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Casimir energy of the Skyrmion due to kaon vacuum fluctuations

Joon-Il Kim and Byung-Yoon Park
Department of Physics, Chungnam National University, Taejon 305-764, Korea

~Received 22 September 1997; published 10 February 1998!

We study the Casimir energy associated with the kaon fluctuation about the static soliton configuration in the
Skyrme model. Up to uncertainties due to the unknown counterterms, the Casimir energy of the kaon vacuum
fluctuation turns out to be very small compared with that of the pion. In the chiral limit and in the SU~3!
symmetric limit it is about2200 MeV, which is much smaller than a naive estimation2

2
3 3900 MeV based

on the number of zero modes. It is shown that the Wess-Zumino term plays an essential role in this reduction
of the Casimir energy.@S0556-2821~98!05505-2#

PACS number~s!: 12.39.Dc, 12.39.Fe, 12.40.Yx
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I. INTRODUCTION

In the early 1960s, Skyrme suggested describing bary
by a static soliton solution of an effective Lagrangian for t
mesons@1#. The size and mass of the resulting soliton co
figuration are comparable to the typical size and mass
nucleon. The conserved topological current is taken as
baryon number current, which was later proved by Witt
@2# through the U~1! anomaly. Skyrme’s idea was phenom
enologically checked by Adkins, Nappi, and Witten@3#. It
was shown that, when the soliton solution is quantized
introducing the collective coordinates associated with
zero modes with respect to the rotation in isospin space,
model can describe the nucleons at an accuracy as goo
30%. Since this revival, much work on various aspects
made the model one of the more successful phenomeno
cal models for baryons@4#.

On the other hand, the Skyrme model suffers from a pr
lem: the physical constants of the meson Lagrangian do
seem compatible with the static properties of baryons. O
could reproduce the experimentally measured baryon dat
releasing the physical constants governing the meson dyn
ics to free parameters. For example, when the empir
value 93 MeV is used for the pion decay constant, the res
ing soliton mass is about 1.5 GeV. In order to fit the mas
of nucleons and deltas, the pion decay constant needs t
reduced down to 64.5 MeV in the two-flavor model@3#. Al-
though this defect may be ascribed to the large-Nc aspect of
the model or to the simplicity of the model Lagrangian,
certainly maculates a great virtue of the model.

A plausible solution to this problem is that some porti
of the soliton mass of orderNc is canceled by the Casimi
energy of orderNc

0 , the energy of the vacuum fluctuation
the presence of the soliton@5#. Various methods have bee
attempted to evaluate the Casimir energy or equivalently
one-loop quantum correction@6–8#. Most of them result in a
small Casimir energy of the order of 200 MeV. Recent
Moussallam and co-workers@9,10# showed that a negativ
and rather large Casimir energy of order 1 GeV can be
tained from the pion vacuum fluctuation. In their work, t
Casimir energy is controlled by the low-energy behavior
the pion-soliton scattering phase shifts. The dominant con
bution is due to the presence of six zero-modes with res
to the translation and rotation of the soliton. The main ult
570556-2821/98/57~5!/2853~6!/$15.00
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violet divergences are absorbed into the counterterms de
oped in the chiral perturbation theory@11#, while their con-
tribution to the finite piece of the Casimir energy is sma
The one-loop corrections evaluated by Holzwarth and W
iser @12# strongly support the large and negative Casim
energy.

If the Casimir energy associated with the pion fluctuati
is large, one can imagine a considerable amount of Cas
energy coming from the kaon vacuum. In Ref.@10#, assum-
ing SU~3! symmetry, the latter was roughly estimated as2

3 of
the former by using the fact that there are four zero mo
for the rotation of the soliton in the strangeness directi
Then the resulting total Casimir energy would be so large
magnitude that it could cancel out all the soliton mass of
leading order in 1/Nc . Needless to say, this is another und
sirable situation. In this paper, we clarify this point by eva
ating explicitly the Casimir energy due to the kaon vacuu
fluctuation by applying the same method developed in R
@10#.

