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Corrections to oblique parameters induced by anomalous vector boson couplings

J. J. van der Bij and Boris Kastening
Albert-Ludwigs-Universita¨t Freiburg, Fakultät für Physik, Hermann-Herder-Straße 3, D-79104 Freiburg, Germany

~Received 22 August 1997; published 30 January 1998!

We study quadratically divergent radiative corrections to the oblique parameters at CERN LEP1 induced by
nonstandard vector boson self-couplings. We work in the Stu¨ckelberg formalism and regulate the divergences
through a gauge-invariant higher derivative scheme. Using consistency arguments together with the data we
find a limit on the anomalous magnetic momentDk of the W boson,uDku&0.26. @S0556-2821~98!04205-2#

PACS number~s!: 12.60.2i, 12.15.Lk, 12.39.Fe, 14.70.2e
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I. INTRODUCTION

With the running of the CERNe1e2 collider LEP-200
and with results from the Fermilab Tevatron the se
interactions of the vector bosons are nowadays being m
sured directly. Within the standard model the vector bos
self-interactions are fully determined by the gauge struct
of the theory. Deviations from the standard model can
parametrized by a set of operators describing so-ca
anomalous couplings and experiment can put a limit on
coefficient of these operators. However the presence
anomalous gauge boson self-couplings will violate the ren
malizability of the theory. As a consequence one can ge
ate divergent contributions to quantities at lower energ
than the two vector boson threshold. When one uses a cu
procedure one can estimate the induced effects and use
energy data to put limits on the assumed anomalous c
plings. As the data at low energy have become very pre
since LEP-100, strong limits can be found. Indeed in a rec
discussion it was argued that the LEP-100 data can obv
the LEP-200 data, with the exception of so-called blind
rections in coupling constant space. These blind directi
correspond to operators that do not have direct effects
propagators and can therefore only be seen after inse
inside a loop, indirectly generating propagator effects. In
original articles@1,2# on these induced effects quadratica
and quartically divergent contributions were found, lead
to relatively severe restrictions. These results were critici
in @3,4#, where it was argued that the quadratic divergen
would be gauge-dependent and nonphysical, so one sh
use dimensional regularization as a cutoff, which gives lo
rithmic divergence and weak constraints. In a more rec
calculation@5#, dimensional regularization ind dimensions
was used to determine the quadratic divergences as pol
(d22). In @6# the divergences were regularized by using
Higgs field as a regulator. An analysis based on the philo
phy of @3,4# is presented in@7#. Both calculations@5,6# con-
firm the original calculations as having quadratic diverg
contributions, as is consistent with power counting in chi
perturbation theory. However also here the situation is
fully satisfactory, as only one cutoff scale is assumed to
present. In reality however, there are different cutoff sca
present. This is most easily seen from the vector bo
propagators, which consist of longitudinal and transver
parts, which could have different form factors. Indeed o
would expect the longitudinal part to have structure at a re
570556-2821/98/57~5!/2903~24!/$15.00
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tively low scale, as this part describes effects coming fr
the Goldstone boson part of the theory, dependent on
mechanism of spontaneous symmetry breaking, where st
interactions might be present. In order to clarify the situat
we therefore perform in this paper a calculation of induc
low energy effects from anomalous effects using a hig
derivative regulator. More precisely, we describe vector
son physics without a Higgs boson as a gauged nonlin
sigma-model. The anomalous couplings are then given
higher dimensional operators. This is the Stu¨ckelberg for-
malism and is closely related to chiral perturbation theo
This has the advantage that the whole calculation can
performed in a gauge-invariant way. The quadratic a
higher divergences are regulated via covariant higher der
tive terms; the remaining logarithmic ones via dimensio
regularization.

We limit the anomalous couplings to terms that have
CP violation, as we knowCP violation to be very small.
Furthermore we limit the discussion to terms that corresp
to dimension four operators in the unitary gauge. Within t
standard model there is an extra custodial SU(2)R symmetry
in the limit of vanishing hypercharge, which has as a con
quence that ther-parameter deviates from unity onl
through hypercharge couplings. This symmetry has to
protected at least to some level also in the anomalous c
plings and we will focus mostly on the operators where
custodial symmetry is only violated through a minimal co
pling to hypercharge.

We have assumed, that the only relevant gauge boson
those of the SU(2)L3U(1)Y gauge group and that new
physics does not couple directly to light fermions. Therefo
any contribution of new physics below the vector-boson p
threshold can only come from vacuum polarization corr
tions to gauge boson propagators@8,9#. For most of the avail-
able low-energy,Z and W observables it is possible to pa
rametrize these corrections by the six so-called obliq
parametersS, T, U, V, W, X @8,9#. These parameters ar
therefore well suited to compare experiment with our cal
lation and we will use a recent analysis in this terminolog

In Sec. II, we will outline the model we use to describ
the electroweak sector of the standard model, give the v
ous anomalous couplings and describe our regulariza
procedure. In Sec. III, we give our results for the obliq
parameters. In Sec. IV we investigate the contribution of
regularization procedure to the oblique parameters and s
2903 © 1998 The American Physical Society
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2904 57J. J. van der BIJ AND BORIS KASTENING
the consistency of the method. In Sec. V, we analyze
results with respect to experimental data.

II. THE MODEL

Since the origin of electroweak symmetry breaking is u
known, we do not assume the existence of a Higgs field,
describe the breaking using the Stu¨ckelberg formalism
@10,11#. That is, we write the spontaneously brok
SU(2)L3U(1)Y theory as a gauged nonlinear sigma mod

We need the following definitions. Let

Wmn5 1
2 taWmn

a 5]mWn2]nWm1 ig@Wm ,Wn# ~1!

and

Bmn5 1
2 t3Bmn5]mBn2]nBm ~2!

be the SU(2)L and U(1)Y field strengths. LetU be an SU~2!
valued field that describes the longitudinal degrees of fr
dom of the vector fields and letU transform as

U→ULUUY ~3!

under SU(2)L3U(1)Y gauge transformations withUL

5exp(2i/2gQW L•tW) and UY5exp(2 i/2g8QYt3), whereg8 is
the hypercharge coupling. Define auxiliary quantities

T5Ut3U† ~4!

and

Vm52
i

g
~DmU !U† ~5!

with

DmU5]mU1 igWmU1 ig8UBm . ~6!

Under SU(2)L3U(1)Y gauge transformations, they tran
form asT→ULTUL

† andVm→ULVmUL
† .

Electroweak theory without fermions and without th
Higgs scalar is then described by the Lagrange density

LEW52 1
2 Tr~WmnWmn!2 1

2 Tr~BmnBmn!1
g2v2

4
Tr~VmVm!,

~7!

wherev replaces the vacuum expectation value of the Hig
field.

In this formalism, theCP conserving anomalous thre
and four vector boson couplings that are of dimension fou
unitary gauge (U51) are described by the following set o
gauge-invariant operators:

L152 i Tr~Wmn@Vm ,Vn#!, ~8!

L252
i

2
BmnTr~T@Vm ,Vn#!, ~9!

L352
i

2
Tr~TWmn!Tr~T@Vm ,Vn#!,

~10!
r

-
ut

l.

-

s

n

L45~ Tr@VmVn#!2, ~11!

L55~Tr@VmVm#!2, ~12!

L65Tr~VmVn! Tr~TVm!Tr~TVn!,
~13!

L75Tr~VmVm!~Tr@TVn#!2, ~14!

