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Corrections to oblique parameters induced by anomalous vector boson couplings
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We study quadratically divergent radiative corrections to the oblique parameters at CERN LEP1 induced by
nonstandard vector boson self-couplings. We work in thek&tiberg formalism and regulate the divergences
through a gauge-invariant higher derivative scheme. Using consistency arguments together with the data we
find a limit on the anomalous magnetic moment of the W boson|A «|<0.26.[S0556-282(98)04205-2

PACS numbds): 12.60—i, 12.15.Lk, 12.39.Fe, 14.70¢

I. INTRODUCTION tively low scale, as this part describes effects coming from

the Goldstone boson part of the theory, dependent on the

With the running of the CERNe"e™ collider LEP-200 mechanism of spontaneous symmetry breaking, where strong
and with results from the Fermilab Tevatron the self-interactions might be present. In order to clarify the situation
interactions of the vector bosons are nowadays being meave therefore perform in this paper a calculation of induced
sured directly. Within the standard model the vector bosoriow energy effects from anomalous effects using a higher
self-interactions are fully determined by the gauge structurglerivative regulator. More precisely, we describe vector bo-
of the theory. Deviations from the standard model can b&on physics without a Higgs boson as a gauged nonlinear
parametrized by a set of operators describing so-calledigma-model. The anomalous couplings are then given by

anomalous couplings and experiment can put a limit on th@ygher dimensional operators. This is the Giberg for-

coefficient of these operators. However the presence Ghalism and is closely related to chiral perturbation theory.
anomalous gauge boson self-couplings will violate the renorhis has the advantage that the whole calculation can be
malizability of the theory. As a consequence one can 9eNelserformed in a gauge-invariant way. The quadratic and

ate divergent contributions to quantities at lower energie igher divergences are regulated via covariant higher deriva-
than the two vector boson threshold. When one uses a cuto{-

i . ive terms; the remaining logarithmic ones via dimensional
procedure one can estimate the induced effects and use IOWégularization

energy data to put limits on the assumed anomalous cou- We limit the anomalous couplings to terms that have no

lings. As the data at low energy have become very precis D 2
ping 9y yp \EP violation, as we knowCP violation to be very small.

since LEP-100, strong limits can be found. Indeed in a recen " . .
discussion it was argued that the LEP-100 data can obvia surthermore we limit the discussion to terms that correspond

the LEP-200 data, with the exception of so-called blind di-to dimension four operators in the unitary gauge. Within the
rections in coupling constant space. These blind direction§t@ndard model there is an extra custodial Si()mmetry
correspond to operators that do not have direct effects if? the limit of vanishing hypercharge, which has as a conse-
propagators and can therefore only be seen after insertiiience that thep-parameter deviates from unity only
inside a loop, indirectly generating propagator effects. In thdhrough hypercharge couplings. This symmetry has to be
original articles[1,2] on these induced effects quadratically protected at least to some level also in the anomalous cou-
and quartically divergent contributions were found, leadingplings and we will focus mostly on the operators where the
to relatively severe restrictions. These results were criticizedustodial symmetry is only violated through a minimal cou-
in [3,4], where it was argued that the quadratic divergencegpling to hypercharge.

would be gauge-dependent and nonphysical, so one should We have assumed, that the only relevant gauge bosons are
use dimensional regularization as a cutoff, which gives logathose of the SU(2)<U(1)y gauge group and that new
rithmic divergence and weak constraints. In a more recenphysics does not couple directly to light fermions. Therefore
calculation[5], dimensional regularization id dimensions any contribution of new physics below the vector-boson pair
was used to determine the quadratic divergences as poles tinreshold can only come from vacuum polarization correc-
(d—2). In[6] the divergences were regularized by using thetions to gauge boson propagatf8s9]. For most of the avail-
Higgs field as a regulator. An analysis based on the philoscable low-energyZ and W observables it is possible to pa-
phy of[3,4] is presented in7]. Both calculationg5,6] con-  rametrize these corrections by the six so-called oblique
firm the original calculations as having quadratic divergentparametersS, T, U, V, W, X [8,9]. These parameters are
contributions, as is consistent with power counting in chiraltherefore well suited to compare experiment with our calcu-
perturbation theory. However also here the situation is notation and we will use a recent analysis in this terminology.
fully satisfactory, as only one cutoff scale is assumed to be In Sec. I, we will outline the model we use to describe
present. In reality however, there are different cutoff scaleshe electroweak sector of the standard model, give the vari-
present. This is most easily seen from the vector bosowous anomalous couplings and describe our regularization
propagators, which consist of longitudinal and transversaprocedure. In Sec. lll, we give our results for the oblique
parts, which could have different form factors. Indeed oneparameters. In Sec. IV we investigate the contribution of our
would expect the longitudinal part to have structure at a relaregularization procedure to the oblique parameters and study
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the consistency of the method. In Sec. V, we analyze our L4=( Tr[VMVV])Z, (11)
results with respect to experimental data.
Ls=(TH{VAV,])?, (12
Il. THE MODEL
Since the origin of electroweak symmetry breaking is un- Le=Tr(VEV") TH(TV,)Tr(TV,), 13
known, we do not assume the existence of a Higgs field, but (13
describe the breaking using the "Stelberg formalism B " )
[10,11. That is, we write the spontaneously broken Lz=Tr(VEV ) (TITV, )%, (14
SU(2). X U(1)y theory as a gauged nonlinear sigma model. ) )
We need the following definitions. Let Lg=(TIL TV, DATHATV, D", (15
W,,= %TaWZFf?,LWV—ﬁVWMHQ[W# W, ] (1)  which we introduce by adding
and 8
Lano= 2, 9L (16)

B.,=373B,,=3,B,—4d,B, 2)
be the SU(2) and U(1), field strengths. Let be an SWY2) to Lgy. In our treatment, the aforementioned approximate
valued field that describes the longitudinal degrees of freeeustodial SU(2) symmetry is realized byJ —UUg with

dom of the vector fields and lét transform as Ugre SU(2).Among the operator@)—(15), only £, £, and

L5 conserve this custodial symmetry in the limit of vanishing
hypercharge coupling. At the same time, the absence of the
other operators leads to a cancellation of quartic divergences
in oblique electroweak paramet¢g, as will be seen below.

In other words,.,, £, and L5 correspond to the so-called
blind directions in coupling constant space which do not re-
ceive the severe constraints that the presence of quartic di-
vergences would impogé2]. We will therefore assume that
the custodial symmetry is respected by the anomalous cou-
plings and thus restrict our analysis with respect to experi-

U—>U|_UUY (3)

under SU(2)xU(1)y gauge transformations withJ,
=exp(—i/2g0, -7) andUy=exp(- i/2g'Oy7s), whereg' is
the hypercharge coupling. Define auxiliary quantities

T=UrU" (4

and

i
vﬂz—a(DﬂU)uT (5)
with

D,U=4,U+igW,U+ig'UB,,. (6)

mental results to these three operators.

Since higher than logarithmic divergences are set to zero
by dimensional regularization, we have to parametrize them
using a different method. We will apply the method of higher
covariant derivative§13]. In the version used here, it leaves
only logarithmic divergences in the anomalous contribution
to the oblique parameters in Landau gauge. These remaining

Under SU(2) XU(1)y gauge transformations, they trans- divergences are then regulated dimensionally. Specifically,

form asT—U,_TU{ andV,—U,V,U[.

