)—s(#n’,7), and the ones
n’ y form factors[52—-55, we use it in our estimates f&  arising from calculating the matrix elements of the rest of the
decays involvingp’ and » mesons. operators. Concentrating on the de®y— 7' K=, we note

We would like to make a numper of rgmarks pointing outthat the sign of the term involving the—>s(c_c)—>s(7;’,n)
the overlaps and differences with earlier analyses and ejn the full amplitude is not determined priori. Since the
plaining our factorization ansatz. Concerning the QCD persolutions with constructive or destructive interference terms
turbative part, we note that our calculations come close to thgre both logical possibilities, we have estimat&dB*

derivation give_n in_ Reil[lo], but are more cpmplete as far as — 5'K*) for both cases, with the positivﬁaﬁ? solution
the NLL contribution is concerned. We find that the NLL ielding a marginally larger rate. However, more impor-

improvements implemented by us reduce the scale depe antly, we find that the rate in this decégnd in some otheys

dence in various nonleptonic decay rates. This result is "Eiepends significantly on the parameterHence, to make
lmi with Wh"’r‘]t was demonstrateg 'r::thi rad|ﬁt|ve declﬁys absolute predictions, the phenomenological value of this pa-
—Xs+y in the same accuracyp6l. Further, the complete ., ater has to be determined. We study a number of mea-
NLL contnk_)uuon is important numerically, both compared suredB— h;h, decays to estimate a range fowhich, given
to the leading-order result and the NLL result obtained byy,e 1 esent experimental errors and theoretical accuracy of

keeping Snly the charm Pe”QUi” _contribu_tions from the OPour approach estimated by us as a factor 2 in rates, is under-
eratorsOLz: We s_how t+h|s qua+nt|tat|vely in th_e cqntext of standably not very precise at this stage. The ranget 0
the branching ratio3(B~—K=~), comparing it with the (5 is consistent with data.

estimates of the same based on keeping onlyQhe pen- This paper is organized as follows. In Sec. Il, we review
guins[28]. . ] the effective Hamiltonian for the nonleptoni® decays, and

Concerning the second point noted above, we remark thaf|culate the matrix elements of the operators at the quark
our factorization prescription introduces just one free paramreye| in the NLL precision. In Sec. Iil, we formulate our
eter, called¢, which is supposed to compensate for the netactorization ansatz to calculate the hadronic matrix elements
glect of color octet-octet contribution in evaluating the had-jn the two-body decay8— h;h,. The matrix elements for
ronic matrix elements in the heavy-to-light secB#h1h,.  yarious decay modes of interest are also detailed here, to-
This modifies the strength of the effective coefficientsgether with a brief review of the mixing formalism for the
ai, ...,ag from their perturbatively calculated valuésee n— 1’ — 7, sector. Our estimates of the decay constaffls

7

Sec. ll). Clearly, this is the simplest ansatz, and may have to nd (" relevant for the decayB=— (7', 7)(K*,K**) are

be modified eventually as more precise data on heavy to ligh | . h Section IV tai ical It
B decays become available. also given here. Section IV contains our numerical results.

We discuss the last point mentioned above concerning th_slétgi tlsnaléir;l/igj(izrgora;h deq\fjagrlck)uriaglgglggﬁ;ﬁﬂgghgfen;n
=+ ! =+ * * s u * = ’ )
decaysB — »'(K™,K*~) andB" —»(K~,K"~). Express- several tables. We compare the branching ratios with the
_ — () ) _ CLEO data varying the factorization-related paramétand
matrix element(»’[cy,ysc|0)=—if ’q,, we find using parameters of the Cabibbo-Kobayashi-Maska@&M) ma-
data on theld/yy— 7.y and J/yy— 7'y decays thaﬂf(,fr)l trix [57]. The potential impact of some of these decays on
=5.8MeV. The corresponding decay constantfaneson is the CKM phenomenology is illustrated in terms of the ratios

ing the charm quark content in thg¢ meson in terms of the
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of the branching ratios, which are more reliably calculable.
In particular, the ratiosR,=B(B%(B% —#*K*)/B(B*

—*K) andR,=B(B°(B%)— 7~ h*)/B(B*— w*K), con-
strain the CKM-Wolfenstein parametepsand » [58]. The
potential importance oR; in determining the angles was
emphasized by Fleischer and Manh28,29. Interestingly,
within the theoretical framework presented here, the mea-
sured ratioR;=0.65+0.40 suggestsat +1o0) that p=0,
which in turn implies y<<90°, where y is one of the
CP-violating angles of the unitarity triangle. We also com-
ment on the effect of aassumep enhanced coefficient of
the chromomagnetic operatdg(my), in nonleptonic two-

body B decays. This scenario has been discussed in the con-

text of new physics effects iB decays[59-61. We find,
using the decayB*—Ks™, that varying the ratio
Cg(my)/Cg(my)SM in a large range £10) has no appre-
ciable effect on the branching ratio within the present accu-
racy. Finally, we conclude with a summary in Sec. V.

Il. EFFECTIVE HAMILTONIAN FOR THE NONLEPTONIC
DECAYS B—h;h,

We write the effective Hamiltoniai . for the AB=1

0}= (u_aba)V—A(q_ﬁu,B)V—Ai
05=(Coba)v-alAsCov-n,
05=(Ugb)v_a(AaUg)y-a,

05=(¢gbu)v-n(AuCrlv-n,

while the QCD penguin operatof3;— Og are

O3= (iba)v-AE (q_,/e%)v—A ,
q/

Os= (Eba)vaE (Q_Q;CI;;)VJrA ,
q/

04=(Agba)y-n2 (ALApv- A,
q/

O¢= (q_ﬁba)vaE (q_;CI};)VJrA .
q/

Finally, the dipole operator®; andOg read

2.2

2.3

transitions as

G
Hett=—7= Vubvzq(clollj_" CZOE)

V2

8
+VepVeg(C105+C205) ~VipVig 2, CiO; |,

whereq=d,s, andC; are the Wilson coefficients evaluated
at the renormalization scaje; the current-current operators

0O} and O35 read

TABLE 1. Wilson coefficientsC;(u) at the renormalization

(2.9

0,=(e/8r2)m,sa*"(1+ y5)bF,,,, 2.4

Og=(gs/8m2)My S ,o (14 ¥5) (N352)b,Gh, .

Here @« and B are the SWB) color indices and)\ﬁﬁ,A
=1,...,8, are theGell-Mann matrices. The subscripts

+A represent the chiral projectionstlys. Thus, in Egs.
(2.2 and (2.3), (U bg)y-a=U,¥*(1—ys)bg, etc. In Eq.
24F,, andGﬁV denote the photonic and the gluonic field
strength tensor, respectively. We note that we neglect the
effects of the operatoD- in the present analysis as well as
the so-called electroweak penguifour-Ferm) operators
which we did not list explicitly. Likewise, the effect of weak
annihilation and exchange diagrams will be neglected here.
This is in line with the investigations reported in the litera-
ture [19]. Working consistently to NLL precision, the coef-
ficientsC,—Cg are needed in NLL precision, while it is suf-
ficient to use the leading logarithmitL) value forCg. The

scalen=5.0 and 2.5 GeV in the naive dimensional regularizationrelevant Wilson coefficients to the desired accuracy are listed

(NDR) scheme.C,—Cg are in NLL accuracy, whileCS" and CS"

in Table | for the two scalex=5.0 and 2.5 GeV, where

are in LL precision. Forg(u) [in the modified minimal subtraction Cgff: C,—Cs/3—Cg and Cgff: Cg+ Co.

MS schemé we used the two-loop expression with five flavors and
ay®(myz) =0.118;m}"S(m;) =165 GeV (equivalent tomy pqe=175

GeV).
Ci(w) u=5.0 GeV u=25 GeVv
cit 1.070 1.117
chyt -0.166 —-0.257
cyt 0.011 0.017
cytt -0.031 —0.044
cit 0.009 0.011
cht- -0.037 —0.056
cefitt -0.303 -0.338
ceftt —0.144 -0.158

Quark-level matrix elements

The Wilson coefficients of the four-Fermi operators de-
pend on the renormalization scale; in addition, in NLL pre-
cision, they also depend on the renormalization scheme.
These unphysical dependences are compensated for in prin-
ciple by a corresponding scheme or scale dependence of the
matrix elements of the operators. However, when using the
factorization ansatz for the hadronic matrix elements of the
operators, these cancellations do not take place in practice,
because the factorized matrix elements of the operators are
expressed in terms of decay constants and form factors, and
are as such scheme or scale independent. To achieve this
cancellation, we include perturbative QCD corrections to the
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b 0, s b 0% s
£ g .
3 = T = (a) (b)
(a) (b) FIG. 2. (a) Vertex correction diagrams to the four-Fermi opera-
tors O; (i=1,...,6).(b) Corresponding Bremsstrahlung correc-

FIG. 1. (&) Penguin-type diagrams associated with the four-
Fermi operator®; (i=1,...,6).(b) Tree-level matrix element of
the chromomagnetic dipole operatOg.

tions.

