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Weak decay process oB—pl v, : A varying external field approach in QCD sum rules
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A varying external field approach in QCD sum rules is formulated in a systematic way to treat the weak
decay form factors and theif> dependence in the processB¥-pl v,. From the form factor sum rules, we
can also obtain the mass sum rules Brrand p mesons, which can help us determine the reliable Borel
windows in studying the relevant form factor sum rules. In this way, we thus demonstrate that some QCD sum
rule calculations in the literature are less reliable. We also include induced condensate contributions, which
have been ignored, into the relevant sum rules. We obtain the E(iBS—p*e v )/T(B'—nte vy)
~0.94 andl'(B®—p* 7 v )IT (B’ — =" 7 v,)~1.15. We apply this approach to reexamine the case of the
D meson decay.S0556-282(98)04403-9

PACS numbefs): 13.20.He, 11.55.Hx, 12.38.Lg, 13.20.Fc

I. INTRODUCTION field approach of QCD sum rules will be set up to investigate

the various decay form factors &—pl v,. In Sec. IV nu-
Semileptonic decays, because of their simplicity, providemerical results and discussion are presented. Section V con-
an excellent laboratory where physicists can study the effeatins a brief summary.
of nonperturbative QCD interactions on the weak decay pro-
cess. A detailed understanding of these processes is also es-

sential for determining the magnitudes of Cabibbo- Il. THE METHOD
Kobayashi-Maskaw&CKM) quark-mixing matrix elements. A. Quark propagator in the presence
The weak decay form factors &— pl v, have been cal- of an external variable field

culat_ed by using vario_qs approaches. However, th_e results Tphe quark propagator in the external veotaxial vectoy
obtained from the traditional sum rulgs] by considering a  fie|d is described by the additional term 21, in the La-
three-point correlation function with a suitable interpolatinggrangian:

current seem to conflict seriously with other theoretic results;

such as light-cone sum ruldgg,3], lattice simulationg4], Aﬁl(x):_vaeinJX(x), (1)
quark model§5-9], and the external field approach of QCD

sum rules[10]. Recently, Ball and Braufill] reexamined

such a process by studying the light-cone sum rules with the
modified p meson wave functions. In their study, all of the

soft (nonperturbative parts are absorbed into the meson

wave functions. The accuracy of their results is dependent on

the shape of the wave functions. Similarly, within the pertur-where
bative QCD(PQCD approach12], the light meson is de-

scribed by a phenomenological model function which can be V_T. A_TT-

taken, e.g., from QCD sum rules. Ja=Uyab,  Jo=UYaysh. ®

In this work, we shall use the varying external field ap- " N _
proach of QCD sum rules which has been developed earlidi€reV(A%) andq® are the amplitude and momentum of the

[10] to reexamine the weak decay form factors fBr external vectofaxial-vectoj field, respectivelyb stands for

—>p|V_|With a complete calculation. This approach, in spirit the b quark field operator, and is for the u qua_rk field
is similar to Ref.[13]. We will present the idea of' the in- "operator. Hence the quark propagator depicted in Hg. 1

duced condensates and show how the induced condensaf:easn be written down as

enter the sum rules. In the calculation we find an additional
contribution from the induced condensates, which was ig-
nored in Ref.[10]. Consequently, thé\; form factor will
obtain an additional 10% contribution from the induced con-
densate, while the other form factors will not. In addition, we
also propose a reliable method that can be used to determire=— —e = . 4+ o
the Borel windows in studying the relevant form factor sum
rules. @ (b) ©
The rest of this paper is organized as follows. The concept
of the induced nonlocal condensates will be formulated in FIG. 1. Diagrams for the propagator of Ed). The heavy quark
the part(a) of Sec. Il. In the partb) of Sec. lll, the external propagator is represented by the heavy line.

AL2(x)=— A% PI%(x), (2
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TW () be(0 —(TuP () B(0))Pert color indices whilea and 8 the Lorentz indices. The first
(Tua(X) b (0)}yay=(Tua(x) bE(0))P4) term depicted in Fig. (b), on the right hand side of E¢4),
+<:u2(x)b_;‘4(0):)i)§‘<i’4‘jCEd, (4) can be calculaf[ed from p_erturbf’;\tion theory, while the second
term depicted in Fig. (t) is the induced condensate defined
through this paper. Neglecting the radiative corrections, we
with the notatiory . ..)=(0| ...|0). Herea andb are the  obtain

4

dp [(B+m)V((p+d)+Mp) g

(Tub(x)b3(0))p°""=i 5abf ~ipx (5)
g (2m)* (p?~m2)[(p+q)>—mZ]
Using the identity{ 10]
— — — S 1 —
12b3ul=| 1(bu) + ys(bysu) + ¥"(by,u)— ¥ ¥s(by,ysu) + s0(bo,u) | 6%
aB
_ _ — — 1 — )
=|1(bu)+ ys(bysu)+ y*(by,u)— ¥y ys(by,ysu)+ 50’”75(b0p775U) 5%, (6)

apB

we now project out Eq(5) on the Dirac matrix basi&, ys,7,,7,¥s,0,.. Thus the induced condensathe second term on
the right-hand side of Eq4)], with the aid of Eq.(6), is