Electroweak theory without fermions and without the

Higgs scalar is then described by the Lagrange density

2.2
14 14 g U
Lew=—73 Tr(W, W) —3 Tr(B,,,B*") + S Tr(V, V4,

()

wherev replaces the vacuum expectation value of the Higgs

field.

we add to the theory

1 1
Lhew=—s Tr[(DW,,)(D*WA) ]+ —— Tr[(3,B,,
hotr 2AZ, [( ) ( )] 22 [(d.By)

X(39BA")] (17)

for the transverse degrees of freedom of the gauge fields and

2 2
In this formalism, theCP conserving anomalous three Lhe =—g—vTr[(D”‘V/‘)(D V)] (18)
and four vector boson couplings that are of dimension four in 9 4A2 oH

unitary gauge y =1) are described by the following set of

gauge-invariant operators:

for the longitudinal ones, where they parametrize the qua-
dratic divergences and are expected to represent the scales

Ly=—1 Tr(W*V, VL)), (8  where new physics comes in. The covariant derivatives in
) (17) and(18) are defined by
i
= — —BMV
‘CZ 2 B Tr(T[V,U- !VV])v (9) DaW,uV: &aWMV_’_ |g[Wa ’WMV], (19)
[ D,V,=d,V,+ig[W,,V,]. 20
L3= =5 THTW#)TH(TIV,, V, ), w= 9Vt 10l V] 9

(10

As a variant ofLy 4, One can use e.g.
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2

v with XY=WW,ZZ,ZA,AA. Their definitions are, according
Lheig=— e T (D*DAU)(D,D4U)"]
\Y

to [9] (except that our conventions lead to a different sign of
S),

922 ) g g 9,(m2)—119,0) c¢2-s*

- Ti{ T (D*V#)(D,V,) ]+ Ecl+ 7cz+ 9°L, aS=4s%c? - + o 119,(0)

g2

- ?Es] (21) —T19,(0) |, (29
instead, which is closer to a natural regularization in the % (0)  TI9.(0
linear model. The quartic divergences are invariant under — +_ ww )_ 22(0) (26)
this change due to the additional suppression factor m\fv m§ '
g2v2/A\2,. Once we impose absence of quartic divergences
by settingg,=03=g¢=07,=05=0, it is easily seen that now 5 H\g,\,w(m\fv)—l]\%\,\,\/(O)
the quadratic divergences are invariant under the change in aU=4s m2
regularization. w

We remark here that a reasonable assumption of the dy- 11%,(m2) —112,(0)
namics would make\, the smallest, being related to the _g2 2 . 22 1 2scl1Z,(0)
Goldstone sector of the theory. Also, one would expegt m;
to be very large, as it is hard to imagine a fundamental dy-
namics, where strong interactions would start in the Abelian 2y (0)1 27)
sector of the theory. The presence of the approximate custo- AA '
dial symmetry tells us that terms with explicit or B,
should be heavily suppressed. We finally note that the signs H%Z(mi)—H%z(O)
in front of A2,A% A3 are not determinec priori. The aV=T135(m?) — 5 , (28)
method of gauge fixing we use is outlined in Appendix B. z
Finally, our conventions lead to the following definitions . W(mz)—Hg (O
of the usual gauge fields: W= H\%w(mfv)— W wm2 W , (29)
M e W
A, -s ¢/\B, ' _ H%A(mi) g
aX=s¢ ——5— —1I74(0) |. (30
1 z
W :E(W,lﬁ IW,ZL), (23)  These combinations are well-suited for comparison with ex-

perimental data. In particular, th& parameter only appears

where we have used the abbreviations-co®,, S in the rather poorly measuraf width and can therefore be

=sin®,, and where the weak mixing angle is defined by
tan®w=9'/g.

Ill. OBLIQUE PARAMETERS

In models where new physics comes in at scales muc

larger than the electroweak scale, it is usually assumed that

an expansion of the vacuum polarizations lineakins suf-
ficiently accurate to parametrize the new physics effects
the electroweak scale. Accordingly, a description of ne
physics effects in terms of three paramet8ysT, U is ap-
propriate[8]. In our description this assumption is explicitly
violated as can be seen from the structure ofkhendk*
terms in the vacuum polarizations given in Appendix A2 by
(A5)—(A8). We therefore need all six paramet&sT, U, V,
W, X used when observables at the scalesr@, m?, are
taken into account and the above assumption is not yalid
The six obligue parameters are computed from th
1%,(k?) part of the nonstandard model contribution to the
vacuum polarizations,

MLV

kHk
IT4L(K?) =13 (K?)g~"+ H'§<Y(k2)7, (24)

dropped from the analysis.
To present the results of our calculation, a modification of
the S andU parameters is useful. Let us define

S=S—4s2¢c2V, (32)

h .
U=U +4s%c?V—4s’W. (32

In this way, T is getting contributions only from

V?Ilz-independent termS andU only from k? terms andv, W,

X only from k* terms(higher powers ok are absent in our
treatment of the quadratically divergent teym3he rel-
evance of this is that th&* terms of the various vacuum
polarizations are essentially identical, while our predictive
power for thek? terms and thé-independent terms hinges
on additional assumptions, as will be seen below.

Including all anomalous coupling$8)—(15), we have
computed the quartically divergent contributions to the

9.(k?). The results can be found in Appendix A1. These
contributions aré-independent. A look at our definitions of
the oblique parameter®5)—(30) shows that onlyT, repre-
senting the correction to the parameter, depends on
k-independent parts of vacuum polarizations and therefore
only it can be quartically divergent. We get
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2 2 2 2
A A
. AZIn—= — A2In— aV=——v B (37
aT=2—~2| - —__Z4+Z
9z Mo 4e 8 4 AZ—A3 I
aW=— —— —, (39)
amiy, (4)?
A2AGl 3 5B
+(20195+9)——| ~ == 2A2 g2
My \ A€ 8 aX=——t 1 (39
) ) Amy,, (47)
AZIn= — A2 In= . . - .
vin=; whi= Al ( 13 31 for the quadratically divergent contributions to the oblique
K s VI _ 2o parameters. The éterms represent logarithmic divergences

+7 O6
4 A\Z/—A\ZN m\‘}\,o\ de 8 that are left even after the quadratic divergences are param-
etrized by the scaleA y and that do not cancel between the

2 4 2 . . . . .
13 Ay Ay 4 9 Ay vacuum polarizations in the oblique parameters. Our inter-
+—In=|+g;—| ——— s +4In= L n ; .
4,2 m4 € 2 2 pretation is that the ¥/terms are replacing numerical coef-
WO M - .
ficients whose values depend on the details of what happens
AY 3 7 A2 at the scale where new physics comes in.
tOs—| — 75 +3In= +O(A?). (33
Mwo K IV. CONSISTENCY OF THE METHOD
Here, e is defined byd=4—2¢, whered is the dimension of  The results that we derived above cannot be compared

spacetime. From the presence of these quartic divergencggectly with experiment without some further consider-
we have therefore severe constraints on the quartic vectQjiions. The reason for this is that the oblique corrections
boson couplings. This is in agreement wit¥], but in con-  receive also contributions from the regulator terms them-
trast to[15], who however use dimensional regularization sg|yes and these contributions should be consistent with the
and therefore find only a logarithmic divergence. Evidently,iarms calculated from the radiative corrections.

absence of the custodial symmetry breaking coupliggs The tree-level contribution to thd%,(k?) can be read off

93, Ue: 97, Jg leads to a cancellation of the quartic divergen- ¢, quadratic part of the Lagrange densi®8) and is
cies inT. In the further analysis we will therefore only keep

the anomalous couplings;, 94, g5 nonzero. This is consis- 2 2
tent with the dynamical principle froif2], that the breaking MK =| —+— |k, (40)
of the custodial symmetry should be only through the mini- Aw Ag
mal coupling to hyperchargze.
Our results for thdl$(k®) are given in Appendix A2. ) 1 11,
From them we get M3a(k%) =sc A_ZB_ Ev K%, (42)
& _g2 gi ( 20A%AW 2 2 m2,
(4m)2| 3mie(AG—A%)? N3,(0)=| 5+ 5 | K= -5k,
W B \%
2A2A2(14A%—33A2A2 +9A%) A2 (42)
+ n—-
3Mi(AT—AR)? Ay 1, mi
I w(k?) =— k'~ —=-k2. (43
A g9 (1 A2 Aw Ay
—2s’ o |t imIn= ), (34) . . .
Miyo (47)°\ € M The corresponding contributions to the oblique parameters
are
32 o [ ABAY A2
=" n— ¢z 2 1
ac? (4m)%\ mio(AZ-AZ) A% aS=48% 5+ - —2) M2, (44)
272 2 AW AB AV
SAZ| g, 15 13 15 A3
i | (am2lde 8 42 aT=0, (45)
3 5 3 Aj 1 1
s e P B (35) aU =4s4( — = —2) Mayo » (46)
(4m)2\2e 4 2772 Ay Ag
. 2s* g2 AZA3 A2 2 s2\mdy,
N am? (A AD) A2 (%9 VN A e @7
m)° Mao(Ay—Ag) Ag w B/ C
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Mo S T U % X
“WZA_GV’ (48) s 1 0.79 054 -0.77 —0.95
T 079 1 —-005 —098 —0.56

aX = i_i)mz _ U 054 -005 1 005 —0.76
AR OAG T V -077 -098 005 1 055

(49) X —-095 —-056 —-0.76 0.55 1 (B3

We observe thal enters only theS parameter. HAIthough there is no Higgs particle in our model, the depen-

