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Weak decay process ofB˜r l n̄ l : A varying external field approach in QCD sum rules

Kwei-Chou Yang
Institute of Physics, Academia Sinica, Taipei, Taiwan 115, Republic of China

~Received 2 July 1997; published 21 January 1998!

A varying external field approach in QCD sum rules is formulated in a systematic way to treat the weak
decay form factors and theirq2 dependence in the process ofB→r l n̄ l . From the form factor sum rules, we
can also obtain the mass sum rules forB and r mesons, which can help us determine the reliable Borel
windows in studying the relevant form factor sum rules. In this way, we thus demonstrate that some QCD sum
rule calculations in the literature are less reliable. We also include induced condensate contributions, which
have been ignored, into the relevant sum rules. We obtain the ratiosG( B̄0→r1e2 n̄ e)/G( B̄0→p1e2 n̄ e)
'0.94 andG( B̄0→r1t2 n̄ t)/G( B̄0→p1t2 n̄ t)'1.15. We apply this approach to reexamine the case of the
D meson decay.@S0556-2821~98!04403-8#

PACS number~s!: 13.20.He, 11.55.Hx, 12.38.Lg, 13.20.Fc
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I. INTRODUCTION

Semileptonic decays, because of their simplicity, prov
an excellent laboratory where physicists can study the ef
of nonperturbative QCD interactions on the weak decay p
cess. A detailed understanding of these processes is als
sential for determining the magnitudes of Cabibb
Kobayashi-Maskawa~CKM! quark-mixing matrix elements

The weak decay form factors ofB→r l n̄ l have been cal-
culated by using various approaches. However, the res
obtained from the traditional sum rules@1# by considering a
three-point correlation function with a suitable interpolati
current seem to conflict seriously with other theoretic resu
such as light-cone sum rules@2,3#, lattice simulations@4#,
quark models@5–9#, and the external field approach of QC
sum rules@10#. Recently, Ball and Braun@11# reexamined
such a process by studying the light-cone sum rules with
modifiedr meson wave functions. In their study, all of th
soft ~nonperturbative! parts are absorbed into ther meson
wave functions. The accuracy of their results is dependen
the shape of the wave functions. Similarly, within the pert
bative QCD~PQCD! approach@12#, the light meson is de-
scribed by a phenomenological model function which can
taken, e.g., from QCD sum rules.

In this work, we shall use the varying external field a
proach of QCD sum rules which has been developed ea
@10# to reexamine the weak decay form factors forB

→r l n̄ l with a complete calculation. This approach, in spir
is similar to Ref.@13#. We will present the idea of the in
duced condensates and show how the induced conden
enter the sum rules. In the calculation we find an additio
contribution from the induced condensates, which was
nored in Ref.@10#. Consequently, theA1 form factor will
obtain an additional 10% contribution from the induced co
densate, while the other form factors will not. In addition, w
also propose a reliable method that can be used to deter
the Borel windows in studying the relevant form factor su
rules.

The rest of this paper is organized as follows. The conc
of the induced nonlocal condensates will be formulated
the part~a! of Sec. II. In the part~b! of Sec. III, the external
570556-2821/98/57~5!/2983~13!/$15.00
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field approach of QCD sum rules will be set up to investig
the various decay form factors ofB→r l n̄ l . In Sec. IV nu-
merical results and discussion are presented. Section V
tains a brief summary.

II. THE METHOD

A. Quark propagator in the presence
of an external variable field

The quark propagator in the external vector~axial vector!
field is described by the additional term,DL1(2), in the La-
grangian:

DL1~x!52VaeiqxJa
V~x!, ~1!

or

DL2~x!52AaeiqxJa
A~x!, ~2!

where

Ja
V5 ūgab, Ja

A5 ūgag5b. ~3!

HereVa(Aa) andqa are the amplitude and momentum of th
external vector~axial-vector! field, respectively,b stands for
the b quark field operator, andu is for the u quark field
operator. Hence the quark propagator depicted in Fig. 1~a!
can be written down as

FIG. 1. Diagrams for the propagator of Eq.~4!. The heavy quark
propagator is represented by the heavy line.
2983 © 1998 The American Physical Society
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^Tua
b~x! b̄b

a~0!&V~A!5^Tua
b~x! b̄b

a~0!&V~A!
pert

1^:ua
b~x! b̄b

a~0!:&V~A!
induced, ~4!

with the notation̂ . . . &[^0u . . . u0&. Herea andb are the
color indices whilea and b the Lorentz indices. The firs
term depicted in Fig. 1~b!, on the right hand side of Eq.~4!,
can be calculated from perturbation theory, while the sec
term depicted in Fig. 1~c! is the induced condensate define
through this paper. Neglecting the radiative corrections,
obtain
^Tua
b~x! b̄b

a~0!&V
pert5 idabE d4p

~2p!4
e2 ipx

@~p” 1mu!V” ~~p” 1q” !1mb!#ab

~p22mu
2!@~p1q!22mb

2#
. ~5!