This paper is organized as follows. In Sec. II, we brie
describe the model Lagrangian and introduce the kaon fl
tuation about the static soliton solution. Then the parti
wave phase shifts of the kaon-soliton scattering are obtain
The effects of zero modes and bound states on the phase
are carefully analyzed, which reveals a special role of
Wess-Zumino term. In Sec. III, the Casimir energy is calc
lated by using the scale-dependent finite formula expres
in terms of the phase shift. Our numerical results are p
sented and discussed. A short conclusion is given in Sec.

II. MODEL LAGRANGIAN AND KAON FLUCTUATION

In describing kaon fluctuations about the static soliton
lution, we follow the method of Callan and Klebanov@13#.
We start with the Skyrme model Lagrangian

LSk52
f p

2

4
Tr~LmLm!1

1

32e2
Tr@Lm ,Ln#2

1
f p

2

4
TrM~U†1U22!, ~1!

where Lm5U†]mU with U(r,t)PSU~3!. The quark mass
matrixM can be written in terms of the meson masses a
2853 © 1998 The American Physical Society
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M5diag~mp
2 ,mp

2 ,2mK
2 !.

For simplicity, we take into account only the SU~3!
symmetry-breaking term representing the meson mass di
ence. As for the pion decay constantf p and the Skyrme
parametere, we fix them to the empirical valuesf p593
MeV and e54.75 ~which yield the correct axial coupling
constantgA51.33) as in Ref.@14#. As for the meson masse
we consider three cases:~i! the chiral limit (mp5mK50),
~ii ! the SU~3! symmetric limit (mp5mK5138 MeV!, and
~iii ! the real world (mp5138 MeV, mK5495 MeV!. The
first two cases are to compare our results with the predic
of Ref. @10#.

In the three-flavor Skyrme model, the Skyrme Lagrang
~1! should be supplemented by the Wess-Zumino term@2#,
which can be written only in an action term,

SWZ52
iNc

240p2E d5x «mnlrsTr~LmLnLlLrLs!, ~2!

where the integral is over a five-dimensional disk with spa
time as its boundary, andU(r,t) is continuously extended to
the disk. Hereafter, the number of colorNc will be taken as
3.

The Lagrangian supports a static soliton solution un
the ‘‘hedgehog’’ ansatz

U0~r!5S ei t• r̂F~r ! 0

0 1
D , ~3!

where we have written the 333 matrix in a partitioned form

S 232 231

132 131D ,

andt denotes the 232 Pauli matrices. The profile functio
F(r ) minimizes the energy in the baryon number equal
one sector.

In order to generate the kaon fluctuation about the st
soliton solution, we substitute the ansatz@13#

U5AU0UKAU0, ~4!

where AU05exp@it• r̂F(r )/2# and UK5exp(ilqKq) with q
running from 4 to 7. Herel denotes the generators of SU~3!
normalized to Tr(lalb)52dab . Explicitly, UK can be writ-
ten as

UK5expF i
A2

f p
S 0 K

K† 0 D G , ~5!

whereK is the standard complex isodoublet:

K5
1

A2
S K42 iK 5

K62 iK 7
D 5S K1

K0 D .

Expanding in powers ofK and keeping only terms up t
second order inK, one can obtain the Lagrangian density
r-

n

n

-

r

o

ic

L5LSk~U0!1~DmK !†DmK2mK
2 K†K1•••

1~ iNc/4f p
2 !Bm@K†DmK2~DmK !†K#, ~6!

where the ellipsis represents a lengthy expression~see Ref.
@13# for the explicit form! depending on

Am5 1
2 ~AU0

†]mAU02AU0]mAU0
†!,

Vm5 1
2 ~AU0

†]mAU01AU0]mAU0
†!, ~6a!

and the covariant derivative is defined as

DmK5]mK1VmK. ~6b!

The last term comes from the Wess-Zumino term~2!, andBm
is the baryon number current of the SU~2! soliton configura-
tion.

