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Hadronic couplings via QCD sum rules using three-point functions: Vacuum susceptibilities
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We develop a three-point formalism to treat vacuum susceptibilities used for the coupling of currents to
hadrons within the method of QCD sum rules. By introducing nonlocal condensates, with the space-time
structure taken from fits to experimental parton distrbutions, we show that one can treat hadronic coupling at
zero or low momentum transfer as well as medium and asymptotic momentum transfers and obtain a general
expression for the vacuum susceptibilities of the two-point formalism. The pion susceptibility, for which there
has been a major uncertainty, is evaluated successfully with no new pararf®@&56-282(98)00107-9

PACS numbgs): 12.38.Lg, 11.55.Hx, 13.75.Gx

I. INTRODUCTION and by assuming-meson dominance results similar to Ref.
[6] were obtained. Subsequently the magnetic susceptibility
Hadronic couplings are essential ingredients in the studyvas calculated using the two-point formalism with extended
of hadronic decays and interactions, and the properties angector meson dominance model treatmd8t8] with results
interactions of hadrons in nuclear matter. In effective fieldsimilar to the phenomenological treatment of Hél. These
theories these couplings are defined by three-point functionsnethods were applied to the study of parton distribution
Since the hadrons are complex systems and the strong intdsnctions[10,11] and radiative baryon decdy 2], with ex-
actions, given by QCOiquantum chromodynamigsrequire  plicit treatments of the bilocal operators. A detailed review
a nonperturbative treatment, the theoretical treatment o#f the relationship between the three-point and two-point ex-
these three-point functions is quite challenging. In theternal field treatments is givegid 3] for an extension to non-
present paper we discuss the application of the QCD suraero momentum transfer.
rule method using a three-point approach for the coupling of The external field method has also been used for the cal-
currents to hadrons, and give a new interpretation of theulation of the axial coupling constant {)g[14-16, the
vacuum susceptibilities used in the two-point approach. Weparity-violating pion-nucleon coupling constantyfg[17]
apply this treatment to the parity-violating pion-nucleon cou-and the nucleon’s tensor chardes]. This two-point method,
pling, for which theoretical estimates of the pion-inducedhowever, has two main problems: it cannot be used to extend
susceptibility have met with difficulties, and discuss thethe coupling to medium and high momentum transfer and
isospin-violating pion-nucleon coupling. there are additional parameters to be determined: the vacuum
In the method of QCD sum ruldd] complex hadronic susceptibilities. This latter problem is seen to be crucial in
systems are represented by local complex field operators gbe recent calculation ofyg, where a cancellation between
that standard two-point functions can be used for hadroniperturbative and nonperturbative contributions is the domi-
masses. The methods introduced by Shifreaial. allow a  nant effect. Moreover, the phenomenological value obtained
short-distance expansion and nonperturbative effects to der the pion susceptibility from the study of.g, the strong
treated via operator product expansio®®PES using pion-nucleon coupling constant, differs by as much as an
vacuum condensates whose values are determined by fits ewder of magnitude from a theoretical estimate, as we discuss
experiment, as well as lattice gauge calculations. A review ofn Sec. Il A. A three-point method usgd9] for an estimate
the early work is given in Ref2]. of g, did not use the pion susceptibility. Also, for the cal-
Using these local field operators, one can also defineulation of the nucleon’s tensor chard#8] it has been
three-point functions for hadronic coupling, similar to effec- pointed out[20] that the treatment of the vacuum tensor
tive hadronic field theories. For medium and asymptotic mo-susceptibility is subtle and different treatments can lead to
mentum transfers the OPEs can be applied for form factorgery different results for the tensor charge.
[3,4] and moments of wave functiolisee Ref[5] for review Nonlocal condensates have been shown to be useful for
of the early worl;; however, at low momentum transfer the representing the bilocal vacuum matrix elements needed for
OPEs cannot be consistently applied, as was pointed out ithe pion wave functiof21] and pion form factof22] over
the early work on photon couplings at low momentum forfor low to medium momentum transfer. In this method one
the nucleon magnetic momen&,7]. In Ref.[6] the probem does not carry out an OPE for the power corrections but
was solved by using a two-point correlator in an externalintroduces new phenomenological parameters needed to
electromagnetic field, with vacuum susceptibilities intro- characterize the space-time structure of the nonlocal conden-
duced as parameters for nonperturbative propagation in theates. The method is simple, but powerful. Although new
external field. In Ref[7] a three point formalism was used phenomenological parameters are introduced, they are inter-
with the long-distance effects treated by bilocal correctionsgsting in themselves. For example, in a study of parton dis-
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tribution functions[23] the space-time scale of a nonlocal operators must be composite with quark and gluon field con-