Using the identity@10#

12b̄b
aua

b5F1~ b̄u!1g5~ b̄g5u!1gr~ b̄gru!2grg5~ b̄grg5u!1
1

2
srt~ b̄srtu!G

ab

dab

5F1~ b̄u!1g5~ b̄g5u!1gr~ b̄gru!2grg5~ b̄grg5u!1
1

2
srtg5~ b̄srtg5u!G

ab

dab, ~6!

we now project out Eq.~5! on the Dirac matrix basis1, g5 ,gr ,grg5 ,srt . Thus the induced condensate@the second term on
the right-hand side of Eq.~4!#, with the aid of Eq.~6!, is

^:ua
b~x! b̄b

a~0!:&V
induced52

dab

12S ^: b̄~0!u~x!:&dab1^: b̄~0!g5u~x!:&~g5!ab

1^: b̄~0!gru~x!:&~gr!ab2^: b̄~0!grg5u~x!:&~grg5!ab

1
1

2
^: b̄~0!srtu~x!:&~srt!abD

V

induced

, ~7!

or

^:ua
b~x! b̄b

a~0!:&A
induced52

dab

12S ^: b̄~0!u~x!:&dab1^: b̄~0!g5u~x!:&~g5!ab

1^: b̄~0!gru~x!:&~gr!ab2^: b̄~0!grg5u~x!:&~grg5!ab

1
1

2
^: b̄~0!srtg5u~x!:&~srtg5!abD

A

induced

, ~8!

where

^: b̄~0!Gu~x!:&V~A!
induced5^Tb̄~0!Gu~x!&V~A!2^Tb̄~0!Gu~x!&V~A!

pert ~9!

with

^Tb̄~0!Gu~x!&V52 iVmE d4zeiqz^T„ū~z!gmb~z!, b̄~0!Gu~x!…&,

^Tb̄~0!Gu~x!&A52 iAmE d4zeiqz^T„ū~z!gmg5b~z!, b̄~0!Gu~x!…&, ~10!

and

^Tb̄~0!Gu~x!&V
pert52 iNcE d4p

~2p!4
e2 ipx

Tr@~p” 1mu!V” ~p” 1q” 1mb!G#

~p22mu
2!@~p1q!22mb

2#
, ~11!

^Tb̄~0!Gu~x!&A
pert52 iNcE d4p

~2p!4
e2 ipx

Tr@~p” 1mu!A”/g5„~p” 1q” !1mb…G#

~p22mu
2!@~p1q!22mb

2#
. ~12!
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Here G is the generic notation for the Dirac matrix bas
1,g5 ,gr ,grg5 ,srt and the path-ordered gauge factor is im
plied by

G~0,x!5Pexp[2 igsE
0

1

daxmAm~ax!]. ~13!

In the case of the fixed-point gauge~the Fock-Schwinger
gauge! xmAm(x)50, this factor is equal to unity.

B. The derivation of QCD sum rules

For the form factors ofB→r l n̄ l , we consider the follow-
ing two point Green’s function in the external variable vec
field V or axial-vector fieldA:

Pmn
V~A!~p,p8;q2!5 i E d4xeip8x^T$ j m~x!, j n

5~0!%&V~A! ,

~14!

where^ . . . &[^0u . . . u0&, j m5d̄gmu, and j n
55b̄gng5d. The

interaction with the external vector field is described by
additional term,DL, in the Lagrangian as shown in Eqs.~1!
and ~2!. In the following calculation we consider only th
amplitude ofPmn

V~A! linear in the external fieldV~A!. Gener-
ally speaking, the coefficients of tensor structuresP i in Tmn

can be expressed as a double dispersion relation form:

P i~p,p8;q2!5E dsE ds8
r i~p,p8;q2!

~s2p2!~s82p82!

1subtraction terms, ~15!

where the subtraction terms have the form

subtraction terms5P1mn~p2!E D~s8!ds8

s82p82

1P2mn~p82!E D~s!ds

s2p2 1P3mn~p2,p82!.

~16!

One finds that such a contribution from the subtraction te
is of no importance since, after performing the double Bo
transform, all of the subtraction terms,P1mn , P2mn , and
P3mn , disappear.~For further discussions, see Ref.@14#.!
The double Borel transformB@P i # on P i @10# in both vari-
ablesp2 andp82 gives

B@P i #5E
0

`

dsE
0

`

ds8e2~s8/M821s/M2!r i . ~17!

The hadronic side of Eq.~14! is represented as a sum ov
the hadronic states. If the Borel masses are chosen prop
the hadronic side of Eq.~14! will be dominated by the lowes
hadronic states with the contributions from the higher sta
r

e

s
l

rly,

s

and the continuum suppressed. At the hadron level~the right
hand side!, the spectral function ofPmn

A~V! can be written as

rmn
A 5Aa

f Bmr
2

gr
@ f gampn1a1pm~p1p8!apn1a2pmqapn

1other terms . . .#3d~s2mB
2 !d~s82mr

2!

1higher states,

rmn
V 5Va

f Bmr
2

gr
@2igeambrpnp8bpr

1other terms . . .#3d~s2mB
2 !d~s82mr

2!