We separated the contributio@s, C,, andCgy arising from
the penguin-type diagrams of the current-current operators
0, ,, the penguin-type diagrams of the operat@s-Os,
and the tree-level diagram of the dipole operddar respec-
}ively. The process-independent contributions from the
vertex-type diagrams are contained in the matricgsand

partonic matrix element before doing the factorization step
We fully calculate the one-loop penguinlike diagrams in Fig.
1(a), and some process-independent péste below of the

vertex correction diagrams associated with the four-Ferm

operators, as shown in Fig(&8. These two classes of cor- 4 i that part of th | trix which i
rections are sufficient concerning the cancellation of the’V: ere yy IS that part ot thé anomalous matrix which 1S

scheme or scale dependences. Furthermore, the contributighi® t© the vertexand seAIf(-(ngerg)ycorrectmns. This part can
associated with the operatOr, where the gluon splits into a be easily extracted frony™ in Ref. [33]:
quark-antiquark pair, as shown in Fig(b}, is of the same

order inag as the corrections just mentioned, and is therefore -2 6 0 0O 0 O
also taken into account in our analysis. 6 -2 0 0 0
As we use in this paper the Wilson coefficients obtained
in the naive dimensional regularizatiédNDR) scheme with 0 0 -2 0 O
anticommuting ys, we also have to evaluate the various w=| 0 0 6 -2 0 o0 | (@9
O(«ay) corrections in this scheme. These corrections can be 0 0 0 5 _g
absorbed into effective Wilson coefficier@®", which for a
general SUK) color group can be written as 0 0 O 0 0 -—-16
Ctléff: Cl+ﬁ r\T,+ 7\T/|nﬂ) Ci+---, The matrix ry contains constant, i.e., momentum-
4m 1 independent parts associated with the vertex diagrams. This
matrix can be extracted from the matrixdefined in Eq.
ceff= Cfrﬁ (T y\Tlln%) Cit---, (2.12 [and given explicitly in Eq(4.6) in Ref.[33]],
4 wl, !
2]
7
1 a, 3 -7 0 0 0 O
ff__
Cg —C3—mﬂ(ct+cp+cg) .
m -7 3 0 0 0 O
o
+— r\T,+ y\T,In—b Cj+ Ty
41 o . 63 63
8 0O 0 — —— o0 O
27 9
1la _
eff _ - s rv= 7 (27)
C;'=Cys+ 5 47T(Ct+Cp+Cg) 0 0o -7 . 0 0
Qg T T my 1
+— rv+y\,ln—) Ci+---, (2.5 0 0 0 0o - 1
4 B g 3
1 0 0 0 0 3 %
a -3 ==
CE'=Cs— 55y 7. (Ci+Cp+ Cy) 3

as( ¢ 1, My Note that thew dependence and the scheme dependence of

tag vt 7’v|“7 Cjtory the vertex correction diagrams are fully taken into account in

3 Eqg. (2.5 by the terms involving the matriceg, andry,
1 respectively. There are, however, still scheme-independent,
eff _ -9 rocess-specific terms omitted, as indicated by the ellipses.
Cs =Cqt (Ci+Cp+Cy) p peciiic te _ , as y p
247 When calculating inclusive quantities, such as the semilep-
tonic branching ratios anB-hadron lifetimes, it is straight-
as| T mg . . .

+—|ry+win—| Cj+---. forward how to take these corrections into account. The vir-

4 6] tual corrections are infrared divergent on their own, but



3000 A. ALI AND C. GREUB 57

together with the Bremsstrahlung contributions in Fifh)2 Second, we have to explain the assumption which allows

they lead to a finite and well-define@(as) correction, ys to absorb the tree-level diagram-sg—sq’'q’ associ-
which is found to be small. However, it is less obvious hOWated with the Operat(ﬂs into the Contributiorcg appearing

to include them in exclusive two-body decays. The point isin the expressions fo€?". It is straightforward to write
that the division of the final states with and without the extragown the matrix element

gluon is ambiguous, and can be meaningfully defined only

with a cutoff. As such, a separation into virtual corrections

and soft gluon Bremsstrahlung contributions is arbitrary any- A
how, and we only take into account the terms involving — s My — ap
and ry. The explicit O(as) contributions which emerge (59'0’|Oglb)= ?? Sayﬂq(1+75)7bﬁ
from the penguin operators involvinggag pair in the loop

A
are infrared finite on their own, and hence do not require a — M&s ,
cutoff. X YT b ) 212
The quantitiesC;, C,, andCy given by the diagrams
shown in Fig. 1 read, in the NDR scherfafter modified
minimal subtraction (M renormalizatiof where g is the momentum transferred by the gluon to the
(a’,q") pair._ln the factorization model to be described be-
VoV Vo VE low, g’ andq’ cannot go into the same meson in the process
[ = u I~ —
Ci=—-C; ith(mc)'*‘ ith(mu)), B—h;h, due to color, i.e.q’ goes intoh;, while q’ goes
VibVig VibVig into h,, or vice versgdsee Fig. 1)]. The quantitie,, C,

andC, depend on the momentug Since we are interested
_ 2 2 m? 92 here only in two-body decaysi/ve assume, for simplicity,
C(m) =35+ 3in— —AF, ) (2.8 that the three momenta gf andq’ are equal in magnitude,
K but opposite in direction in the rest frame of theuark. The
momentum transfeq is then proportional te,, i.e.,

C,=C 4+2I m§+2| m AF i
p=Caz TN 2t 2 AR .
q _ ==Po
9= (a%)—, (213
q° 2 m? m
mg i=u,d,s,c,b 3 ,uz
where(qg?) is an averaged value @f. Inserting Eq.(2.13
q? into Eq. (2.12, and using the equations of maotion, the ex-
—AF, m2/ | (2.9 pression forCy in Eq. (2.10 is readily obtained. To be con-
! sistent, we should also replagé by (g?) in the expressions
for C; andC, in Egs.(2.8) and(2.9), respectively. To esti-
2mMy o mate the theoretical uncertainty introduced thereby, we treat
Cg=— mcs , (210 (¢?) as a parameter which varies in the rang#/4
<(g?)<mZ/2, following the prescriptions in literature
with C§ﬁ= Cg+Cs. The functionAF4(z) is defined as (16,17,

To summarize: The variouS(«s) corrections have been
1 absorbed into effective Wilson coefficientsC"
AF(2)= _4f dx x(L—x)In[1—zx(1—X)—i€]. (i=1,...,6);these coefficients are scheme independent, and
0 the term~ aglnu, which dominates the scale dependence of
(21D the original Wilson coefficient€; and the one-loop matrix

Two remarks are in order here. First, our expressions foplements, Is absent _'ﬁfﬁ‘ What remains to Eﬁe done is to
Ce™in Eq. (2.5 are written in terms of the Wilson coeffi- gshmate the hadronlc.matnx elemerits;h,|C| _O_i|E;> for
cients in the NDR scheme. Analogous expressidms with |~ 1: - - - ,6. Thenumerical values of the quantiti€s™ are
ry=0, yy=0, andCy=0) were obtained earlier in the lit- 9VEN N Table Vin Sec. IVA 4.
erature[10]. Comparing the expressions given here with the
ones in Ref.[10], where the corresponding quantities
¢S, ... e are expressed in terms of the so-called

renormalization-scheme-independent Wilson coefficients
introduced in Ref[33], one notices that the constant terms
appearing explicitly inC, andC, in the two papers are dif-
ferent. As the scheme dependence cancels automatically
when including the one-loop matrix elements discussed
above, we prefer to work with the Wilson coefficients in the  FIG. 3. D; and D, are the two diagrams contributing in the
NDR scheme. factorization approximation. See text.




Ill. FACTORIZATION ANSATZ FOR THE MATRIX
ELEMENTS IN B—hjh,
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We now have to work out the hadronic matrix elements of

the operator®; (i=1,...,6) for theprocesses of interest.

We use the factorization approximation, which we briefly
explain for a specific example. Consider the matrix element

due to theu-quark contribution of the operatdds for the
procesB8™ —-K™ w, i.e.,

(K~ w|Og[B"), Ogu):[a’u(l_%)b][ﬂ”ﬂ*”?’5()3”]15

There are two contributing diagrani®; and D, shown in
Fig. 3. The factorization approximation fér, is readily ob-
tained:

D1=(w|uy*(1+ys) U|0><K7|S_7M(1_ vs)b[B™)
=(w|uu_[0)(K~|sb_|B7), (32

where here and in the following the short-hand notatiayi
stands for

99 =qy,(1-y5)q’. (3.3

To obtain D, in the factorization approximation, we first
write the operatoO{") in its Fierzed form

oW =— Z[U_B(l_ ye)b, [ S (1+ ¥s5)Ugl

1 N
= =2/ 5lu(1=ys)b][s(1+ ¥s)u]

+3u(l—ys)Ab][s(1+ ys)rul|, (3.9

where\ denotes a color matrix. Only the first term in the
square brackets in E3.4) (being color singlet-singl¢ton-
tributes in the factorization approximation. One obtains

D2= — = (w[U{1~y5)b|B }(K[S(L+ y)ul0);
(3.5
using the Dirac equation, we can wriis, as
2 mg
N (mg+my)(my,+m,)

D,= (w[ub_|B")(K"[su_|0).

(3.6)

3001
Ge . = —
M= E VupVig(ar(K ™[ su_|0){w|ub_[B")
+ay(K™[sb_[B™)(w|uu_|0))
2agmz
—_— * —
thVtS 8 (ms+mu)(mb+mu)
X (K~ [su_|0)(w|ub_|B™)+2(as+as)
X(K~|sb_|B~We|uu_|0)|. (3.8
The quantitiesa; (i=1, ...,6) are thdollowing combina-
tions of the effective Wilson coefficients in E.5):
eff 1 eff eff 1 eff ;
Ai-1=Coi1 T G2 an=Cot GCa1, 15123
(3.9

The explicit 1N terms in Eq.(3.9) are always accompanied
by an octet-octet contribution; this can be seen explicitly in
Eq. (3.4). As one discards this octet-octet contribution in the
factorization approximation, one usually replaceN by ¢
and treats as a free parameter with the hope to compensate
phenomenologically for the omitted octet-octet contribution
in terms of a rescaled value éf Note, however, that the I/
factors appearing explicitly in th@erturbative expressions
for the effective Wilson coefficients in E¢2.5) are not re-
placed byé in our work, in contrast to Ref10], where these
1/N factors were also replaced By We think that also re-
placing these N terms by¢ destroys the scheme indepen-
dence of the effective Wilson coefficients.