Now the problem is reduced to studying the motion
kaons moving in the static potentials provided by the SU~2!
soliton. It will have energy eigensolutions

K~r,t !5K~r!exp~2 ivt !, ~7!

in terms of which the kaon field operator can be expand
Furthermore, the invariance of the soliton configurati
U0(r) under simultaneous rotations in the spatial and isos
space (L5I1L with I5 1

2 t being the kaon isospin operato!
enables us to perform a partial-wave analysis. The k
eigenmodes can be written as the product of a radial func
k(r ) and the spinor spherical harmonicsYLl L3

( r̂). Finally,
we are led to the Lagrangian for the radial function

L524pE
0

`

dr r 2$h~r !k†8k81@mK
2 2v2f ~r !12vl~r !

1Veff~r ;L,l !#k†k%, ~8!

where f (r )511 1
2 s(r )1 1

4 d(r ), h(r )511 1
2 s(r ), d(r )

5(F8)2 ~the prime denotes the derivative with respect to

argument!, s(r )5(sinF/r)2, c(r )5(sin1
2F)2,

Veff~r !52 1
4 ~d12s!2 1

2 s~s12d!1
41s1d

4r 2
@ l ~ l 11!

12c214cI•L#1
3

2r 2H s@c21I•L~2c21!#

1
d

dr
@~c1I•L!F8sinF#J 2mp

2 c,

andl(r )52(Nce
2/8p2)s(r )F8. From here on, we measur

the times and distances in units of 1/e fp and the energy in
units of e fp .

From Lagrangian~8!, the equation of motion for the clas
sical eigenmodes is readily derived as

2
1

r 2

d

drS h~r !r 2
d

dr
kD1@mK

2 2v2f ~r !22Svl~r !

1Veff~r ;L,l !#k50, ~9!
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whereS in the Wess-Zumino term linear inv denotes the
strangeness number of the solution. It is included to incor
rate the fact that the positive-energy eigenmodes of theS5
11 sector are related to those of the negative-energy s
tions of theS521 sector.~From now on, the energy appea
ing in the equation of motion is non-negative.! Thus the
Wess-Zumino term acts as an attractive potential in theS5
21 channel, and as a repulsive one in theS511 channel.

In case ofv,mK , the equation may provide bound sta
solutions. Withmp5138 MeV andmK5495 MeV, there are
two bound states. The lowest one is found in the (L,l ,S)

5( 1
2 ,1,21) channel at the eigenenergyv15143 MeV,

which can describe the lowest positive parity hyperons@13#.

The other is in the (12 ,0,21) channel at the eigenenerg
v25425 MeV, which can be interpreted asL(1405) nega-
tive parity resonance below theK̄N threshold.

In the limit of the unbroken SU~3! symmetry, the equation

has zero-mode solutions withv50 in the (1
2 ,1,61) chan-

nels. These zero modes are associated with the collec
rotation of the soliton solution~3! in the strangeness direc
tion. One can obtain them analytically by equating the infi
tesimal collective rotation to the kaon fluctuation~5!, for
example, as

A†U0A5AU0UKAU0, ~10!

with A5exp@ie(l42il5)# and K5k(r )Y1/2,1,11/2( r̂). Explic-
itly, the radial function of the zero-mode solution can
written as

k~r !5
1

AN
sin~ 1

2 F ! ~11!

up to a normalization constantN.
For v.mK , Eq. ~9! describes the kaon-soliton scatterin

process in the soliton corotating frame. From the asympt
behavior of the solutions, one can obtain the phase sh
dL,l ,S . Such work was done a long time ago for the purpo
of investigating the hyperon resonances in the Skyrme mo
@15,16#. Here we repeat the calculation by paying spec
attention todL,l ,S(0), the phase shifts in the limit of the
vanishing kaon momentum. They play the most import
role in evaluating the Casimir energy later, and are stron
affected by the presence of the zero modes or bound sta

