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Casimir energy of the Skyrmion due to kaon vacuum fluctuations
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We study the Casimir energy associated with the kaon fluctuation about the static soliton configuration in the
Skyrme model. Up to uncertainties due to the unknown counterterms, the Casimir energy of the kaon vacuum
fluctuation turns out to be very small compared with that of the pion. In the chiral limit and in tl8) SU
symmetric limit it is about—200 MeV, which is much smaller than a naive estimatiox 900 MeV based
on the number of zero modes. It is shown that the Wess-Zumino term plays an essential role in this reduction
of the Casimir energy[.S0556-282(98)05505-3

PACS numbdps): 12.39.Dc, 12.39.Fe, 12.40.Yx

I. INTRODUCTION violet divergences are absorbed into the counterterms devel-
oped in the chiral perturbation theof%1], while their con-

In the early 1960s, Skyrme suggested describing baryorigibution to the finite piece of the Casimir energy is small.
by a static soliton solution of an effective Lagrangian for theThe one-loop corrections evaluated by Holzwarth and Wall-
mesong1]. The size and mass of the resulting soliton con-iser [12] strongly support the large and negative Casimir
figuration are comparable to the typical size and mass of @nergy.
nucleon. The conserved topological current is taken as the If the Casimir energy associated with the pion fluctuation
baryon number current, which was later proved by Wittenis large, one can imagine a considerable amount of Casimir
[2] through the 1) anomaly. Skyrme’s idea was phenom- energy coming from the kaon vacuum. In Rgf0], assum-
enologically checked by Adkins, Nappi, and Wittg8]. It ~ ing SU3) symmetry, the latter was roughly estimated;as
was shown that, when the soliton solution is quantized bythe former by using the fact that there are four zero modes
introducing the collective coordinates associated with thdor the rotation of the soliton in the strangeness direction.
zero modes with respect to the rotation in isospin space, th€hen the resulting total Casimir energy would be so large in
model can describe the nucleons at an accuracy as good aEgnitude that it could cancel out all the soliton mass of the
30%. Since this revival, much work on various aspects hateading order in M. . Needless to say, this is another unde-
made the model one of the more successful phenomenologgirable situation. In this paper, we clarify this point by evalu-
cal models for baryon§4]. ating explicitly the Casimir energy due to the kaon vacuum

On the other hand, the Skyrme model suffers from a probfluctuation by applying the same method developed in Ref.
lem: the physical constants of the meson Lagrangian do ndf.0].
seem compatible with the static properties of baryons. One This paper is organized as follows. In Sec. II, we briefly
could reproduce the experimentally measured baryon data lescribe the model Lagrangian and introduce the kaon fluc-
releasing the physical constants governing the meson dynartiation about the static soliton solution. Then the partial-
ics to free parameters. For example, when the empiricalvave phase shifts of the kaon-soliton scattering are obtained.
value 93 MeV is used for the pion decay constant, the resultThe effects of zero modes and bound states on the phase shift
ing soliton mass is about 1.5 GeV. In order to fit the masseare carefully analyzed, which reveals a special role of the
of nucleons and deltas, the pion decay constant needs to b¥ess-Zumino term. In Sec. lll, the Casimir energy is calcu-
reduced down to 64.5 MeV in the two-flavor modal. Al- lated by using the scale-dependent finite formula expressed
though this defect may be ascribed to the laNgeaspect of in terms of the phase shift. Our numerical results are pre-
the model or to the simplicity of the model Lagrangian, it sented and discussed. A short conclusion is given in Sec. IV.
certainly maculates a great virtue of the model.