It is worth pointing out that the factorization ansatz just
discussed is the simplest one. Also, it is implicitly assumed
that the relative strong phasésich as the ones arising from
the final state interactions, but also due to the nonperturba-
tive contributions to the charm penguin diagrajontrib-
uting to the different;’s are small. Of course, this does not
mean that the strong interaction phases are assumed absent.
The ones generated by the next-to-leading order perturbative
QCD contributions from the charm penguin diagrams are
taken into account. It remains to be seen if the nonperturba-
tive phases from the competing tree and penguin contribu-
tions in the processes discussed here are indeed small.

Finally, before giving the matrix elements of the various
exclusive two-body decays, we discuss the parametrization

Doing analogous manipulations, the complete matrix eleOf the decay constants and form factors which appear in the

mentM for B- — wK ™, defined as
M=(wK " |HeglB "),

6
VupVio €110+ C5'0%) — Vi Vi, CFOy

=3
3.7

Ge

V2

Hef=

is then easily obtained. One obtains

factorized form of the hadronic matrix elements. The form
factors are parametrized as

mg—mg
(PP IIVIB(PY) =| (P+P")u = 7 | ()
m3—m3
+———0,Fo(q?), (3.10
q
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(V(e,p")(V,—AL[B(p))
—2 . e*'pp’PV(g®) — (mg+my)
mB+mV uvaf B vV

* *

X

AL(9?) +

* _
€

(p+p'),

g2 G mg+my,

mg—my
———4q
2 M
q

(3.11

2my,
Ay (g% — e q?qﬂAo(qz),
whereP(V) is a pseudoscaldvecto) mesong=p—p’,

mg+m
2my

Me” MV ) (0), (312

v
A0)-—5

Ao(0)=

andF{(0)=Fg(0). Thedecay constant§, and f,, are de-
fined as

<0|AM|P(p)>:IprM! <0|V,u|v(€vp)>:|fVmV6,u,

(3.13

With these definitions, we are in a position to write down the
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branching ratio holds for other two-body decays being dis-
cussed, with obvious changes of the indicated quantities.
Hence we shall give subsequently only the matrix elements
M. Also, we shall give only the amplitudes for the decays of

B~ andB?, and the matrix elements for the charge-conjugate
processes are then obtained by complex conjugating the
CKM factors. Since we are not addressing the question of
CP violation in this paper, all decay rates given later are to
be interpreted in terms of the averaged branching ratios.
Thus, for example, the branching rat®(B*— 7= =°) is
defined as

BB*— a7 =3[BB =7 7% +BB =" 7%].
(3.17

2. Bo(ﬂ—m"*n'_
The matrix elemenM for B— 7~ 7" reads

2agm?2
(mb_ mu)(mu+ md)

M= F
V2!

x(m~[du_|0)(=*[ub_|BP),

|

(3.18

VipVigar— VipVig| agt

formulas for the matrix elements for the two-body decays.
They are given below explicitly for the four generic decay yith

modes: B—»#m, B—Kw, B*—=K*w,7 w0, and B~

—(K*,K**)(n,7'), which are also the ones we calculate
numerically in Sec. Ill A. However, the formalism given

here is general and applicable to all two-bd8ydecays of
the typeB— PP, B—PV, andB—VV.

A Bowmw

In this section we discuss the proces®s— 770,

BO(EH 7", and BO(EH w070,

1. B*oa*a®

The matrix elemenM for B~ — 7~ 7% involves the op-
eratorsO} and O} and read$neglecting SW2) breaking ef-
fectsg|

Ge

V2

M= —=V,Vig(a; +a) (7 |du_|0)(#ub_|B7),

(3.19
with

(| du_|0)(®[ub_|B")=if (m3—m2)F5 ™ (m2).

(3.195

The branching ratioB(B~— 7~ #°) is then given by the
expression

L 1 |p|
BB = WO)ZTB§|M|2m2, (3.16
B

where g is the lifetime of theB® meson andp| is the
absolute value of the 3-momentum of the (or the 7°) in

the rest frame of theB® meson. This expression for the

(w~|du_|0)(w*|ub_|B®) =if (ME—m2)FE~" (m2).

(3.19
3. Bo(ﬂ_m,oﬂ,o

The matrix elemenM for B— 7%#° reads

M_%[V VE VLV a+ae_mi”
\/E ubVud42 tbVitd 4 md(mb_md)

x 2(7% uu_| o) #°db_|B®), (3.20

with

- — — f
<w°|uuf|o><w°|dbf|B°>=ié(m@—miw%ﬂ%mi).
(3.21)

When calculating the decay width, we have to take into ac-
count an extra facto$ due to the two identical particles in
the final state.

B.B—K#w, B—KK
1. B*—Ka*

The matrix elemenM for B~ — 7 K° reads

M= — vV gt 2agmy (7| db_|B")
= — a _
2 P (my—mg) (mg+my) i
X(K%'sd_|0), (3.22
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with

(m|db_|B")(K°[sd_|0)=if(mg—m2)FG~™ (mg).

(3.23
2. BUBY)—K*m
The matrix elemenM for B°— 7+ K~ reads
Ge
M= E[ VubV:sal_thVrs
«[ag+2 me }
a,+2a
4 G(mb_mu)(ms+ mu)
x (m*[ub_|B)(K~[su_|0), (3.24

with
(m*|ub_|BYK ™| 'su_|0)=if ((ME—m2)FE=" (m2).
(3.25

3. B*5K*#°
The matrix elemenM for B~ —K ™~ 70 is given by

= Sl v ayrag e e Fo (mf’))
2 ubVus| &1 2\/§f|< m—m? FO_”TO(mﬁ)
) M
—VpVis| a4+ 2a6(mb—mu)(ms+ my)
X(m%\ub_|B~ WK |'s u_|0y, (3.26
with

(K~ 'su_|0)(7% ub_|B~)=if «(m2—m2)FB~""(m2).

(3.27
4. B*-KK*
The matrix elemenM for B~ —K°K ™ is given by
Gr mg
M=——=V, Vil a,+2a
V2 to¥td| 94 % (my—mg)(mg+mg)
X(K~[sb_|B~)(K°|ds_|0), (3.28

with

(KO ds_|O)K™|sb_|B™)=ifc(m3—m2)FE~K(m2).
(3.29

3003

C.B*»K*w, 7w
1. B*>K*w
The matrix elemenM for B"— K™ w reads

. GFV o FB—»K’(mZ) f,
= a;+a
\/E ubVus| 41 2 Bﬂw( K) \/—f
—VpVE 2(a+a) Fi ™ (m,)
tbVts 3 5 Bﬁw(mK) \/—fK
2agma -
" {mpr my)(mermy | |(ub-IB (K [ su-{0)
(3.30
with

(w[ub_|B")(K"[su_|0)=—if2m,(pges) AT “(my).
(3.3)

There is only one nonvanishing helicity amplitude. In the
rest frame of the decayinB meson only longitudinally po-
larized w’s are producedpge’, is then given by

«_Ms
pB€w:m_w|p|' (3.32

where|p| is the absolute value of the 3-momentum of the
(or theK™) in the B rest frame.

2. B*—nm*w

The matrix elemenM for B~ — 7~ w reads

M=2Fvove | e Fi7(m) fo
= a a
\/E ubVud| 41 2 B-»w ) \/—f
vovr| (2 ) )FB”Ym) fo |
— ast+ayt+2a
tbVid 3T a4 5 A= () \/—f
2agm? -
" mymgrmy | |(1UP-B T du{O)
(3.33
with

(w|ub_|B™)(7[du_|0)=—if ,2m,(pg- €})AF~“(M?).
(3.39

D. Mixing in the — ' — 5. system and the decay8*
_)K:TI(/),K*:TI(I)

Before we write the matrix elements f@~—K=7’,
B*—K** 7', B*—=K™* 5, andB*—K* * 5 in the factoriza-
tion approximation, we give a short discussion about #he
—7n'—n. system. Our main interest for the decays men-
tioned above is to compute the hadronic matrix elements

(0l(cy,ys)|m) and (0|(cy,ys)|n'). The conventional
(m,n')-mixing formalism involves a single mixing angle



3004 A. ALI AND C. GREUB 57

(called hencefortt®), and it has been argued that it provides — #’. One can visualize these transitions taking place via the
a satisfactory description of the decays involvipgand 7’ two-gluon intermediate state. Since, only the(Skkinglet
[47,48. However, recently the inadequacy of this mixing component of the; and ' eigenstates is involved, one ob-
formalism was pointed out in the context of the tains a relation for the rati®; ,(7/5'),
1/N.-improved chiral U(3)®@U(3) perturbation theory

[49,50. Instead, a formalism which involves two mixing Ty—n"y) [k, \3
angles in the SI(B)-octet and -singlet sectofsalled hence- Ryy(nln')= m ( K m
forth 85 and 6,) is proposed. Since, the $8J-singlet com- n/ &

ponent| 7o) in general mixes with thécc) component, in-  where k,» andk, denote the 3-momenta of' and 7, re-
troducing another anglécalled 6:), we shall term the spectively. From the measured raftRy;,( 7/ 7') =5.0=0.8]
resulting mixing formalisms as the two-angdlevolving 6  [46], a value of|#]=21.9° can be extracted. Thus one ob-

and 6.¢) and three-angléinvolving 6y, 0, and6.¢) frame-  tains a consistent result from Eq8.39 and (3.40.