P — —
(U(x) BE(0):)P°° — 75| (:D(0)U(X):) Bapt(:D(0) Y5U(X):) (¥5)ag

+(:D(0) Y,u(X):) (1) ap— (- 0(0) ¥, Y5U(X) ) ¥ ¥5) up

1 induced
+§(:b(0)crp,u(x):>(apf)aﬁ , (7)
V
or
50 _
(1uR (0 D(0)1)R — | (:B(0)U(X):) g+ (1D(0) ¥5U(X):)(¥5) g
+(:b(0) Y, u(X):)(¥°) ap—(:D(0) ¥, Y5U(X):) (¥ ¥5) up
1 induced
+ §< b(O)UpTYSU(X):>(G-pT75)aB ’ (8)
A
where
(:b(0)Tu(x):) 4= (Tb (0)Tu(X) )y~ (Tb(0)Tu(x))Bey 9)
with
(Tb(O)Tu(x))y=—i* f d*ze%(T(u(2)7,b(2),b(0)Tu(x))),
(Tb(0)Tu(x)) 4= —iA* f d*z€9%(T(u(z)y, ysb(2),b(0)Tu(x))), (10)
and
d*p . TH(p+m)W(P+4+my)T]
Th(0)'u(x))Pe"=—iN e Px (12)
(TROTUC)Y J(277)“ (p2—m2)[(p+q)2—m?]
_ d*p . T (p+my)Ays(p+¢)+my)T']
Tb(0)Tu(x))PE"=—iN, e P . (12)
Th f(Zw)“ (p?—m2)[(p+q)2—m?]
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HereI'" is the generic notation for the Dirac matrix basis and the continuum suppressed. At the hadron l&bel right
1,¥5.%,:7»¥s:0,, and the path-ordered gauge factor is im- hand sidg the spectral function ofL:\'"’ can be written as

plied by

fgm?
1 A _ pa P ’
g(O,X): Pexp[—igsf daX'“AM(aX)]. (13) p,u,v_“4 gp [fgaupv+a+ p,u(p‘*‘p )apv+a—puqapv
0
2 ’ 2
In the case of the fixed-point gaudéhe Fock-Schwinger +other terns ... .]X 8(s—mg) 5(s’—m,)
gauge x*A ,(x) =0, this factor is equal to unity. +higher states,
B. The derivation of QCD sum rules fam?

vV _ BM, . '8
— _ P =V [2ig€q,p,P,P" 7P’
For the form factors oB— pl v, , we consider the follow- ~ “ 9 whp
ing two point Green’s function in the external variable vector % S(s—m2 )
field V or axial-vector fieldA: Fotherterns . . .]X 5(s—mg)&(s’—m;)
+ higher states, (18

0,00 =i [ 4P (11,0050 ca, , ,
(14) where the h|ghe_r sta_ltes start from a higher enough vaﬁje,

_ _ or s§. The contribution from the higher states could be ap-
where( ...)=(0| ...]0), j,=dy,u, andj>=by,ysd. The  proximated by the perturbative pattyhich starts from the
interaction with the external vector field is described by thevalue,s§ or sf) in the operator product expansi¢@PE) of
additional termA L, in the Lagrangian as shown in Eq48)  the quark level. The “other terms” in Eq18) are the irrel-
and (2). In the following calculation we consider only the evant tensor structures that are not taken into account here
amplitude ofHZ(VA) linear in the external field/(A). Gener- and thus are suppressed. Here we have adopted the defini-
ally speaking, the coefficients of tensor structukgsin T,,  tions

can be expressed as a double dispersion relation form: )

. 12 . m
Pi(p,p,;qz) <0|J,u|p(p !)\)>:Ig_p€()\)/.w
p
(s—p?)(s'—p'?)
+ subtraction terms, (15

Hi(p.p’;q2)=fd8f ds’
(p(p" NIy —J0IB(P))=2ig€,, 5,0 “PPel,

where the subtraction terms have the form —fel\ e~ ar (€ PIPTDP e
A(s")ds' —a_(€y) P, (19

12

subtraction terms le(pz)J' ,
s'"—p with

A(S)ds f:(m +mB)A1,
12 2 ~12 p
+Pau(p )f s—pZ + PauP5P™). A,
(16) =" m,+mg’
One finds that such a contribution from the subtraction terms a_ =2mA
_ LA,

is of no importance since, after performing the double Borel

transform, all of the subtraction termB,,,, P,,,, and ~ A(@)—As(g?)

A(g?)