L85~Tr@TVm#!2~Tr@TVn#!2, ~15!

which we introduce by adding

Lano5(
i 51

8

giLi ~16!

to LEW . In our treatment, the aforementioned approxim
custodial SU(2)R symmetry is realized byU→UUR with
URPSU(2).Among the operators~8!–~15!, onlyL1, L4 and
L5 conserve this custodial symmetry in the limit of vanishi
hypercharge coupling. At the same time, the absence of
other operators leads to a cancellation of quartic divergen
in oblique electroweak parameters@2#, as will be seen below
In other words,L1, L4 andL5 correspond to the so-calle
blind directions in coupling constant space which do not
ceive the severe constraints that the presence of quartic
vergences would impose@12#. We will therefore assume tha
the custodial symmetry is respected by the anomalous c
plings and thus restrict our analysis with respect to exp
mental results to these three operators.

Since higher than logarithmic divergences are set to z
by dimensional regularization, we have to parametrize th
using a different method. We will apply the method of high
covariant derivatives@13#. In the version used here, it leave
only logarithmic divergences in the anomalous contribut
to the oblique parameters in Landau gauge. These remai
divergences are then regulated dimensionally. Specifica
we add to the theory

Lhc,tr5
1

2LW
2

Tr@~DaWmn!~DaWmn!#1
1

2LB
2

Tr@~]aBmn!

3~]aBmn!# ~17!

for the transverse degrees of freedom of the gauge fields

Lhc,lg52
g2v2

4LV
2

Tr@~DaVm!~DaVm!# ~18!

for the longitudinal ones, where theLX parametrize the qua
dratic divergences and are expected to represent the s
where new physics comes in. The covariant derivatives
~17! and ~18! are defined by

DaWmn5]aWmn1 ig@Wa ,Wmn#, ~19!

DaVm5]aVm1 ig@Wa ,Vm#. ~20!

As a variant ofLhc,lg , one can use e.g.
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57 2905CORRECTIONS TO OBLIQUE PARAMETERS INDUCED . . .
Lhc,lg8 52
v2

4LV
2

Tr@~DaDbU !~DaDbU !†#

52
g2v2

4LV
2 H Tr@~DaVm!~DaVm!#1

g

2
L11

g8

2
L21g2L4

2
g2

2
L5J ~21!

instead, which is closer to a natural regularization in
linear model. The quartic divergences are invariant un
this change due to the additional suppression fac
g2v2/LV

2 . Once we impose absence of quartic divergen
by settingg25g35g65g75g850, it is easily seen that now
the quadratic divergences are invariant under the chang
regularization.

We remark here that a reasonable assumption of the
namics would makeLV the smallest, being related to th
Goldstone sector of the theory. Also, one would expectLB
to be very large, as it is hard to imagine a fundamental
namics, where strong interactions would start in the Abel
sector of the theory. The presence of the approximate cu
dial symmetry tells us that terms with explicitT or Bmn

should be heavily suppressed. We finally note that the s
in front of LV

2 ,LW
2 ,LB

2 are not determineda priori. The
method of gauge fixing we use is outlined in Appendix B

Finally, our conventions lead to the following definition
of the usual gauge fields:

S Zm

Am
D 5S c s

2s cD S Wm
3

Bm
D , ~22!

Wm
65

1

A2
~Wm

1 7 iWm
2 !, ~23!

where we have used the abbreviationsc5cosQW, s
5sinQW and where the weak mixing angle is defined
tanQW5g8/g.

III. OBLIQUE PARAMETERS

In models where new physics comes in at scales m
larger than the electroweak scale, it is usually assumed
an expansion of the vacuum polarizations linear ink2 is suf-
ficiently accurate to parametrize the new physics effect
the electroweak scale. Accordingly, a description of n
physics effects in terms of three parametersS, T, U is ap-
propriate@8#. In our description this assumption is explicit
violated as can be seen from the structure of thek2 and k4

terms in the vacuum polarizations given in Appendix A 2
~A5!–~A8!. We therefore need all six parametersS, T, U, V,
W, X used when observables at the scales 0,mZ

2 , mW
2 are

taken into account and the above assumption is not valid@9#.
The six oblique parameters are computed from

PXY
g (k2) part of the nonstandard model contribution to t

vacuum polarizations,

PXY
mn~k2!5PXY

g ~k2!gmn1PXY
k ~k2!

kmkn

k2
, ~24!
e
r
r
s

in

y-

-
n
to-

ns

h
at

at

e

with XY5WW,ZZ,ZA,AA. Their definitions are, according
to @9# ~except that our conventions lead to a different sign
s),

aS54s2c2FPZZ
g ~mz

2!2PZZ
g ~0!

mz
2

1
c22s2

sc
PZA

g8 ~0!

2PAA
g8 ~0!G , ~25!

aT5
PWW

g ~0!

mw
2

2
PZZ

g ~0!

mz
2

, ~26!

aU54s2FPWW
g ~mw

2 !2PWW
g ~0!

mw
2

2c2
PZZ

g ~mz
2!2PZZ

g ~0!

mz
2

12scPZA
g8 ~0!

2s2PAA
g8 ~0!G , ~27!

aV5PZZ
g8 ~mz

2!2
PZZ

g ~mz
2!2PZZ

g ~0!

mz
2

, ~28!

aW5PWW
g8 ~mw

2 !2
PWW

g ~mw
2 !2PWW

g ~0!

mw
2

, ~29!

aX5scFPZA
g ~mz

2!

mz
2

2PZA
g8 ~0!G . ~30!

These combinations are well-suited for comparison with
perimental data. In particular, theW parameter only appear
in the rather poorly measuredW width and can therefore be
dropped from the analysis.

To present the results of our calculation, a modification
the S andU parameters is useful. Let us define

Ŝ5S24s2c2V, ~31!

Û5U14s2c2V24s2W. ~32!

In this way, T is getting contributions only from
k-independent terms,Ŝ andÛ only from k2 terms andV, W,
X only from k4 terms~higher powers ofk are absent in our
treatment of the quadratically divergent terms!. The rel-
evance of this is that thek4 terms of the various vacuum
polarizations are essentially identical, while our predicti
power for thek2 terms and thek-independent terms hinge
on additional assumptions, as will be seen below.

Including all anomalous couplings~8!–~15!, we have
computed the quartically divergent contributions to t
PXY

g (k2). The results can be found in Appendix A 1. The
contributions arek-independent. A look at our definitions o
the oblique parameters~25!–~30! shows that onlyT, repre-
senting the correction to ther parameter, depends o
k-independent parts of vacuum polarizations and there
only it can be quartically divergent. We get
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aT5g2
2
LV

2LB
2

mW0
4

S 2
3

4e
2

5

8
1

3

4

LV
2 ln

LV
2

m̄2
2LB

2 ln
LB

2

m̄2

LV
22LB

2
D

1~2g1g31g3
2!

LV
2LW

2

mW0
4

S 2
3

4e
2

5

8

1
3

4

LV
2 ln

LV
2

m̄2
2LW

2 ln
LW

2

m̄2

LV
22LW

2
D 1g6

LV
4

mW0
4 S 2

13

4e
2

31

8

1
13

4
ln

LV
2

m̄2 D 1g7

LV
4

mW0
4 S 2

4

e
2

9

2
14ln

LV
2

m̄2 D
1g8

LV
4

mW0
4 S 2

3

e
2

7

2
13ln

LV
2

m̄2 D 1O~L2!. ~33!

Here,e is defined byd5422e, whered is the dimension of
spacetime. From the presence of these quartic diverge
we have therefore severe constraints on the quartic ve
boson couplings. This is in agreement with@14#, but in con-
trast to @15#, who however use dimensional regularizati
and therefore find only a logarithmic divergence. Eviden
absence of the custodial symmetry breaking couplingsg2,
g3, g6, g7, g8 leads to a cancellation of the quartic diverge
cies inT. In the further analysis we will therefore only kee
the anomalous couplingsg1, g4, g5 nonzero. This is consis
tent with the dynamical principle from@2#, that the breaking
of the custodial symmetry should be only through the mi
mal coupling to hypercharge.