(3.40

works. This Zweig-rule-violating transition amplitude can also be
) o . formulated by postulating that the physicgl (as well as the
1. »—n'— . system in the two-angle mixing formalism 7) has a small effective charm component, which should
Here, the physical and 7' states are considered as mix- €nable us to enact transitions of the type we are interested in,
tures of theng and 7, stateg47], namelyb— (cc)s— (7, n')s. Thus there is a contribution of

, , ) the operatorsa‘i,2 to the decay amplitude for the processes
| 17)=cos 6] ng) —sin 6] 7o), [7")=sin 6] ng)+cos 6] 7o), B—(K,K*)(#%',7), which can be modeled in much the
(3.35  same way as the decaysy— (7,7')y.
whereg belongs to the S(8) octet of the light pseudoscalar  FOrB=—K= 7', for example, this yields, in the factoriza-
(Goldstong mesons, whiley, is an SU3) singlet. In the tON approximation,
quark basis they are given by

Ge .
1, — 1 M:_EVCbV:sa2<ﬂ,(Q)|C'}’,u'}’SC|0>
|7g)=—=|uu+dd—2ss), |7o)=-—=Juu+dd+ss).

V6 V3

(3.36 X(K(p")[s y*b|B(p)). (3.4
The mixing angleé can be extracted from the measuredThe crucial quantity is the decay constaﬁff,), defined
ratios[47] through the equation
L(7—yy) _ 18<%>3f2 cos 0 e +ej—2e; (7' (@) cy,yscl0)=—ifq,,. (3.42
(7%= yy) m;) 7\ fg V6 . .
The charm component comes in through the(3singlet
sin 0 e2+ej+e? 2 | 70), which has a small charm admixture characterized by
Tt 3 (3.39  the mixing anglef,:
and | 70) = \/_luu+dd+ss> cos fsg+|cc) sin b
L(7' —7yy) 18( ) (sm g e2+e3—2e? (3.43
0 - T
I'(m—yy) M fo G The orthogonal statey, is then given by
cos 6 e2+e2+e?|” a3 L
fo 3 ’ (3.39 | 7e)=— ﬁ|uu_+ dd+ss) sin 6;5+|cc) cos ..
wheree; are the quark charges, ard, fg, andf, are the (3.44

decay constants of the pion, the eighth component of th _

octet, and the singlet, respectively. Usifg/f, =1.34 antlcﬁztﬂ? that 'I[Ehe g"jfmg agglecc IS sm?lll and dropping
+0.03 [62] and the measured decay widtfi46] I'(7° € sl erm, d-(3.43 reads approximately as
—yy)=(7.7£0.55) eV, I'(yp— yy)=(0.46+0.04) keV,

I'(7'—yy)=(4.26:0.19) keV, one obtains |uu+dd+s S) €0S fsg+| 70) tan g

| 770> \/—
f

f=—21.3°+25°, f—o=1.09t 0.05. (3.39 (3.45
" £() andf% are then related through the equation

It has been suggested in the context of the radiative de-
caysJ/y— ny,n'y that they can be enacted by modeling =
them on the decay chaid/ y— n.y—(7,7')y, involving 1If the mixing angled ¢ indeed turns out to be small, the extrac-
the Zweig-rule-violating virtual transitionp.— 7 and 7. tion of the angled discussed above is not significantly altered.
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(c)_
f , —C0s 6 tan Ot 7"

(3.46 ¢=3,_0,.. a\*@4 in the chiral Lagrangian for the pseudo-
scalar mesong, [herer?;a=1,...,8 are the S(3) Gell-
Mann matrices, and g is a unit matriy. Writing the eigen-
states as¢p=2,f2¢,, one can show that the vectors

(f5.,£2) and (9,1°,), defined through the matrix elements

wheref,, is defined ag 7c(p)|c¥,ysc|0)=—if , p,. We
estimate the right-hand sid®HS) of Eq. (3.46 using ex-
perimental data. First, the mixing anglg; can be extracted

from the measured ratio involving the axial-vector currenta® andA,
8 __:£8
Rty SO 7 (1.3+0.4)x 102 (O[ALIn(P)=if3p,,
I\ el )= . —
|3 (3.53
= ﬁ) ;’ (3.47 <O|A2|7](p)>:if9,pﬂ,
k, | cosétarff.s
0|A% %' (p))=if%p,,,
which on using the central values of the measurements gives (OlAu ' (P) v Pe
|6.cf=0.014. Second, the decay constdnt can be ex-  gre not orthogonal to each other. Instéa],
tracted from the measured decay widl6]
242
4(4ma)?f? iy (f?]f?7+fi,f?7,)=—T\/—(fﬁ—ff,)[1+0(6)],
_ c_ +1.
F( Ne— ’y’y) = —8177mnc 75_ 1.4 keV, (348) (354)

which, again for the central values, leadsftp=411 MeV. where O(6) representdO(1/N.) corrections. This relation

Equation(3.48) is the result obtained using the standard non-then implies

relativistic approach. This result also follows if one assumes 2\/5 (f2—12)
that the shape of the distribution amplitudes for the charm Sin(6p— Og) = —— M[H 0(8)], (3.55
and anticharm quarks in thg.,n’, and » mesons are very 3 f§

similar. This gives
which yields[on using the decay widthE(7—27v),I'(%’
|f(7]°,)| =|cos @ tan 6. f, |=5.8 MeV. (3.49  —2v) and the chiral perturbation theory restijt=1.28 ]
¢ the following valueq49]:
Similarly, we can estimate the charm content of thene-

son, 08: _20.50, 002_4.00. (356)
<7](q)|c_7“750|0> - if(;)qw (3.50  Thus, numerically, the octet mixing anghg comes out close
to the angled, but the singlet mixing angle is quite small.
with This implies that the pseudscalar mesa is almost a pure

octet. Extending this formalism to thep(%’, ;) mixing,
|f§,]°)| =|sin 6 tan 6.;f ,]c|:2.3 MeV. (3.5  along the lines described in Sec. lll D 1, now yields the fol-

. _ lowing estimates of the quantitidéﬂc,) andf(,f):
Note that this method does not allow us to determine the

signs off(nc,) andf(,f) because only the absolute value of the f<77°,>zcos fotan Ocf, |,
mixing angle 6. can be extracted. To illustrate this ambi- ¢
guity in the numerical results, we show, in the caseBof f(nC): —sin fotan 5o, (3.57)

—K™* 7', the branching ratios for both signs.

Using again the ratidRy,(n./7") given in Eq.(3.47)

_  vields |[f?|=5.8 MeV (the same as before but (9
It has recently been argued that the octet-singlet mixing_ —f(c)tar;] o which is considerablv smaller than the previ-
scheme involving §, ') described above needs modifica- ' #’ 0 y P

tion [49,50. More specifically, one can show that, taking OUS estimate of the same, dg<0.
into account I, corrections in the effectivéJ (3)®U(3) ¢ Theb(”'” );]mlxu;]g framework W'Ith twofangleﬁo ﬁnd O
chiral perturbation theory, one needs to distinguish the mix}ares better than the conventional one from a phenomeno-

ing angles of the octet and singlet components. Restricting ffpgical point of VIEw as well. Feldmann and Krg81] com-
the (5, 7') sector, one now has pared the two mixing frameworks in a recent analysis of the

nvy and 'y transition form factors using data from CLEO

2. n—n' — n, system in three-angle mixing formalism

| 7) = cos 6| 7g) — sin 6| 7). [52], L3 [53], TPC[54], and CELLO[55], the decay widths
I'(p—2y), I'(n'—2y), and the ratioRy,,(»/7"). They
| 7")=sin Bg| 77g) + CcOS By| 70) . (3.52 showed that even after allowing for a moderate (BU

breaking effect, one obtains a poor fit of the data in the
The analogous relations for the pseudoscalar decay constarmgnventional mixing formalismi.e., with the single angle
and masses can be derived from the terms quadratic ifl). However, the mentioned data can be well fit in the two-



3006 A. ALI AND C. GREUB 57
angle framework for thes#, ") mixing. Their best-fit values (K‘|§)_|B‘><n’|ﬂ_|0>=if” mé—mﬁ)FgaKf(mz ).
yield (with f(ﬂc) andf(nc,) set to zerp[51] (3.62

fg fo The term proportional t&/.,VZ, in Eq. (3.6 is due to the
i 1.28, E: 1.20, charm content of they', as discussed above. In E48.61)
(3.589 and(3.62, the decay constanféjy, andff], , defined as

Og=—22.2°, 6y=-—9.1°,

ks

which agrees reasonably well with the estimates of these (O[uy,ysuln')=if}p,. (0|sv,yss|n')=if5p,,

parameters using chiral perturbation theptf|: (3.63
fg fo are given in terms ofg andf, as
f0g=—20.5°, 6,=—4.0°, = 1.28, = 1.25.
(3.59 \/_sm Og+ cos 6o,

If accurate highy? data were available, one could determine (3.64

the coupling constant' and f(nc,) from the 7y and 7'y . fg fo

transition form factors, respectively. While the value = _Zﬁsm 08+ﬁcos bo.-

f{9=0 is consistent with the data, the analysis in R61]

y|elded the following range fof‘?: We remark that the matrix eleme(@| s yss| 7'}, which oc-
curs when factorizing the contributions ©f andOg, has to

—65 Mevgf(;,)s 15 MeV. (3.60  be treated with some care. In the earlier version of this paper

we erroneously used the relation

This determination is somewhat model dependent, as it de- s 2

pends on some parameters related to the charm wave func- 0|_ 7'} = __fﬂ,m”, (3.69

tion. In the analysis reported in Rg61], the shape of the (Ol syss|n')=—i 2mg )

distribution amplitudes corresponding to the charm quark in

the » and 5’ are assumed to be the same as gt It is which is vitiated due to the contribution of the anomaly term
satisfying that the value obtained by |Lféf,)| ~5.8 MeV from  in the equation

Ryy(mc!n') lies within the range given in Eq3.60). L o o _

In what follows, we shall adhere to theNgimproved d*sy,ysS=2mM,Siyss+ 4—SG“ﬁGa3. (3.66
chiral perturbation theory description of the,') mixing. m
For numerical estimates, we use the best-fit values give
in Eg. (3.58 above. We now discuss the decays

B=(7,7")(K*,K* 7).