Ps,., disappear(For further discussions, see R¢l4],) 2 '
The double Borel transforB[11;] on II; [10] in both vari- ) )
ablesp? andp’? gives Ay(QP) = A1(q9)(m,+mg)  Ax(g°)(mg—m,)
v e st 2m, 2m, '
B[Hi]zf dsf dg'e (M ZrsM?) 0 (17 v
0 0 9

The hadronic side of Eq14) is represented as a sum over m,+ Mg

the hadronic states. If the Borel masses are chosen properiy, the Bauer-Stech-WirbéBSW) parametrizatiori6].
the hadronic side of Eq14) will be dominated by the lowest At the quark-gluon level, Eq(14) can be alternatively
hadronic states with the contributions from the higher statesvritten as

(p,p’;q2)=—i f d*xeP X(Tr{SE%(0,x) 7,58 (x,0) v, ¥s}), (20)

where[10,15
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i 5°° i7\” o' (P+mg) +(P+my)a”” G, (0)Ag, ( = : )

n "
p—my *772 9Cwl0 (p?—m3)? 4 p—my” p—my

d*p
sg(lj) O'X):J’ (277)4elpx

ij

V)\

+:d(0)dP(0): +x,,:d2(0)(D*dP(0)): +

)(D*D"dP(0)): + *‘ :df(0)(D#D*D*d}(0)):  (21)

and SﬂﬁW‘)(x,O) E(Tub(x)F(O»WA) is shown in Eq.(4) but also in the background gluon field. Here we have used the
fixed-point gaugex“Az(x)=0 [15,10 for the gluon field and“=9*+igs(A¥/2)A; .

The Feynman integral for the bare loop can be written as
d*k TIL(p' +K+my) v (p+k+mp)y,ys(k+my) m]

(2m)* K2(k+p")2[ (k+ p)2—mZ]

n,(p.p';q%) =3i V"

d*k  Tr(p’ +K+my) v ys(b+K+mp)y, ys(k+mg) m]

A Iem2\ —2i fa
iP5 =314 | Ty P+ p")] (k-+p)?— mE] 22
|

wherem? andmj have been neglected. The relevant diagram pV<A)(S s":0?)
is shown in Fig. 2a). Using the Cutkosky's rul¢16], the  II)5"(p,p’;q?) f f pee ,
integral can be solved easily by taking the imaginary part of (S— p3)(s'—p’?)
the quark propagators: Pf—mi+ie)— — 2ai 6(p?—mp). (23)
Thus this integral may be recast as a double dispersion rela-
tion where

d*k
<§> =31 |y~ 2800 (k)]

2_ 2
@ () X o[ (k+p)°—mg]

5 { ; é
(c) pﬁ,,a=3ijW(—Zwi)sé(kz)é[(k+p’)2]

X o[ (k+p)2—mg]
& éé@ XTr{(p" +Kk+my) v, ys(P+K+my)y,ys

and the corresponding integration regifn which can be
solved via the Landau equation, is specifiedshy 0 ands>
m2+m?s’'/(m2—q?). Note that if m2—qg?)/q?<s’, there

may be additional contributions to the above integral because
of pinching of the singularities on nonphysical shegt$
However, at the hadron level, the contribution from the

higher states is approximated by the perturbative part, which
starts from the thresholdg andsf}, we therefore study the
g2 behaviors of the form factors in the region=@? and

(g) (h)

XTr[(p, +k+ mu) 7a(p+ k—i_mb) Yv

X ys(K+mg)y,],

(m2—q?)/g?>sh, wheres} is the threshold of the excited
states,s’ <sf. In this region it is not necessary to worry
about possible contributions from nonphysical sheets. Con-
FIG. 2. Diagrams for the correlation function of EQ0). The  sidering only the leading power corrections of OPE of the
heavy quark propagator is represented by the heavy line. correlation function Eq(14), we obtain[17]



pipert(p,p’;qz) induced
(s—p?)(s'—p'»)

+dy(dd) + di(gsdoGd) +dsP gX(dd)>

B sP
Hi(p,p’;q2)=f °dSJ ods’
0 0

+d¢?"gZ(dd)(bb) + d g3(dd)(ut) + - -
(25

where

3s’
p?e”=mg{25’(25— 2mz—u)A—\[(m2—g?)?—s'g?]

—Amy(my—mg)(2s’ +2mZ—u)}, (26)

phet= T2 2008 [Fu(s*s' - m2)—2s'mZ]
FA[BAU—25'((s—md)2+s' (s’ +2m2—q?))]
—\?%(28' +g?Fmd)+C.}, (27)

pert 3s’ 2 2 ' 2

Pg =—W7[)\(3mb—2q —s)+3A(3s'—s+qg)],

(28)
with u=s+s'—g2 A=u?—4ss, A=(s—md)(mi—q?)
—s'm2, C,=4s'(20s'sA+6AN—\s's), andC_=0. (See
Ref.[10] for the detailed calculationNote that in Eq(25),
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the first term. To calculate the contribution from the induced
condensatelI'"4Uc€d we parametrize the bilocal condensate
as in Ref.[18]:

(9(0)G(0,x)9x))=(qa)g(d), (29

with

00)= | “dat(ae Een (30)
0
where the coordinates are Euclideamé#—xZBO) and
g(x2) is the Euclidean space-time correlation function of the
vacuum quarks. Our choice of the vacuum function is
4 2

f(a)= m2® Aalm, (31)
where m3(qq)= —(9s90**G,,,0). In this paper, we have
adopted the conventiorD“=9%+igs(A¥2)A;. If one
adopts =5—ig(A\¥Y2)AZ,  then  miqq)=
(9s90*"G,,0). The corresponding correlation function
g(x?) of the vacuum quarks is of the monopole form

g(xg)= (32)

1+ max2/16’
Since x? has been assumed to be spacelike, we hdve

=—x2=0. This choice leads to the empirical sea-quark dis-
tribution [18]. By using the bilocal condensate parametrized

the contribution from the excited states has been approxiabove to Eq(9), we obtain the relevant induced condensate

mately subtracted due to the upper integral Iim&tpr sg, in

in our study as

(b(0)G(0,X)y, ysu(X)) 4= —iA”( f d*y€9(0|T(b(0) y*ysu(x), u(y)¥,¥sb(y))|0)—the perturbative terah

1
=A#J’O e'Ugp(u,x?)du,

with

#(u,x2)=m(uu) f “d B %e(mﬁlm[l/(lml]eqzu/ﬁe(ﬁ/‘l)xz(lu)_
0

(33

(34)

In the following calculation, we adopt the approximatigfi/¥*(1~W~1 sincex?~0. Thus we obtain the contribution of the

induced condensate, as shown in Fith)2

induced _
1_[Al,Fig. 2(b)_f d

induced induced

ug(u)

‘o7 uar )

and I 00 ) = TN Riee oy =TIV fig * 9y =0, Where g (u) = ¢(u,x*=0). After performing the double Borel transform,

Eq. (35) becomes

M12 M/4M2

B[Hi/gfuced 2y]=B

,Fig. du

fl ug(u)

o u(p'+g)%+(1-up’?+q?u(u—1)

w @d(M?+M'2)

X
¢ M2+M/2 (M2+M/2)2

Note that the contribution of the induced condensate in (B§) was ignored in Ref[10]. The contribution of induced

condensates as shown in FidcRis given by
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. 2g2(dd)
Hff,‘é?ge.dzm)(l),p’;qz):— Sg Xéu(qz)

2_R'2 2

p—p’'“—q
14

(p>—mp)p

_ ., 2g¥dd)
IO (D) = — i —mp
b

| , 2g2(dd) 1
MRS %o (P30 =g U@
b

| ., 4g(dd) 1
11 ig %) (P.P"10%) = STXKU(QZ)W’ (39

where we have approximated the nonlocal induced condensate as a local one and the defigifiGhinf

(b(0)g,5u(0))y=—iV" f d*y 90| T(b(0)a,u(0),u(y)¥,b(y))|0)—the perturbative ter%

= —iV'x0u(0?)(9yals— 9p.0a),

(b(0)7,5y5u(0)) 4= —iA”( f d*y&(0|T(b(0) o ,z¥5u(0), u(y) 7, ysb(y))|0) —the perturbative ter%

= — i A" X0 (9,05~ 9p,00)- 37

Similar to the case of two-point sum rules, we can write dowf" as a dispersion relation form,

= d
R = [ am (e - marers)),
0s—q

and further adopt the simple model:
Im(s)= fV(A)cS(S— m?V(A)) +1m 7Pe"(s) (S—SX(A>)_

The final values ofVV are

A 3 (s m mZ\ [m?\?
W =——— s 1-2| 2|+ 2] |, (39

3 ey m m;
M-t 87legs=a?l T s

wherefV=0.28 Ge\?, f*=0.67 GeV, m=5.33 GeV, m4=5.71 GeV, s;=33 Ge\?, ands)'=38.2 Ge\?. The de-

tailed calculation is shown in Ref10]. Note that the uncertainties of our sum rule results are well controlled since in the

following numerical analysis we find that the contribution of the induced condensate 3%ds about 10% to thé\; sum

rule, and that the contribution of E¢36) to relevant sum rules is less than 4%. The rest of the results; fare collected in

the Appendixds, ds, d{, d{®, andd$® are represented pictorially by Figg(d3, 3(e), 3(f), 3(g), and 3h), respectively.
After equating the hadronic side to the quark side and then performing the double Borel traB§figrran f in both

variablesp? andp’?, we derive the relevant form factor QCD sum rules as follows:

fgm? ,

B p(mB+mp)e—(m§/M2)e_(m§/M Z)Al(qz):B[H%liark], (39)
P

mei 1 7(m2/M2) 7(m2/M72> 2 quark

9, mB+mpe ° e Aa(d ):_B[HAz it (40
mei —(M2IM2) s~ (m2IM'2) 2 quark
g—2mpe s/M% e~ (MM A (g2)=B[T19"2"], (41

p
me;% 2 2802 20112 %
e (Me/MIe~ (MM Iv/(g?) = B[ I1J"*"]. (42

g, mgt+m,
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Ill. RESULTS AND DISCUSSION
A. The determination of Borel windows

In numerical analyses of form factors, people usually as-
sume, according to the empirical observat[d®)], that the
suitable region of sum rules is at values of Borel masses
twice as large as that in the corresponding two-point func-
tions[1,20] and thus extract results from larger Borel mass
regions. However, we will provide a detailed analysis to
show that such a choice is not always correct.