These tree-level contributions should be compared wit . . ;
ence of the oblique parameters on the Higgs mass is very

the loop corrections to check whether no inconsistenc;&eak and we can utilize the data above. We will now use
ises. The phil h here is the following. Th y .
arnses e philosophy we adopt here is the following ehese data to put bounds an, and A,. We will have to

structure for the vector boson propagators, parametrized b der t q di the si méf
Ag, Aw, Ay is generated by the self-interactions among the®©S!d€r tWo cases, depending on the Sigmol

vector bosons, as parametrized @§y. Therefore the tree-

level and the loop-corrections should be of similar size. A. The caseA{>0, A{<0

WhereasS, T, U depend on the details of the interactiows, In the comparison with experiment, we will now use the
W, X are given by a universal contribution. We thereforerelations(50), (51) and give limits onA,y, and Ay, from the
impose the conditions/i;ee=Vigop, Wiree=Wioops Xiree  formulas(44)—(49). One might wonder whether it would not

=Xioop- This leads to the following result: be more appropriate to use formulk@l)—(39), but here the
) comparison is complicated due to the arbitrariness involved
1/A5=0, (50) by the undetermined coefficients. The procedure we take
gives the most conservative, i.e. the least restrictive limits. In
miye 1 g A order to facilitate the discussion, we change in this subsec-
AZ) 4 (4m)2 M’ tion the notationAy,— —Ay,. We also define an auxiliary

(51) AZ:=g2A%. We will use the data oh, V, X to put a limit
on Ay . Subsequently, we use the information $mo put a

After imposing these conditions, consistency further dedimiton Ay . o _

mands that the radiative correctiot84)—(36) should be of UsingU, V and X, we get from(53) the statistically in-

the same order of magnitude as the tree level relaiigdls- ~ dependent combinations

(46). We see that this is indeed the case. The relat{ds B

(51) have an interesting physical interpretation. The fact that U—0.74/+2.0k=—-0.14+£0.28, (54

Ag>A%,, A% means that the hypercharge field, being a

simple Abelian field, contains no structure. Furthermore it is

seen that the cutofhy is orjly an |r)d|rect gffect.bemg gen- U+1.6V+0.087X=0.9+1.6, (56)

erated byg,, connected with the interactions in the Gold-

stone boson sector. Note the opposite signsz\f@randA\z,. which, using(46), (47), (49), (50), (51), translate into

These relations were already qualitatively expected in Sec.

II. Given these relations, one can now make a comparison AZ=(0.4+1.3m?,, (57

with experiment.

U-0.59—-0.72X=—-0.4+1.3, (55

giving at 95% confidence level
V. EXPERIMENTAL BOUNDS A§ﬁ< 2.&n\2,\,0. (58

We use the following experimental constraints for oblique B ) )
parameters, which were provided to us by Takeuchi. They’Sind (51)andmy,,=80.26 GeV, this can be written as
describe the deviation from standard model expectations for

>1. .
m=175 GeV, my=300 GeV, m;=91.18630 GeV,a ! Aw>1.3Tev (59
=128.9,ag(mM;)=0.123: Subsequently, usingt4), (50) and the data oi$, we get at
95% confidence level

S=-1.0=1.5,
c? 1
T=-0.57+0.80, > + = <4.2. (60
Ap(TeV)  Ay(TeV)
U=0.07+0.82, 52 This can be written as
V=0.49+0.82, Ay>0.49 TeV. (62)
X=0.22+0.51, When we express the results in terms of the anomalous mag-

netic moment of the vector bosaik=g,/g we get the
with the correlation matrix following equation
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1A 0.25 and we see that our bounds improve more than an order of
Ax|= =0.26. (62 magnitude on this
Aw(TeV)Ay(Te : .
w(TeV)Av(TeV) Measurements of the running ef can be used to put
To arrive at the numerical bound, we took the linear combiliMits 0n A In [16] bounds at the 95% confidence level on
nation(55), together with the bound o8 and their statistical the effective scale where new physics comes in were given
correlation, made a confidence level contour plot and deter@S

mined the value oA k, where its line in the plot is tangential A_>702 G

) . . . ev, 69
to the ellipse bounded by 1.64lines. Since we assurryke\z, (69
>0, A3<0, this gives an at least 95% confidence level A,>535 GeV. (70)

bound onA « for this case. This is a conservative procedure

since it ignores some region in the plot out side the &.64 Identifying A_ or A, with Ag,, and Ay with A in the
ellipse that would also give smalldA«|. Although (55)  relation

among the three independent linear combinatids—(56)

2
gives the weakest bounds drg; and Ay, its strong anti- :87meo (71)
correlation withS causes it to give in combination with the P eA Ak
limit on S the best limit onA k. This is true also for the case ) .
considered next. from [14] gives limits

We notice that the careful separation of longitudinal and A o< 6.0Myyp, (72)

transversal structure functions allows us to put a limitAon
?ndependent pf assumptions on the size of the' cutoff. This is A et <7.9Muo, (73
in contrast with other methods, where an arbitrary estimate

of the size of the cutoff is made, typically of the order of awhich are considerably weaker than our bounds.
TeV.

D. Relation to direct searches

2 2
B. The caseAy<0, Ay>0 The only gauge-boson self-coupling parameter being

The analysis in this case proceeds exactly analogous tmeasured directly that can be compared to our resuliscis
the previous case. Only here we change the notatiafn&o in the phenomenological Lagrange dengity,1§

——Aj. Following the same steps as before, we now find , 7 _ PR T
L=—igc[AgIZ*(W, W™ "=W W™ ")+ Ak, W, W, Z#"]

AZ2,<1.8m2, (63 o
. _ 1INz _
+igsAx, Wi W, F#— —=Z" W, W *
Aw>15 TeV, (64) 1983 KW Wy mg,
Ay>0.74 TeV, 65 iN _
v €9 - —LFIW W, A, (74)
m
0.25 W
| Ak Aw(TeV)A(TeV) =0.08. 66 \whereF~" is the electromagnetic field strength. The relations
to our triple gauge boson couplings are
When combining62) and(66), we have in principle to take ) .
into account that we do not know which case is realized91=C"9Ad1, (75
Since(66) is significantly more stringent thai$2), the case _
A2<0, A2>0 with |Ax|>0.26 has negligible probability 92~ CSHAkz—Ak,), (76)
and the bound62) gives a 95% confidence level overall
bound. 1629 ’ 93=—c?gAgf+Cc?gAk,+S?gAk,, (77)
Az=x,=0. (78)

C. Anomalous contribution to the photon structure function

Here we relate our results to two works dealing with theCustodial symmetry fog’—0 requiresg,=g3;=0, leading
changes to the photon structure function induced by nevP
physics.