A plausible solution to this problem is that some portion |I. MODEL LAGRANGIAN AND KAON FLUCTUATION
of the soliton mass of ordeX, is canceled by the Casimir
energy of ordeNS, the energy of the vacuum fluctuation in
the presence of the solitd®]. Various methods have been
attempted to evaluate the Casimir energy or equivalently th

In describing kaon fluctuations about the static soliton so-
lution, we follow the method of Callan and Klebanfig].
We start with the Skyrme model Lagrangian

one-loop quantum correctid®—8]. Most of them result in a (2 1
small Casimir energy of the order of 200 MeV. Recently, Loar=— —"Tr(L LH)+ L L12
Moussallam and co-workel®,10] showed that a negative kg (Ll 32¢? (L]

and rather large Casimir energy of order 1 GeV can be ob-
tained from the pion vacuum fluctuation. In their work, the
Casimir energy is controlled by the low-energy behavior of
the pion-soliton scattering phase shifts. The dominant contri-
bution is due to the presence of six zero-modes with respesthere L ,= UT&MU with U(r,t) e SU3). The quark mass
to the translation and rotation of the soliton. The main ultra-matrix M can be written in terms of the meson masses as

f2
+Z”TrM(UT+u—2), )
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M=diagm2,m%,2m2). L=LgUg)+(D,K)D*K—mgKTK+ - - -

- 2 t t
For simplicity, we take into account only the &) +(iN/4f7)B*[K'D ,K— (D ,K) K], (6)

symmetry-breaking term representing the meson mass differ- . .
ence. As for the pion decay constaht and the Skyrme where the ellipsis represents a lengthy exprestsee Ref.

parametere, we fix them to the empirical valuek,=93 [13] for the explicit form) depending on

MeV and e=4.75 (which yield the correct axial coupling _1 + _ +
constang,=1.33) as in Ref[14]. As for the meson masses, Au=3( VU, a”\/u_o \/U_Oa”\/u_o )

we consider three case8) the chiral limit (m,=myg=0), 1 + +

(i) the SUB) symmetric limit (m.=mc=138 MeV), and V,,=3(VU0'9,Uo+ Uo7, \Uo"), 63

(iii) the real world (n,=138 MeV, mc=495 MeV). The 5 the covariant derivative is defined as

first two cases are to compare our results with the prediction

of Ref.[10]. . D, K=a,K+V, K. (6b)
In the three-flavor Skyrme model, the Skyrme Lagrangian

(1) should be supplemented by the Wess-Zumino tEfn  The last term comes from the Wess-Zumino t€ andB,

which can be written only in an action term, is the baryon number current of the &)Y soliton configura-
tion.
iN¢ 5 oo Now the problem is reduced to studying the motion of
Swz=— 24%2f d>x e#"*PoTr(L,L,Li\L,L,), (2 kaons moving in the static potentials provided by the(BU
soliton. It will have energy eigensolutions
where the integral is over a five-dimensional disk with space- K(r,t)=K(r)exp —iot) )

time as its boundary, and(r,t) is continuously extended to
the disk. Hereafter, the number of colsg will be taken as  in terms of which the kaon field operator can be expanded.

3. Furthermore, the invariance of the soliton configuration
The Lagrangian supports a static soliton solution undey (r) under simultaneous rotations in the spatial and isospin
the “hedgehog” ansatz space A=1+L with | =17 being the kaon isospin operator
. enables us to perform a partial-wave analysis. The kaon
e 0 eigenmodes can be written as the product of a radial function
Uolr)= 0 1/’ © k(r) and the spinor spherical harmonig@/As(F). Finally,

we are led to the Lagrangian for the radial function
where we have written the>33 matrix in a partitioned form

2x2 2x1 L= —47Tf0 dr r2{h(r)k""k’ +[mZ— w?f(r)+2w\(r)

1X2 1X1

+Ver(r; A, /) 1K'k}, ®

and = denotes the &2 Pauli matrices. The profile function PN 1 PN
. where f(r)=1+35s(r)+zd(r), h(r)=1+3s(r), d(r
F(r) minimizes the energy in the baryon number equal t (1 28(r) +3d(r), h(r) 28(r), d(r)
one sector. S ) i
In order to generate the kaon fluctuation about the stati@9umenk s(r)=(sinF/r)7, c(r) = (sinzF)7,
soliton solution, we substitute the ansgt3]

0=(F’)2 (the prime denotes the derivative with respect to its

+s+d
4r?