condensate was determined by a fit to experiment data.  stituents, so that the problem of coupling of currents to had-
In the present work we start with the standard three-pointons is intrinsically much more complex than the three-point

vertex functions for hadronic couplings and use nonlocafunctions of Eq(1) for effective field theories. In this section

condensates to represent the bilocal operators. By comparive review how the couplings are represented by three-point

son of terms appearing in the two-point external field expresfunctions and also by two-point functions in the sum rule

sion with those in our hybrid expansion of the three-pointmethod; and we show how the vacuum susceptibilities that

function, we obtain a relationship between the nonperturbaappear in the two-point method can be evaluated in terms of

tive elements in the two methodSec. Il B. From this rela-  four-quark condensates in the three-point approach.

tionship, it is then possible to obtain the main result of this

paper, namely an expression for the induced susceptibilities A. QCD sum rule two-point method

of the two-point method in terms of well-defined four-quark for coupling at low momentum

vacuum matrix elements, and make a simple estimate of their

values, using the estimate of the space-time structure of the In .this subsection we briefly_ review.the two-point effep-
tive field approach6] to hadronic couplings and the defini-

tions of vacuum susceptibilities. In the present work we dis-
cuss only the coupling to nucleons and use as the composite
field operator to represent the nucleon

on quark distributions. Since the form assumed for the non
local condensates in R¢23] does not have satisfactory ana-
lytic properties, we choose a new form and refit the param

eter needed for the present work. X) = €2 U3 TC v uP(x) Tvo v dC(x
In this study we make use of a factorization of four-quark 7(¥)= eI CYU00 Iy v d ),
operators which cannot be extended to the treatment of had- (0] 7(x)| protor =\ yu () 7)
p 1

ronic couplings in nuclear medig24]. Recently, we have

shown[25] that the present knowledge of the |n—.med|utr_n where C is the charge conjugation operator, the,w(x) are
(1232 can constrain the unknown four-quark in-medium, q_quark fields labelled by colok,, is a structure parameter
condensates. In a future publicatid6] we demonstrate that andv(x) is a Dirac spinor. For coupling of the curredit to
the study of hadron_ic in-mediur_n coupli_ngs using a QCDy e proton, if one starts with"(p,q) of Eq. (1), for low q
sum rule method with three-point functions enables us tQnere is no justification for an OPE in the y variable. This

extend our program. ) was dicussed at length in the early three-point function treat-
In Sec. 1l we discuss how this method can be used for th‘?nent of the nucleons magnetic dipole momgRL but ig-

study of the pion-nucleon coupling, the parity-violating pion greq in the treatmerfit.9] of the pion coupling to nucleons
coupling to nucleons and how the gauge-invariant method,q the NA pionic coupling. To avoid this difficulty a two-

for calculating QED corrections in the QCD sum rule ,qine formulation of the QCD sum rule in an external elec-
method[27] can be used for determining the QED iS0Spiny o magnetic field was introducd@]. For an external current
violations of coupling constants. Conclusions and d|scu33|ogr the correlator

are given in Sec. IV.

r i 440ix-p Py
Il. COUPLING OF CURRENTS TO BARYONS: I (p) 'f d*e™ »(0[TL7(x) 7 (0)]]0)yr ©)
THREE-POINT VS TWO-POINT FORMULATION
is used. As can be seen from E@g) the microscopic evalu-

In this section we give a digcussiorj of the three-point Vsytign of IT'(p) can be done using the operator product ex-
two-point approach for hadronic couplings and show that byyansion, since the variable x is at short distance from the

introducing the space-time structure of the condensates ONSigin. This is done by an OPE of the quark propagator in the
can successfully use the sum rule method to derive new ®fBresence of the tha' current

pressions for the induced susceptibilities of the two-point

method. We also discuss the particular problem of the pion Iy — P
susceptibility, which is the main application of the present Sa(%) (0ITLat)a (0[O,
paper. =S, P T(x)+54NP(%), (4)