_ _ _ 2AAZ
To make contact with an earlier paper by one of the au- Ar=An,=AKkz=C"A0Y, (79)
thors[14] we use again the identitk k=g, /g. Besides this and thus
we identify A there withA,, in the present article. Translat-
ing the limit found there, Axk=g;/g. (80)
|A k(A myg)|=33 (67)  Another popular set of parameters is
gives awg=C?A07, (81)

| A el =21myyg (68) ay=\,, (82
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apg=Ax,— czAg§, (83) symmetry breaking from higher_dimensiqn operators cou-
pling vector boson operators with the Higgs sector. This
together with the constraints regulates some of the quadratic divergences, but others still
have to be treated by other means, i.e. as poledin2) in
c?Agi=c?Aky+s*Ax,, (84)  dimensional regularization. This way two cut-offs appear,
my, and A. This method should qualitatively give the same
Az=\,=0. (85) results as our method with the replacememis— A\, and

A—Ag . Unfortunately Ref[6] calculated only the terms
While from (84) already followsg;=0, the demand that also which are linear in the anomalous couplings, which are less

g2=Az=\,=0 yields divergent, so we can only compare tgeg term in the S
parameter. This term is actually of the expected form. More-
ayg=AKk=0:/9, (88)  over it is found in[6] that the higher divergences are physi-
cal. The contribution td@ from g, found in[6] is of a higher
ay=apy=0. (87) degree in the cutoff than the contribution fram. This sup-

aﬁ)orts the arguments concerning the breaking of the(3Y
invariance. A numerical comparison is impossible, given the
Tact that quantities with different cutoff dependence were
calculated. It should be interesting to compare the results for
—0.33<Axk<0.45 (88) V,W, X with the scheme 0_||_‘6]._

In Ref. [5] the quadratic divergences were regulated by

at 95% confidence level. This bound assumes Agg=0.  replacing poles ind—2) by A This should roughly corre-
As can be inferred from Fig. 3d if19], our assumption that Spond with our results foAy= Ay . Translated in our nota-
Ax=c?Ag? leads to a bound that is roughly twice as strin-tion Ref. [5] finds —0.013<Ax<0.033 for a cutoff of 3
gent. However, we note that this limit assumes a cutoff off €V If we use our formula62) we find [A«|<0.028. So

1.5 TeV in the analysis. This maybe too optimistic, as wethere is at least a qualitative agreement. _
have seen that the longitudinal cutoff could be smaller. If we N [7] quadratic divergences are not considered, as dimen-
assume that one can take,>1.5 TeV and use the results Sional regularization is used. In the case oglyis consid-
from U, V, X, we would findA k<0.13. Therefore the Fer- €red itis found in our notatior-0.07<Ax<0.05 for a cut-

milab data appear to be on the verge of being competitiv@ff of 2 TeV. If we use our formula62) we find [Ax|
now. <0.06. This agreement is accidental, as the regularization

The best limit from CERN experiments so far is provided Methods are quite different. (7] the logarithmically diver- .
by the LEP2 Collaboration ALEPH from combined hadroni- 9€nt terms containing one power of the anomalous coupling

cally and semileptonically decayirgy* W~ pairs and reads are studied, whereas we consider the more divergent terms
[20] containing two anomalous couplings. This difference be-

comes clearer, when one considers the contributions from the
—0.620.149< a,,4<0.41(0.12) (89 four-point verticesy, andgs. Both we and Ref7] find that
the corrections appear in the combinatiogy 5 2gs, thereby
at 95% confidence level, where the numbers in parenthesesnfirming the previous results from R¢R]. Translated in
give systematic uncertainties. our notation Ref[7] quotes a limit of —0.15<5g,+ 295
We conclude therefore that at present the best limihan  <0.14, for a cutoff of 2 TeV. Ignoring the logarithmic en-
still comes from the high precision LEP-100 data. Howeverhancement of the correction, but keeping the quadratic part
LEP-200 is already competitive and should be able to imwe find the stronger limit,—0.066<(5g,+2gs)A3(TeV)
prove the limits[17]. The situation at Fermilab is somewhat <0.026. The difference is clearly due to the different treat-
less clear, as the limits depend on the assumed form factorfent of the quadratic divergences. As there are however
An analysis of the Fermilab data in terms of our cutoff more terms contributing td@, one should be careful in the
propagators with\g, Ay, Ay should be useful in order to interpretation of this limit.
clarify the situation. This is in particular important, in order
to determine the ultimate precision on the anomalous cou- ACKNOWLEDGMENTS
plings that can be reached after the upgrade of the Tevatron.

The best available Fermilab bound combined from sever
Tevatron runs is compiled by the DO Collaboration and read
[19]

We are grateful to T. Takeuchi for providing us with up-
to-date values of experimental constraints on oblique param-

Finally we make a comparison with other results in theeters and to G. Bella and T. Yasuda for pointing out the
literature. improved stringency of the Fermilab bound under our as-

In [6] the quadratic divergences are regulated by introducsumptions. B.K. thanks T. Binoth and G. Jikia for numerous
ing the Higgs particle in the Lagrangian. The anomaloushelpful discussions. This work was supported by the Deut-
couplings are in this model generated through spontaneowssthe Forschungsgemeinschdi-G).

E. Comparison with other methods

APPENDIX A: RESULTS

Here we present our results for the vacuum polarizations. Onlylligk?) are needed, since the contribution of the
H‘§<Y(k2) part is suppressed in experimentally accessible observables by the smallness of the involved fermion masses.
When evaluating integrals, we assume thatma, /A%, m3,/ A% . If this is not the case, the more than logarithmic diver-
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TABLE |. One-loop diagrams contributing d yv(k?), whereXY=AA,ZA,ZZ. The last two diagrams exist only f&¢Y=2Z.

w
X@Y

EeRRR TSRS
SRRt S
HeleN

gences in one-loop graphs are not limited to vacuum polarization corrections for terms containing both anomalous and gauge
couplings.

Tables | and Il show the one-loop vacuum polarization diagrams that can be constructed from the Feynman rules given in
Appendix C. The integrals needed for their evaluation can be found in Appendix D.

1. 1%, (k?): Quartically divergent terms

The quartically divergent contributions to the vacuum polarizations terms when all of the couglin¢lb) are present are
given by

(47) Ak = O(A?), (A1)
(4m)?11g5(k?)=O(A?), (A2)
AZ 2
- AdIn—= — AjIn— , , .
ams, () — gz | 3 5. 3 ) D A e O A
( 77) Z( ) gl mWO ¢ 4 2 A\z/_A\zN g4C2m\2N0 € 2 n? gS zm\ZN 2¢ 4
7|A2 AY [ 7 17 7|A\2, Ay [5 11 . A2 Ay (37 |A‘2’
2" ez (2T a2 T e e T2 O T e | T2
+O(A?), (A3)
v W
Ain= — AjIn= -
93 VA\ZN 3 5 3 u? u? AVAg 3 5
Am)2 4 Wk) =] g3+0103+ = |—5—| —5—— -+ s -——c
( ) WV\I( ) 1 9193 2 m\zNO 2¢ 4 2 A\Z/—A\ZN 92 m\zNo de 8
AG Ag
AiIn—= — A2In—=
.3 iz B2 . A“V/2+5 2|A\2, . Ad 715 7|A\2, . AY 1.3
n s —t+5-2n= | +g5—— T 5= |+t% 5| -tg
4 AG—AS m\z/vo\e 2 u? o\ 2 428 Mo\ 4€ 8
1 A% vi1 A2
—Zm:z +g7T —+1—In:2 +O(A2) (A4)
% Mo\ € M
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TABLE II. One-loop diagrams contributing tH,,(k?). The tadpole graphs in the first line turn out to vanish.

w v4 nw nw
Z,7A,AZ,Avs Z,ZA,AZ,A Z,Z7A,AZ,Avs Z,2A,AZ,Avs
w " - W, w - — W, w T — W, w - — W,
w 4 ZA A
@ ’ Q ’ Q ' Q ’
w w W w W w W w
+ - + - + - + -

ZA AZ
W wow A pew W H{ pww w
v4 v4 v4 v
nw Nz nw na
+ - , + - , + - ) + -
Nz nw N4 nw

2. Iy (k?) for g,=g3=0gs=g;=0gg=0

Here we display the quartically and quadratically divergent parts of the vacuum polarizations for the case when the
anomalous couplings preserve the custodial SH(@)mmetry in the limit of vanishing hypercharge coupling, i.e. wign
=03=0s=97=9s=0.