3. Bi'_)Ki'”I

%o obtain the correct expression for the matrix element

(n'|'s y55|0), we now use instead the anomaly-free equation
for the divergence of the octet axial-vector current,

Uy, ysu+dy,ysd—257,¥sS)
The matrix elemenM for B~ —K™ %’ reads, in the fac- a a a

torization approximation, = 2i(myU ysu+mgd ysd—2mgS ¥sS). (3.67
G m2—m2, Fsﬂ, (m2) f Neglecting the terms proportional to, andmy on the RHS
M= —4 Vo V* | ap+a,—2 KK of Eq. (3.67), one derives
us| 42 1 - BoK ™, .2 u
V2 mg—my Fo < (m7,) £, o, A
_ _ J6fg sin Ogm,, (F, =t m,
7o (O[S s8] ') =i =L =i
+Vcchsa2 fu thvts 28.3 235 s S (3.6&
7},
am? £s a.m? Of course, this relation can also be derived by working with
+|az—ag+a,+ & )L’_ &y the divergence of théanomalous singlet axial vector cur-
mg(Mp—Ms) fl:]/ mg( M, — M) rent. This gives rise to the term aGmf,,/mS(mb— my) in Eq.
a2 (3.61). Likewise, the amplitudes of the other procesBes
et AgMy ) —K*~9',B" =K, andB~—K* ~ 5 published in the ear-
47 (mg+my)(m,—m,) lier version of this paper are also modified. The corrected

5 2 Bl 5 amplitudes are given below. It appears that tf@ieomaly-
mg—m,, Fg 7 (mg) e related error has permeated the recent literat{ir8] and
mB mK FBHK (mi,) fl:], should be corrected accordingly.

X (K~[sb_[B~)7’[uu_|0), (3.60 4 BTk
The matrix elemenM for B~ —K* ~ %’ reads, in the fac-
with torization approximation,
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B—7'(m?2 B—n(m?2 (c)
GF Fl K (mK*) fK* GF Fl (mK*) fK* f”
M=—iV, Vil a,+ta,———— M=—{ VpVi| apta;——g— — pVEa, —
\/E[ u us ACB)*,K (mi/) f:l?, \/5 u us ASHK (mi) fL;I c cs fL;I
f(nc,) . agm;, \f%
* * — — — . A—
+VcchsazT—thVts 2a;— 2as VipVis| 2a3—2as+| ag—astay Mo+ mg) | 7
7
- 2
a6m37/ fj’, . aemi ta F? n(mK*) fK* ]
tlag—agtay;————<|— 4 BLK*
3 9T my(mp+mg) £, Ms(Mp+ M) AST(m2) £
LAy L FE(me) f” X(K*“[sb-[B")(zluu-0), (374
a-4 *
m<(m-+m B—K 2 u
(Mg N| Ag (m”,) f”, with
X(K*~[sb_|B™)(7'[uu_|0), (3.69
K*~|'sb_|B~){5luu_|0
it (K*~[sb-[B")(n[uu-|0)
T — = —if92m« (pege)AG " (M2). (3.79
(K*7[sb_[B")(7'[uu_|0)
. —K* 2
= —if} 2mgs (Paegs)Ag " (M7,). (3.70 IV. INPUT PARAMETERS, NUMERICAL RESULTS
AND COMPARISON WITH THE CLEO DATA
5. B*—=K*y

The matrix elemenM for B~ — K™ 7 reads, in the fac-
torization approximation,

2 2 -B— 2
M=El v e | ayra, me Fo (M) T«
_\/E ubVus| @2 a1 -5 —p = fu
mB mK FO (mﬂ) n
f(C)
7
+VcbV:sa2f_u —VipViy| 2a3— 285
7
2 S 2
agm f agm
+ a3_a5+a4+ U )_77_ 7
ms(mb_ms) f:; ms(mb_ms)
+| ag+ 2aqmy )
4 (ms+mu)(mb_mu)

mg—mj, F§~(mQ) f«
ma—mg Fo K (m?) fY

X(K~|'sb_|B")(nuu_|0), (3.70)

where

(K~ |sb_|B™)(mluu_|0y=if%(mi—mg)F§ K (m?),

(3.7
with
fg fo fg fo
fY=—cos #g——=sin 6y, f5=—2—cosfhyg——=sin 6.
7 \/6 8 \/§ 0 n \/6 8 \/§ 0
(3.73
6. B:—>K*i7]

The matrix elemenM for B~ —K* ™ reads, in the fac-
torization approximation,

A. Input parameters

The matrix elements for the dec&—h,h, derived in
Sec. Il depend on the effective coefficiends, ... ag,
qguark masses, various form factors, coupling constants, and
CKM parameters. In turn, the coefficierds and the quark
masses depend on the renormalization sgabnd the QCD
scale parameteAys. We have fixedAys using ag(M7)
=0.118, which is the central value of the present world av-
erage ag(M;)=0.118+0.003 [63]. The scaleu is varied
betweenu=m, and u=my/2, but, due to the inclusion of
the NLL expressions, the dependence of the decay ratgs on
is small and hence not pursued any further. To be specific,
we useu=2.5 GeV in the following. The CKM matrix will
be expressed in terms of the Wolfenstein paramdi&8$
A, \, andp, and the phase. Since the first two are well
determined  with A=0.81+0.06, A=sin§:=0.2205
+0.0018, we fix them to their central values. The other two
are correlated and are found to (&t 95% C.L) in the range
0.25< #=<0.52 and—0.25<p=<0.35 from the CKM unitar-
ity fits [64]. We take four representative points in the al-
lowed (p,#) contour. Their values and the legends used in
drawing the figures are as followgl) p=0.05,=0.36,
yielding \/p?+ 7°=0.36 (drawn as a solid curye (2) p
=0.307=0.42, yielding\/p?+ 7°=0.51(drawn as a dashed
curve; (3) p=0,7=0.22, yielding Vp?+ ?=0.22 (drawn
as a dashed-dotted cujyand(4) p=—0.20,7=0.45, yield-
ing Vp?+ 7?=0.49 (drawn as a dotted curyeThey corre-
spond to the central values of the fits in Rg4], the maxi-
mum allowed value of|V,/V.| with positive p, the
minimum allowed value ofV,,/V¢|, and the maximum al-
lowed value oflV,,/V¢,| with negativep, respectively. The
CKM parameters are also an output from the measured non-
leptonicB decays, and we shall illustrate the potential inter-
est in this kind of analysis using some of the ratios of the
branching ratios as an exercise. The rest of the input quanti-
ties used in our estimates for the branching ratios are col-
lected in several tables. We now discuss these input values.
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TABLE Il. Decay constants in MeV. the pointg®=0, and a simple pole model is mostly used to
implement theg? dependence in the form factors, we shall
fo fi  fx fr fo fs 19 If%]  neglect thisq? dependence in the form factors, and equate

F57"(g?=md)=F§"(q?=0). Explicit calculations bear
this out, and prove that the variation in the stated range is

indeed smal[13,38,39. The values used for the form factors

B—h 2__ B—h 2__ H H
1. Effective coefficients in the factorization scheme Fo1 (9°=0) and A; '(q°=0) in our rate estimates are

, o listed in Table Ill. They are taken from Rd#], which are
With the electroweak penguin diagrams and the SO'Ca"eﬁjeproduced in most other calculatiottsee, for example,

W—annihilqtion—exchange diagrams peglectgq, the amplitudef,ame l in Ref.[39]). Note also that the S@)-breaking ef-
for the various decays depend on six coefficientsdefined  fqcts in the form factors are neglected. They are typically of

195 160 214 131 157 168 5.8 0.93

in Sec. Ill. Eventually, one should determine each one 06(20)%[38].
them (or particular combinations thergoby analyzing the
specific decay modes most sensitive to these coefficients. 3. Current and constituent quark masses

This way, one can measure the deviation in each one of them L _

from their values in perturbation theory, and determine if this "€ guark masses enter our analysis in two different
deviation(due to nonperturbative effegtsan be described in  Ways- First, they occur in the amplitudes involving penguin
terms of a few universal parameters. Perhaps it should bl@OPS: We treat the internal quark masses in these loops as
remarked here that an analysis of the heavy-to-heavy transFonstituent masses rather t.har? current masses. For them we
tions in two-bodyB decays can be reasonably well describediS€ the following(renormalization scale independewal-

in terms of one parameter, call¢dn Ref.[13], whose value Y€S:
seems to be universal. Following this, we do the simplest
thing here by assuming that a single paramétetefined in

Sec. lll, can be used to compensate for neglecting the octet-
octet terms in all matrix elements of the decds-h.h,. ms=0.5 GeV, my=m,=0.2 GeV.

This is motivated by the fact that the energy release in these

decays is comparable. It remains an open question if th¥ariation in a reasonable range of these parameters does not
parameteg introduced here in the decays suchBs K is Change the numerical results of the branching ratios S|gn|f|-
close to the Corresponding parameterentering, for ex- Cantly. TheV_a.lue Ofnb above is fixed to be the current quark
ample, in the decaB— D 7. We show the dependence of the mass valuan,(u=m,/2)=4.88 GeV, given below. Second,
branching ratios in several decay modes in the rang€ 0 the quark massesn,, mg, my, and m, also appear
<1, with ¢é= § being the naive factorization value, i.e., if one through the equations of motion when working out tfee-

uses factorization and neglects the octet-octet contribution itorized hadronic matrix elements. In this case, the quark
the matrix elements. masses should be interpreted as current masses. Using

m,(my,) =4.45 GeV[66] and

m,=4.88 GeV, m,=1.5 GeV,
4.1

2. Decay coupling constants and form factors

For the various decay constants occurring in the formulas ms(1GeV)=150 MeV,
in Sec. Ill, we use the numerical values shown in Table II. o
The values forf ,, fx, fgx, andf coincide with the cen- my(1 GeV)=9.3 MeV, 4.2
tral values quoted in Refl13], extracted from data on the
electromagnetic decays af and r decays, respective[y6]. m,(1 GeV)=5.1 MeV,

The decay constanlfé:],, ff],, f‘,‘7, andf§7 defined in Egs.