Although hadrons are complicated composite systems,
both in effective hadronic field theories and in the sum rulewhere SF’PT(X) is the quark propagator coupled perturba-
methods hadrons are represented by local field operatoryely to the current andsg'NP(x) is the nonperturbative
The coupling of a current' dy)=q (y)I'q(y) to hadronsa, quark propagator in the presence of the external curéént,
is studied in such field theories by the three-point function: (One should note that the external current should be taken to
beJ' ¢, wheregy is the value of the external field. In what
Lo follows, to simplify the notation, we will takebr= 1, which
Vga(p,q)=f dAXf dfyeX-Pemvd does not affect our results. For some manipulations, one will
. have to remember to put the external field back into the
X (0|T[ nﬁ(x)JF(y)na(O)ﬂO) (1) current, e.g., when taking the linear field limiThe quantity
S, ""(x) can be thought of as a nonlocal susceptibility; and
where the quantity,(x) is a field operator representing the it is essential to determine the space-time structure of this
hadrona. In treatments in which QCD and electroweak in- susceptibility to predict the coupling at higher momentum
teractions are explicit, as in the QCD sum rule method,the transfer, as we discuss below. For the two-point treatment at
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FIG. 2. Lowest dimension diagrams for evaluation of the two-
point function in an external field as given in BE@).

(d) (e) U]

FIG. 1. Diagrammatic representation of terms appearing in th
operator-product expansion of the two-point function in free spac
(a)—(c) and in an external fieldd)—(f).

lication of PCAC to the determination of the vacuum pion
usceptibility with the two-point method and an external
pion field gives[14]

low momentum transfer the OPE f&},"N"(x) is justified as 2 2

i i - i i Vi - ’ﬂ'm'ﬂ'

in the ordinary two-point function, giving x™0]:qq:|0)= , (10)
) v22my

SENP(0 = o (OG0 + s (0]:G - GL O} r
12 3x2 while from PCAC it is known that

e (5
2
Although the OPE can be justified and the sum rules can (0[:q(0)T'7q(0):|m(k))= ‘/gmw (11
easily be derived in this external field two-point method, q

there is a major problem: new parameters appear whose de- o _
termination must be carried out. For the new terms in thdrom Eqs.(8), (10), (11) itis seen that there is more than an
nonperturbative quark propagator in the exterdaturrent, ~order of magnitude discrepancy between the two-point

given in Eq.(5) and illustrated in Figs. 1e and 1f, one can external-field method and standard PCAC, singknf,~20.
write In fact the application of Eq(10) gives y,a=45 Ge\?,

while the result of the analysis of gy
(0]:qTq:[0)yr=—x"(0]:q.q:|0) (6)
x™a=1.88 GeV, (12
and

— P — with a= — (27)%(0|:q g:|0). The error in the value of"a is
(0[:qo-GI'q:[0)r=— xn(0]:q q:[0). (7)  estimated to be about 20%. The value of 45 &&/incon-
sistent with the sum rules for both the strong and parity-
The lowest-dimensional diagrams for the minOSCOpiC evaIUvio|ating Coup"ng constants, while the Va|uqﬂ7’a
ation of [1' (p) are shown in Fig. 2. Note that diagrams of =1 83 Ge\? is consistent with experiment for both the
Fig. 2b and 2c involve the susceptibilitigg and xy,, re-  strong and weak coupling. We derive this susceptibility in
spectively. These susceptibilities must be determined in orthe next section using our three-point method.
der to predict the coupling constant from the sum rules.
As an example of the difficulty let us consider the external

pion field with the current T=ig.q r3ysq (I "=ig,73Ys).
We define the local pion susceptibiliy™

B. QCD sum rule three-point method
for coupling at low momentum

Let us now return to the three-point function formulation,
<O|:ﬁwq:|o>w:_XW<O|:ﬁ:|O>| (8) Eqg. (1), which we write as

and nonlocal pion susceptibility

(01:q ()T "q(0):]0) ,=—x"H(x)(0|:qq:[0). (9 %
v}
The phenomenological function(k) in Eq. (9) represents X O@X

the entire OPE of Eq5). Note that H(0) 1.
A value for the pion susceptibility has been recently ex- @ (b)
tracted[17] in a study of strong and parity-violating-N

coupling constant, gyy. The following problem with the FIG. 3. Two- and four-quark diagrams corresponding to Egs.

application (?f PCAC(partial Conservat_ion of axial vector (15) and(16), respectively, for evaluating the the coupling constant
curren) to this problem was observed in R¢L7]: The ap- it the three-point function.
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. . VE(x,y) =V, y) + VI 49(x,y) + VI9(x,y) + VI8(x,y),