Our results for the at least quadratically divergent contributions tdie(k?) are

AZA2,  AZ[ K2 1 2\ k) 1 2\2
(477)2H%A(k2)252[ 05— 7 5| 5| T0192A9| -+ 1-In= || ——| = Z0IAY| ——| [ +O(A%), (A5)
AV—Aw  Aw\ Mo € M)\ Mg Mo
(4m)PN,(k) =~ GIAZAZ t A Ay b Ayl ke LTI
m =— - n—|| —|—9.0——A% —
ZA c| 91ivAw AZ— A2, \2(A2-A2)2  AZ_AZ| A2 m\2/v0 90— v g
AT 2\?
—|n:2) — +Zg§'A\2/ — +O(AO), (AB)
© )\ My Mo
v W
AdIn= — AdIn=
(4 )ZHQ (k2)= 2A\2/A\2N _E_E § ' /'LZ N /'LZ Aé E+§_ |nA_\2/ Aé 1 1_5
TR =0 5 2¢ 472 A2 2 94 22 2 7" 2) % (267 4
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7 A? 23 5 1 35 AG| 1, ,(1 3 A s?A3[9 9
_EIHF>_Q1EA ZglgA §—3In7 __Zg AV ;+Z—In7 — 04 C4 Z+Z
° Ag A% 6,7 6 AG s?A3[ 9 L99 A3 Ajf21 17 21 AG
b BT P R ) e PP L B PP ae o
1, 5 ,| 3A—8Af 2s? —17AY+33AZA5,—6AY, (AZ+AF)S? st AZ
+ S 91AVAY 2 22 az_az T 2_ 22,3 2_ 12,2 2 2| %
c B(AYV—AW. Ay—Ay 6(Ay—Ay) (AYy—AW) A=Ay Ay
2 2
k? 201 _ o2 1 _ Ay k? _C2 252 ? 0
X| —5— | +0:9Ay(1—-2s%)| —+1 In:2 — ZglAV ——| TO(A7), (A7)
Mwo M)\ My Mwo
v W
A2In:—A2In:
R JAZAE| 3 5.3 iz W2 A L5 A2 N A(‘, 7 15 7|A5
) w =01 5. 275 T9a—— - n— U5\ 5T — 5N
Mo 2¢ 4 2 A=A Mo €72 e ho\ 264 27 y2
3. 32 AL Aj 3 5 A 1.3 A2 SPA3[ 3 5
g2 B 22,2 w 2 Y| - Bl 2~
glAW 2 4c 2 A2 A\ZNInA\ZN glgAW E+ 2 3'”7 -9 AV 4 |n? J4 C2 4€+8
3IA§) e[0T g A2, s2A2 t1oa 2 It A2,
——In=|— —+= n— | — —+1- n— 5=
4 2 g4 W € 2 MZ g5 C2 € Iu g5 W 4 2 ILL
g ¢ AGAG InA_@ 1, ,300-8A% 1, ,17AJ—-33AfAG+6A nA_@ kz)
1 ViAW ViAW
22 A3-A% A 37V MAR-A)? 6 (AJ=AQ)? AW/ Mo
2 K2 1 2 \2
v 0
+0:9A3| = +1-In— || = ) 4g;;1AV(T +O(A). (A8)
©7 )\ Mg Mwo

APPENDIX B: GAUGE FIXING

To fix the gauge we introduce a variant of the clasRRgfgauges suitable to cancel the quadratic mixing terms between
would-be Goldstone bosons and longitudinal gauge bosons in the presence of the higher covariant derivative terms.
Specificially, we use the gauge fixing term

1 2 1 2
ngZ ngWa_z_gF (B1)
with
Fuwa=d,Wa—3Egu(1+ Ay %), (B2)
and
Fg=0,B*—3£9'v3(1+ A %% us, (B3)
where theu, are defined by writindJ) = exp(u,7,). The necessary ghost terms are given by
gv)? —2.2 9g'v? —2.2
6ab(?MDM+§ > (1+Ay0°)(Sap— €apdle) € 4 (14+ Ay 70%)(Sazt €azclc)
_— — wb
Lgn= (7w 78) , ,
’ 7B
ggv 2.2 2 9 2.2
£ (14 Ay %9%) (83— €ancllc) P+ | (1+AGP)
o) 7y (B4)

with
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D*nwa= 0" nwat gfachWng . (B5)

Due to the relative simplicity of our gauge fixing terms, the absence of quadratically divergent integrals in the oblique
parameters becomes manifest only in Landau gauget+6.[13].

APPENDIX C: FEYNMAN RULES

Since the Feynman rules in higher covariant derivative regularization have an unfamiliar appearance, we give here all rules
in our version ofR,; gauge explicitly.

To avoid confusion with the momenturs appearing in the four-vertices, write nogy=sin®,, and then alsoc,
=cody, t,=tan®d,,. Additionally to (22) and(23), we need the following field redefinitions:

- _ - Cg _Sg
(mz,1a)=(17ws,78) s, o) (Cy
0 0
C S
(772):( 0 a)(’?wa)’ 2
/N —Sp Cy/\ 7B
v .
U::E(Ulﬂuz), (€3
v3=vusz, (C4)
- 1 -
w= :E( w11 7w2), (CH
1 .
w= :E( w1+ Pwe)- (Co)
Define also
gu gu
Myo=—=, Myp=-——. C
'WO0 2 Z0 2(:‘9 ( 7)

The quadratic part of the Lagrangian extracted frgn (17), (18), (B1), (B4) reads in terms of the redefined fields

v "

“Gv

_ _ J N
[AW2(62)2+ (14 Ay 2mé ) 3%+ miy] —] W, +3(Z,.A,)

_ +
Lo=W, +

1

3

2 2
P M| —

X

(A”) 0, [(1+ Ay 20D P+ Em2(1+ Ay 2002 0 - — 2ol (1+ Ay 20%) 52

14

p— v o*a” lg o*a”
zA| 9 72 ZA” 2

+Em2o(1+ Ay 2022 o= pw i [(1+ EAy 2Mi0) P+ Eme] mw— — mw-L[(1+ EAy 2Miy) 92+ €Ml 1w+

— 12 (14 €Ay °ME0) P+ EmZ] 1 — ad? ma ()
with
2 2 2
Co 0 20 1 1
_2+ 2 (02)24' 1+ 2 (92+m%O _2__2 SgCg(az)z
- Al B Vv Ag Ay
Dya= ) ) (C9
1 1 2\2 So Co 2\24 12
7 SgCg(ﬁ) —2+—2 (97)°+0
Ag Ay Ay Ag

and
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5&2
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1. Propagators

Some of the propagators have an unusual form caused by the higher covariant derivative terms. However, they can be
decomposed into combinations of standard propagator terms with modified masses and normalization factors as indicated

below:
. — Ay Z'9¢k k, /K2
A ()= =i (0, KK, KD + —————
| (K== mgy) (K —mg,-) —Myyg
1 29k k, 1k
=—i|z} - =K K, IK2) +
| W( R kz—msv>)(g” W e
Z AGAG— AZK® L ZBekk, 1K
ALK =—i| ——— 2_ 2 72 Gu KKK+ —o——
L (K*=mZ ) (k*—mz. ) (K"—mj.) k2—m3,
| Z32 232 Z3z L ZEK K, 1K
B AR 2_ 2 77 | (Ou KK K+ —o———],
L k —Mz- k —mz. k —Mas _mZIg

(A\Z,V—Aé)kzs(,ce

ALK = ALK = —i

(K2=mZ_) (kK —mZ_)(K*—mj.)