1higher states, ~18!

where the higher states start from a higher enough values0
B

or s0
r . The contribution from the higher states could be a

proximated by the perturbative part,~which starts from the
value,s0

B or s0
r) in the operator product expansion~OPE! of

the quark level. The ‘‘other terms’’ in Eq.~18! are the irrel-
evant tensor structures that are not taken into account
and thus are suppressed. Here we have adopted the d
tions

^0u j mur~p8,l!&5 i
mr

2

gr
e~l!m ,

^r~p8,l!uJa
V2Ja

AuB~p!&52igeambrp8mpbe~l!
* r

2 f e~l!a* 2a1~e~l!
* •p!~p1p8!a

2a2~e~l!
* •p!qa , ~19!

with

f 5~mr1mB!A1 ,

a152
A2

mr1mB
,

a252mrA,

A~q2!5
A0~q2!2A3~q2!

q2 ,

A3~q2!5
A1~q2!~mr1mB!

2mr
2

A2~q2!~mB2mr!

2mr
,

g5
V

mr1mB

in the Bauer-Stech-Wirbel~BSW! parametrization@6#.
At the quark-gluon level, Eq.~14! can be alternatively

written as
Pmn
V~A!~p,p8;q2!52 i E d4xeip8x^Tr$Sd

ab~0,x!gmSub
baV~A!~x,0!gng5%&, ~20!

where@10,15#
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Sd~ i j !
ab ~0,x!5E d4p

~2p!4 eipxF idab

p” 2md
1

i

4

lab
n

2
gsGmn

n ~0!
smn~p” 1md!1~p” 1md!smn

~p22md
2!2

2
iGmn

n ~0!lab
n

4
gsx

nS 1

p” 2md
gm

1

p” 2md
D G

i j

1:di
a~0! d̄ j

b~0!:1xm :di
a~0!„Dm d̄ j

b~0!…:1
xmxn

2!
:di

a~0!„DmDn d̄ j
b~0!…:1

xmxnxl

3!
:di

a~0!„DmDnDl d̄ j
b~0!…: ~21!

and Sub
baV~A!(x,0) [^Tub(x) b̄ a(0)&V(A) is shown in Eq.~4! but also in the background gluon field. Here we have used

fixed-point gauge,xmAm
a (x)50 @15,10# for the gluon field andDa5]a1 igs(l

a/2)Aa
a .

The Feynman integral for the bare loop can be written as

Pmn
V ~p,p8;q2!53iVaE d4k

~2p!4

Tr@~p” 81k”1mu!ga~p” 1k”1mb!gng5~k”1md!gm#

k2~k1p8!2@~k1p!22mb
2#

,

Pmn
A ~p,p8;q2!53iAaE d4k

~2p!4

Tr@~p” 81k”1mu!gag5~p” 1k”1mb!gng5~k”1md!gm#

k2~k1p8!2@~k1p!22mb
2#

, ~22!
am

t o

re

use

he
ich

y
on-
he
wheremu
2 andmd

2 have been neglected. The relevant diagr
is shown in Fig. 2~a!. Using the Cutkosky’s rule@16#, the
integral can be solved easily by taking the imaginary par
the quark propagators: 1/(p22mb

21 i e)→22p id(p22mb
2).

Thus this integral may be recast as a double dispersion
tion

FIG. 2. Diagrams for the correlation function of Eq.~20!. The
heavy quark propagator is represented by the heavy line.
f

la-

Pmn
V~A!~p,p8;q2!52

V~A!a

4p2 E E
V

dsds8
rmna
V~A!~s,s8;q2!

~s2p2!~s82p82!
,

~23!

where

rmna
V 53i E d4k

~2p!4 ~22p i !3d~k2!d@~k1p8!2#

3d@~k1p!22mb
2#

3Tr@~p” 81k”1mu!ga~p” 1k”1mb!gn

3g5~k”1md!gm#,

rmna
A 53i E d4k

~2p!4 ~22p i !3d~k2!d@~k1p8!2#

3d@~k1p!22mb
2#

3Tr@~p” 81k”1mu!gag5~p” 1k”1mb!gng5

3~k”1md!gm#, ~24!

and the corresponding integration regionV, which can be
solved via the Landau equation, is specified bys8.0 ands.
mb

21mb
2s8/(mb

22q2). Note that if (mb
22q2)/q2,s8, there

may be additional contributions to the above integral beca
of pinching of the singularities on nonphysical sheets@1#.
However, at the hadron level, the contribution from t
higher states is approximated by the perturbative part, wh
starts from the thresholdss0

B ands0
r , we therefore study the

q2 behaviors of the form factors in the region: 0<q2 and
(mb

22q2)/q2.s0
r , wheres0

r is the threshold of the excited
states,s8,s0

r . In this region it is not necessary to worr
about possible contributions from nonphysical sheets. C
sidering only the leading power corrections of OPE of t
correlation function Eq.~14!, we obtain@17#
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P i~p,p8;q2!5E
0

s0
B

dsE
0

s0
r

ds8
r i

pert~p,p8;q2!