Vr(p,CI):J d4XJ d4ye|x.pe—ly~qvl"(x,y) ( y) ( y) ( y) ( Y) ( ()1)4)
where the four terms contain two-quark matrix elements
VI(x,y)=(0[T[ n(X)JF(Y)WO)HO) (13) only, four-quark, six-quark and eight-quark matrix elements,

respectively. Using the current given by EE), for which
we takel’ =g, ys for the pion current, we find for the two-
We write VI (x,y) as quark terms

VIZ(x,y) = —126%°%€” ¥ % 45y, SEX— V)T S5° (1) 7, ° THSH () y*C(SI (x)TCy"], (15
which corresponds to Fig. 3a. The four-quark terms are

VI4d(x,y) = —i2630%0"3¢"(0] 4, d°(x)d (y)T'd®(y)d® (0) y, 75| 0) TI S3 (x) y*C(SE' (x))TC "], (16)

where we only show the four-quark condensate term showflon g(y® has been fit to the experimental sea-quark distri-
in Fig. 3b, since it is the only term used in the present paperpution [23] using a three-point formulation of deep inelastic
We do not consider the six- or eight-quark condensates in thecattering in the scaling region. For the space-time structure

present work. for g(yz) we use
Note that Fig. 3b for the three-point formulation corre-
sponds to Figs. 2b and 2c plus the other terms in the OPE for 5 1
Sy™NP(x) of the two-point method. More generalf, " (x) ay9)= (14 <2y28)2
for the two-point method is given in the three-point method .
by = fo daf(a)efyzam',

sgC’FvNP(x):—if d*y(0[:q%(x) a%(y)T'q%(y)q° (0):|0) 4 2
17 fla)=—ae 2, (2D

in a linear external field approximation, where thg=tD  Thjs dipole form is physically reasonable and avoids the un-
limit has been taken. Note th"?lt in principle the space-im&yegiraple delta function in the Borel mass which is given by
structure, as well as the magnitude of the nonlocal susceptly 55ussian form. The Jung-Kisslinger monopole form is not

bility, can be determined from the expression EX/), and  gasistactory for the four-quark nonlocal condensate, but from
the ¢f dependence can be obtained by carrying out the Fouy,q range of best fits found in Reff23] we estimate that
rier transform in thex-variable. If we assume vacuum satu- x2=(0.15-0.2) Ge¥, corresponding to the quark conden-

ration for intermediate stat¢4] only the scalar condensates sate nonlocality of about 0.2 fm, obtained by equating the

contribute, and we obtain first moment of f@) for the dipole form with that of the
monopole form used in Reff23]. This range of values fot?
sgC'RNP(x)z]"(—i)f d4y<0|:?(y)q°(x):|0> is obtained by fits to the low-x sea-quark distributions com-
parable to those in Reff23]; and the narrowness of the range
is due to the sensitivity to this parameter.

. ~C’ e/, -
*(0]:a° (0)a%(y):[0). (18) Using the form of Eqs(19), (21) in Eq. (20) we obtain
In Eqg. (18) the nonlocal susceptibility is approximately given 7 2 e
by nonlocal condensates: G(x)=— 42 m 1— 2+A In A"+AATA
_ _ K"A(A+4) VAZH4AA | AZ+4A-A) |
(0:a(0)a(y):[0y=g(y*){0|:q(0)q(0):/0), (19 (22)
which gives with A= k?x?/23.
Let us apply this to the determination gf". From Eqs.
Sy N P(x)=T'G(x)({0]:q(0)q(0):[)/12), (9), (20), (22) we find (taking the x=0 limit) that
__ G(0a* 2a?
G(X)=(—i)J d*yg(y*)g((x—y)?). (20) X 8= 3% T 9
=(1.7-3.0) Ge\?, (23

The function gy?) must be chosen to give satisfactory ana-
lytic properties as well as consistency with experimentalin agreement with the valug™=1.88 Ge\f, found in Ref.
constraints. Recently, this unknown phenomenological funcf16] and discussed in the previous section. If we use the
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value y"a=1.88 GeV, we find thatxk’=0.19 Ge\f. Note  This expression can be readily derived from the results of
that although there is about a 20% error in the phenomendRef.[17] and the results of Sec. Il of the present paper. Since
logical value ofy™, the results are very sensitive ko this expression includes the entire operator product expres-
Finally we would like to point out that from Eq$20), sion there is no need to determine the higher-dimensional
(22) the space-time structure of the nonlocal vacuum suscesusceptibilities, such as the mixed susceptibility of Ef,
tibilities is given. This enables one to derive the current-which was a significant uncertainty in the calculation of Ref.
hadron vertices for low momentum transfer. The method caf16]. The main result, that the parity-violating:N coupling
be immediately extended to medium momentum transfer fogonstant,f .y, is much smaller than expected from quark
applications to form factors, hadronic interactions and sqnodels, is still valid, but the experimental value of the strong
forth, by carrying out the Fourier transform in the y-variable constant, gy, is not used. In other words one can predict

instead of taking the g0 limit. both the strong and weak pion-nucleon coupling.