4
Ver(r)=—2(d+2s)— $s(s+2d) + [/(/+1)

U=UuUxU,, (4

where JUo=exdi rF(r)/2] and Ux=exp(AK,) with g
running from 4 to 7. Hera denotes the generators of &Y
normalized to Tri\p) =268,,. Explicitly, Ux can be writ-

ten as
2/ 0 K
UK=exr{i \/——< )

f.\K" 0

s[c®+1-L(2¢c—1)]

3
+2c?+4cl-L]+ —;
2r

d
+ gL+ -L)F’sinF]} —mZc,

. (5  and\(r)=—(N.e%87)s(r)F'. From here on, we measure
the times and distances in units ok1/ and the energy in
units ofef .
From Lagrangian8), the equation of motion for the clas-
Ky—iKg K+ sical eigenmodes is readily derived as
KG—iK7)_(K°)' 1d ,d
2 dr(h(r)r drk

whereK is the standard complex isodoublet:

1

V2

Expanding in powers oK and keeping only terms up to
second order ifK, one can obtain the Lagrangian density +Vei(r;A,2/)]k=0, 9)

+[mz— w?f(r)—2Sw\(r)
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where S in the Wess-Zumino term linear i® denotes the
strangeness number of the solution. It is included to incorpo-
rate the fact that the positive-energy eigenmodes ofSthe
+1 sector are related to those of the negative-energy solu
tions of theS= — 1 sector(From now on, the energy appear-
ing in the equation of motion is non-negativé hus the
Wess-Zumino term acts as an attractive potential inSke
—1 channel, and as a repulsive one in 8w+ 1 channel.

In case ofo<my, the equation may provide bound state ,’ ,
solutions. Withm_= 138 MeV andmy =495 MeV, there are 0 e
two bound states. The lowest one is found in tiieA,S)

=(3,1,—1) channel at the eigenenergy;=143 MeV,
which can describe the lowest positive parity hyperdg.

The other is in the £,0,—1) channel at the eigenenergy
w,=425 MeV, which can be in_terpreted a91405) nega-
tive parity resonance below tH€N threshold.

12"
52

30

30

40 0 40

FIG. 1. Phase shift$, , s(p) for a few low A. (a) m,=138
MeV andmyg =495 MeV. (b) m_,=mx =138 MeV[SU(3) symmet-
ric limit]. Solid (dashed curves are folS=—1 (+1) channels.

In the case ofmy=495 MeV andm,_=138 MeV [Fig.
1(@)], 81/21-1(0) and dy50-1(0) are set tor according to
L . Levinson’s theorem. Recall that there exists a sirigtmibly

In the limit of the ur\broke_n S®) ;ymmetlry, the equation degeneratebound state in each channel. In the (8)Usym-
has zero-mode solutions with=0 in the G,1,+1) chan-  metric limit [Fig. 1(b)], only 5,5, 1(0) can ber, reflecting
nels. These zero modes are associated with the collectiue presence of the zero mode in this channel.
rotation of the soliton solution3) in the strangeness direc- In spite of the presence of the zero mode in the corre-
tion. One can obtain them analytically by equating the infini-sponding channeld, ;, 1, 1(p) vanishes in the limit of zero
tesimal collective rotation to the kaon fluctuati¢h), for momentum. This is because the Wess-Zumino term acts re-
example, as pulsively for the S=+1 channel. In Fig. @), the wave