Our results for thePXY
g (k2) are given in Appendix A 2.

From them we get

aŜ52s2
g1

2

~4p!2S 20LV
2LW

4

3mW0
2 ~LV

22LW
2 !2

1
2LV

2LW
2 ~14LV

4233LV
2LW

2 19LW
4 !

3mW0
2 ~LV

22LW
2 !3

ln
LV

2

LW
2 D

22s2
LV

2

mW0
2

g1g

~4p!2S 1

e
112 ln

LV
2

m̄2 D , ~34!

aT52
3s2

4c2

g1
2

~4p!2S LB
2LW

2

mW0
2 ~LB

22LW
2 !

ln
LB

2

LW
2 D

1
s2LB

2

c2mW0
2 F g4

~4p!2S 15

4e
1

13

8
2

15

4
ln

LB
2

m̄2 D
1

g5

~4p!2S 3

2e
1

5

4
2

3

2
ln

LB
2

m̄2 D G , ~35!

aÛ5
2s4

c2

g1
2

~4p!2

LV
2LB

2

mW0
2 ~LV

22LB
2 !

ln
LV

2

LB
2

, ~36!
es
or

,

-

-

aV52
LV

2

4mW0
2

g1
2

~4p!2
, ~37!

aW52
LV

2

4mW0
2

g1
2

~4p!2
, ~38!

aX5
s2LV

2

4mW0
2

g1
2

~4p!2
~39!

for the quadratically divergent contributions to the obliq
parameters. The 1/e terms represent logarithmic divergenc
that are left even after the quadratic divergences are par
etrized by the scalesLX and that do not cancel between th
vacuum polarizations in the oblique parameters. Our in
pretation is that the 1/e terms are replacing numerical coe
ficients whose values depend on the details of what happ
at the scale where new physics comes in.

IV. CONSISTENCY OF THE METHOD

The results that we derived above cannot be compa
directly with experiment without some further conside
ations. The reason for this is that the oblique correctio
receive also contributions from the regulator terms the
selves and these contributions should be consistent with
terms calculated from the radiative corrections.

The tree-level contribution to thePXY
g (k2) can be read off

the quadratic part of the Lagrange density~C8! and is

PAA
g ~k2!5S s2

LW
2

1
c2

LB
2 D k4, ~40!

PZA
g ~k2!5scS 1

LB
2

2
1

LW
2 D k4, ~41!

PZZ
g ~k2!5S c2

LW
2

1
s2

LB
2 D k42

mZ0
2

LV
2

k2,

~42!

PWW
g ~k2!5

1

LW
2

k42
mW0

2

LV
2

k2. ~43!

The corresponding contributions to the oblique parame
are

aS54s2S c2

LW
2

1
s2

LB
2

2
1

LV
2 D mW0

2 , ~44!

aT50, ~45!

aU54s4S 1

LW
2

2
1

LB
2 D mW0

2 , ~46!

aV5S c2

LW
2

1
s2

LB
2 D mW0

2

c2
, ~47!
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aW5
mW0

2

LW
2

, ~48!

aX5s2S 1

LB
2

2
1

LW
2 D mW0

2 .

~49!

We observe thatLV enters only theS parameter.
These tree-level contributions should be compared w

the loop corrections to check whether no inconsiste
arises. The philosophy we adopt here is the following. T
structure for the vector boson propagators, parametrized
LB , LW , LV is generated by the self-interactions among
vector bosons, as parametrized byg1. Therefore the tree-
level and the loop-corrections should be of similar si
WhereasS, T, U depend on the details of the interactions,V,
W, X are given by a universal contribution. We therefo
impose the conditionsVtree5Vloop , Wtree5Wloop , Xtree
5Xloop . This leads to the following result:

1/LB
250, ~50!

mW0
2

LW
2

52
1

4

g1
2

~4p!2

LV
2

mW0
2

.

~51!

After imposing these conditions, consistency further d
mands that the radiative corrections~34!–~36! should be of
the same order of magnitude as the tree level relations~44!–
~46!. We see that this is indeed the case. The relations~50!,
~51! have an interesting physical interpretation. The fact t
LB@LW

2 ,LV
2 means that the hypercharge field, being

simple Abelian field, contains no structure. Furthermore i
seen that the cutoffLW is only an indirect effect being gen
erated byg1, connected with the interactions in the Gol
stone boson sector. Note the opposite signs forLW

2 andLV
2 .

These relations were already qualitatively expected in S
II. Given these relations, one can now make a compari
with experiment.

V. EXPERIMENTAL BOUNDS

We use the following experimental constraints for obliq
parameters, which were provided to us by Takeuchi. T
describe the deviation from standard model expectations
mt5175 GeV, mH5300 GeV, mZ591.18630 GeV,a21

5128.9,aS(mZ)50.123:

S521.061.5,

T520.5760.80,

U50.0760.82, ~52!

V50.4960.82,

X50.2260.51,

with the correlation matrix
h
y
e
by
e

.

-

t

s

c.
n

y
or

S T U V X

S 1 0.79 0.54 20.77 20.95

T 0.79 1 20.05 20.98 20.56

U 0.54 20.05 1 0.05 20.76

V 20.77 20.98 0.05 1 0.55

X 20.95 20.56 20.76 0.55 1 ~53!

Although there is no Higgs particle in our model, the depe
dence of the oblique parameters on the Higgs mass is
weak and we can utilize the data above. We will now u
these data to put bounds onLV and LW . We will have to
consider two cases, depending on the sign ofLV

2 .

A. The caseLV
2 >0, LW

2 <0

In the comparison with experiment, we will now use th
relations~50!, ~51! and give limits onLW andLV from the
formulas~44!–~49!. One might wonder whether it would no
be more appropriate to use formulas~34!–~39!, but here the
comparison is complicated due to the arbitrariness invol
by the undetermined coefficients. The procedure we t
gives the most conservative, i.e. the least restrictive limits
order to facilitate the discussion, we change in this subs
tion the notationLW

2→2LW
2 . We also define an auxiliary

Leff
2 5g1

2LV
2 . We will use the data onU, V, X to put a limit

on LW . Subsequently, we use the information onS to put a
limit on LV .

Using U, V andX, we get from~53! the statistically in-
dependent combinations

U20.74V12.0X520.1460.28, ~54!

U20.59V20.72X520.461.3, ~55!

U11.6V10.087X50.961.6, ~56!

which, using~46!, ~47!, ~49!, ~50!, ~51!, translate into

Leff
2 5~0.461.3!mW0

2 , ~57!

giving at 95% confidence level

Leff
2 ,2.5mW0

2 . ~58!

Using ~51!andmW0580.26 GeV, this can be written as

LW.1.3TeV. ~59!

Subsequently, using~44!, ~50! and the data onS, we get at
95% confidence level

S c2

LW
2 ~TeV!

1
1

LV
2~TeV!

D ,4.2. ~60!

This can be written as

LV.0.49 TeV. ~61!

When we express the results in terms of the anomalous m
netic moment of the vector bosonDk5g1 /g we get the
following equation
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uDku5
0.25

LW~TeV!LV~TeV!
&0.26. ~62!

To arrive at the numerical bound, we took the linear com
nation~55!, together with the bound onS and their statistical
correlation, made a confidence level contour plot and de
mined the value ofDk, where its line in the plot is tangentia
to the ellipse bounded by 1.64s lines. Since we assumeLV

2

.0, LW
2 ,0, this gives an at least 95% confidence lev

bound onDk for this case. This is a conservative procedu
since it ignores some region in the plot out side the 1.6s
ellipse that would also give smalleruDku. Although ~55!
among the three independent linear combinations~54!–~56!
gives the weakest bounds onLeff

2 and LW , its strong anti-
correlation withS causes it to give in combination with th
limit on S the best limit onDk. This is true also for the cas
considered next.