(g,uv_ k,u,kv/kz)

SN DA
kK2-mi_  Kk*-mi. KP-mi ) *T MM
A | ARABL(L+ Ay 2mZo)k?—m3,] — AR (K?)? o EK K, 1K
Aup(K)=—i 20162 12 (k2 2 V(K2 2 (9= KK, K+ —= 75—
k=(k _mz<)(k _mz>)(k _mA>) K
(L zzt 7% Zp2 2y, EKuk, /K2
=St 22 55 | (9= KK, k) + >
ke ke—mz_. k“°—mz. K°—mj. k
A=) = —Z\WA2 :i( 11 )
(KR=mi)(KP=AZ) \K2=mG,, K2—AZ)
__—lgx2
Av3(k?) =i 2 2ZZA\2/ b 12 - 21 )
(kef=m3z i) (K°=AY) ke=mz, k=AY
_mWIg
:>lg
A72(k?) ZIZZZ,
_mZIg
7A( k2 _!
A7A(K?) E

with

(C10

(C1)

(C12

(C13

(C14

(C19H

(C16)

(C17

(C18

(C19
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2

1
yAY — _ _ =1+ O(A7?), (C20
M=~ Mo V(AL MG 2= 4A5 MG,
1
Z§=————5—5 =1+ O(A"?), (c21)
1+ &AMy,
A2AZ— A2m3
742=— 2T 2~ —1+0(A7), (C22
(mZ<_mZ>)(mZ<_mA>)
AZAZ—A2m?2
e v e SR AL (€23
(mZ>_mZ<)(mZ>_mA>)
AZAZ%— A2m3
2o E N R —-2+O(A D), (C24)
(Mas—mz_)(My. —m3..)
(A2~ A2)m3_s,c
Z%é: - w _ B §< 4 02 =O(A‘2), (025)
(Mz-—m5_)(MZ_—mja.)
(A2, —A2)m2_s,c
e W B T — eyt O(A D), (€26
(Mz-—mz_)(Mz. —mjy.)
(A2~ A2)m2_s,c
Zih =N B T s,ct O(ATD), (c27)
(mA>_mz<)(mA>_mZ>)
A2 AZ—mi ma_(1—Ay%m2_)—A2m?
Z§é= W B z>Mas( v Mz< A Z<=(9(A_4), (C29

2 2 2 2
(Mz-—mz_)(Mz_—mjy.)

24022 2 ~2 2 2,2
ZQQZAWAB_mZ<mA>(l_AV mz-) —Aamz.. — 21 O(A?) (C29
(m%>_m§<)(m§>_mi>)

242 2 2 ~2 2 2,2
zﬁi:AWAB_meD(l_AV Mas) = AxMas — 24 O(A?) (C30
(mi>_m§<)(mi>_m§>)

Al S ——— N T N (C321)
21+ EAy M, (A7)
A
m\2,\,>=%A\2N[(1+A\72m\2NO)i \/(1+A\72m\2,\,0)2—4A\7\,2m\2,\,0]=[mz ]x(1+(’)(A2)),
< Wo

(C32
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Emyo
1+ EAy "My
&m3,
m%g:%, (C39
1+ &AMy,
AZ=AGch+AGS), (C39
AZ=AZ%s2+A3c3, (C36)

and wherem?_ , m5_, m3. are determined by

(K2=mZ_ ) (K2 =m5-) (K*—=m3.) = (k23— [AG+ AF+ Ay PAZMZ0](K2) 2+ [AZAS(1+ Ay mEy) + AZmZ k23— AGAZmS,

(C37)
i.e.

AS+ A3+ Ay PAZME=m3_+ma+ma., (C398
AGAG+AIME+ AGPAGA G =mE mZ_ +mi_m}_ +mim}_ (C39
AGAEMZp=mZ_mZ_m3_ (C40)

with
mZ_=mZ,(1+O(A ™), (C41)
mZ. =A{(1+O(A™2), (C42)
M= =Ag(1+O(A?)). (c43

The masses and renormalization constants have to be evaluated to higher order than explicitly given here.
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2. Vertices

All momenta are outgoing. Only vertices needed for one-loop gauge propagator corrections are displayed.

a. Four-vertices

W+)p’a W+7q?ﬁ

>< = i{gaﬁw [2(2991 + 2993 + 94)

Wory W76 +0? (2+ 4837 mY, + A (P @) + (P+ @) - (1 +5) + 4(r - s)])]

—9av9ps [(2991 + 2993 — g4 — 2¢s)
+92 (14 285°md, + AF7[(p-0) +2(p- 1) + 2(q- ) + (v 9)) |
—9as98y [(2991 + 2993 — g4 — 29s)
+9? (142457 me, + A3 [(p- @) +2(p+ 5) +2(a7) + (7 5)]) |
~9* Ay [ 9e8(2(P— )y(P— @)s — (P+ @)y7s — sy(p + @)5 + 28475)
+9y5(2(r — 8)a(r — s)g — (v + 8)aPp — 4a(r + 5)p + 2P4a)
+9ay(2Pp7s — PpPs — 7875 + Ppds — sp(g — 7)s)

+9a5(2P88y — PaPy — $p5y + Ppdy — 75(q — 8)y)
+96+(29a76 — Gals — TaTs + qaPs — Sa(p — 7)s5)

+9B6(2QQ37 — 4oy — SaSy + GaPy — 'I‘a(p - 5)7)] }

(C49

Wt,p,a W7,q,8

>< = -i{gapgw [4991 — 2(gs + gr)c;

Z,v,y Z,s,6 +g° (2c§ +2A52m2, (2 +¢; %)
AW (4P ) + (p+ ) (r+ ) +4(r5)) )]

—9av9ps [2991 + (94 + ge)c;
0 (c3 + 2857 ml, + MG @) + 20+ ) + 2g - 5) + (7))

—9abs9py [2991 + (94 + go)cp °
+0* (¢} + 205 M, + AR (p- @) + 2(p+ 5) +2(a-7) + (7))
—ngv‘Vzc%[ 9a8(2(p — (2 — 9)s — (P + Q)76 — 8y (P + @)s + 28,75)
+915(2(r = 8)a(r — 8)p — (r + 8)aPp — ¢a(r + $)p + 2Pp4a)
+9ay (2875 — PPs — 7875 + Pegs — 35(q — 7)s)

+9a6(2PpSy — PPy — 35y +Ppdy — (9 — 5)v)
+98v(2¢aTs — gads — TaTs + gabs — Sa(p — 7)s)

+98s (2qa57 — oGy — SaSy + gaPy — Ta(p - 3)‘7 )] }

(C49
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Wt p,a W7,q,8

>< = ito{gaprs [2001 + g7cE (2 + 2077 m,, + AP - 0) + (pHa) - (1) +4(r - )]
Z,ry  As —Jay9ps [ggl +g° (63 + A M, + AP egl(p- 9)+2(p- m)+2(g - 9)+(r - 8)])]
~gas0p 991 + 97 (63 + AP M, + AR2cl(p- ) +2(p - 5)+2(g - 1)+ (- )] |

g2 Ayfcl [ 905(2(P—a)y(P—q)s— (D+a) 15— 54 (P + )5 +25475)

+976(2(r—38)a(r—s)s—(r+8)aps—da(r+s)s+2ps4a)
+9oy(2psTs — PPs — Ta7s + Ppqs — 5(q — 7)s)
+9a6(2ppsy — PPy — SpSy + PBIy — (g — 8)y)
+98v(20aTs — €06 — TaTs + GaPs — Sa(P — 7)5)

+986(29asy — 9oy — SaSy + gaPy — Ta(p — $)y )] }

W"',p,a W=,q,8

>< = —"9235{ 9ap9vs (2 + 28y i, + AR7[4p- @) + (p+g) - (r+s) + 4(r - s)])
A,ry A, —9Jay9ps (1 +AGCE(p-q) +2(p-r)+2(q-8) + (r- 3)])
—9as9py (1 +AG lp-g) +2(p-s)+2(g-7) + (7 - s)])

—Av‘vz[ 956(2(P=9)1(P—)s — (P+2)y7s — 84 (P+)s + 25,75)

1975(2(r—5)a(r—s)g — (r+5)apPps — qa(r+5)s + 2psqa)
+9ay(2Ps7s — PsPs — 775 + Ppas — sp(q — 7)5)
+9as(2pssy — PaPy — 555y + Ppgy — 7p(q — 5)4)
+987(29a7s — 9ags — TaTs + qaPs — sa(p — 7)5)

+965(2908y — gagy — Sasy + gapy — Tal(p — 5)7)]}

Z’p?a Z?‘l)ﬂ

>< = 2ic, *(g4 + g5 + 296 + 297 + 298)(9ap9ré + Jav 986 + Jas9py)
Z’ T, 7 Z1 s’ 6

vy, v_,$
>< = —%{gaﬁ [m;ﬁ, (g.th (r—9)- (7‘—8)+2993(p'1‘+q-8)+2(g4+295)(7"3)) —292A;2(r-s)]
Wt pa W-,q,8 +(gg1myh + 9P Ay %) [2(rass — 5a78) + 9a(r — 8) — (r — 8)aps]
+2gggm;,";(ra3[3—sarﬁ—rapﬁ—qasﬁ) + 2g4(2ra8g+sars) + 95430,7'3}
U3, T V3, $