~s2p2!~s82p82!
1P i

induced

1d3
i ^d̄d&1d5

i ^gsd̄sGd&1d6
~1!igs

2^d̄d&2

1d6
~2!igs

2^d̄d&^b̄b&1d6
~3!igs

2^d̄d&^ūu&1•••,

~25!

where

r f
pert5

3s8

4p2l5/2$2s8~2s22mb
22u!D2l@~mb

22q2!22s8q2#

2lmb~mu2md!~2s812mb
22u!%, ~26!

ra6

pert5
3s8

4p2l7/2$20Ds8@7u~s6s82mb
2!22s8mb

2#

7l@3Du22s8„~s2mb
2!26s8~s812mb

22q2!…#

2l2~2s86q27mb
2!1C6%, ~27!

rg
pert52

3s8

4p2l5/2@l~3mb
222q22s!13D~3s82s1q2!#,

~28!

with u5s1s82q2, l5u224ss8, D5(s2mb
2)(mb

22q2)
2s8mb

2 , C154s8(20s8sD16Dl2ls8s), andC250. ~See
Ref. @10# for the detailed calculation.! Note that in Eq.~25!,
the contribution from the excited states has been appr
mately subtracted due to the upper integral limit,s0

B or s0
r , in
i-

the first term. To calculate the contribution from the induc
condensate,P induced, we parametrize the bilocal condensa
as in Ref.@18#:

^ q̄~0!G~0,x!q~x!&5^q̄q&g~xE
2!, ~29!

with

g~xE
2 !5E

0

`

da f ~a!e2xE
2a/4, ~30!

where the coordinates are Euclidean (xE
252x2>0) and

g(xE
2) is the Euclidean space-time correlation function of t

vacuum quarks. Our choice of the vacuum function is

f ~a!5
4

m0
2 e24a/m0

2
, ~31!

wherem0
2^qq&5 2^gsq̄smnGmnq&. In this paper, we have

adopted the conventionDa5]a1 igs(l
a/2)Aa

a . If one
adopts Da5]a2 igs(l

a/2)Aa
a , then m0

2^q̄q&5

^gsq̄smnGmnq&. The corresponding correlation functio
g(x2) of the vacuum quarks is of the monopole form

g~xE
2 !5

1

11m0
2xE

2/16
. ~32!

Since x2 has been assumed to be spacelike, we havexE
2

52x2>0. This choice leads to the empirical sea-quark d
tribution @18#. By using the bilocal condensate parametriz
above to Eq.~9!, we obtain the relevant induced condensa
in our study as
e

,

^b~0!G~0,x!gmg5u~x!&A52 iAnS E d4yeiqy^0uT„b̄~0!gmg5u~x!, ū~y!gng5b~y!…u0&2the perturbative termD
5AmE

0

1

eiqxuf~u,x2!du, ~33!

with

f~u,x2!5mb^ūu&E
0

`

db
f ~b!

b
e2~mb

2/b!@1/~12u!21#eq2u/be~b/4!x2~12u!. ~34!

In the following calculation, we adopt the approximatione(b/4)x2(12u)'1 sincex2'0. Thus we obtain the contribution of th
induced condensate, as shown in Fig. 2~b!,

PA1 ,Fig. 2~b!
induced 5E

0

1

du
uf~u!

~p81uq!2 , ~35!

and PA2 ,Fig. 2(b)
induced 5PA,Fig. 2(b)

induced 5PV,Fig. 2(b)
induced 50, wheref(u)5f(u,x250). After performing the double Borel transform

Eq. ~35! becomes

B@PA1 ,Fig. 2~b!
induced #5BF E

0

1

du
uf~u!

u~p81q!21~12u!p821q2u~u21!
G52fS M 82

M21M 82D 3
M 84M2

~M21M 82!2
3eq2/~M21M82!.

Note that the contribution of the induced condensate in Eq.~35! was ignored in Ref.@10#. The contribution of induced
condensates as shown in Fig. 2~c! is given by
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PA1 ,Fig. 2~c!
induced ~p,p8;q2!52

2gs
2^d̄d&
9

xbu
A ~q2!

p22p822q2

~p22mb
2!p84 ,

PA2 ,Fig. 2~c!
induced ~p,p8;q2!5

2gs
2^ d̄d&
9

xbu
A ~q2!

1

~p22mb
2!p84

,

PA,Fig. 2~c!
induced ~p,p8;q2!52

2gs
2^ d̄d&
9

xbu
A ~q2!

1

~p22mb
2!p84

,

PV,Fig. 2~c!
induced ~p,p8;q2!5

4gs
2^ d̄d&
9

xbu
V ~q2!

1

~p22mb
2!p84

, ~36!

where we have approximated the nonlocal induced condensate as a local one and the definition ofxV~A! is

^ b̄~0!sabu~0!&V52 iVnS E d4yeiqy^0uT„b̄~0!sabu~0!, ū~y!gnb~y!…u0&2the perturbative termD
52 iVnxbu

V ~q2!~gnaqb2gbnqa!,

^ b̄~0!sabg5u~0!&A52 iAnS E d4yeiqy^0uT„b̄~0!sabg5u~0!, ū~y!gng5b~y!…u0&2the perturbative termD
52 iAnxbu

A ~q2!~gnaqb2gbnqa!. ~37!

Similar to the case of two-point sum rules, we can write downxV~A! as a dispersion relation form,

xV~A!~q2!5E
0

` ds

s2q2
„Im p~s!2Im ppert~s!…,

and further adopt the simple model:

Im p~s!5 f V~A!d~s2mfV~A!
2

!1Im ppert~s!u ~s2s0
V~A!!.