In Fig. 1, we present phase shifts of the kaon-soliton s
tering process for a fewL as a function of the kaon momen
tum p. The solid~dashed! curves are for theS521 ~11!
channels. Some channels show a clear resonance. Asl in-
creases, they become broader and higher in energy. Afte
resonances, all the phase shifts show linearly rising beha
in the high momentum. This is due to the fact that the sec
derivative terms in space and time in the equation of mot
~9! are not of the simple Laplace form]2. The asymptotic
behaviors can be grouped into four lines depending
whetherL5l 1 1

2 or L5l 2 1
2, and on the strangeness num

ber S. In general, as discussed in Ref.@16#, the L5l 2 1
2

channel receives more attraction than theL5l 1 1
2 channel.
-
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In the case ofmK5495 MeV andmp5138 MeV @Fig.
1~a!#, d1/2,1,21(0) andd1/2,0,21(0) are set top according to
Levinson’s theorem. Recall that there exists a single~doubly
degenerate! bound state in each channel. In the SU~3! sym-
metric limit @Fig. 1~b!#, only d1/2,1,21(0) can bep, reflecting
the presence of the zero mode in this channel.

In spite of the presence of the zero mode in the cor
sponding channel,d1/2,1,11(p) vanishes in the limit of zero
momentum. This is because the Wess-Zumino term acts
pulsively for the S511 channel. In Fig. 2~a!, the wave
functions k(x) of the (1

2 ,1,21) channel~solid curve! and

( 1
2 ,1,11) channel~dashed curve! are drawn at the kaon mo

mentum p50.1 ~fm 21) in the chiral limit. As reference
curves, we draw the zero-mode (p50 in the chiral limit!
wave function ~dotted curve! and the free wave solution
j 1(px) ~dash-dotted curve! together. The attractive force be
tween the soliton and theS521 kaon makes the wave func
tion shift inward from the zero-mode solution, so that it h
a node near the origin. Thus the wave function becomes
of phase with the free wave solution in the asymptotic
gion. Conversely, due to the repulsion coming from t
Wess-Zumino term, the wave function of theS511 kaon is
repelled outward, and becomes in phase with the free w
solution in the asymptotic region. For a higher kaon mom
tum where the strength of the Wess-Zumino term is
creased, the trace of the zero mode becomes dimmer and
disappear@see Fig. 2~b!#.

III. CALCULATING THE CASIMIR ENERGY

The Casimir energy associated with the kaon fluctuat
is defined by the difference in the mode sum of the eigen
ergies,

FIG. 1. Phase shiftsdL,l ,S(p) for a few low L. ~a! mp5138
MeV andmK5495 MeV.~b! mp5mK5138 MeV @SU~3! symmet-
ric limit #. Solid ~dashed! curves are forS521 ~11! channels.

FIG. 2. Radial functionk(x) for the L5
1
2, l 51, andS561

channels at the kaon momenta~a! p50.1 and~b! p50.5 ~in fm21

units!.
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EC5 1
2 (

n
vn2 1

2 (
n

vn
0 , ~12!

where vn(vn
0) is the eigenenergy of the kaon field in th

presence~absence! of the soliton. It can be expressed
@10,17,18#

EC5 lim
s→0

1

2pEmK

`

dE E122sd8~E!1
1

2 (
n5b.s.

vn , ~13!

where d(E) is the phase shift in the one space dimens
related to the partial-wave phase shifts obtained in Sec. I

d~E!5 (
L,l ,S

~2L11!dL,l ,S~E!. ~14!

The sum in the last term of Eq.~13! runs over all the bound
states~if any!.

Due to the monotonously rising high-energy behavior
the phase shifts, formula~13! ends up with ultraviolet diver-
gences ats50. Asymptotically, the phased(p) behaves as

d8~p!53 ā0p21 ā12
ā2

p2
1•••. ~15!