functionsk(x) of the (3,1,—1) channel(solid curve and

(3,1,+1) channeldashed curveare drawn at the kaon mo-
mentum p=0.1 (fm ~ 1) in the chiral limit. As reference
. curves, we draw the zero-mod@=0 in the chiral limi}
with A=exdie(\s—i\s)] and K=Kk(r)Vi21.+12(r). Explic-  wave function (dotted curve and the free wave solution
itly, the radial function of the zero-mode solution can bej,(px) (dash-dotted curyeogether. The attractive force be-
written as tween the soliton and th8= — 1 kaon makes the wave func-
tion shift inward from the zero-mode solution, so that it has
a node near the origin. Thus the wave function becomes out
of phase with the free wave solution in the asymptotic re-
gion. Conversely, due to the repulsion coming from the
Wess-Zumino term, the wave function of t8e- + 1 kaon is
repelled outward, and becomes in phase with the free wave
up to a normalization constai. solution in the asymptotic region. For a higher kaon momen-
For w>my, Eq.(9) describes the kaon-soliton scattering tum where the strength of the Wess-Zumino term is in-
process in the soliton corotating frame. From the asymptotiereased, the trace of the zero mode becomes dimmer and will
behavior of the solutions, one can obtain the phase shiftdisappeafsee Fig. 2)].
d,.,.s. Such work was done a long time ago for the purpose
of investigating the hyperon resonances in the Skyrme model
[15,16. Here we repeat the calculation by paying special
attention tod, , 5(0), the phase shifts in the limit of the
vanishing kaon momentum. They play the most importa :
role in evaluating the Casimir energy later, and are strongl)?rg'es’
affected by the presence of the zero modes or bound states

ATUGA=UU VU, (10

k(r)= %/Sin(%F) 11

Ill. CALCULATING THE CASIMIR ENERGY

The Casimir energy associated with the kaon fluctuation
n{'s defined by the difference in the mode sum of the eigenen-

(b)

In Fig. 1, we present phase shifts of the kaon-soliton scat- p=0.1 | p=05
tering process for a fewk as a function of the kaon momen- S=+1 | S=+1
tum p. The solid(dashedl curves are for thes=—1 (+1) g ;’—5]‘(‘););?1\ . g "1_’/“\
channels. Some channels show a clear resonance’ ifis g L S g I —_
creases, they become broader and higher in energy. After the§° X zero mode 3 S
resonances, all the phase shifts show linearly rising behavior? g \/
in the high momentum. This is due to the fact that the second S S=1
derivative terms in space and time in the equation of motion 1

(9) are not of the simple Laplace for@f. The asymptotic
behaviors can be grouped into four lines depending on
whetherA =/+ 3 or A=/— 3, and on the strangeness num-
ber S. In general, as discussed in R¢L6], the A=/"—3
channel receives more attraction than the /+ 3 channel.

-1

1]

50
x(ef.r)

100

25
x(ef.r)

50

FIG. 2. Radial functiork(x) for the A=31, /=1, andS==1
channels at the kaon momen& p=0.1 and(b) p=0.5(in fm~
units).

1
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FIG. 3. Phase shif(p), the sum of all the partial wave phase FIG. 4. Integrand of the integral in E¢L6) as a function of the
shifts. The dotted line is a fit to the asymptotic forml). momentum.
=1y LS 0 1 * p —, —
Ec=22 on—22 oy, (12 Ec(w)=5—1{ | dp| — —=—==(8(p)—aop*—aip)
" " 2m| Jo Vp?+my
where wn(wﬂ) is the eigenenergy of the kaon field in the a_2 3a_o NE 1| u?

- + = Mmk| 7+ 5In—
presencé@bsencg of the soliton. It can be expressed as W g "Klg "o mﬁ
[10,17,18

_ ,uz
1 —ZImE| 1410 | —mes(0) | + 4 2 wn,
Ec—lmz)z— mKdE El=255'(E)+ n; w,, (13 4 ma nShs.