The final values ofxV~A! are

xbu
V~A!5

f V~A!

mfV~A!
2

2q2
2

3

8pEmb
2

s0
ds

mb

s2q2F122S mb
2

s D 1S mb
2

s D 2G , ~38!

wheref V50.28 GeV3, fA50.67 GeV3, mfV55.33 GeV, mfA55.71 GeV, s0
V533 GeV2, ands0

A538.2 GeV2. The de-
tailed calculation is shown in Ref.@10#. Note that the uncertainties of our sum rule results are well controlled since in
following numerical analysis we find that the contribution of the induced condensate in Eq.~35! is about 10% to theA1 sum
rule, and that the contribution of Eq.~36! to relevant sum rules is less than 4%. The rest of the results fordi are collected in
the Appendix.d3 , d5 , d6

(1) , d6
(2) , andd6

(3) are represented pictorially by Figs. 3~d!, 3~e!, 3~f!, 3~g!, and 3~h!, respectively.
After equating the hadronic side to the quark side and then performing the double Borel transformB@ f # on f in both

variablesp2 andp82, we derive the relevant form factor QCD sum rules as follows:

f Bmr
2

gr
~mB1mr!e2~mB

2 /M2!e2~mr
2/M82!A1~q2!5B@PA1

quark#, ~39!

f Bmr
2

gr

1

mB1mr
e2~mB

2 /M2!e2~mr
2/M82!A2~q2!52B@PA2

quark#, ~40!

f Bmr
2

gr
2mr

2e2~mB
2 /M2!e2~mr

2/M82!A~q2!5B@PA
quark#, ~41!

f Bmr
2

gr

2

mB1mr
e2~mB

2 /M2!e2~mr
2/M82!V~q2!5B@PV

quark#. ~42!
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III. RESULTS AND DISCUSSION

A. The determination of Borel windows

In numerical analyses of form factors, people usually
sume, according to the empirical observation@19#, that the
suitable region of sum rules is at values of Borel mas
twice as large as that in the corresponding two-point fu
tions @1,20# and thus extract results from larger Borel ma
regions. However, we will provide a detailed analysis
show that such a choice is not always correct.

To obtain reliable Borel windows in which the form fac
tor sum rules may be safely used in the analysis, we ap
the differential operator2M 84] ln/]M 82 to both sides of Eq.
~39! and then obtain ther mass sum rule, which is free of th
parametersgr , f B , and the form factors (A1 , A2 , A, or
V). This procedure is usually used in analyzing the mass s
rules in the two-point Green’s function approach@21,15#.
Analogously, we also obtain ther meson mass rules from
Eqs.~40!–~42!. On the other hand, when applying the diffe
ential operator2M4] ln/]M2 to both sides of Eqs.~39!–
~42!, we obtain four B meson mass sum rules. Totally,
obtain eight mass rules~four for ther meson and four for the
B meson!. In the numerical analysis, we use the followin
set of parameters:

mb54.7 GeV, mu5md50,

^ūu&5^d̄d&52~240 MeV!3, m0
250.620.8 GeV2,

~43!

wheremb is a pole mass. The heavy quark condensate
be dismissed through this paper. To further improve the
lidity of the derived QCD sum rules, we have performed t
following replacements:

m0
2^q̄q&→m0

2^q̄q&L22/~3b!, ^q̄q&→^q̄q&L4/b, ~44!

with

L5
ln„~M 82M2!1/2/L2

…

ln~m2/L2!
, ~45!

L5100 MeV, m5500 MeV, andb51122nf /3 with nf
being the number ofunfrozenquark flavors. Note also tha
region R21!Q2!mb

2 , whereR is the confinement radius
exists an anomalous dimension 2/b for both of the current
operators@22–24#, b̄gng5q and b̄gnq. In our numerical
analysis ofB meson decay form factors, the sum rules a
studied atQ2;AM 82M2'3.4 GeV2 @see below, Eq.~47!#.
Therefore, to obtain physical form factors, which are ind
pendent of the subtraction scale, we put the fac
@ ln(mb

2/L2)/ln„(M 82M2)1/2/L2
…#12/25 in the relevant form
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factor sum rules@the right hand side of Eqs.~39!–~42!#. The
requirement of obtaining reasonable mass results from th
eight mass sum rules puts severe constraints on the cho
of the parameters,s0

B ands0
r . With a careful study, we find

that the best choice of parameters in our analysis is

s0
B533235 GeV2, s0

r51.321.4 GeV2. ~46!

Consequently we find that

8.5 GeV2,M2,11.5 GeV2,

0.9 GeV2,M 82,1.2 GeV2 ~47!

are the reasonable choices through this paper. The resu
masses are mr50.78760.065 GeV and mB55.11
60.18 GeV. The detailed results are collected in Table I.
examples in Fig. 3~a! and Fig. 3~b!, we plot ther mass and
B mass@extracted from Eq.~39!#, respectively, as a function
of M2 andM 82. Obviously, the study of both of ther and B
mass sum rules is a gauge to understand the reliability
performing further numerical analyses on the form factors
concluding this subsection, we will to discuss two ‘‘trad
tional’’ sum rule calculations by considering a three-po
correlation function in the existing literature: The first is th
work in Ref. @1# in which the authors use the vector curre
d̄gnu and the pseudoscalar currentb̄g5d as the interpolating
fields for ther meson and for theB meson, respectively. Fo
the form factorA1, they obtain the following sum rule:

FIG. 3. Ther mass andB mass, extracted from Eq.~39!, plotted
as a function of the square of the Borel massesM2 andM 82.
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A1

f B~mB1mr!mB
2mr

2

mbgr
e2~mB

2 /M2!e2~mr
2/M82!