To obtain reliable Borel windows in which the form fac-
tor sum rules may be safely used in the analysis, we apply
the differential operator M'#gIn/9M’2 to both sides of Eq.
(39) and then obtain the mass sum rule, which is free of the
parametery,, fg, and the form factorsA;, A,, A, or
V). This procedure is usually used in analyzing the mass sum
rules in the two-point Green's function approaf®i,15.
Analogously, we also obtain the meson mass rules from
Eqgs.(40)—(42). On the other hand, when applying the differ-
ential operator—M“gIn/9M? to both sides of Eqs(39)—
(42), we obtain four B meson mass sum rules. Totally, we
obtain eight mass rulg$our for thep meson and four for the
B meson. In the numerical analysis, we use the following
set of parameters:

FIG. 3. Thep mass and® mass, extracted from E9), plotted
as a function of the square of the Borel masEsandM’?2.

factor sum rulegthe right hand side of Eq$39)—(42)]. The
requirement of obtaining reasonable mass results from these
eight mass sum rules puts severe constraints on the choices
of the parameterssg andsf. With a careful study, we find

wherem, is a pole mass. The heavy quark condensate Wilthat the best choice of parameters in our analysis is
be dismissed through this paper. To further improve the va-

lidity of the derived QCD sum rules, we have performed the s5=33-35 GeV?, s{=13-14 GeV’. (46
following replacements:

m,=4.7 GeV, my=my=0,

(uu)=(dd)=— (240 MeV)3, m2=0.6-0.8 Ge\?,
(43

Consequently we find that
— —\| — — — 2
m(qa)—mi(ga)L "2, (qa)—(qaL*®, (44 8.5 GeV<M?<115 GeV,

, 0.9 GeP<M'?2<1.2 GeV (47
with
are the reasonable choices through this paper. The resultant
IN(M"2M?)Y2/ A 2) masses are m,=0.787:0.065 GeV and mg=5.11
L= In(u2/A2) ' (45) +0.18 GeV. The detailed results are collected in Table I. As
examples in Fig. @) and Fig. 3b), we plot thep mass and
) B masg extracted from Eq(39)], respectively, as a function
A=100 MeV, =500 MeV, andb=11-2n¢/3 with Ny of M2 andM 2. Obviously, the study of both of the and B
being the number ofinfrozenquark flavors. Note also that mass sum rules is a gauge to understand the reliability of
region R™*<Q?<mj, whereR is the confinement radius, performing further numerical analyses on the form factors. In
exists an anomalous dimensiorb2br both of the current  concluding this subsection, we will to discuss two “tradi-
operators[22-24, by,ysq and by,g. In our numerical tional” sum rule calculations by considering a three-point
analysis ofB meson decay form factors, the sum rules arecorrelation function in the existing literature: The first is the
studied atQ?~M’'2M2~3.4 Ge\? [see below, Eq47)].  work in Ref.[1] in which the authors use the vector current
Therefore, to obtain physical form factors, which are inde-d y’u and the pseudoscalar currdnysd as the interpolating
pendent of the subtraction scale, we put the factofiields for thep meson and for th& meson, respectively. For
[In(mM2/A2)/In((M'2M?)Y2A2)]*225 in the relevant form the form factorA, they obtain the following sum rule:
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2

fa(mg+m, )mZm 2 2
Pl B P (mgIMA)g—(mM' )

mbgp

3 B 4 2 ' 12
:4 fsodsfsods’e_(sm' )g—(s'/M%)
7T Jo 0

1

mps’ +my(s—mj)  mps'[(s—md)(g?—mj)+s'mi]
2)\1/2 )\3/2

2

2 2 2 2 2
_ m-—q°\ _ > — -1 (2mg+3mymy,—2g°)(my—g°)
—<qq>(mbmu+ > )e mb’M2+<qq>m§(T+ v

12M2M "2
2mp+3mpm,—2g°  3mp+9mym,—4q® mp+2mym,—qg?| o o
- VI - 12M2 Mgy e
16a.m(qq)’m,( 8 1 1 3m2-292 mi-g® mi(mi-q?) (m2-g??2
L 20%s (qq) b( e — L oMo a- m,—q L b6q LMo q e_mﬁ“\"z, 48)
9 lom2 9M? " (mi-g¢?) 72M*  gm2m'2 72 36M*M "2

where\ is defined as before. From thély sum rule, one can extract, following the procedure shown as abovp, itieson

mass sum rule. The result is illustrated in Figa)4from which we see that their result pfmass sum rule is not so stable as

to determine the suitable Borel windows. Moreover, one can easily find that once a Borel window is determined, the resultant
p mass from theiA, or V sum rule is twice as large as that from the sum rule. Note that if we adopt the varying external

field to do the calculation again, we find that various induced condensates may enter complicatedly the sumAuy|és for

andV and the contribution from induced condensates becomes a little big. Thus the estimate of the sum rule is less reliable.