(16)
where 6(E) is the phase shift in the one space dimension

related to the partial-wave phase shifts obtained in Sec. Il & CCOfdi,”g o which.the Ca;imir energy of the pion_ vacuum
uctuation was estimated in Ref®,10.. We are going to

use the same formula to evaluate that of the kaon fluctuation.
S(E)= >, (2A+1)6, . s(E). (14  There can be further contributions from the counterterms,
AZS which are known only partly. We will assume that the Ca-
simir energy coming from the counterterms is negligible as
The sum in the last term of E¢L3) runs over all the bound in Ref.[10]. As for the energy scalg, we work with two

states(if any). different values: thep-meson massn,=770 MeV and the
Due to the monotonously rising high-energy behavior ofk *.meson massng« =892 MeV.
the phase shifts, formuld.3) ends up with ultraviolet diver- The calculation is thus reduced to summing up the phase

gences as=0. Asymptotically, the phasé(p) behaves as  shifts over all the partial waves to obtadifp). The conver-
gence of the sum requires high values\ofin our numerical
) — , — A work, we truncate the sum whefy (p) becomes less than
8'(p)=3aopta;— —+---. (15 1078 This condition is usually fulfilled at ~20p (in fm ~*
P units). It would provide at least 10° accuracy tod(p), tak-

Terms of higher order in p/abbreviated by the ellipses do

. . @ )
not cause any divergence problem. The troublesome diver 100 \ ‘ 3 0
gences can be subtracted and replaced by the analytic cor /\/"
tinuation of them. This process leads us to a scale-dependet o /
- - 5|
Casimir energy S0} .k /
TABLE I. The expansion coefficients af(p). & E_m /
m, My ag a, a, 5(0) 10 F“"’c’o
‘ ‘ 5 .
0 0 0.1286 3.898 2.3%0.05) 2 0 6 p (™) 12 18 0 p(ﬂf]-‘) 1o
138 138 0.1166 4.096 3.28(0.02) 2
138 495 0.1166 6.162 12.98(0.03) Aoy FIG. 5. (a) Phase shifis(p) and(b) integrand obtainevithout

the Wess-Zumino term.
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TABLE II. Casimir energy of the kaon vacuum fluctuation.

pu=m,=770 MeV m=myx=3892 MeV
m, My E?:ubt. Ee&sym. El():.s. EC E?:ubt. Eeésym. Elé.s. EC
0 0 —-175 - - —175 —186 - - —186
138 138 —120 —69 - —189 —135 —64 - —199
138 495 +20 —481 +568 +107 —40 —395 +568 +133

ing into account the degeneracy factor\(2 1) and the con- Casimir energy associated with the kaon fluctuation in the
tribution from the neglected tail. In Fig. 3, we present thestrangeness direction is abou00 MeV in the SW3) sym-
numerical result ord(p) as a function ofp in the range of metric limit, and about+100 MeV with my=495 MeV.
0<p=18 fm~ 1. The data show a hump at the momentumThey are very small compared with the Casimir energy of
p~2 (fm 1) where theA "=}~ channel has a resonance. It the pion fluctuation that amounts —900 MeV. Especially,
becomes more prominent for the case of the larger kaothe value~—200 MeV in the SW3) limit is much smaller
mass. After the humpd(p) quickly reaches the asymptotic than what was naively estimated as- 5 X 900 MeV in Ref.
behavior (15). The dotted curve in Fig. 2 is obtained by [10] by counting the number of zero modes.
fitting the data in the range of 8 fmt<p=<18 fm™! to the One can easily note that this reduction is closely related to
asymptotic formula. the fact thats(0) is not 47 but 27 in the SU3) limit, for

For a larger kaon momentum th@p,..~ 18 (fm 1), and  which the Wess-Zumino term is most responsible. In order to
for a largeA, our numerical process becomes unstable. Howeheck this point, we carry out the same calculation without
ever, the data given in Fig. 3 are sufficient to determine théhe Wess-Zumino term. For a comparison, we present the

expansion coefficienta; (i=0,1, and 2. In Table I, we list numerical results in Fig. 5a) the phase shif(p) and (b)

the coefficients obtained by fitting(p) in the range 8 the integrand after subtracting the ultraviolet divergences.
fm~1<p<18 fm ! to the asymptotic formulél5). The co- Now &(0) becomes 4, reflecting directly the existence of
efficientsag and a; show little dependence on the range of four zero modes. The integrand is very similar to that of Ref.