Terms of higher order in 1/p abbreviated by the ellipses d
not cause any divergence problem. The troublesome di
gences can be subtracted and replaced by the analytic
tinuation of them. This process leads us to a scale-depen
Casimir energy

TABLE I. The expansion coefficients ofd(p).

mp mK ā0 ā1 ā2
d(0)

0 0 0.1286 3.898 2.31(60.05) 2p
138 138 0.1166 4.096 3.28(60.02) 2p
138 495 0.1166 6.162 12.98(60.03) 4p

FIG. 3. Phase shiftd(p), the sum of all the partial wave phas
shifts. The dotted line is a fit to the asymptotic formula~15!.
n
as

f

r-
n-

ent

EC~m!5
1

2pH E
0

`

dpF2
p

Ap21mK
2

„d~p!2 ā0p32 ā1p…

1
ā2

Ap21m2G2
3 ā0

8
mK

4 S 3

4
1

1

2
ln

m2

mK
2 D

2
ā1

4
mK

2 S 11 ln
m2

mK
2 D 2mKd~0!J 1 1

2 (
n5b.s.

vn ,

~16!

according to which the Casimir energy of the pion vacuu
fluctuation was estimated in Refs.@9,10#. We are going to
use the same formula to evaluate that of the kaon fluctuat
There can be further contributions from the counterterm
which are known only partly. We will assume that the C
simir energy coming from the counterterms is negligible
in Ref. @10#. As for the energy scalem, we work with two
different values: ther-meson massmr5770 MeV and the
K* -meson massmK* 5892 MeV.

The calculation is thus reduced to summing up the ph
shifts over all the partial waves to obtaind(p). The conver-
gence of the sum requires high values ofL. In our numerical
work, we truncate the sum whendL(p) becomes less than
1028. This condition is usually fulfilled atL;20p ~in fm 21

units!. It would provide at least 1025 accuracy tod(p), tak-

FIG. 4. Integrand of the integral in Eq.~16! as a function of the
momentum.

FIG. 5. ~a! Phase shiftd(p) and~b! integrand obtainedwithout
the Wess-Zumino term.
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TABLE II. Casimir energy of the kaon vacuum fluctuation.

m5mr5770 MeV m5mK* 5892 MeV
mp mK EC

subt. EC
asym. EC

b.s. EC EC
subt. EC

asym. EC
b.s. EC

0 0 2175 – – 2175 2186 – – 2186
138 138 2120 269 – 2189 2135 264 – 2199
138 495 120 2481 1568 1107 240 2395 1568 1133
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ing into account the degeneracy factor (2L11) and the con-
tribution from the neglected tail. In Fig. 3, we present t
numerical result ond(p) as a function ofp in the range of
0,p<18 fm21. The data show a hump at the momentu
p;2 ~fm 21) where theLp5 1

2
2 channel has a resonance.

becomes more prominent for the case of the larger k
mass. After the hump,d(p) quickly reaches the asymptoti
behavior ~15!. The dotted curve in Fig. 2 is obtained b
fitting the data in the range of 8 fm21<p<18 fm21 to the
asymptotic formula.

For a larger kaon momentum thanpmax;18 ~fm 21), and
for a largeL, our numerical process becomes unstable. Ho
ever, the data given in Fig. 3 are sufficient to determine
expansion coefficientsā i ( i 50,1, and 2!. In Table I, we list
the coefficients obtained by fittingd(p) in the range 8
fm21<p<18 fm21 to the asymptotic formula~15!. The co-
efficients ā0 and ā1 show little dependence on the range
the kaon momentum used in the fitting process. On the o
hand, ā2 varies within the error range presented in the p
rentheses. Note thatā0 for two cases ofmp5138 MeV ~but
with different kaon masses! are equal up to the four digit
presented in the table, which implies that it is a const
depending only on the soliton profile functionF(r ).

Once the asymptotic expansion coefficients are de
mined, we can carry out the integral to obtain the Casi
energyEC(m). Shown in Fig. 4 is the integrand of the inte
gral in Eq. ~16!. Here the energy scalem is chosen as the
K* -meson mass. Compared with the one shown in Ref.@10#
~Fig. 1!, they show more complicated structures. One can
that the ultraviolet divergences are subtracted well, and
the dominant contribution of the continuum spectrum to
Casimir energy is determined by the low-energy behavio
the phase shifts.