>< =2 [9°Ay7 — (95 + 97)] (7 5)gap — im35 (94 + g6)(Tass + SaTp)

W+?p)a W_1q7ﬁ

(C46)

(C47)

(C48)

(C49)

(C50
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vy, T v_,$
>< = ~i{gas 2053 (14 4770~ 0)) — 267 (42A52(ch + 58) = (95 + gr)mid) (- )
Z,pa  Z,4,8 —~ ((gglsﬁ — gg259co — ggaca)m;> + ng(,zsﬁ) (p+ q)z]
~20°A32s5(r — s)a(r — )p
- ((991 33—9925060“99305)"1;,% - ng;Zsﬁ) [(r + 8)aps + galr + $)8]
98 + 9)e7 "My (rass + sap) |
(Ch))
Vg, T V3, $
>< = —2ic; *m;2 (94 + g5 + 296 + 297 + 298)(7  59ap + Tasp + 783a)
Z,pyx Z,q,8
(C52)
Yy, T v_,8 .
>< = —ito{gaﬁ [92(03 —53)(1+ A7 (p- g) + 2A3°(r - 8))
Zpa Ag.f +(gg1mys + 9 Ay ") (pch — ¢55) - (v + 5)
+992m;5 (psoco — gcfsyt) - (v + 9)
—ggamy3cd(r + 5)?]
—g° A2 (ch — 85)(r = 8)alr — s)p
- ((99103 + 9g289co + ggscg)mys + 921\;233) (r + 8)app
+((99153+992¢355 ~ 99sc3)mt +97 0,263 ) dalr + s }
(C53
vy, T v, 8
>< = i{gap 20753 (14 0770+ 9) + 27 5))
A,pa AgqB - ((991 55 — 9g250co + 99335 My, + gzsﬁA(/z) (p+ q)z]

~20*2A%(r - 8)a(r — o

~((99153 = 99350c0 + 995 53)m — 6?5305 (7 + 8)app + dalr + $)el}

(C59
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b. Three-vertices

Z,7,

= —i{ Jap :9(69 + Ay MY o) (p — @)y + 9165 (P~ )y

Wt pa W7,q,8 —gAyfco ([(p —q)-plpy +(P-9) “1]‘17):
+9/37 glco + AyPmE, ¢ )@ — 7)o + 91(c5 g — cora) — (9250 + g3C8)Ta

—ghzteo(lla =) dlaa+ [(a=7) - 7lra)]
+ay :9(60 +APmE M) (r — p)g + g1(cors — c; ' pp) + (9230 + gsce)Ts

—ghi2es (I(r =) - rlra + (= p) - plps )

) (C59
—gAy co[(p— @)yTars + (g — 7)apspy + (v — P)quqﬁ]}
A,y
. —2
= zse{ ga;sg[ 1+ Ay mi ) (P — @)y — A ([(p —q)-plpy+{(p—9) 'Q]Q7)]
wWt,pa W7,q,8 +98+ [g(q )a — (91—Co8; L 92+93)7a — Ay} ([(q—r) “qlga + [(g—7) - T]Ta)]
ooy [0(r=P)a + (91057 g2+ 95)ra — 95 (Ir=) - I + (=) - s )
~gAF?1(a — T)aBppy + (7 ~ Ppyde+ (P — a)yars]} (C56
Vg, T
=my [01l(p — 9) - 7lgap — (91 + 9AT>ME,,) (PaTa — daTs)]
(C57
Wt,ppa W~,q,8
Vg T v-,T
po Z,q,8 wWt,p,a Z,9,8
= mwo{gaﬁ [gsﬁc; Y (1-A3529%) +mkaics H(p - 1) -my) (91co+9280+93c0) (9 - 7)
~para (G1my2cyt + gAv2co) + garp [my2(91c0+g250+gsce) + gAy ey Y]
C58
_rarpgA;zsgce_l} ( )
vV, T v_, T
ypa A t,pma AqpB

=mwo{[989 (1-A5%p?) +m32 (9150 —g2c0+9336)(q - 7)] Gap

+gs0Ay ra(p—7)p + i (—01 39+92¢o—9350)qa7";3} (C59



57 CORRECTIONS TO OBLIQUE PARAMETERS INDUCED ...

W, pa W, pa

v+,4 v3, T v-,q v3, T

= —i{1g[1- 477 (¢ + )] (- P)a — g1mi2l(p- @)re — (P 7)dal |

Z,p,

= ~i{my2(g1co + 9250 + gsco)(p @)re — (b 7))
v, q v_,T —%9051 [(03‘33) (1+A‘_/2[(7’—Q)"ID +AI_/2(P‘7')] 9o
396" (€3 = 53) (1 + A7°la =) - 7)) + A7 (2 )] 7a }

A,p,
= i{m;vi(glse — g2¢8 + g3se) (P @)7a — (P 7)40]
v4, g vo,T —gso [(L+AF3(r - q) - @) qa — (1+ A°[(g = 7) - 7)) ra]}
W, p«a W"",]é,a
.1'. ”—’J. - ,"I'. .'—". = 19¢0da
Nwar T Nz,4q Nw-,T 7z,4
W=, p«a ' W+,;§a
.—.1” ’._". = - ~_'I,' '._.l' = —19Coqq
Nz, T Nwr 4 Nz, T Mw-,q
Z,p,x Z,%,a
7|’. '.J. = - ._.].' '.J' = —19Coqq
nW+ar ﬁw—)q ﬂw-,"' "_7w+’q
W-’p’a W+7p’a
T = 19894
Nura T Na Nw_.T Narq
W—)p)a W+’p7a
e a0 198049

Nas T Nwiy 4 Nay T Nw-»q
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(C60

(C6)

(C62)

(C63

(C64

(C69

(C66)

(C67)
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A’p7a A1p7a
s =- o = 19804q
R RIS (C68)
V3, P v3, P
l - l =1 (1= AP
SR N a0 stomwe(1 = Av') (C69
Nw-r T  fwerq NMwe, T Tw-1 4
APPENDIX D: ONE-LOOP INTEGRALS
Define € by
d=4-2¢, (DY
whered is the spacetime dimension, a@by
|n477,u2—'yE=|nF (D2)
and [, by
dd
[-[ o 03
p (277)d
The only integrals we need are
[(m?) J ! im? 1+1 |mz +0O(e) (D4)
me)= = — — IN= €
pp?—m?  (4m)?| € W
and
1
| (k2;m2,m? EJ
(Kimg, mp) [(p+k)2—mi+ie](p?—mi+ie)
1 1
=J dxf >
o Jp[p?+2xp-k+xk2—xmi—(1—x)mi+is]?
_i,uZGF(e) 1 dx
(4m)27 € Jo[—x(1—x)k®+xmi+ (1—x)mZ—ig]®
i (1 1 —X(1=X)K2+xme+(1—x)mi—ie
=—(——‘yE) l—ef dxin 2 b +0O(e)
(4m)%\ € 0 41’
i (1 1 —x(1—-X)KPHxmi+(1l-x)mi—ie
=—(——f dxin 2 ® 1 +0(e)
(4m?l e Jo e
i (1 (1 k3x—xp)?—D/(4k?—ie
= ——f dxin — +0O(e), (D5)
(4m)? 0 e
where
k?+mZ—m?
Xof# (D6)

2k?2
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and
D=k*+mi+mi—2k?m2— 2k’mZ—2mZm2. (D7)

We need to investigate here only the case where the argument of the logarithm is non-negatiex$ot @Gnd therefore
I(kz;mfl ,mﬁ) is purely imaginary. This is obviously the case 0. ForD>0 this is the case if and only ;<0 orx,=1,
i.e. k2<|m2—mg|

€. o .

