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The renormalized quark Dyson-Schwinger equation is studied in the limit of the renormalized current heavy
quark massng— . We are particularly interested in the analytic pole structure of the heavy quark propagator
in the complex momentum plane. Approximations in which the quark-gluon vertex is modelled by either the
bare vertex or the Ball-ChiAnsatzand the Landau gauge gluon propagator takes either a Gaussian form or a
Gaussian form with an ultraviolet asymptotic tail are u§&0556-282(98)00303-9

PACS numbds): 12.38.Lg, 12.38.Aw, 12.39.Hg

I. INTRODUCTION HQET, non-perturbative self-dressing and the detailed ana-
Iytic structure of the heavy quark propagator are largely ig-
The solution of approximate Dyson-Schwinger equationqiored. It is important to know whether this is justified, or
(DSE) has proved to be an effective means for modellingwhether the successes of HQET are purely fortuitous. Sec-
quark propagators in hadronic physicd. Recent calcula- ondly, one has the hope that an accurate determination of the
tions within the genre of models which we shall refer to asheavy quark propagator will eventually prove useful for
the DSE technique include those of the light hadron specbuilding phenomenological models of heavy quark hadrons.
trum [2,3] and of electromagnetic form factors of the pion In Ref.[12] a preliminary attempt is made to calculate the
and kaon[4]. Although no rigorous proof exists, it is the spectrum of heavy quark-light antiquark mesons by using the
philosophy of the DSE technique that one possible signal o€ombination of rainbow DSE and ladder Bethe-Salpeter
confinement in QCD should be the absence of timelike polegquation(BSE). It is found that, within the limitations of the
in the quark propagatdb]. It has furthermore been conjec- model, the pole structure of the heavy quark propagator pre-
tured that the propagat&®(p) could be an entire function in vents solution of the meson BSE. This is clearly a shortcom-
the complexp? plane[6,7]. Such a scenario would, for in- ing of the approximations involved. In RdfL3] the heavy
stance, avoid certain unpleasant consequences which can giark DSE is examined from the point of view of the gauge
sult when modelling mesons via the Bethe-Salpeter equatiotechnique. This is essentially an improvement on the rainbow
which samples the quark propagator over a region of th@pproximation to the quark-gluon vertex which is designed
complex plane. to respect the Ward-Takahashi identity. An alternative ap-
Determining the analytic structure of fermion propagatorsproach, and one which we follow in this paper, is to replace
in QCD[8,9] or other confining theorigd0,11] by the direct  the bare verteXAnsatzwith the Ball-Chiu vertexAnsatZ 15].
solution of model DSEs is not easy. It appears that the pol&Ve shall see that in the heavy fermion limit the gauge tech-
or branch cut structure obtained in any particular model isnique and the Ball-Chiu vertex are equivalent.
heavily dependent on the approximations employed. In gen- Regarding the gluon propagator, our treatment differs
eral, two aspects of the quark DSE must be approximatedrom Ref.[13] in that it is principally numerical, enabling us
the quark-gluon vertex, and the gluon propagator. In thido concentrate on a more realistic class of model gluon
paper, we shall look at both these aspects within the heavgropagators. Specifically we study the simple Gaussgian
quark sector. In existing numerical studies in the light quarksatzemployed in Ref[12], designed to model the infrared
sector which produce propagators with conjugate singularienhanced behavior of the gluon propagator, and a model pro-
ties[8,9], the quark gluon vertex has usually been approxi-posed by Frank and RobertSR) [16] which includes both
mated by the bare vertgxhe so called rainbow approxima- an enhanced infrared behavior and the known asymptotic
tion). In Ref. [7], however, it was shown that an entire ultraviolet behavior. In order to deal with the FR propagator,
function propagator can be obtained if the vertex function ist has been necessary to formulate a properly renormalized
modelled by a more sophisticated form respecting the Wardversion of the heavy quark DSE of R¢1.2].
Takahashi identity. This suggests that it is worthwhile ex- In summary, our main finding is as follows: Improving
ploring the importance of accurately modelling the quark-the vertexAnsatzdoes little to improve the analytic structure
gluon vertex, as well as the gluon propagator, when studyingf the quark propagator. However, improving thesatzem-
the analytic structure of the quark propagator. ployed for the gluon propagator, particularly by including a
In a recent development, the DSE technique has been exealistic asymptotic ultraviolet tail, moves poles in the heavy
tended to the realm of heavy quarks2,13 in a way in- quark propagator to a less intrusive part of the complex mo-
spired by heavy quark effective theoffAQET) [14]. The  mentum plane. This portends well for future application of
purpose of this exercise was twofold. Firstly, if one acknowl-the heavy quark DSE technique.
edges the success of the DSE technique in the light quark The layout of the paper is as follows. In Sec. Il we sum-
sector, it is clear that the dynamics of confined particles isnarize the renormalized quark DSE and the approximations
driven by nonperturbative dynamical self-dressing. Inwe shall be employing for the quark-gluon vertex and gluon
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propagator. In Sec. Ill we summarize the heavy quark foridentityiT",(p,p) = aps (p) and Ward-Takahashi identity
malism and derive a renormalized DSE for the heavy quark(p— q)Ml"’u(p q)= S Y(p)—S 1(q), and free of kinematic
propagator. Numerical solutions to these equations are disingularities has been given by Ball and Chils]. It takes
cussed in Sec. IV. Conclusions are drawn and suggestionie form

for the direction of future work are given in Sec. V.