(3.64 and(3.73 are obtained from the values fog andfg ~ from Ref.[62], the corresponding values at the renormaliza-
in Table 1, and by usingg= —22.2° for the ¢, ') mixing  tion scaleu=2.5 GeV are given in Table IV, together with
angle[47]. The errors on the coupling constants in the tableother input parameters needed for our analysis.

are small(typically 1-3 %), except onf'? and ', for _ o N

which present data allow a determination with an error of 4. Numerical values for the effective Wilson coefficient$'€
+15% (assuming the mixing formalism holds From Eqgs.(2.8—(2.10 it follows that the effective Wil-

The decays being considered here, suctBas=K, in-  son coefficientCE" defined in Eq(2.5) are in general com-
volve light hadrons in the final state. The rates require theylex numbers, which depend on quarks masses and on the
knowledge of the various form factors gt=mZ, wherem,  CKM matrix elements. Taking the quark masses listed in Eq.
denotes a light hadron mass. Sirgfe= mﬁ is rather close to  (4.1) and using the central values for the CKM parameters

TABLE lIl. Form factors atq®=0.

B-K™ Bom— B—m® B—y' By B-w BK*
Foa Fo1 Fot Fo1 Fo1 Ao Ag

0.33 0.33 0.33 0 3{ sing cosﬁo) 3{ Ccofg sineo) 0.28 0.28

2 T B b B V2
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TABLE IV. Quark masses and other input parameters. The running masses are given at the renormaliza-
tion scaleu=2.5 GeV.

my m, my m, ag(mz) ! (9% b bo

4.88 GeV 122 MeV 7.6 MeV 4.2 MeV 0.118 1.60 ps m%/Z —22.2° -—9.r°

from the unitarity fits[64] (i.e., p=0.05 and»=0.36), the  weak. Hence, the ratios are more reliable and the experimen-
effective Wilson coefficient€?™ at the renormalization scale tal information on these ratios can eventually be used mean-
u=2.5 GeV are shown in Table V. We remark that taé  ingfully to draw inferences on the fundamental parameters,
mos) identical values of these coefficients in the first two such asp and 7.

columns b—s andb— s) reflects that the imaginary parts
of these effective Wilson coefficients are essentially gener-
ated by strong interactions. The numerically differing entries We shall show the branching ratios of interest as a func-

in the other two columnsb—d and b— d) reflect that the tion of the parameteg for four different set of values of the
weak (CP-violating) and strong interaction phases in theseCKM parameters. Wherever available, the present measure-
decays are comparable. ments of the branching ratios at thelo level are also
shown on these figurgghick solid lineg. All experimental
numbers are taken from Refgl-3], and, in showing the
experimental results, we added the statistical and systematic
Having stated our theoretical framework and the inputerrors in quadrature. We start by showing in Fig. 4 the
parameters, we now present our results for the various dﬁbranching ratioB(B*— w°w*). The decay rate for this
cays of interest listed in Sec. lll. A word of caution concern-mode is sensitive to both the variation inand the CKM
ing the accuracy of the absolute decay rates calculated by Warameters. This is obvious from the quadratic dependence
is in order. As just displayed, there are many parametergs the decay rate on the quantity,|. Also, it depends on
involved in describing exclusive nonleptonic decays, andne combinatiora, +a,. Hence a measurement of this decay
while the decay rates do not depend sensitively on all ofate will yield information on these quantities. In quoting a
them, and many input parameters are already well known, 'ltange, we shall take ©£<0.5 (which is suggested by the
is obvious that the predicted branching ratios do depend seRympined analysis of all the present CLEO data Bn

sitive!y on some for which ther.e is no alternativ.e at present_, h,h, decays, which we show latelWe estimate
to using model-dependent estimates. The particular quanti-

ties in question are the decay form factors. Some of these
form factors enter into other processes which have been mea-

sured(such as in the semileptonic and radiatBedecay$,  \yhich is uncertain by over an order of magnitude. However,

and the estimates being used are found to reproduce the dgfa, |ower range corresponds to the rather small value of the
quite well; however, some others are not yet constrained by, \ factor IVyo/Vep| =0.05, and is therefore somewhat
] u (o] . ]l

data directly. So the estimates given below for the_abs_olutgn”kew' For the central valup/,,/V,,| = 0.08, we estimate
decay rates have to be taken with an accuracy which is not

better than a factor 2. The additional uncertainty due to the
paramete cannot be judged at this stage. That can only be
ascertained in the future, if this framework proves to be
reasonable way to analyze heavy-to-light transitionB ithe-
cays.

However, within this framework, the ratios of the branch-
ing ratios are much more stable, as many of the theoretical -
uncertaintiegsuch as in the form factors, various scales, and In Fig. 5, we show the branching ratid&3(B°(B°)
quark massesancel out to a large extent. In some cases, the— 7" 7). Again, this decay mode is sensitive §oand the
dependence on the parametemlso cancels, or it is very CKM parameters, although the resulting uncertainty is less in

1. Branching ratios for B— arar modes

B. Numerical results and comparison with CLEO data

B(B*—7%7")=(0.1-1.4x 105,

B(B*— 7%7*)=(0.3—0.6)x 10 °.
%he present experimental upper limit(est 90% C.L),

B(B*— #%7")<2.0x10° 5.

TABLE V. Effective Wilson coefficientsC®™ at the renormalization scale=2.5 GeV for the various
b—q(b— q) transitions. See text and E@.8).

b—s b—s b—d b=d
cef 1.160 1.160 1.160 1.160
csff -0.334 -0.334 -0.334 -0.334
o 0.021:+0.004 0.021+0.004 0.020+ 0.002 0.022+0.006
cef —0.052-0.011 —0.051-0.011 —0.048-0.007 —0.053-0.017
ce 0.016+0.004 0.016+0.004 0.015+0.002 0.017+0.006

o —0.064-0.011

—0.063-0.011

—0.060-0.007

—0.065-0.0117
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FIG. 4. Branching ratio foB*— 7%~ as a function of¢ for FIG. 6. As in Fig. 4, but for the proceﬁo(ﬁﬁ OO

various points in the d;n) plane. Solid curve: f£,7)

=(0.05,0.36); dott.ed curve:p( 77):(_0-29'0-45)? dashed curve: pranching ratio varies by slightly more than a factor 2. The
(p,.7]):(0.30.,0.42)., dgsheq-dotted curve, ¢)=(0.00,0.22). The experimental measurement (&t + 3.20):
horizontal thick solid lingwith the arrow shows the CLEO upper

limit (at 90% C.L). B(B*—7K)=(2.3"1392+0.2x10°°.
this case than iBB(B*— #%7*). Comparison of the model Our estimated branching ratio is in agreement with data, and
calculations with the present upper lingét 90% C.L), there is a slight preference for smaller valueséofwith &
. >0.7 somewhat disfavored. Since the CKM parametric de-
B(B%(B% — 7 77)<1.5x10° %, pendence is small, this decay mode is useful to show the

effects of the QCD corrections. In Fig. 8, we show the

shows that this decay mode is expected to lie within a factobranching ratioB(B*— 7*K) as a function of the scaled
2-3 of the present upper limit and hence should be measuragiriable (q%/m3), in the range &(g*m3)<1, calculated
soon. Already, the present upper limit on this mode disfavorgor ¢=0. The dashed line corresponds to the LL approxima-
some extreme values of the CKM parameters correspondingon, whereas the dotted and solid lines correspond to the
to |Vyp/Vep| close to or in excess of 0.11. truncated NLL approximation, and the complete NLL ap-

In Fig. 6, we show the branching ratidS(BO(ﬁ proximation as discussed in Sec. _II, respective_ly. The dotted
— %79, This branching ratio is not very sensitive goin ~ CUrve amounts to what was used in the analysis of the decay
the region B<¢<0.5, but rises sharply ag—1. All the ~mModes B”— 7 K) in Refs.[28,29. The effect of the com-

curves lie, however, significantly below the present uppeP!€te NLL corrections is numerically important, and they
limit [46]: tend to decrease the branching ratio as compared to what one

estimates by including the charm penguin operators alone.