We notice that the careful separation of longitudinal a
transversal structure functions allows us to put a limit onDk
independent of assumptions on the size of the cutoff. Thi
in contrast with other methods, where an arbitrary estim
of the size of the cutoff is made, typically of the order of
TeV.

B. The caseLV
2 <0, LW

2 >0

The analysis in this case proceeds exactly analogou
the previous case. Only here we change the notation toLV

2

→2LV
2 . Following the same steps as before, we now fin

Leff
2 ,1.8mW0

2 , ~63!

LW.1.5 TeV, ~64!

LV.0.74 TeV, ~65!

uDku5
0.25

LW~TeV!LV~TeV!
&0.08. ~66!

When combining~62! and~66!, we have in principle to take
into account that we do not know which case is realiz
Since~66! is significantly more stringent than~62!, the case
LV

2,0, LW
2 .0 with uDku.0.26 has negligible probability

and the bound~62! gives a 95% confidence level overa
bound.

C. Anomalous contribution to the photon structure function

Here we relate our results to two works dealing with t
changes to the photon structure function induced by n
physics.

To make contact with an earlier paper by one of the
thors@14# we use again the identityDk5g1 /g. Besides this
we identify L there withLV in the present article. Transla
ing the limit found there,

uDk~L/mW0!u&33 ~67!

gives

uLeffu&21mW0 ~68!
i-

r-

l
e

d

is
te

to

.

w

-

and we see that our bounds improve more than an orde
magnitude on this.

Measurements of the running ofa can be used to pu
limits on Leff . In @16# bounds at the 95% confidence level o
the effective scale where new physics comes in were gi
as

L2.702 GeV, ~69!

L1.535 GeV. ~70!

Identifying L2 or L1 with Lexpt and LV with L in the
relation

Lexpt5
8pmW0

2

eLDk
~71!

from @14# gives limits

Leff,6.0mW0 , ~72!

Leff,7.9mW0 , ~73!

which are considerably weaker than our bounds.

D. Relation to direct searches

The only gauge-boson self-coupling parameter be
measured directly that can be compared to our results isDkg
in the phenomenological Lagrange density@17,18#

L52 igc@Dg1
ZZm~Wmn

2 W1n2Wmn
1 W2n!1DkZWm

1Wn
2Zmn#

1 igsDkgWm
1Wn

2Fmn2
ilZ

mW
2

Zm
n Wn

1rWr
2m

2
ilg

mW
2

Fm
n Wn

1rWr
2m , ~74!

whereFmn is the electromagnetic field strength. The relatio
to our triple gauge boson couplings are

g15c2gDg1
Z , ~75!

g25csg~DkZ2Dkg!, ~76!

g352c2gDg1
Z1c2gDkZ1s2gDkg , ~77!

lZ5lg50. ~78!

Custodial symmetry forg8→0 requiresg25g350, leading
to

Dk[Dkg5DkZ5c2Dg1
Z , ~79!

and thus

Dk5g1 /g. ~80!

Another popular set of parameters is

awf5c2Dg1
Z , ~81!

aw5lg , ~82!
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abf5Dkg2c2Dg1
Z , ~83!

together with the constraints

c2Dg1
Z5c2DkZ1s2Dkg , ~84!

lZ5lg50. ~85!

While from ~84! already followsg350, the demand that als
g25lZ5lg50 yields

awf5Dk5g1 /g, ~86!

aw5abf50. ~87!

The best available Fermilab bound combined from sev
Tevatron runs is compiled by the D0 Collaboration and re
@19#

20.33,Dk,0.45 ~88!

at 95% confidence level. This bound assumes thatDg1
Z50.

As can be inferred from Fig. 3d in@19#, our assumption tha
Dk5c2Dg1

Z leads to a bound that is roughly twice as str
gent. However, we note that this limit assumes a cutoff
1.5 TeV in the analysis. This maybe too optimistic, as
have seen that the longitudinal cutoff could be smaller. If
assume that one can takeLV.1.5 TeV and use the result
from U, V, X, we would findDk,0.13. Therefore the Fer
milab data appear to be on the verge of being competi
now.

The best limit from CERN experiments so far is provid
by the LEP2 Collaboration ALEPH from combined hadron
cally and semileptonically decayingW1W2 pairs and reads
@20#

20.62~0.14!,awf,0.41~0.12! ~89!

at 95% confidence level, where the numbers in parenth
give systematic uncertainties.

We conclude therefore that at present the best limit onDk
still comes from the high precision LEP-100 data. Howev
LEP-200 is already competitive and should be able to
prove the limits@17#. The situation at Fermilab is somewh
less clear, as the limits depend on the assumed form fac
An analysis of the Fermilab data in terms of our cuto
propagators withLB , LW , LV should be useful in order to
clarify the situation. This is in particular important, in ord
to determine the ultimate precision on the anomalous c
plings that can be reached after the upgrade of the Teva

E. Comparison with other methods

Finally we make a comparison with other results in t
literature.

In @6# the quadratic divergences are regulated by introd
ing the Higgs particle in the Lagrangian. The anomalo
couplings are in this model generated through spontane
al
s

f
e
e

e

es

r
-

rs.

u-
n.

-
s
us

symmetry breaking from higher dimension operators c
pling vector boson operators with the Higgs sector. T
regulates some of the quadratic divergences, but others
have to be treated by other means, i.e. as poles in (d22) in
dimensional regularization. This way two cut-offs appe
mH and L. This method should qualitatively give the sam
results as our method with the replacementsmH→LV and
L→LB,W . Unfortunately Ref.@6# calculated only the terms
which are linear in the anomalous couplings, which are l
divergent, so we can only compare theg1g term in the S
parameter. This term is actually of the expected form. Mo
over it is found in@6# that the higher divergences are phys
cal. The contribution toT from g2 found in @6# is of a higher
degree in the cutoff than the contribution fromg1. This sup-
ports the arguments concerning the breaking of the SUR(2)
invariance. A numerical comparison is impossible, given
fact that quantities with different cutoff dependence we
calculated. It should be interesting to compare the results
V,W,X with the scheme of@6#.

In Ref. @5# the quadratic divergences were regulated
replacing poles in (d22) by L2. This should roughly corre-
spond with our results forLW5LV . Translated in our nota-
tion Ref. @5# finds 20.013,Dk,0.033 for a cutoff of 3
TeV. If we use our formula~62! we find uDku,0.028. So
there is at least a qualitative agreement.

In @7# quadratic divergences are not considered, as dim
sional regularization is used. In the case onlyg1 is consid-
ered it is found in our notation20.07,Dk,0.05 for a cut-
off of 2 TeV. If we use our formula~62! we find uDku
,0.06. This agreement is accidental, as the regulariza
methods are quite different. In@7# the logarithmically diver-
gent terms containing one power of the anomalous coup
are studied, whereas we consider the more divergent te
containing two anomalous couplings. This difference b
comes clearer, when one considers the contributions from
four-point verticesg4 andg5. Both we and Ref.@7# find that
the corrections appear in the combination 5g412g5, thereby
confirming the previous results from Ref.@2#. Translated in
our notation Ref.@7# quotes a limit of20.15,5g412g5
,0.14, for a cutoff of 2 TeV. Ignoring the logarithmic en
hancement of the correction, but keeping the quadratic
we find the stronger limit,20.066,(5g412g5)LB

2(TeV)
,0.026. The difference is clearly due to the different tre
ment of the quadratic divergences. As there are howe
more terms contributing toT, one should be careful in the
interpretation of this limit.
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APPENDIX A: RESULTS

Here we present our results for the vacuum polarizations. Only thePXY
g (k2) are needed, since the contribution of th

PXY
k (k2) part is suppressed in experimentally accessible observables by the smallness of the involved fermion mass
When evaluating integrals, we assume thatj!mW0

2 /LV
2 ,mZ0

2 /LV
2 . If this is not the case, the more than logarithmic dive
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gences in one-loop graphs are not limited to vacuum polarization corrections for terms containing both anomalous a
couplings.