T .(p.a)=T5%p,a)+T,(p,q), (2.9

Il. THE QUARK DYSON-SCHWINGER EQUATION
where

Our starting point is the renormalized quark DER
(P+a),

1
Fr(pa)=5 LA T A ]y, + 2= 07) {[A( ?)

4g% (A
, ,A =7 Z’AZ =
21(pA)=Zy (w5 A%) — f (2m)* CAP)] M—i[B(pz)—B(qz)]]

(2.9

XD, (p—@) v, ST, (q,p), (2.

where we have used a Euclidean metric in which timelike

vectors satisfyp?= — pZxowsi<0, and for which{ Vi Yoh andI'! «(P.Q) is an otherW|se unconstrained piece satisfying
=26,,. Our aim is to solve the DSE for the renormalized the condmons p—a),.rI (p q)=0 andFT(p p)=0.

quark propagato8(p,u), which we write in the form We mention two well studied verteXnsaze falling
within this class. The first of these, introduced by Curtis and
1 Penningtor{17] to ensure multiplicative renormalizability in
S(p,p)= - s — quantum electrodynamics, is defined by setting the trans-
Ly pA(P?, 1) +B(p%,u%) verse piecd’}, equal to
= — : A(p?)—A(9?)
Zy(p* A% [iy-p+mo(A)]+3"(p,A) IeP(p,q)= ————— " [y,(p?>—?)
# 2d(p,q) .
(2.2
The unrenormalized self-energy is written
with
"(p,A)=iy-p[A'(p%,A%)—1]+B'(p%A?). (2.3
E (p ) Iy p[ (p ) ] (p ) ( ) (p _q2)2+[M2(p2)+M2(q2)2]2
. : d(p,q)= ~ , (219
If the renormalization scale is set such that p*+0q°
1 whereM =B/A.
s 2.4 Th d of these, d by Hdd4®], takes th
S(P)|p2-= 2 T pF (D) (2.9 o e second of these, proposed by Hdd®], takes the
it follows from Egs.(2.2) and (2.3 that renormalized and QA2 DA 2
bare quantities are related by '(p,q)= PZA(PY) —a-A(d") y
AL pz_qz 1%
2 A2 AT(2 A2
ZZ(/-'L vA ) 2—-A (/‘L ,A )a (25) A(pZ)_A(qZ)
+ T Y-PY.Y-Q
A(p?,u?)=1+A"(p? A%~ A’ (u?A?), (2.6
B(pz) B(a%)
B(p? u?)=mg(p?) +B'(p?, A?)~B'(u? A?). (2.7) gy (Pt vy ).
The set of equation@.1) and(2.5) to (2.7) together with (2.12

the “Abelian approximation”Z,=Z, can be solved numeri- It satisfies the ab iteri d theref t be of th
cally for the propagator function& and B once the renor- salisties the above criteria an eretore must be of the

malized quark-gluon vertex functiohi,,, the renormalized IO”U E%‘ (2,;.8)‘ II\/{un;]zek[lg]thals shown t?att_ the ':‘?ﬁ” vert-
gluon  propagator D,,, the renormalization point ex is identical to the spectral representation of the vertex

[«,mg(w)] and cutoffA are specified. The precise forms of ulsed (ijn. ths ???g]e technique, and this has in turn been em-
the quark-gluon vertex and gluon propagator are unknow'0Y€d IN RELLLI].

and must be modelled by appropri#&asaze We next sum-
marize theAnsaze employed in this paper.

Istrictly speaking, it is the Slavnov-Taylor identities, which in-
clude ghost contributions, and not the Ward-Takahashi identities
which are relevant to QCD. By using the Ball-Chiu vertex we are

The most general form of the quark-gluon vertex consis-effectively ignoring the ghost self-energy and ghost-quark scatter-
tent with Lorentz andCPT invariance, satisfying the Ward ing kernel. This is a commonly used approximat[dmh.