_The second calculation is done by Ball and Bratifi]. They use the tensor curredio”’u and the pseudoscalar current
b ysd as the interpolating fields for the meson and for th® meson, respectively. For the form facthg, they have

L2
, fsf, Ms e~ (MaIM?) o= (m2IM'2)
m,(mg+m,)
B ) 2Ny ’
_ 3 jsodsfsf)dsle—(s/Mz)e—(s’/M/z) (s—mp)u—2ss
47?2 0 0 A 312

(s m2)(s—mi+2s')u?—3s'[(s—m?)?+2(s—m)s+ss Ju _ 2s8[(s- m2)2+2(s—md)s' + 353’])

)\5/2 )\5/2
_mbm%<®> o mIMZ_ 16&5W<@>2/ 1 1 N m; 3 m;—q? T 49)
6M2M'?2 9 l6M’4 3M2M’2  36M*M’2  18M2M'* ’
|
whereu and\ are defined as before. Note that, for tihis B. Numerical analysis of form factors

sum rule,.one obtains the same result if adopting the varying T study numerically the form factors, we adopt the set of
external field approach. In Fig(ld) we show thep mass sum parameters as shown in Eqg0), (43), and[10]
rule extracted from Eq(49). From Fig. 4b) we obtain

miso. The result seems to indicate that the tensor current fg=160 MeV, g,=3.84. (52

do”u is not a good interpolating field for the meson as
mentioned in Ref[25]. In the same reference, the authors
have pointed out that the tensor current cannot easily pro[2
duce a stable mass sum rule if the vacuum saturation hy-

The working Borel windows, which have been determined
reviously[Eq. (47)], are 8.5 Ge¥Y<M?<11.5 Ge\f and

TABLE I. Estimates of thep and B meson masses from Egs.

pothesis goes in the opposite direction: (39)—(42).

. _ 4 _

(aysh®qayshia)=— 5 (1+Bs)(aa)?, (50 m, (GeV) mg (GeV)

Eq. (39 0.722-0.806 5.15-5.28

with 85~ —2. Moreover, the author5] have also shown Eq. (40) 0.820-0.844 4.99-5.02
that the threshold of the excited states in theineson mass Eq. (41) 0.830-0.852 4.92-4.95
sum rule turns out to be unphysically low, the sum rule isgq. (42 0.764-0.803 4.98-5.01
dominated by the continuum contribution, and the poweraverage 0.78%0.064 5.1-0.19

corrections are rather large.
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the various form factors. The variation of the form factors
with g2 is of great interest, since it probes the effects of
strong interactions on the decay. As the property of discon-
tinuity in Ref. [1] is mentioned see also the discussion be-
low Eq. (24)], the sum rules work well in the regiom‘é
—0g?)%/g%>s}. Therefore, we could obtain thg? depen-
dence of the form factors over a wide rangegdf(from g2

=0 up about to 9 Ge¥). The g2 dependence of our form
factors is given by

m, (GeV)

F(q?)=F(0)(1—g?/m3)™", (53)

wheren=1 for A;, n=2 for A,, A, andV, and the fitted
pole masses aremA1=5.45 GeV, mA2=6.14 GeV, my

(b) =5.98 GeV, andn,=5.78 GeV, respectively. Here the re-
sults are evaluated at the central values of the Borel mass
ranges in Eq(47). We find that ourq® dependence of the
form factors is well consistent with the pole model ansatz by
SN IKtirrr]\erfalrpd Schulel[rS]land recent Iﬁttice res?ltd] al;zwdell.
SRR n the following calculation, we will extrapolate o e-
\\‘{:{{:\“{:}‘\\::&g\ pendence of form factors to all possible kinematic regions.
SR The pole model ansatz may be a good approximation for the
~ form factor behavior since it is consistent with this sum rule
calculation in the region: 0 GE.g°<9 Ge\? and also in
- good accordance with the QCD power counting rdiEg at
o Ty N W & large —qg? (the hard rescattering regipriMoreover, by ne-
@Pﬁ 3 glecting the light meson mass, we roughly obtain from Eq.
(53) the relationF (q2)/F(0)~mj, whereg?=(m,—m,)2.

FIG. 4. Thep mass as a function of the square of the Borel Therefore, our results agree with the prediction of heavy
massesM? andM’2. In (a) the p mass is extracted from E¢48),  quark symmetry27] in the kinematic region near zero recoil
the A; sum rule of{1]. In (b) the p mass is extracted from E¢19), (qzqum),
the A, sum rule of[11].