Tables I and II show the one-loop vacuum polarization diagrams that can be constructed from the Feynman rules
Appendix C. The integrals needed for their evaluation can be found in Appendix D.

1. PXY
g

„k2
…: Quartically divergent terms

The quartically divergent contributions to the vacuum polarizations terms when all of the couplings~8!–~15! are present are
given by

~4p!2PAA
g ~k2!5O~L2!, ~A1!

~4p!2PZA
g ~k2!5O~L2!, ~A2!

~4p!2PZZ
g ~k2!5g1

2
LV

2LW
2

c2mW0
2
S 2

3

2e
2

5

4
1

3

2

LV
2 ln

LV
2

m̄2
2LW

2 ln
LW

2

m̄2

LV
22LW

2
D 1g4

LV
4

c2mW0
2 S 2

e
1

5

2
22ln

LV
2

m̄2 D 1g5

LV
4

c2mW0
2 S 7

2e
1

15

4

2
7

2
ln

LV
2

m̄2 D 1g6

LV
4

c2mW0
2 S 7

2e
1

17

4
2

7

2
ln

LV
2

m̄2 D 1g7

LV
4

c2mW0
2 S 5

e
1

11

2
25ln

LV
2

m̄2 D 1g8

LV
4

c2mW0
2 S 3

e
1

7

2
23ln

LV
2

m̄2 D
1O~L2!, ~A3!

~4p!2PWW
g ~k2!5S g1

21g1g31
g3

2

2 DLV
2LW

2

mW0
2

S 2
3

2e
2

5

4
1

3

2

LV
2 ln

LV
2

m̄2
2LW

2 ln
LW

2

m̄2

LV
22LW

2
D 1g2

2
LV

2LB
2

mW0
2

S 2
3

4e
2

5

8

1
3

4

LV
2 ln

LV
2

m̄2
2LB

2 ln
LB

2

m̄2

LV
22LB

2
D 1g4

LV
4

mW0
2 S 2

e
1

5

2
22ln

LV
2

m̄2 D 1g5

LV
4

mW0
2 S 7

2e
1

15

4
2

7

2
ln

LV
2

m̄2 D 1g6

LV
4

mW0
2 S 1

4e
1

3

8

2
1

4
ln

LV
2

m̄2 D 1g7

LV
4

mW0
2 S 1

e
112 ln

LV
2

m̄2 D 1O~L2!. ~A4!

TABLE I. One-loop diagrams contributing toPXY(k2), whereXY5AA,ZA,ZZ. The last two diagrams exist only forXY5ZZ.
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2. PXY
g

„k2
… for g25g35g65g75g850

Here we display the quartically and quadratically divergent parts of the vacuum polarizations for the case w
anomalous couplings preserve the custodial SU(2)R symmetry in the limit of vanishing hypercharge coupling, i.e. wheng2
5g35g65g75g850.

Our results for the at least quadratically divergent contributions to thePXY
g (k2) are

~4p!2PAA
g ~k2!5s2H g1

2
LV

2LW
2

LV
22LW

2
ln

LV
2

LW
2 S k2

mW0
2 D 1g1g2LV

2S 1

e
112 ln

LV
2

m̄2 D S k2

mW0
2 D 2

1

4
g1

2LV
2S k2

mW0
2 D 2J 1O~L0!, ~A5!

~4p!2PZA
g ~k2!5

s

cH g1
2LV

2LW
2 F2

1

LV
22LW

2
1S LV

21LW
2

2~LV
22LW

2 !2
1

s2

LV
22LW

2 D ln
LV

2

LW
2 G S k2

mW0
2 D 2g1g

324s2

2
LV

2S 1

e
11

2 ln
LV

2

m̄2 D S k2

mW0
2 D 1

c2

4
g1

2LV
2S k2

mW0
2 D 2J 1O~L0!, ~A6!

~4p!2PZZ
g ~k2!5g1

2
LV

2LW
2

c2mW0
2
S 2

3

2e
2

5

4
1

3

2

LV
2 ln

LV
2

m̄2
2LW

2 ln
LW

2

m̄2

LV
22LW

2
D 1g4

LV
4

c2mW0
2 S 2

e
1

5

2
22ln

LV
2

m̄2 D 1g5

LV
4

c2mW0
2 S 7

2e
1

15

4

TABLE II. One-loop diagrams contributing toPWW(k2). The tadpole graphs in the first line turn out to vanish.
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2
7

2
ln

LV
2

m̄2 D 2g1
2 3

2c2
LW

2 2
1

c2
g1gLW

2 S 3

e
1

5

2
23ln

LW
2

m̄2 D 2
1

c2
g2LV

2S 1

e
1

3

4
2 ln

LV
2

m̄2 D 2g4

s2LB
2

c4 S 9

2e
1

9

4

2
9

2
ln

LB
2

m̄2 D 2g4

LW
2

c2 S 6

e
1

7

2
26ln

LW
2

m̄2 D 2g5

s2LB
2

c4 S 9

2e
1

9

4
2

9

2
ln

LB
2

m̄2 D 2g5

LW
2

c2 S 21

2e
1

17

4
2

21

2
ln

LW
2

m̄2 D
1

1

c2
g1

2LV
2LW

2 F 3LV
228LW

2

3~LV
22LW

2 !2
2

2s2

LV
22LW

2
1S 217LV

4133LV
2LW

2 26LW
4

6~LV
22LW

2 !3
1

~LV
21LW

2 !s2

~LV
22LW

2 !2
1

s4

LV
22LW

2 D ln
LV

2

LW
2 G

3S k2

mW0
2 D 1g1gLV

2~122s2!S 1

e
112 ln

LV
2

m̄2 D S k2

mW0
2 D 2

c2

4
g1

2LV
2S k2

mW0
2 D 2

1O~L0!, ~A7!

~4p!2PWW
g ~k2!5g1

2
LV

2LW
2

mW0
2

S 2
3

2e
2

5

4
1

3

2

LV
2 ln

LV
2

m̄2
2LW

2 ln
LW

2

m̄2

LV
22LW

2
D 1g4

LV
4

mW0
2 S 2

e
1

5

2
22ln

LV
2

m̄2 D 1g5

LV
4

mW0
2 S 7

2e
1

15

4
2

7

2
ln

LV
2

m̄2 D
2g1

2LW
2 S 3

2
1

3s2

4c2

LB
2

LB
22LW

2
ln

LB
2

LW
2 D 2g1gLW

2 S 3

e
1

5

2
23ln

LW
2

m̄2 D 2g2LV
2S 1

e
1

3

4
2 ln

LV
2

m̄2 D 2g4

s2LB
2

c2 S 3

4e
1

5

8

2
3

4
ln

LB
2

m̄2 D 2g4LW
2 S 6

e
1

7

2
26ln

LW
2

m̄2 D 2g5

s2LB
2

c2 S 3

e
1123ln

LB
2

m̄2 D 2g5LW
2 S 21

2e
1

17

4
2

21

2
ln

LW
2

m̄2 D
1g1

2S s2

2c2

LV
2LB

2

LV
22LB

2
ln

LV
2

LB
2

1
1

3
LV

2LW
2

3LV
228LW

2

~LV
22LW

2 !2
2

1

6
LV

2LW
2

17LV
4233LV

2LW
2 16LW

4

~LV
22LW

2 !3
ln

LV
2

LW
2 D S k2

mW0
2 D

1g1gLV
2S 1

e
112 ln

LV
2

m̄2 D S k2

mW0
2 D 2

1

4
g1

2LV
2S k2

mW0
2 D 2

1O~L0!. ~A8!