B(B°(B% — m07%)<9.1x 107 6. In Fig. 9, we show the branching rati@(B°(B°)
—a*K™*). Like its charged partnerB(B*— w*K) dis-
Restricting to G<£<0.5, our model calculation yields cussed above, this decay mode is also sensitive to the param-
- eter &, though in this case there is a perceptible dependence
B(B°(B%) — m°7%=(0.5—-2.0)x 10" ©. of the rate on the CKM parameters as well. The observed
branching ratioat = 5.60)
2. Branching ratios for B—aK modes - 0501
T + 0.5+ 0. —
In Fig. 7, we show the branching rati(B*— 7=K). B(BY(BY)— 7 K™)=(15103"61=0.1)x10®,
This is a good decay mode, in principle, to determine the
parametek, as there is no perceptible dependence of the rate Bl S B B B BN
on the CKM parameters. In the indicated range{<1, the

—
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T T B P . FIG. 7. Branching ratio foB=— 7~K as a function of¢ for
0 0.2 0.4 0.6 0.8 1 various points in thed, ») plane. Solid line: p, ) =(0.05,0.36);
3 dotted line: p,7)=(—0.20,0.45); dashed line: p(n)
o =(0.30,0.42); dash-dotted line:p(n)=(0.00,0.22). The thick
FIG. 5. As in Fig. 4, but for the proce®®(B%)— == 7 ~. solid lines show the CLEO measureméwith + 1o errors.
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_ FIG. 8. B(B"—m"K) as a function o q%)/m;. The dashed FIG. 10. The ratiR,= B(B°(B%) — n*K*)/B(B* —K=*) as a
line corresponds to the LL approximation. The solid and dotted . . -
. . - . function of the Wolfenstein parametgr for »=0.25 (lower curve
lines both correspond to the Wilson coefficients evaluated in the _ _
A o - .and »=0.52 (upper curve The curves are drawn faf=0. The
NLL approximation; the solid line takes into account the penguin, _ . ) .
. . . horizontal thick solid lines show the CLEO measuremenith
diagrams of all four-Fermi operators and the tree level matrix ele-, 1o errors
ment of Og, while the dotted line takes into account the penguin

diagrams associated with the four-Fermi operatbi§ only. now cuts away a good part of the negativéequivalently

is quite comfortably accommodated by our estimates. y>90°) region. A recent analysis giveat 95% C.L): 32°

Comparing Figs. 9 and 7, one sees that the dependence ?f”golzzo [68], which is no longer symmetric aroung
these decay rates ahis very similar, and hence in the ratio =90°. On the other hand, the model-independent constraints

of branching ratios it almost cancels out. Defining this ratio®" ¥ from Ry, discussed by Fleischer and Mamﬁ@lﬂéxare
by Ry, such that they forcey to lie in the range 0% y=<y™* or

180°— yM™*< y<180°, depending on the sign of ehsvhere
6 is the strong phase-shift difference between the tree and

, (4.3 penguin amplitudes in the decBJ(B®)— 7*K*. Since this
phase difference is calculated in our model, the preferred
solution is the one in whichy lies in the first quadrant, or
0°< y=y™ Unfortunately, with the present experimental
errors, the 95% C.L. limit op from R; (or on y™®) does
not allow one to draw more quantitative conclusions on the
value of y than what one obtains from the CKM fit64,68|.
This is expected to change with improved dataRyn if the

R, =0.65+ 0.40, (4.4) value of R; is found to be considerably less than 1. Our

analysis, carried out in the factorization framework, under-

Fig. 10 suggests that negative valuespofire disfavored. lines the sensitive dependenceRyf on p, with p<0 disfa-
This can also be converted as a statement on the¥ored(at+1c) by the CLEO data ofR,. The effect of the
CP-violating phasey. Since the Wolfenstein parametgris ~ present lower bound odAMs/AMy on p is qualitatively
positive as determined from the constraintqn, p>0 im-  similar to the one from the present measurementRef
plies y<90°. We recall that the bounds onobtained from namely, both prefep=0. For an updated CKM fits, also see
the CKM unitarity fits yield symmetric constraints, centered Ref. [65].
aroundy=90° (or p=0). However, it should be remarked
that the lower bound on the ratio of the weak mass differ- 3. Branching ratios for the B~h*z and B—h*K modes

ences in theB%-B2 and BJ-BY systemsAM¢/AMg, which The decay mode®*—h*#% BY%B%—h =", and
at present is posted @Ms/AMy>20.4 at 95% C.L[67], B*_h*K° have been measured with impressive precisions.
We compare our model estimates with these measurements.

B(BY(B%)— 7*K¥)
B(B*— w*K)

we showR; as a function of the CKM parametgrin Fig. 10

for two values of the CKM parameter= 0.52 (upper curve

and =0.25 (lower curve. We note thaR; is rather insen-
sitive to #, but it does depend sensitively gn Using the
present CLEO measurementRf (at = 1o),

. 3 LA B B B In Fig. 11, we show the branching rat#{B~—h==°). The
*9 [ ] decay rate in this case is mildly dependentgrbut more
~ k : importantly on the CKM parameters. The experimental mea-
f < ! i surementiat +5.5¢0)
A L 4
| E ] B(B*—°h*)=(1.6"3¢53+0.1)x10°®
no[ ]
E - . is reproduced well by our model.
Py A EPRE VI PR RV In Fig. 12, we compare our model estimates with the
0 02 04 ¢ 06 08 1 CLEO measuremenist = 7.80)

FIG. 9. As in Fig. 7, but for the proces&"(ﬁawiK? B(BO(BO)_)hiWI):(Z-Zgﬁgi 0.1)x10°°.
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) This shows that with the stated significanBg disfavors
Agreement between our model and data is good. The tW@yrge values ofy in excess ofy=0.5.

curves(dashed and dottédvhich lie outside the: 1o bands
correspond to large values of the ratd,,/V.|, namely, 4. Branching ratios for the B*—»wK* and B*—wh* modes
[Vup/Vep =0.11, which is also outside of the 1o bound

from direct measurements p¢,,/V¢y. S0, all of these dif- (h=.K). which have also been measured by the CLEO

ferent pieces of data are giving a consistent picture. : . . . :
In Fig. 13, we show our estimates for the branching ratiocollaboratmr[l], with the former having branching rati¢at

Next we study the decayB*— wK* and B*—wh™

+ 10 ; +3.30)
for the modeB~—h~K", which has been measurddt
4.40) B(B*—wK*)=(1.2"37+0.2x10°5,
B(B*—h*K%=(2.4"}102+0.2)x 1075, and the lattefat + 6.00)
This branching ratio has a very similar dependencég as in B(B*—wh*)=(2.5"38+0.5)x10°5.

the decayB* — w=K?, and likewise has little dependence on
the CKM parameters. Model estimates are in agreement witlThese measurements are compared with our model calcula-
data foré<0.7. tions in Figs. 15 and 16, respectively. Both of these decays
As another example of a ratio of branching ratios, whichhave an interesting dependence on the varigblEaking the
is sensitive to the CKM parameters, we define the rRio  data at face value#1c), a value for¢ in the range 0.15
L <¢=<0.5 andé=0.85 is somewhat disfavored by data in the
B(B°(B%—h*#7) decayB*— wK™*. Curiously, the estimated branching ratio
2= BB —7=KY (4.9 B(B*— wK™) has its lowest value in the rangg=0.3
+0.1, and in this range it fails to reproduce the data by
almost 2r. This observation and the present measurement of
B(B*—m*K) as well asB(B*—h*K), which disfavor¢
=0.7, then imply that the preferred value §in our model
0/ooT s+ ] L is either in the range €£=<0.15, or elseé=0.5. In this
of B(B™(B")—h~m"). We plot the ratioR; in Fig. 14 as & 3nge however, the estimated branching ratio is somewhat

function of the phasey, fo_r three values ofp: p=0-_05 lower than the experimental one Bi* — wh™, but not by a
(dashed curve p=0.35(solid curve, andp= —0.25, which

coincides with the casp=0.35. The present experimental S p——T7——+—+ 17— —
value of R, (at =10) is

which, like Ry, is less dependent on the other input param
eters, includingt. SinceB(B~— 7*K?Y) is insensitive to the
CKM parameters, the ratiB, reflects the CKM dependence

R,=0.96+0.57. (4.6) 2 [
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2 [ 1 FIG. 14. The ratiR,= B(B°(B®) —h=#")/B(B*—K=*) as a

@ ol b e v b v b b function of the Wolfenstein parametey, for p=0.05 (dashed
0 0.2 0.4 0.6 0.8 1 curve, andp=0.35(solid curve. For p=—0.25 the corresponding

£ curve is almost identical to the curve fpr=0.35. The curves are
_ B drawn for é=0. The horizontal thick solid lines show the CLEO
FIG. 12. As in Fig. 7, but foB%(B®) —h*=~. measuremeniwith = 1o errors.
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o FIG. 17. Branching ratio foB*— 7'K™* as a function of for
FIG. 15. As in Fig. 7, but for the proce&™ — wK=. the same points in thep(7) plane as in Fig. 7. The uppéiower)

set of curves close t§=0 corresponds to the positiv@egative
large amount. Due to the fact that the data being discussesblution for 9. The horizontal thick solid lines show the CLEO
are the first ones of their kind and the uncertainties related tmmeasuremeniwith + 10 errors.
the parameters of the present theoretical framework have not
been exhaustively studied, one cannot draw too strong corFhis is to be compared with the CLEO measuremeait
clusions on the value of the parametefrom this decay. +5.50)

5. Branching ratios for the Bf—(z,7')(K*,K* %) modes B(B*— 7'K*)=(7.1753+0.9 X107 °.

Finally, we take up the deca§™— »'K™, which has at- _ . .
tracted much theoretical attention recently. Compared to th&ven the experimental and theorgtlcal errors, the model es-
decays considered so far, this decay and the related onELQ"ates and data are clearly not incompatible, thoygh, with
B*—yK*, B —7'K**, andB*— 7K** have an extra the values of the parameters_used by us, our estimates are
I — , somewhat on the low side. Since, apart from the form fac-
contribution from the decay Chah.’HSCCHi(”’”,); tors, this branching ratio is sensitive to the value of the
In Fig. 17 we show the branching ra{(B~— »'K~) as ¢ g,ark mass, with the branching ratio increasingmasis
a function of_g, varying the CKM parameters, as |nd|_cated iN yecreased from its default valuemy(u=2.5 GeV)
Sec. I.V A. Since V\(/S are not able.to deter.m|r.1e t.he sign of the_ 155 \eV used by us, the decay rate can be made to agree
coupling constant’’ due to the sign ambiguity in the deter- wth the CLEO data by optimizing these parameters in an
mination of the angled., we show the result for botlh(;,) overall fit. This is not warranted at this stage.
=+5.8MeV. Note that the& dependence of this branching ~ The branching ratios for the decayB™— ' K*~,
ratio results in a factor 2 uncertainty varyiggn the range B~ — 7K™, andB~— »K** are shown in Figs. 18, 19, and
0<¢<0.5 for the positivef—ff solution; the branching ratio 20, respectively, for the valueis(7f,)=—5.8 MeV andf(,f)
is less sensitive tg for the negativef;, case. The positive- =—0.93 MeV. The reason for selecting the negative sign is
f(”c,) solution yields a marginally higher branching ratio. Theto be traced to the observation that the contribution of the