the kaon momentum used in the fitting process. On the oth ? 2% Eré?ge alon fluctuation, and has a simpler structure than

hand, a, varies within the error range presented in the pa-  Tpe || summarizes the numerical results obtained with-
rentheses. Note that, for two cases ofm,=138 MeV (but  out the Wess-Zumino term. Note thé) the value of the
with different kaon massgsare equal up to the four digits expansion coefficien'a—o remains unchanged anf) that
presented in the table, which implies that it is a constantyg)— 4 in all the cases considered. In the chiral limit, the
depending only on the _soIiton prqfile funct!(ﬁ(r). Casimir energy is evaluated as460 MeV with =770
_Once the asymptotic expansion coefficients are deterya\; This is more than twice the value evaluated with the
mined, we can carry out the integral to obtain the Casiminyeqs 7umino term, and is close to the naive estimation of
energyEc(u). Shown in Fig. 4 is the integrand of the inte- {4 [10]. Again, the Casimir energy shows a weak depen-

grf‘l in Eq. (16). Here the energy scale is chosen as the yence on the pion mass. In the case of a massive kaon, when
K*-meson mass. Compared with the one shown in RE€ll  {he \Wess-zumino term is turned off, only a single bound

(Fig. 1), they show more complicated structures. One can see . . 1 . .
that the ultraviolet divergences are subtracted well, and tha%tate is found in eacly(1,>1) channel with an eigenenergy

the dominant contribution of the continuum spectrum to the>22 MeV. Itis interesting to see that the final result on the

Casimir energy is determined by the low-energy behavior ofcasimir energy varit_as little from the vallue obtaine_d with the
the phase shifts. Wess-Zumino term in the last case. This emphasizes the im-

In Table II, we summarize our numerical results for thePOrtance of the valug(0) in evaluating the Casimir energy.
Casimir energy due to the kaon vacuum fluctuation. We
present separately the subtracted piece contribution of the
continuous spectrur[\ESé“b", the first line in Eq.(16)], the
renormalized asymptotic piece of the continuous spectrum |n this paper, we studied the Casimir energy of the Skyr-
contribution[ EZ¥™, the second line in Eq(16)], and the mion associated with the kaon fluctuation. The Casimir en-
bound-state contributione:®). The dependences on the en- ergy was calculated by investigating the low-energy behavior
ergy scalew and on the pion mags,, are rather small. The of the soliton-kaon scattering phase shifts after the ultraviolet

IV. CONCLUSION

TABLE Ill. Casimir energy evaluated without the Wess-Zumino term. The energy scale is taken as

=770 MeV.

m, My ;c) ail aiz 5(0) E(s:ubt. Egsym. E%s. EC
0 0 0.1286 2.902 5.52 A —485 - - —485

138 138 0.1166 3.039 6.72 T —314 —225 - —539

138 495 0.1166 5.106 121 ™ —26 —580 +704 +98
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divergences were carefully subtracted. The Casimir energgrgy is saturated by contributions from the low-energy
from the kaon vacuum fluctuation turned out to be very smalktontinuum spectrum and the bound states as in the case of
compared with that of the pion fluctuation. The main reasorthe pion fluctuation.
for this reduction in the Casimir energy is not the larger mass
of kaons than pions but the presence of the Wess-Zumino
term in the Lagrangian governing the kaon dynamics.

We could not incorporate the contributions from the un- We are grateful to Professor Mannque Rho for valuable
known counterterms, and hope to report on this issue in fueomments. This work was supported by the Korea Science
ture publications. However, we believe that the Casimir enand Engineering Foundation through the SRC program.
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