APPENDIX B: GAUGE FIXING

To fix the gauge we introduce a variant of the class ofRj gauges suitable to cancel the quadratic mixing terms betw
would-be Goldstone bosons and longitudinal gauge bosons in the presence of the higher covariant derivative terms

Specificially, we use the gauge fixing term

Lgf52
1

2j
FWa

2 2
1

2j
FB

2 ~B1!

with

FWa5]mWa
m2 1

2 jgv2~11LV
22]2!ua ~B2!

and

FB5]mBm2 1
2 jg8v2~11LV

22]2!u3 , ~B3!

where theua are defined by writingU5exp(iuata). The necessary ghost terms are given by

Lgh52~ h̄Wa ,h̄B!S dab]mDm1jS gv
2 D 2

~11LV
22]2!~dab2eabcuc! j

gg8v2

4
~11LV

22]2!~da31ea3cuc!

j
gg8v2

4
~11LV

22]2!~d3b2e3bcuc! ]21jS g8v
2 D 2

~11LV
22]2!

D S hWb

hB
D

1O~u2!h̄h ~B4!

with
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DmhWa5]mhWa1geabchWbWc
m . ~B5!

Due to the relative simplicity of our gauge fixing terms, the absence of quadratically divergent integrals in the o
parameters becomes manifest only in Landau gauge, i.e.j50 @13#.

APPENDIX C: FEYNMAN RULES

Since the Feynman rules in higher covariant derivative regularization have an unfamiliar appearance, we give here
in our version ofRj gauge explicitly.

To avoid confusion with the momentums appearing in the four-vertices, write nowsu5sinQW and then alsocu
5cosQW, tu5tanQW . Additionally to ~22! and ~23!, we need the following field redefinitions:

~ h̄Z ,h̄A!5~ h̄W3 ,h̄B!S cu 2su

su cu
D , ~C1!

S hZ

hA
D 5S cu su

2su cu
D S hW3

hB
D , ~C2!

v65
v

A2
~u17 iu2!, ~C3!

v35vu3 , ~C4!

h̄W65
1

A2
~ h̄W17 i h̄W2!, ~C5!

hW65
1

A2
~hW17 ihW2!. ~C6!

Define also

mW0[
gv
2

, mZ0[
gv
2cu

. ~C7!

The quadratic part of the Lagrangian extracted from~7!, ~17!, ~18!, ~B1!, ~B4! reads in terms of the redefined fields

L25Wm
1H @LW

22~]2!21~11LV
22mW0

2 !]21mW0
2 #S gmn2

]m]n

]2 D 1F S 1

j
1LV

22mW0
2 D ]21mW0

2 G]m]n

]2 J Wn
21 1

2 ~Zm ,Am!

3FDZA
tr S gmn2

]m]n

]2 D 1DZA
lg ]m]n

]2 G S Zn

An
D 2v1@~11LV

22]2!]21jmW0
2 ~11LV

22]2!2#v22 1
2 v3@~11LV

22]2!]2

1jmZ0
2 ~11LV

22]2!2#v32 h̄W1@~11jLV
22mW0

2 !]21jmW0
2 #hW22 h̄W2@~11jLV

22mW0
2 !]21jmW0

2 #hW1

2 h̄Z@~11jLV
22mZ0

2 !]21jmZ0
2 #hZ2 h̄A]2hA ~C8!

with

DZA
tr 5S S cu

2

LW
2

1
su

2

LB
2 D ~]2!21S 11

mZ0
2

LV
2 D ]21mZ0

2 S 1

LB
2

2
1

LW
2 D sucu~]2!2

S 1

LB
2

2
1

LW
2 D sucu~]2!2 S su

2

LW
2

1
cu

2

LB
2 D ~]2!21]2D ~C9!

and
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DZA
lg 5S S 1

j
1LV

22mZ0
2 D ]21mZ0

2 0

0
1

j
]2
D . ~C10!

1. Propagators

Some of the propagators have an unusual form caused by the higher covariant derivative terms. However, the
decomposed into combinations of standard propagator terms with modified masses and normalization factors as
below:

Dmn
W ~k!52 i F 2LW

2

~k22mW,
2 !~k22mW.

2 !
~gmn2kmkn /k2!1

ZW
lgjkmkn /k2

k22mWlg
2 G

52 i FZW
tr S 1

k22mW,
2

2
1

k22mW.
2 D ~gmn2kmkn /k2!1

ZW
lgjkmkn /k2

k22mWlg
2 G , ~C11!

Dmn
Z ~k!52 i F LW

2 LB
22LZ

2k2

~k22mZ,
2 !~k22mZ.

2 !~k22mA.
2 !

~gmn2kmkn /k2!1
ZZ

lgjkmkn /k2

k22mZlg
2 G

52 i F S ZZ,
ZZ

k22mZ,
2

1
ZZ.

ZZ

k22mZ.
2

1
ZA.

ZZ

k22mA.
2 D ~gmn2kmkn /k2!1

ZZ
lgjkmkn /k2

k22mZlg
2 G , ~C12!

Dmn
ZA~k!5Dmn

AZ~k!52 i
~LW

2 2LB
2 !k2sucu

~k22mZ,
2 !~k22mZ.

2 !~k22mA.
2 !

~gmn2kmkn /k2!

52 i S ZZ,
ZA

k22mZ,
2

1
ZZ.

ZA

k22mZ.
2

1
ZA.

ZA

k22mA.
2 D ~gmn2kmkn /k2!, ~C13!

Dmn
A ~k!52 i FLW

2 LB
2@~11LV

22mZ0
2 !k22mZ0

2 #2LA
2~k2!2

k2~k22mZ,
2 !~k22mZ.

2 !~k22mA.
2 !

~gmn2kmkn /k2!1
jkmkn /k2

k2 G
52 i F S 1

k2
1

ZZ,
AA

k22mZ,
2

1
ZZ.

AA

k22mZ.
2

1
ZA.

AA

k22mA.
2 D ~gmn2kmkn /k2!1

jkmkn /k2

k2 G , ~C14!

Dv6~k2!5 i
2ZW

lgLV
2

~k22mWlg
2 !~k22LV

2 !
5 i S 1

k22mWlg
2

2
1

k22LV
2 D , ~C15!

Dv3~k2!5 i
2ZZ

lgLV
2

~k22mZlg
2 !~k22LV

2 !
5 i S 1

k22mZlg
2

2
1

k22LV
2 D , ~C16!

DhW~k2!5
iZW

lg

k22mWlg
2

, ~C17!

DhZ~k2!5
iZZ

lg

k22mZlg
2

, ~C18!

DhA~k2!5
i

k2
~C19!

with
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ZW
tr 5

LW
2

mW.
2 2mW,

2
5

1

A~11LV
22mW0

2 !224LW
22mW0

2
511O~L22!, ~C20!

ZW
lg5

1

11jLV
22mW0

2
511O~L22!, ~C21!

ZZ,
ZZ 5

LB
2LW

2 2LZ
2mZ,

2

~mZ,
2 2mZ.

2 !~mZ,
2 2mA.

2 !
511O~L22!, ~C22!

ZZ.
ZZ 5

LB
2LW

2 2LZ
2mZ.

2

~mZ.
2 2mZ,

2 !~mZ.
2 2mA.

2 !
52cu

21O~L22!, ~C23!