In Table II, we summarize our numerical results for t
Casimir energy due to the kaon vacuum fluctuation. W
present separately the subtracted piece contribution of
continuous spectrum@EC

subt., the first line in Eq.~16!#, the
renormalized asymptotic piece of the continuous spect
contribution @EC

asym., the second line in Eq.~16!#, and the
bound-state contribution (EC

b.s.). The dependences on the e
ergy scalem and on the pion massmp are rather small. The
n

-
e

er
-

t

r-
ir

e
at
e
f

e
he

m

Casimir energy associated with the kaon fluctuation in
strangeness direction is about2200 MeV in the SU~3! sym-
metric limit, and about1100 MeV with mK5495 MeV.
They are very small compared with the Casimir energy
the pion fluctuation that amounts;2900 MeV. Especially,
the value;2200 MeV in the SU~3! limit is much smaller
than what was naively estimated as;2 2

3 3900 MeV in Ref.
@10# by counting the number of zero modes.

One can easily note that this reduction is closely related
the fact thatd(0) is not 4p but 2p in the SU~3! limit, for
which the Wess-Zumino term is most responsible. In orde
check this point, we carry out the same calculation witho
the Wess-Zumino term. For a comparison, we present
numerical results in Fig. 5:~a! the phase shiftd(p) and ~b!
the integrand after subtracting the ultraviolet divergenc
Now d(0) becomes 4p, reflecting directly the existence o
four zero modes. The integrand is very similar to that of R
@10# for the pion fluctuation, and has a simpler structure th
that of Fig. 4.

Table III summarizes the numerical results obtained wi
out the Wess-Zumino term. Note that~i! the value of the
expansion coefficientā0 remains unchanged and~ii ! that
d(0)54p in all the cases considered. In the chiral limit, th
Casimir energy is evaluated as2460 MeV with m5770
MeV. This is more than twice the value evaluated with t
Wess-Zumino term, and is close to the naive estimation
Ref. @10#. Again, the Casimir energy shows a weak depe
dence on the pion mass. In the case of a massive kaon, w
the Wess-Zumino term is turned off, only a single bou

state is found in each (1
2 ,1,61) channel with an eigenenerg

352 MeV. It is interesting to see that the final result on t
Casimir energy varies little from the value obtained with t
Wess-Zumino term in the last case. This emphasizes the
portance of the valued(0) in evaluating the Casimir energy

IV. CONCLUSION

In this paper, we studied the Casimir energy of the Sk
mion associated with the kaon fluctuation. The Casimir
ergy was calculated by investigating the low-energy behav
of the soliton-kaon scattering phase shifts after the ultravio
as
TABLE III. Casimir energy evaluated without the Wess-Zumino term. The energy scale is takenm
5770 MeV.

mp mK ā0 ā1 ā2
d(0) EC

subt. EC
asym. EC

b.s. EC

0 0 0.1286 2.902 5.52 4p 2485 – – 2485
138 138 0.1166 3.039 6.72 4p 2314 2225 – 2539
138 495 0.1166 5.106 12.1 4p 226 2580 1704 198
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2858 57JOON-IL KIM AND BYUNG-YOON PARK
divergences were carefully subtracted. The Casimir ene
from the kaon vacuum fluctuation turned out to be very sm
compared with that of the pion fluctuation. The main reas
for this reduction in the Casimir energy is not the larger m
of kaons than pions but the presence of the Wess-Zum
term in the Lagrangian governing the kaon dynamics.

We could not incorporate the contributions from the u
known counterterms, and hope to report on this issue in
ture publications. However, we believe that the Casimir
p

y
ll
n
s
o

-
-
-

ergy is saturated by contributions from the low-ener
continuum spectrum and the bound states as in the cas
the pion fluctuation.
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