lll. QCD SUM RULE THREE-POINT METHOD S ,
FOR PARITY AND ISOSPIN VIOLATIONS B. Isospin-violating pion-nucleon coupling

OF PION-NUCLEON VERTICES A new analysis of low-energy pion-nucleon scattering

The QCD sum rule determination of the weak parity- data _[28] that ha_\s shown_a large isos_pin violat_ion_s in the
violating and isospin violating pion-nucleon couplings is asticm-N amplitudes which are consistef9] with isos-
done by calculating Z and photon loop corrections to the PN violations ina-N coupling constants. The QCD sum rule
diagrams used for the strong coupling, some of which ar&@lculation with the three-point method is done as in the
shown in Fig. 3. By using a three-point formulation as de-calculation of the parity-violating coupling just discussed
scribed in the previous section one can carry out this prowith the replacement of { by the electromagnetic interac-
gram without introducing unknown new vacuum suscepti-tion and also including the effects of the current quark mass
bilities to the extent that the factorization of four quark differences and the isospin splitting of the u and d conden-
vacuum matrix elements is justified. We briefly describe thissates. With the development of a gauge-invariant theory for
procedure. electromagnetic corrections in the sum rule metf®d it is
now possible to carry out this calculation. The calculation is
quite complicated, however for the electromagnetic correc-
tions, which involve the three-loop diagrams resulting from

_ At the present time experiments have not detected parityphoton exchange insertions in the diagrams of Fig. 2. These
violations predicted from the one-pion exchange weak intergg|cylations are being carried out for the octet mass splittings
?ctlon. _Tnfbparlty-\;:olanr:lg ptlﬁn-nucleortl ((:jofupllng CorllSta”é'[?:O], however, and will be extended to the calculation of the

NN i e much smaller than expected from quark mod-__; ; it
eIsNT/vithgthe standard electroweak ?heory. In thqe sum ruIeW N isospin violations.
approach the parity-violating pion-nucleon coupling is deter-
mined by starting with/"(p,q) defined by Eq(13) with the
current J(y) used for J(y) and all Z loops included up to The three-point function method is usually avoided in
the desired order. Taklng the limit of massive gauge bOSOﬂQ@CD sum rule treatments of meson-hadron coupling at low
so that the weak interaction becomes a four-fermion interacmomentum transfer Q due to the fact that the OPE is valid
tion with an effective Hamiltonian only at high Q. There have been extensive previous studies

of the problem of treating long distance bilocal operators for
HW:&NMN electromagnetic coupling. In the present work we have
2v2 a shown that the three-point function method can be extended
to such low-Q processes by introducing nonlocal conden-
L 4 sates, whose parametrization has been shown in[R&fto
N#=qy*73 1—5(1+ T3)SIl? Ow—7vs/q. (24  be phenomenologically related to deep inelastic scattering
processes. The extension of the three-point method in this
fashion provides a convenient method for extending the
In this low-energy limit of the standard model it was shownevaluation of hadron coupling constants to high dimension
in Ref. [17] that the only nonvanishing weak contributions without encountering a divergent operator product expan-
are in the two spectator quarks, which are not interacting;jgn.
with the pion field. The lowest dimensional diagratagain We applied the three-point method to solve the outstand-
without gluon condensateare shown in Fig. 3. In the limit g problem of calculating the vacuum susceptibility for
of g*=0 we find for the three-point function pion-nucleon coupling, encountered in previous applications
of the two-point function to this problem. We find a vacuum
GE Sir? Owl.q (17 6 5 susceptibility of y"a=1.7-3.0 GeV, close to the value
T35, |3 Y|P In(=p9) found in Ref.[17].
We conclude that the three-point method with nonlocal
(25) condensates to represent long-distance effects is a viable ap-
proach for calculating low momentum-transfer processes in

A. Parity-violating pion-nucleon coupling

IV. CONCLUSIONS

V7(p,q=0)=

4G(p?)a?
+ WIO“ In(—p?)|.
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