ZA.
ZZ 5

LB
2LW

2 2LZ
2mA.

2

~mA.
2 2mZ,

2 !~mA.
2 2mZ.

2 !
52su

21O~L22!, ~C24!

ZZ,
ZA 5

~LW
2 2LB

2 !mZ,
2 sucu

~mZ,
2 2mZ.

2 !~mZ,
2 2mA.

2 !
5O~L22!, ~C25!

ZZ.
ZA 5

~LW
2 2LB

2 !mZ.
2 sucu

~mZ.
2 2mZ,

2 !~mZ.
2 2mA.

2 !
5sucu1O~L22!, ~C26!

ZA.
ZA 5

~LW
2 2LB

2 !mA.
2 sucu

~mA.
2 2mZ,

2 !~mA.
2 2mZ.

2 !
52sucu1O~L22!, ~C27!

ZZ,
AA5

LW
2 LB

22mZ.
2 mA.

2 ~12LV
22mZ,

2 !2LA
2mZ,

2

~mZ,
2 2mZ.

2 !~mZ,
2 2mA.

2 !
5O~L24!, ~C28!

ZZ.
AA5

LW
2 LB

22mZ,
2 mA.

2 ~12LV
22mZ.

2 !2LA
2mZ.

2

~mZ.
2 2mZ,

2 !~mZ.
2 2mA.

2 !
52su

21O~L22!, ~C29!

ZA.
AA 5

LW
2 LB

22mZ,
2 mZ.

2 ~12LV
22mA.

2 !2LA
2mA.

2

~mA.
2 2mZ,

2 !~mA.
2 2mZ.

2 !
52cu

21O~L22!, ~C30!

ZZ
lg5

1

11jLV
22mZ0

2
511O~L22!, ~C31!

mW
,
.

2
5 1

2 LW
2 @~11LV

22mW0
2 !6A~11LV

22mW0
2 !224LW

22mW0
2 #5H LW

2

mW0
2 J 3„11O~L22!…,

~C32!
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mWlg
2 5

jmW0
2

11jLV
22mW0

2
, ~C33!

mZlg
2 5

jmZ0
2

11jLV
22mZ0

2
, ~C34!

LZ
25LW

2 cu
21LB

2su
2 , ~C35!

LA
25LW

2 su
21LB

2cu
2 , ~C36!

and wheremZ,
2 , mZ.

2 , mA.
2 are determined by

~k22mZ,
2 !~k22mZ.

2 !~k22mA.
2 !5~k2!32@LW

2 1LB
21LV

22LZ
2mZ0

2 #~k2!21@LW
2 LB

2~11LV
22mZ0

2 !1LZ
2mZ0

2 #k22LW
2 LB

2mZ0
2

~C37!

i.e.

LW
2 1LB

21LV
22LZ

2mZ0
2 5mZ,

2 1mZ.
2 1mA.

2 , ~C38!

LW
2 LB

21LZ
2mZ0

2 1LV
22LW

2 LB
2mZ0

2 5mZ,
2 mZ.

2 1mZ,
2 mA.

2 1mZ.
2 mA.

2 , ~C39!

LW
2 LB

2mZ0
2 5mZ,

2 mZ.
2 mA.

2 ~C40!

with

mZ,
2 5mZ0

2 ~11O„L22!…, ~C41!

mZ.
2 5LW

2
„11O~L22!…, ~C42!

mA.
2 5LB

2
„11O~L22!…. ~C43!

The masses and renormalization constants have to be evaluated to higher order than explicitly given here.
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2. Vertices

All momenta are outgoing. Only vertices needed for one-loop gauge propagator corrections are displayed.

a. Four-vertices

~C44!

~C45!
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~C46!

~C47!

~C48!

~C49!

~C50!
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~C51!

~C52!

~C53!

~C54!
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b. Three-vertices

~C55!

~C56!

~C57!

~C58!

~C59!
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~C60!

~C61!

~C62!

~C63!

~C64!

~C65!

~C66!

~C67!
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~C68!

~C69!

APPENDIX D: ONE-LOOP INTEGRALS

Definee by

d5422e, ~D1!

whered is the spacetime dimension, andm̄ by

ln4pm22gE5 lnm̄2 ~D2!

and*p by

E
p
5E ddp

~2p!d
. ~D3!

The only integrals we need are

I ~m2![E
p

1

p22m2
5

im2

~4p!2S 1

e
112 ln

m2

m̄2D 1O~e! ~D4!

and

I ~k2;ma
2 ,mb

2![E
p

1

@~p1k!22ma
21 i«#~p22mb

21 i«!

5E
0

1

dxE
p

1

@p212xp•k1xk22xma
22~12x!mb

21 i«#2

5
im2eG~e!

~4p!22e E0

1 dx

@2x~12x!k21xma
21~12x!mb

22 i«#e

5
i

~4p!2S 1

e
2gED S 12eE

0

1

dxln
2x~12x!k21xma

21~12x!mb
22 i«

4pm2 D 1O~e!

5
i

~4p!2S 1

e
2E

0

1

dxln
2x~12x!k21xma

21~12x!mb
22 i«

m̄2 D 1O~e!

5
i

~4p!2S 1

e
2E

0

1

dxln
k2~x2x0!22D/~4k2!2 i«

m̄2 D 1O~e!, ~D5!

where

x0[
k21mb

22ma
2

2k2
~D6!
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and

D[k41ma
41mb

422k2ma
222k2mb

222ma
2mb

2 . ~D7!

We need to investigate here only the case where the argument of the logarithm is non-negative for 0<x<1 and therefore
I (k2;ma

2 ,mb
2) is purely imaginary. This is obviously the case forD<0. ForD.0 this is the case if and only ifx0<0 or x0>1,

i.e. k2<uma
22mb

2u.

1. I „k2;ma
2 ,mb

2
… for D<0

Now we can write

I ~k2;ma
2 ,mb

2!5
i

~4p!2S 1

e
2 ln

k2

m̄2
2E

2x0

12x0
dylnS y21

2D

4k4 D D 1O~e!

5
i

~4p!25
1

e
2 ln

k2

m̄2
2F ylnS y21

2D

4k4 D 22y12A2D

4k4
arctan

y

A2D

4k4

G
2x0

12x0

6 1O~e!

5
i

~4p!2F1

e
122 ln

k2

m̄2
2

k21ma
22mb

2

2k2
ln

ma
2

k2
2

k21mb
22ma

2

2k2
ln

mb
2

k2
2

A2D

k2 S arctan
k21ma

22mb
2

A2D

1arctan
k21mb

22ma
2

A2D
D G1O~e!

5
i

~4p!2F1

e
122

k21ma
22mb

2

2k2
ln

ma
2

m̄2
2

k21mb
22ma

2

2k2
ln

mb
2

m̄2
2

A2D

k2 S arctan
k21ma

22mb
2

A2D
1arctan

k21mb
22ma

2

A2D
D G

1O~e!. ~D8!

2. I „k2;ma
2 ,mb

2
… for D>0 with k2<zma

22mb
2z

Define

x6[
k21mb

22ma
26AD

2k2
, ~D9!

so that

12x65
k21ma

22mb
27AD

2k2
. ~D10!

Without loss of generality assumema
2>mb

2 . Thenx6<0 and 12x6>0. We can write

I ~k2;ma
2 ,mb

2!5
i

~4p!2H 1

e
2 ln

k2

m̄2
2E

0

1

dxln@~x2x1!~x2x2!#J 1O~e!

5
i

~4p!2F1

e
2 ln

k2

m̄2
2E

0

1

dxln~x2x1!2E
0

1

dxln~x2x2!G1O~e!