5
3

4p2E
0

s0
B

dsE
0

s0
r

ds8e2~s/M2!e2~s8/M82!S mbs81mu~s2mb
2!

2l1/2
1

mbs8@~s2mb
2!~q22mb

2!1s8mb
2#

l3/2 D
2^q̄q&S mbmu1

m22q2

2 De2mb
2/M2

1^q̄q&m0
2S 21

6
1

~2mb
213mbmu22q2!~mb

22q2!

12M2M 82

2
2mb

213mbmu22q2

12M 82
2

3mb
219mbmu24q2

12M2 1mb
2

mb
212mbmu2q2

8M4 D e2mb
2/M2

1
16asp^q̄q&2mb

9 S 8

9M 82
2

1

9M2 1
1

~mb
22q2!

1
3mb

222q2

72M4 2
mb

22q2

6M2M 82
1

mb
2~mb

22q2!

72M6 1
~mb

22q2!2

36M4M 82 D e2mb
2/M2

, ~48!

wherel is defined as before. From theirA1 sum rule, one can extract, following the procedure shown as above, ther meson
mass sum rule. The result is illustrated in Fig. 4~a!, from which we see that their result ofr mass sum rule is not so stable
to determine the suitable Borel windows. Moreover, one can easily find that once a Borel window is determined, the r
r mass from theirA2 or V sum rule is twice as large as that from theA1 sum rule. Note that if we adopt the varying extern
field to do the calculation again, we find that various induced condensates may enter complicatedly the sum rules foA1 ,A2,
andV and the contribution from induced condensates becomes a little big. Thus the estimate of the sum rule is less

The second calculation is done by Ball and Braun@11#. They use the tensor currentd̄snsu and the pseudoscalar curre
b̄g5d as the interpolating fields for ther meson and for theB meson, respectively. For the form factorA2, they have

A2

f Bf r
'mB

2

mb~mB1mr!
e2~mB

2 /M2!e2~mr
2/M82!

5
3

4p2E
0

s0
B

dsE
0

s0
r

ds8e2~s/M2!e2~s8/M82!S ~s2mb
2!u22ss8

l3/2

2
~s2mb

2!~s2mb
212s8!u223s8@~s2mb

2!212~s2mb
2!s1ss8#u

l5/2
2

2ss8@~s2mb
2!212~s2mb

2!s813ss8#

l5/2 D
2

mbm0
2^q̄q&

6M2M 82
e2mb

2/M2
2

16asp^q̄q&2

9 S 1

6M 84
1

1

3M2M 82
1

mb
2

36M4M 82
2

mb
22q2

18M2M 84D e2mb
2/M2

, ~49!
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whereu andl are defined as before. Note that, for thisA2
sum rule, one obtains the same result if adopting the vary
external field approach. In Fig. 4~b! we show ther mass sum
rule extracted from Eq.~49!. From Fig. 4~b! we obtain
mr

2<0. The result seems to indicate that the tensor cur

d̄snsu is not a good interpolating field for ther meson as
mentioned in Ref.@25#. In the same reference, the autho
have pointed out that the tensor current cannot easily
duce a stabler mass sum rule if the vacuum saturation h
pothesis goes in the opposite direction:

^q̄g5laqq̄g5laq&52
4

9
~11b5!^q̄q&2, ~50!

with b5'22. Moreover, the authors@25# have also shown
that the threshold of the excited states in theirr meson mass
sum rule turns out to be unphysically low, the sum rule
dominated by the continuum contribution, and the pow
corrections are rather large.
g

nt

o-
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r

B. Numerical analysis of form factors

To study numerically the form factors, we adopt the set
parameters as shown in Eqs.~40!, ~43!, and@10#

f B5160 MeV, gr53.84. ~51!

The working Borel windows, which have been determin
previously@Eq. ~47!#, are 8.5 GeV2,M2,11.5 GeV2 and

TABLE I. Estimates of ther and B meson masses from Eq
~39!–~42!.

mr (GeV) mB (GeV)

Eq. ~39! 0.722–0.806 5.15–5.28
Eq. ~40! 0.820–0.844 4.99–5.02
Eq. ~41! 0.830–0.852 4.92–4.95
Eq. ~42! 0.764–0.803 4.98–5.01
Average 0.78760.064 5.1060.19
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0.9 GeV2,M 82,1.2 GeV2. In these Borel ranges, th
form factors are dominated by the leading perturbative b
loop; for theA1 form factor, the absolute value of the co
tribution of ^gsd̄sGd& is less than 50% of the bare loop
Moreover, the contribution of induced condensate amou
to about 14% to theA1 sum rule, while less than 4% t
A2 , A, or V. Note that unlike light-cone sum rules@3,11#,
we cannot apply ‘‘directly’’ the heavy quark limit,mb→`,
to these sum rules since in that limit the series of the oper
product expansion~OPE! may become unconvergent. But
the case of the B or D meson, our results indicate that
series of the OPE is in good convergence. In Figs. 5~a!–5~d!,
we plot theA1 , A2 , A, and V form factors atq250, re-
spectively, as a function ofM2 andM 82. We thus obtain the
results on the form factors atq250:

A1~0!50.1260.01,

A2~0!50.1260.01,

A~0!50.01560.02,

V~0!50.1560.02, ~52!

where the error comes from the variation in the Borel ma
s0

B , s0
r , or m0

2. The resultant values of form factors are ha
as large as the light-cone sum rule results@3,11# or lattice
QCD calculation@4#. We now consider theq2 dependence o

FIG. 4. Ther mass as a function of the square of the Bo
massesM2 andM 82. In ~a! the r mass is extracted from Eq.~48!,
theA1 sum rule of@1#. In ~b! ther mass is extracted from Eq.~49!,
the A2 sum rule of@11#.
re

ts

or

e

s,

the various form factors. The variation of the form facto
with q2 is of great interest, since it probes the effects
strong interactions on the decay. As the property of disc
tinuity in Ref. @1# is mentioned@see also the discussion be
low Eq. ~24!#, the sum rules work well in the region (mQ

2

2q2)2/q2.s08 . Therefore, we could obtain theq2 depen-
dence of the form factors over a wide range ofq2 ~from q2

50 up about to 9 GeV2). The q2 dependence of our form
factors is given by

F~q2!5F~0!~12q2/mF
2 !2n, ~53!

wheren51 for A1 , n52 for A2 , A, andV, and the fitted
pole masses aremA1

55.45 GeV, mA2
56.14 GeV, mA

55.98 GeV, andmV55.78 GeV, respectively. Here the re
sults are evaluated at the central values of the Borel m
ranges in Eq.~47!. We find that ourq2 dependence of the
form factors is well consistent with the pole model ansatz
Körner and Schuler@5# and recent lattice results@4# as well.
In the following calculation, we will extrapolate ourq2 de-
pendence of form factors to all possible kinematic regio
The pole model ansatz may be a good approximation for
form factor behavior since it is consistent with this sum ru
calculation in the region: 0 GeV2,q2,9 GeV2 and also in
good accordance with the QCD power counting rules@26# at
large 2q2 ~the hard rescattering region!. Moreover, by ne-
glecting the light meson mass, we roughly obtain from E
~53! the relationF(qm

2 )/F(0);mb
n , whereqm

2 5(mb2mr)2.
Therefore, our results agree with the prediction of hea
quark symmetry@27# in the kinematic region near zero reco
(q2'qm

2 ),

a11a2;mM
23/2, 2a11a2;mM

21/2,

g;mM
21/2, f ;mM

1/2. ~54!

In Fig. 6~a! we plot the lepton-pair invariant mass spectru
dG/dq2 of the B→r l n̄ l decay together with
dGL /dq2, dG1 /dq2, anddG2 /dq2. The solid curve is for
dG/dq2, and the long-dashed curve is fordGL /dq2, the por-
tion of the rate with a longitudinal polarizedr in the final
state, the short-dashed curve is fordG2 /dq2, the portion of
the rate with a helicity minusr in the final state, while the
dotted curve is fordG1 /dq2, the portion of the rate with a
helicity positiver in the final state. Similarly, in Fig. 6~b! we
plot the electron spectrumdG/dEe of the B→r l n̄ l together
with dGL /dEe , dG1 /dEe , anddG2 /dEe . The solid curve
is for dG/dEe , the long-dashed curve fordGL /dEe , the
short-dashed curve fordG2 /dEe , and the dotted curve fo
dG1 /dEe . Both of the Figs. 6~a! and 6~b! are plotted in the
B meson rest frame.

From Fig. 6 we obtaindG/dq2'dGL /dq2 and dG/dEe
'dGL /dEe at the maximum recoil region (q2'0). This is
quite reasonable because at lowq2, the electron and an
tineutrino are nearly collinear, so that their net spin alo
their motion is zero. Since theB meson has spin zero, th
energetic recoilingr meson must also have zero helicit
The helicity minus contribution is more weighted towar
the largeq2 value than the helicity zero contribution aroun
the smallq2 region. Our results also show thatdG2 /dq2

l
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FIG. 5. TheA1(0),A2(0),A(0), andV(0) form factors plotted as a function of the square of the Borel massesM2 andM 82.
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@dG1 /dq2 as expected from the left-chiralbL→uL transi-
tion. Our results for the decay rate are given by

G~ B̄0→r1l 2 n̄ l !5~5.161.0!3uVubu231012s21,

GL /GT50.8560.03, G1 /G250.07760.012,

G~ B̄0→r1t2 n̄ t!5~3.160.06!3uVubu231012s21.
~55!