(GeV?)

my,
P=4

a,+a_~m,*? -—a,+a_~m,,
0.9 GeV¥<M’'?<1.2 Ge\l. In these Borel ranges, the
form factors are dominated by the leading perturbative bare g~m,Y2, f~mi2. (54)
loop; for theA, form factor, the absolute value of the con-
tribution of (gsdoGd) is less than 50% of the bare loop. In Fig. 6@ we plot the lepton-pair invariant mass spectrum
Moreover, the contribution of induced condensate amountgr/dqg2 of the B-—ply, decay together with
to about 14% to theA; sum rule, while less than 4% to qgr /dq? dr', /dg?, anddl'_/dg2. The solid curve is for

Az, A, orV. Note that unlike light-cone sum rul¢8,11],  dr/dq?, and the long-dashed curve is @F, /dg?, the por-
we cannot apply “directly” the heavy quark limim,—, o of the rate with a longitudinal polarizeg in the final
to these sum rules since in that limit the series of the operatajiate the short-dashed curve is @ _ /dg?, the portion of
product expansiofOPE) may become unconvergent. But in the rate with a helicity minug in the final state, while the
the case of the B or D meson, our results indicate that thggited curve is fodI", /dq?, the portion of the rate with a
series of the OPE is in good convergence. In Flga)—SS(d), helicity positivep in the final state. Similarly, in Fig.(®) we
we plot theA;, A,, A, andV form factors atq“=0, re-
spectively, as a function df1> andM’2. We thus obtain the
results on the form factors af=0:

plot the electron spectruml’/dE, of the B—>p|v_|together
with dI'| /dE., dI', /dE., anddI' _ /dE,.. The solid curve
is for dI'/dE,, the long-dashed curve fail'| /dE,, the

A;(0)=0.12+0.01, short-dashed curve fail'_ /dE,, and the dotted curve for
dI', /dE.. Both of the Figs. @) and @b) are plotted in the
A,(0)=0.12+0.01, B meson rest frame.
From Fig. 6 we obtairdI'/dg?~dI', /dg? and dI'/dE,
A(0)=0.015+0.02, ~drI', /dE, at the maximum recoil regiongf~0). This is
quite reasonable because at l@#f, the electron and an-
V(0)=0.15-0.02, (52 tineutrino are nearly collinear, so that their net spin along

their motion is zero. Since thB meson has spin zero, the
where the error comes from the variation in the Borel massenergetic recoilingp meson must also have zero helicity.
s5, b, or mj. The resultant values of form factors are half The helicity minus contribution is more weighted towards
as large as the light-cone sum rule res(i8sl1] or lattice  the largeq? value than the helicity zero contribution around
QCD calculatior{4]. We now consider thg? dependence of the smallg? region. Our results also show thdl” _ /dg?
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FIG. 5. TheA.(0),A,(0),A(0), andV(0) form factors plotted as a function of the square of the Borel maggeand M '2,

>dl', /d¢? as expected from the left-chirél, —u_ transi-  +0,04 andA®~¥"(0) becomes 0.6%0.04. The results for

tion. Our results for the decay rate are given by the form factors atj>=0 are collected in Table II. The cal-
_ — culated decay rates read
I'(B°—=p* /" v,)=(5.121.0) X |Vp|2x 10'%s 71,
I['(D°—p 171)=0.44+0.08V ¢ ?x 10"s7 1,
I /T'1=0.850.03, ', /[ _=0.077+0.012,
L o I' /T't=0.58+0.05, T',/'_=0.041+0.002,
I'(B%—=p*7 v,)=(3.1+0.00 X |V p|2x 1051,
(55) (D" —K*%*3)=0.51+0.0§V J?x 10's™ 2,

Since the induced condensate like E8f) does not contrib- [ /T;=0.99+0.06, [ /I_=0.19+0.02.  (56)
ute to the sum rules in Rgf10] for B— 71~ v, therefore " Vod=09 btai (D"

e take T'(B'—mte 1) =(5.4+1.6)x |V, |?x10%s~t  TaKing Ves =0.975, we ~ obtain  B(D"—
W dT(BO (+ -z B 21}'37)+0(07 V) 2| ul?')lzs*lf K*0%%,)=5.1+0.7%. The experimental resulfs0] are
andT(B%— "7 v,)=(2.7+0.0 )X|_gb| *107s oM B(DO—K*I71)=4.850.4%, ' /[7=12340.13, T,/
Ref. [10]. We obtain the ratiosI'(B"—~p~e” v¢)/['(B" I =0.16+0.04. Our results are consistent with the existing
—nte v,)~0.94 and I'(B°—=p*7 v )IT(BY experimental data, except that the valudef/T'; is a little
—mt 7 v )~1.15. Our result for the ratol(B° smaller than the experimental data. Further applications of
. pte vo)IT(B'— mte~vy) is a bit smaller than, but still this approach to various exclusive decay processes will be

consistent with, the CLEO experimental val{@8,2g of Published elsewher1].
1.4+0.6. However, one should note that in the CLEO experi-
ment, the reconstruction of the relevant events is model de- IV. SUMMARY

pendent. For instance, if the llsgu_[)-ScoIalC;instem_E)Wlse In summary, we have used the varying external field ap-
(ISGW) Il model is used, the ratid’'(B"—p~e” v¢)/I'(B"  proach of QCD sum rules to compute the form factors for the