CKM parametric dependence of this branching ratio is no@MPplitudeb— (cc)s—(»,7’)s can also be calculated using

very marked. Within the present uncertainties in the inpu@ QCD anomaly which fixes the signs of these constants to
parameters, we obtain, &t=0 be negativg69]. The estimated branching ratios satisfy the

respective present experimental bounds on thgmFor 0
B(Bi—>7]’Kt)2(3_4)X1075, S§$05, we predict

: T—n'K**)=(0.3-0.9) 10" °.
which, até=0.5, falls down to the range B(B"—7'K™7)=(0.3-0.9 %10

+ , + _5 1.5 T T T I T T T I T T T I T T T I T T T
B(B=—n'K=)=(2-3)x10>. S i ]
* - -

4 LI L N B N S B B l',:"' / T g §‘< 1 e ———— -
& r ,// ,.r/: A ]
*3f e N ]
1: C /,’ /,, : : 05 __
S o A . I 3
n =< A ] g | ]
J C g ] ol Lo bt 1]
a1 B . 0 02 04 06 038 1
x® [ e ] ¢
m [ e ]

0t Lol FIG. 18. Branching ratio foB*— z'K** as a function of for

0 0.2 0.4 0.6 0.8 1 . . . .
¢ the same points in thep(n) plane as in Fig. 7. All curves corre-

spond to the valué(nc,)= —5.8 MeV. The upper limit from CLEO is
FIG. 16. As in Fig. 7, but for the proce®&™ — wh™. 2.9x10"% at 90% C.L.
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FIG. 19. Branching ratio foB*— 7K* as a function of¢ for
the same points in thep(#) plane as in Fig. 7. All curves corre-
spond to the valué!”= —0.93 MeV. The upper limit from CLEO
is 8X107% at 90% C.L.

FIG. 21. B(B*—K=") as a function ofCg(my)/C3"(my),
whereCg(my) is the Wilson coefficient 00g including new phys-
ics, while C™(my) is the standard model value. We use 0 and
(p,7n)=(0.05,0.36).

The decaysB*— 5(K*,K**), on the other hand, do not

depend very sensitively on the sign ﬂ,f) . We estimate (0 ence of such a markedly enhandgg(my,) on nonleptonid

decays is marginal. In future, we hope that these matters will

<£<0.5) be scrutinized much more minutely. We conclude that the
B(B*— pK*)~(1.0-2.8)x 107, nonleptonicB decays considered here do no_t require If_;\rge

( 7KE)=( ) enhancements o€g(my,), or of any other Wilson coeffi-
B(B* — 7K**)=(1.0-2.8)X 10°® cient, as they are by and large compatible with data with

their SM values.

Finally, we remark that scenarios with a greatly enhanced

strength of the dipole operat@g have been entertained in V. SUMMARY

the literaturg59—61], with the view of bringing the existing ] ) _
theoretical estimates of the semileptonic branching ratios and " the first part of this paper we presented a theoretical
charm counting inB decays in better rapport with data. A framework to study two-body decays Bfmesons with two
greatly enhanced value Gfg(my,) will influence the branch- light mesons in the final state. First, we took into account the
ing ratios in some selected nonleptofcdecay channel as complete NLL corrections at the partonic level, thereby im-
well. However, this effect is diluted due to the contributions Proving previous calculations. In particular, we also included
from other Wilson coefficients, which are assumed to havéhe effects of the chromomagnetic penguin operator in non-
their SM values. Also, as emphasized in RéE9,60, and leptonicB decays. These NLL order corrections are numeri-
more recently in Ref61], the strong mixing of the operators Cally important in the exclusive decay rates. Second, to esti-
0, and Og would require a very large enhancement inMate the hadronic matrix elements, we assumed
Co(my)/CSM(myy), typically O(10), to have a measurable factorization, and gave a parametrization for the so-called
influence i%B deca’lys calculated at, the scale=my,, due to heavy-to-light transitions. In its most economic version, this
the effects of the renormalization group. Qualitatively, thisbrlngs in a single phenomenological parameter, cafied

picture also holds in the analysis of the exclusive nonleptoni(yvhiCh has to 'be determined by cor_nparing the predictipns of
B decays discussed by us. We show a typical cBse this model with data. We took a first look at the available

— K™ in Fig. 21, where the branching ratio for this mode is CLEO data, and estimated that our model is compatible

plotted as a function of the variab@S(mW)/CSM(mW). De- within the present theoretical and experimental errors with

. i : . .o data in the range €£=<0.5. With more precise data one
spite the large range of this variable, we find that the influ should be able to test our model, and see if within reasonable

accuracy one obtains a universal value for this quantity in the

° 0'4:' e heavy-to-light sector. Alternatively, with more precise data
*9 C ] in several decay modes, we propose to extract the effective
70'3 . 3 coefficientsa,, . .. ,ag directly to determine the extent of
% nonperturbative effects in each one of them.
A 92 -] In the second part of this paper we applied this framework
o N to an analysis of the exclusive two-bo8ydecays, in which
01 T T - QCD penguin operators play an important role. Some of
E these decays were recently measured by the CLEO collabo-
) PR BN N BRI B ration [1-3], with which we compared our model calcula-
Y 02 04 06 08 1 tions; we also predicted the branching ratios for some related

¢ decay modes which have not been measured yet. While the
FIG. 20. Branching ratio foB* — »K** as a function of for formalism provided here is generally applicable to study all
the same points in thep(7) plane as in Fig. 7. All curves corre- B—PP, B—PV, and B—VV decays, we restricted our-
spond to the valué!®=—0.93 MeV. The upper limit from CLEO selves to discussing the four generic casBssmr,
is 2.4X10° % at 90% C.L. B—Km, B*—wh*, andB*—(7,7')(K* K**).
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In particular, we studied at some length the last class, B(B*— 7'K*)>B(B*— 5’ K**).
involving the decayB™— K™ 7' and the related ones. As the
»' and » mesons are composed of d, ands quarks, the The measurement &#(B*— »'K™), being the largest mea-
corresponding decay rates are particularly sensitive to intersured so far, is in line with our analysis based on the SM.
ference effects among the several competing amplitudes irHowever, in our SM-based framework it would be difficult
volving the current-current and the QCD penguin operatorsto accommodate a much larger branching rat¢B=
as was pointed out by Lipkin some time ad@d. In addition, — 5’'K**) vitiating this hierarchy.
the operatorsOf, which induce transitions of the forrh The rates for the other decays presented in our analysis

—>s(cc_)—>s(7;,77’) have to be included. Estimates of the @re also in reasonable agreement with data, within the pres-
latter require a trustworthy evaluation of the;_component ently allowed CKM parameter space. Based on our estimates

in the wave function of the;’ and » mesons. We used the presented here, we expect the decay mMBYBC) — 7~ 7
mixing formalism involving the §,7’,7.) complex and to be measured within a factor 2—3 below the present upper

data to determine thec contents of these mesons. We lImMit. We point out interesting inferences which present data

found that this charm-induced contribution does not domi-2/low Us to draw on the consistency of the SM. In particular,

nate the amplitudes for the processes involvirigthe decay ~ the ratiosR, andR; involving theK= and 77 final states
rate is more sensitive to the penguin contributions. Our papéeiPP€ar Very promising. Present measurements on these ratios

provides the complete amplitudes showing all these indi&'® tantalizingly close to providing independent information

vidual contributions. This can be used in future analyses ofn the CKM-Wolfenstein parametepsand ». Their impact
more precise data to determine nh?components ing and on the CKM phenomenology will only be determined with

) _ ) . more precise data, to which we look forward with animated
7 - Ihe estimates presented here witl}/|=6 MeV yield  jnterest. For the time being, the standard model rules ad-
B(B*—K*7')=(2-4)x10"°. This is somewhat lower equately in the nonleptoni8 decays.
than the central value of the present measurement, but com- Note added in proofSince the publication of this paper,
patible with the value obtained by fluctuating down the ex-several related papers have appeared in which some of the

perimental error by &. However, a simple answer about the jssues discussed here are also investigetoe-73.
large measured value dB(B*— »'K™), a question fre-

quently asked, in terms of a single dominating amplitude is
not readily available, though the penguin and singlet compo-
nents ofy’ are certainly at the back of the enhanced branch- We are very grateful to Tom Browder, Jim Smith, To-
ing ratio for this decay. In our analysis, we find that themasz Skwarnicki, and Frank Wiawein for helpful corre-
measured rate in the’ K™ mode is only marginallfsay a spondence concerning the CLEO data. In particular, we
factor 2 larger than our model estimates, and given the thethank Jim Smith for sharing his insight on several points
oretical errors there is nothing anomalous about it. We alsaliscussed in this paper and for asking us incisive questions
expect that the data will evolve with time so as to reduce theelated to the CLEO data and our analysis. Helpful discus-
present discrepancy. sions with Gustav Kramer, Hans Ko, Heiri Leutwyler, Pe-

We made predictions to test this interference pattern irter Minkowski, Hubert Simma, and Daniel Wyler on various
the related decays involving and »’. The resulting decay theoretical issues discussed here are also thankfully acknowl-
rates, which also reflect the built-in angular momentum dif-edged. We also thank Nilendra Deshpande, Bhaskar Dutta,
ferences between the stat€$( 7, ') andK(%,%’), showa Sechul Oh, Guido Martinelli, and Amarjit Soni for corre-
certain hierarchy among the branching ratios. While thespondence and discussions on the earlier version of this
other three may turn out comparable with each otlgthin manuscript, and Thorsten Feldmann and Peter Kroll for
a factor 2—3, we predict sending us an advanced copy of their paper.
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