Since the induced condensate like Eq.~35! does not contrib-
ute to the sum rules in Ref.@10# for B̄0→p1l 2 n̄ l , therefore
we take G( B̄0→p1e2 n̄ e)5(5.461.6)3uVubu231012s21

and G( B̄0→p1t2 n̄ t)5(2.760.07)3uVubu231012s21 from
Ref. @10#. We obtain the ratiosG( B̄0→r1e2 n̄ e)/G( B̄0

→p1e2 n̄ e)'0.94 and G( B̄0→r1t2 n̄ t)/G( B̄0

→p1t2 n̄ t)'1.15. Our result for the ratio G( B̄0

→r1e2 n̄ e)/G( B̄0→p1e2 n̄ e) is a bit smaller than, but stil
consistent with, the CLEO experimental value@28,29# of
1.460.6. However, one should note that in the CLEO expe
ment, the reconstruction of the relevant events is model
pendent. For instance, if the Isgur-Scora-Grinstein-W
~ISGW! II model is used, the ratioG( B̄0→r1e2 n̄ e)/G( B̄0

→p1e2 n̄ e) is 1.160.7.
In closing this subsection, we consider the case of th

meson decays. By following the same procedure as the
of B̄0→r1l 2 n̄ l , and using the parameters as in Ref.@10#,
we can obtain the same form factor results and theirq2 be-
haviors as in Ref.@10#, except thatA1

D→r(0) becomes 0.43
i-
e-
e

D
se

60.04 andA1
D→K* (0) becomes 0.6160.04. The results for

the form factors atq250 are collected in Table II. The cal
culated decay rates read

G~D0→r2l 1n l !50.4460.08uVcdu231011s21,

GL /GT50.5860.05, G1 /G250.04160.002,

G~D1→K* 0l 1n l !50.5160.06uVcsu231011s21,

GL /GT50.9960.06, G1 /G250.1960.02. ~56!

Taking uVcsu50.975, we obtain B(D1→
K* 0l 1n l)55.160.7%. The experimental results@30# are
B(D0→K* 2l 1n l)54.860.4%, GL /GT51.2360.13, G1/
G250.1660.04. Our results are consistent with the existi
experimental data, except that the value ofGL /GT is a little
smaller than the experimental data. Further applications
this approach to various exclusive decay processes wil
published elsewhere@31#.

IV. SUMMARY

In summary, we have used the varying external field
proach of QCD sum rules to compute the form factors for
semileptonic decaysB̄0→r1l 2 n̄ l . We have formulated this
approach in a systematic way. By extracting both of theB
meson andr meson mass sum rules, we can thus determ
the reliable Borel windows in studying the relevant for
factor sum rules. We also include induced condensate c
tributions, which have been ignored before, into the relev
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sum rules. Therefore, we demonstrate that some QCD
rule calculations in the literature are less reliable. Our res
strongly support the pole model ansatz by Ko¨rner
and Schuler on theq2 dependence of the form factor
Combining with the previous analysis in Ref.@10#, we obtain
the ratio G( B̄0→r1e2 n̄ e)/G( B̄0→p1e2 n̄ e)'0.94 and
G( B̄0→r1t2 n̄ t)/G( B̄0→p1t2 n̄ t)'1.15.
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APPENDIX

The quantitiesd3 , d5 , d6
(1) , d6

(2) , and d6
(3) defined in

Eq. ~25! read

d3
A152

2mu1md

2p82~p22mb
2!

2
md

2~p22mb
2!22

md~mb
22q2!

2p82~p22mb
2!2

,

~A1!

d5
A15

1

12F2
6mdmb

2

~p22mb
4!42

2md

~p22mb
4!31

4mb22mu13md

p82~p22mb
2!2

2
2mu1md

p84~p22mb
2!

2
2~md1mu!~mb

22q2!
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2!2

2
4~2mb

22q2!md16mumb
2
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2!3

2
2md~mb
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p84~p22mb
2!3

2
6mdmb

2~mb
22q2!

p82~p22mb
2!4 G , ~A2!

d6
~1!A151

1

81F 3

p84~p22mb
2!

1
2

p82~p22mb
2!2

2
2

~p22mb
2!3

2
10mb

2128mbmu22q2

p82~p22mb
2!3

1
6~mb

22q2!17mbmu

p84~p22mb
2!2

1
6mb

2

~p22mb
2!41

2~mb
22q2!~mb

21mbmu2q2!

p84~p22mb
2!3

1
6mb

2~mb
21mbmu2q2!

p82~p22mb
2!4 G , ~A3!

d6
~2!A15
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9F 1
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4

9
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p84~p22mb
2!
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d3
A25

md

2p82~p22mb
2!2

, ~A6!

d5
A252

mu

6p84~p22mb
2!2

2
md

6p82~p22mb
2!3
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r

-
r
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d6
~1!A252

1

27F 2
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1
1
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d6
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2
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4F 1
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2
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2p82~p22mb
2!2
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mu
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2
md
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2!3
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d6
~1!A52

1

81F 2

p82~p22mb
2!3

2
3

p84~p22mb
2!2G ,

~A13!

d6
~2!A5

2

9mb
4F 1

p82~p22mb
2!

2
1

p82p2
2

mb
2

p82p4G , ~A14!
C

D

. D

.

n

d6
~3!A50, ~A15!

d3
V52

md

p82~p22mb
2!2

, ~A16!

d5
V5

mu

3p84~p22mb
2!2

2
md

3p82~p22mb
2!3

2
mdmb

2

2p82~p22mb
2!4

2
md~mb

22q2!

6p84~p22mb
2!3

, ~A17!

d6
~1!V5

1

81F 4

p82~p22mb
2!3

2
1

p84~p22mb
2!2

2
6mb

2

p82~p22mb
2!4

2
2~mb

22q2!

p84~p22mb
2!3G , ~A18!

d6
~2!V5

4

9mb
4F 1
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2
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mb
2

p82p4G , ~A19!
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