5
i

~4p!2H 1

e
2 ln

k2

m̄2
2~12x1!@ ln~12x1!21#2x1@ ln~2x1!21#2~12x2!@ ln~12x2!21#2x2@ ln~2x2!

21#J 1O~e!
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5
i

~4p!2F1

e
122 ln

k2

m̄2
2~12x1!ln~12x1!2x1ln~2x1!2~12x2!ln~12x2!2x2ln~2x2!G1O~e!. ~D11!

Now one can write either

I ~k2;ma
2 ,mb

2!5
i

~4p!2H 1

e
122 ln

k2

m̄2
2x1ln@~2x1!~2x2!#2~12x2!ln@~12x1!~12x2!#1~x12x2!ln@~12x1!~2x2!#J

1O~e!

5
i

~4p!2H 1

e
122

k22ma
21mb

21AD

2k2
ln

mb
2

m̄2
2

k21ma
22mb

21AD

2k2
ln

ma
2

m̄2
1

AD

k2
ln

ma
21mb

22k21AD

2m̄2 J 1O~e!

~D12!

or

I ~k2;ma
2 ,mb

2!5
i

~4p!2H 1

e
122 ln

k2

m̄2
2x2ln@~2x2!~2x1!#2~12x1!ln@~12x2!~12x1!#1~x22x1!ln@~12x2!~2x1!#J

1O~e!5
i

~4p!2H 1

e
122

k22ma
21mb

22AD

2k2
ln

mb
2

m̄2
2

k21ma
22mb

22AD

2k2
ln

ma
2

m̄2
2

AD

k2
ln

ma
21mb

22k22AD

2m̄2 J
1O~e! ~D13!

with

AD[Ak41ma
41mb

422ma
2mb

222k2ma
222k2mb

2. ~D14!

Equations~D12! and ~D13! are symmetric inma
2 andmb

2 and therefore we can drop the restrictionma
2>mb

2 .
In the following we will specialize to the cases that are needed for the evaluation of our one-loop diagrams.

3. I „k2;m2,m2
…

Only for D5k2(k224m2)<0, i.e. fork2<4m2 we have purely imaginaryI (k2;m2,m2). From ~D8! we get

I ~k2;m2,m2!5
i

~4p!2S 1

e
122 ln

m2

m̄2
22A4m2

k2
21arctan

1

A4m2

k2
21D 1O~e!. ~D15!

For k2!m2, we can expand in powers ofk2/m2 to get

I ~k2;m2,m2!5
i

~4p!2F1

e
2 ln

m2

m̄2
1

1

6S k2

m2D 1
1

60S k2

m2D 2G1OS e,S k2

m2D 3D . ~D16!

4. I „k2;m2,0…

Now D5uk22m2u>0 and we needk2<m2 to have a purely imaginaryI (k2;m2,0). We get from~D12! and ~D13!

I ~k2;0,m2!5I ~k2;m2,0!5
i

~4p!2F1

e
121

m22k2

k2
ln

m22k2

m̄2
2

m2

k2
ln

m2

m̄2G1O~e!

5
i

~4p!2F1

e
121

m2

k2
lnS 12

k2

m2D 2 ln
m22k2

m̄2 G1O~e!. ~D17!

For k2!m2, we can expand in powers ofk2/m2 to get

I ~k2;0,m2!5I ~k2;m2,0!5
i

~4p!2F1

e
112 ln

m2

m̄2
1

1

2S k2

m2D 1
1

6S k2

m2D 2G1OS e,S k2

m2D 3D . ~D18!
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5. I „k2;ma
2 ,mb

2
… for k2,ma

2!mb
2

If k2,ma
2!mb

2 , we can expand~D12! or ~D13! in negative powers ofmb
2 to get

I ~k2;ma
2 ,mb

2!5
i

~4p!2
F 1

e
112 ln

mb
2

m̄2
1

1

2
k21ma

2ln
ma

2

mb
2

mb
2

1

k2S 1

6
k21

3

2
ma

2D1ma
2~k21ma

2!ln
ma

2

mb
2

mb
4

G1O~e,mb
26lnmb

2!.

~D19!

6. I „k2;ma
2 ,mb

2
… for k2!ma

2 ,mb
2

If k2!ma
2 ,mb

2 , but the relative magnitude ofk2 and uma
22mb

2u is unknown, it is not clear, which of~D8! on the one hand
or ~D12!, ~D13! on the other hand has to be used. Although they are connected by analytic continuation, here we will
I (k2;ma

2 ,mb
2) in powers ofk2 to have an unambiguous result without having to worry about Riemann sheets.

Starting from the next-to-last line in~D5! we get

I ~k2;ma
2 ,mb

2!5
i

~4p!2S 1

e
2E

0

1

dxln
2x~12x!k21xma

21~12x!mb
2

m̄2 D 1O~e!

5
i

~4p!2F1

e
2E

0

1

dxln
xma

21~12x!mb
2

m̄2
2E

0

1

dxlnS 12
x~12x!k2

xma
21~12x!mb

2D G1O~e!

5
i

~4p!2
F 1

e
112

ma
2ln

ma
2

m̄2
2mb

2ln
mb

2

m̄2

ma
22mb

2
1 (

n51

`
1

nE0

1

dxS x~12x!k2

xma
21~12x!mb

2D nG1O~e!. ~D20!

Expanding ink2, we get

I ~k2;ma
2 ,mb

2!5
i

~4p!2
F 1

e
112

ma
2ln

ma
2

m̄2
2mb

2ln
mb

2

m̄2

ma
22mb

2
1k2E

0

1

dxS x~12x!

xma
21~12x!mb

2D 1
k4

2 E0

1

dxS x~12x!

xma
21~12x!mb

2D 2G1O~k6,e!

5
i

~4p!2
F 1

e
112

ma
2ln

ma
2

m̄2
2mb

2ln
mb

2

m̄2

ma
22mb

2
1S ma

21mb
2

2~ma
22mb

2!2
2

ma
2mb

2

~ma
22mb

2!3
ln

ma
2

mb
2D k21S ma

4110ma
2mb

21mb
4

6~ma
22mb

2!4

2
ma

2mb
2~ma

21mb
2!

~ma
22mb

2!5
ln

ma
2

mb
2D k4G1O~k6,e!. ~D21!

Note that~D20! tells us that subsequent powers ofk2 in ~D21! are suppressed by negative powers ofma
2 andmb

2 and not just
by their differencema

22mb
2 , which might be small or even vanishing.

Indeed, settingma
25m21dma

2 , mb
25m21dmb

2 with k2,dma
2 ,dmb

2!m2 and starting again from the next-to-last line in~D5!
we get

I ~k2;m21dma
2 ,m21dmb

2!5
i

~4p!2S 1

e
2E

0

1

dxln
m22x~12x!k21xdma

21~12x!dmb
2

m̄2 D 1O~e!

5
i

~4p!2F1

e
2 ln

m2

m̄2
2E

0

1

dxlnS 12
x~12x!k22xdma

22~12x!dmb
2

m2 D G1O~e!

5
i

~4p!2F1

e
2 ln

m2

m̄2
1 (

n51

`
1

nE0

1

dxS x~12x!k22xdma
22~12x!dmb

2

m2 D nG1O~e!
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5
i

~4p!2F1

e
2 ln

m2

m̄2
1

1

6S k2

m2D 2
1

2S dma
2

m2 D 2
1

2S dmb
2

m2 D 1
1

60S k2

m2D 2

1
1

6S dma
2

m2 D 2

1
1

6S dmb
2

m2 D 2

2
1

12S k2

m2D S dma
2

m2 D 2
1

12S k2

m2D S dmb
2

m2 D 1
1

6S dma
2

m2 D S dmb
2

m2 D G1O~m26,e!, ~D22!

which can also be obtained by expanding~D21!.
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