—m'e ve) is 1.1+0.7. semileptonic decayB’— p ™|~ v,. We have formulated this

In closing this subsection, we consider the case of the '%pproach in a systematic way. By extracting both of Ehe
meson decays. By following the same procedure as the caggeson angp meson mass sum rules, we can thus determine
of B®—p*1~ v, and using the parameters as in Ra0], the reliable Borel windows in studying the relevant form
we can obtain the same form factor results and théibe-  factor sum rules. We also include induced condensate con-
haviors as in Ref[10], except thatA?~(0) becomes 0.43 tributions, which have been ignored before, into the relevant
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1
2 APPENDIX
K The quantitiesds, ds, d§”, d{®, andd{® defined in
~ Eq. (25) read
3
o A 2Mytmy Mg ma(m;—g°)
== - 22 :
© 3 2p72(p2_m§) 2(p2_mb)2 2p12(p2_m§)2
(A1)
~ 0.80 2 _
T> g (b) d?]-: i _ 62mdmf — 22md4 3+ 4mb2 22mu+23r2nd
3 12 (p*=mp)* (p*—mp) p'2(p?—m3)
IU)
2 _o2mgtmy 2(mg+ my)(M2—g?)
& p’*(p?—mp) p'*(p?—mp)?
>
< _4@2mp-gP)mg+6mmy  2my(mi—g?)?
%m pIZ(pZ_mg)i% p74(p2_m§)3
~
5 6mgmg(m;—g?)
TR A2)
3.0 p’“(p=—mp)
FIG. 6. (a) The lepton-pair invariant mass specttf/dg? plot- (DAL i 3 " 2 _ 2
ted as a function ofi%. The solid curve isiT'/dg?. The long-dashed 6 81 p'4(p2—m2)  p'2(p2—m3)>2 (p?—m?)3
curve stands fodI", /dg?, the portion of the rate with a longitudi-
nal polarizedp in the final state. The short-dashed curve stands for 10m2+28mym,—2q%  6(m2—qg?)+7mym,
dI'_ /dg?, the portion of the rate with a helicity minysin the final — Y 23 s 7
state, while the dotted curve is fdi" . /dg?, the portion of the rate p e(p —mp) p (P —mp)
with a helicity positivep in the final state(b) The electron spectra ) 2 o ) )
dr/dE, of the B—p*l~ | together withdT', /dE,,dT , /dE,, LM 2(My— )Myt mymy—q)
anddI' _ /dE.. The solid curve, the long-dashed curve, the short- (pz—mg)4 p’4(p2—m§)3
dashed curve, and the dotted curve are for
dr'/dE,,dI', /dE,,dI'_/dE., anddI', /dE., respectively. 6m§(m§+ meMy—g°)
(A3)
12/ A2 2\4
sum rules. Therefore, we demonstrate that some QCD sum p"“(p*—my)

rule calculations in the literature are less reliable. Our results
strongly support the pole model ansatz by riker

5 1 1 2mmi+mi—g?
and Schuler on they® dependence of the form factors.

@A 2

+ +
6 402 A2 ’ f
Combining with the previous analysis in REE0], we obtain [P (P*—my)  p'?p?  pH(p’-mp)p’?
the ratio I'(B°—p*e” vo)/I(B°—7'e v)~0.94 and am. m2
I'(B%—p*r v )IT(B°— 7" 7 v)~1.15. —ﬁl (Ad)
PP —mg)°p
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TABLE Il. Estimates of various weak semileptonic form factors m
for D—p,K*. dlo=— 4 (A6)
> 2pA(pP-mp)?
A1(0) A2(0) A(0) V(0)
Doap’ 0.43-0.04 0.57#0.08 0.30-0.07 0.98-0.11 m my
DO—K*~  0.61+0.04 0.670.08 0.22-0.03 1.16-0.10 do2= - (A7)
. . . . . . . . 5

6pr4(p2_mg)2 6p72(p2_m§)3’
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1 2
dge=— —7[ + . (A8)
° 27 p*(p*—mp)®  p'4(p*—mp)?
ET 2 [ 1 B m3
- 4 ’ ’ ’ !
° omg| p'2(p2-md) p'?p? p'2p*
(A9)
dM"2=0, (A10)
My
= — % (A11)
P 2p’¥(ptomp)?
m my
dA= - - . (A12)
5 6p’4(p2—m§)2 2p’2(p2—m§)3
81-p12(p2_m§)3 pl4(p2_m§)2
(A13)
N ¢ ! m (A14)
- 4 ’ - ' o ' ’
©omgp'2(p?-md) p'2p? p'p’
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dA=0, (A15)
My
dy=———-, (A16)
p'#(p?—mp)?
Vv my My mdmg

® 3p'(p?-mp)? 3p'H(pP-mp)  2p’3(p?-mp)*
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