1.1(k%m2,m2) for D<0
Now we can write

5 2 i 1 k2 1-X%o 2 -D
(k5 m3,mp) = ——In:—j dyln| y +—4
( 4k

+0O(e)
477)%\ € w? —Xo
l_
i (1 K -D -D y 0

= ——In—=—| yIn| y?+ —| —2y+2 arctan +O(e€)

(4m)? € p? 4Kk* 4K D

4k*
%

! 1+2_mk2_k2+m2—m§mm§_k2+m2—m§|nmg_ '_D(arctaﬁ—k2+m§_mﬁ

(4m)?| € 22k 2k Kk K J-D

k?+mz—m2
+arctan? +O(€)
-D
i |1 k2+m§—m§| m2 k2+m§—m§| m3 \/—D/ k2+m2—m3 k2+ma3—m3

= —+2-—————In—————In—~- arctan +arctanr———
(4m)?] € n2 2 a2 KR\ J-D J-D

+O(e). (D8)

2.1(k%;m2,m2) for D=0 with k?<|m2-mZ
Define
k2+mZ—m2+\D
X, = b2 7 (D9)
2k?
so that
k24+m2—m2¥ D
1-x.= a_b . (D10)

2k?
Without loss of generality assummgz mﬁ. Thenx.=<0 and 1-x.=0. We can write

1

(K2 D) =— ——|k—2—fld| - - +0
( ,ma,mb)—(4w)2 7, X[ (x=x,)(x=x_)] + O(e)

€

+0O(€)

k2 1 1
——In:z—f den(x—x+)—f dxin(x—x_)
m 0 0

2
_— [l—In:2—(1—x+)[ln(1—x+)—1]—x+[ln(—x+)—1]—(1—x_)[ln(1—x_)—1]—x_[ln(—x_)
M

—1]] +0O(e)
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1 k2
—In:z—(l—x+)ln(1—x+)—x+ln(—x+)—(1—x,)ln(1—x,)—x,ln(—x,)
o

+0(e). (D11

T (am? €

Now one can write either
i |1 k?
I(k%mZ,md)=——1 = +2—In= —x, In[ (=X )(—x_)]= (1 =x)IN[ (1= x4 ) (1 =X_) ]+ (Xs =X )IN[ (1 =x4 ) (—X_)]
(4m)?| € u?

+0O(e)

_ i k2—m§+m§+\/5|nm_§_k2+m§—m§+\/5|nm§ EI m2+m2—k?+ D Lore
(4)?

J— + — — —
€ 2k2 1“12 2k2 /'LZ k2 2/"’2
(D12)

or

H 2
I(k%m3,mp) = I E+2—Ir1k=—x_lr1[(—x_)(—X+)]—(1—X+)In[(1—x_)(1—X+)]+(x_—><+)Ir1[(1—x_)(—><+)]
(4m)?| € e

Lo [1 2_k2—m§+m§—\/5| mzﬁ_k2+m§—mﬁ—\/5| m:§_£ .m At mp— _\/B]
(4m)2| € 2k? u? 2k? 'S 2u?
+0O(e) (D13
with
VD= VKk*+mi+mi—2m2mZ — 2k?m2 — 2k?m2. (D14)

Equations(D12) and(D13) are symmetric irn2 andm? and therefore we can drop the restrictimg=m? .
In the following we will specialize to the cases that are needed for the evaluation of our one-loop diagrams.

3. 1(k%;m2,m?

Only for D=k?(k?—4m?)<0, i.e. fork?<4m? we have purely imaginary(k?;m?,m?). From (D8) we get

1 m? 4m? 1

I(k?;m?,m?) = —+2-In—=-2\/ ——larctar————= | +O(e). (D15)

(47T)2 € MZ k2 4m2

—-1
k2
For k?<m?, we can expand in powers &f/m? to get

| (k?;m?,m?) = 1|mz+1k2+1k22+0 )’ D16
( ,m lm )_(477)2 € n; 6 m2 60 m2 €, m2 . ( )

4.1(k?%m?,0)
Now D=|k?—m?|=0 and we nee&?<m? to have a purely imaginary(k?;m?,0). We get from(D12) and(D13)

I (K2;0m?) =1 (k% m?2,0) = LMok Mok M o
I P (1 o s +0(e). (D17)
= —Inl 1- — | -In—— €
(4 )2 € k2 m2 M
For k?<m?, we can expand in powers &f/m? to get
| (k%0,m?)=1(k%m?,0)= |mz+1 < +1 k22+0 ) D18
(k%0m%) =1(k%m=,0)= e n? 2\ 2] T8l e “\ 2] | (D19
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5.1(k%m2,m2) for k?,m2<m?
If k?,m2<mZ, we can expandD12) or (D13) in negative powers ofn to get

2

2
1 m
SK+min— K
my

m
m2(k2+m2)In—
my

1 3
gkz‘i‘ —mg +

2 2

m,
In— + 5 2
u m, my,

I(kz;mg,mﬁ)z( +0(e,m, °Inm?).

(D19)

6.1(k?;m2,m2) for k?<m2,m?

If k><m2,mZ, but the relative magnitude & and|mZ—mZ| is unknown, it is not clear, which aD8) on the one hand
or (D12), (D13) on the other hand has to be used. Although they are connected by analytic continuation, here we will expand
I(kz;mg,mﬁ) in powers ofk? to have an unambiguous result without having to worry about Riemann sheets.

Starting from the next-to-last line i(D5) we get

i (1 (1 —=xX(1—x)KP+Hxmi+(1—-x)m3
|(k2;m§,mﬁ)= 2(——f dxin — a b +0(e)
(4’7T) € 0 o
i [1 (1 xmi+(1-xm? (1 x(1—x)k?
= 2——f dxin————— b—f dxin 1——2( ) - |+0ce)
(4m)c € Jo I 0 XM+ (1—x)mg
i 2 2
m
2 a 2
miln—=—m In—
R a2 Cox(a-xk? " o 20
(4m)? P m2—mj f Xm2+ (1—x)m? *ole). (b20)
a b b
Expanding ink?, we get
_ , :
2pa 2
miin—= —mgIn—=
by 9 s [ 1 A A NE x(1—x) k% 1 X(1—x) 2
|(K%m2 md)=——| —+1- stk f dx| ————— +§f A —————| [+OKse)
(4m)°L € mZ—mg o\ xmi+(1—x)mg o |\ xmi+(1—x)md
i 2 2
m
; miln:a—mﬁln:b 2, 2 2.2 2 4 202, 4
i |1 w? w? m3+m; mimg  mj mj;+ 10mZmg+mjg
— _ n— 2
- 2Z+1 22 2 202 s Ko 2 24
(4m)°L mg;—mg 2(mg—my) (m mb) mg 6(m;—my)
mb(m +mb) . 6
——( 5 | k* | +O(K®,€). (D2
My — My m;

Note that(D20) tells us that subsequent powerskdfin (D21) are suppressed by negative powersmﬁfand mﬁ and not just
by their differencem?—mZ, which might be small or even vanishing.

Indeed, settingnZ=m?+ sm?2, m2=m?+ smg with k2, 6m2, smz<m? and starting again from the next-to-last line(ID5)
we get

(1 fl m2—X(1—x)k2+xSm2+ (1 —x) SmZ

2.2 2 2 2\ _ . b
| (k2;m2+ 6m2 , m2+ sm2) e b  dxin = +0(e)
i 1 m [t X(1—x)k2— x6m2— (1—x) 6m?
- ——In:—f din| 1- 2 a( 1 +0(e)
(4m? e w2 Jo m2
i (1 m2 21t x(1—x)kP—x8m2—(1—x)sm?2)"
- o=+ = dx ( ol |l |+ 0ce)
(4m)?l € p? nA=1nJo m?
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i [1 m?2 o1/k?) 1femZ) 1fem?| 1[/k?\® 1/emZ\® 1fom?\?
= =t o = s = s = = =] 2 — ] tE—
(4m)?| € W2 6\m2) 2\ m2 2\ m? 60| m2 6| m? 6\ m?2
1/ K2\ [om2) 1 K2\[em\ 1fomd\[emd - 50
2l \ 2| 2 2 2 )T 2 | (m=>,€), (D22)

which can also be obtained by expandil).
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