A. Quark-gluon vertex
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B. Gluon propagator Im p?
In a general covariant gauge, the gluon propagator take:
the form
k,Kk, k, Kk,
gzDW(k):(éﬂv— ﬁz A(K?) +g%¢ ﬁ“ , (213

where¢ is the gauge fixing parameter. Perhaps the simplest
Ansatzwhich has proved useful for modelling QCD is the
“infrared dominant” model[6,7]

Re p"’
3
Ar(K?) = 15 (2m)*p?54(K). (.14 /
In applications to hadronic physicg,is usually taken to be /%
/

of the order of 1 GeM20], which is the typical scale of
QCD. An obvious disadvantage of this model is that it ne-
glects completely any intermediate or ultraviolet behavior.
Qne can go some way towar.ds incorporating some interme- FIG. 1. The change of variablg®’—K used to represent the
d!ate e”efGY structure by using the computationally ConVeheavy quark propagator in the region of the bare fermion mass pole
nient Gaussian model p?=—m2. For the change of variables in the DSE to be valid, the
quark propagator must be analytic over the shaded region.

3 ,LL2 2
Ag(k?)= 15 (2m)* —z— e .

2.1
215 Ill. THE HEAVY QUARK LIMIT

We note that the infrared dominant gluon modsgk, to- A. Heavy quark propagator

gether with the minimal Ball-Chiu vertexI',,(p,q) In the absolute limit of heavy renormalized quark masses,

=F/B£(p,q) defines precisely the light quark model consid- mg(u?)—o, the dressed quark propagator E2}2) is domi-

ered in Ref[7], whereas the Gaussian mode} has been nated by the bare forrs =iy p+mg. However it is im-

used in our earlier rainbow approximation studies of heavyportant to isolate from the full inverse propagator finite order

quarks[12]. Below we shall explore the effect on the ana- self-energy corrections to the bare inverse propagator which

lytic structure of the heavy quark propagator of combiningdrive confining and remnant chiral symmetry breaking ef-

either Az or Ag with the Ball-Chiu vertex. fects. To this end we write the momentum variables occur-
A more realistic model gluon propagator which goesring in the DSE Eq(2.1) as

some way toward modelling the asymptotically free ultravio-

let behavior of QCO(neglecting logarithmic correctionbas p.=img(u?)v,+K,, d,=img(u?v,+k,, (3.0

been proposed by Frank and Robgi6]. It takes the form .
where, for convenience, we take=(0,1), sok-v=Kk,. We

1_ek2/<4mf) then write the renormalized quark propagator functions as
Arr(k®)=47d 4772mt264(k)+—k2— , 3 (K.
K
A(pAp?)=1+ 2~ 3.2
(2.16 (p% u) meld) (3.2

whered = 12/(33-2N;), N;=3 is the number of light quark 2 o ’
flavors, andn,~0.69 GeV is a parameter fitted to a range of B(p%, %) =mr(n?) + Zg(K, k), 83

calculated pion observables. In our numerical calculationsynere we have defined the independent momentum variable
we find it more convenient to consider a Gaussian smeared

version of the FR propagator given by p2+ mﬁ k2
K=—; =Kgt+ 57—, (3.9
2 K2/(am2) 2img 2img
2 s M 2, 2 17€ m
Agrr(k®) =(2m) 22 © +4md K : and renormalization point
(2.1 24 me
This will enable comparisons to be made with the pure = 2img 3.9

Gaussian modeh .

In the next section we consider the heavy quark limit ofin the complexK plane. The change of variabfg—K in-
the quark Dyson-Schwinger equation. Our earlier analysis ofluced by the transformation E(.4) is illustrated in Fig. 1.
this limit [12] employed the heavily damped gluon propaga-In general, when working to zeroth order imi/, one can
tor Ag, and so was free from ultraviolet divergences. Inuse the approximatioK =k, (an approximation which was
order to deal with a more realistic model, such as @dl7), used in Ref.[12]). An exception to this rule, relevant to
it is necessary to develop a properly renormalized version ofnodels such as E@2.17) for which the gluon propagator is
the formalism. not heavily ultraviolet damped, is in the denominator of the
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heavy quark propagator in the integrand in the quark DSE. 1 (A dig
This point will become clearer at the end of Sec. Il B. A'(p%A%)=1+ 3p2 J 2m)? [P'q
From Egs.(2.2), (3.2 and(3.3) we have

p-(pP—a)g-(p—a)
_ltye 1 L MR
)= K s Ko Clmgr GO ,
A(g9)
where we have defined the heavy quark self-energy XAL(p—a)*] qPAZ+ B2’ (3.12
2(l<1K):§’B(|<1K)_EA(}<!K) (37) B(qz)

(N2 A2 A qu 2
BIPTAD =42, | oz AlP— 0] Gzpz gz
We find in general that the DSE leads to a single integral

equation for the complex valued functi@{K, ). The form (313
given by Eq.(3.6) represents the heavy quark propagatorSubstituting
in the dominant region near the bare propagator mass
pole p?=—ma. Obtaining an integral equation fa(K) A(9?) 1 1 o 1
involves the change of integrationfd*q— [d*k’ A+ B2 2meiK +3(K') m3)’
= [ .dk,[od|k||k|? induced by the change of variable Eq. (3.19
(3.1). For this change of integration to be valid, the propa-
gator, and hence the functiodsq?)/[q%A(q?)%+B(q%)?] B(9%) 1 1 1
and B(g%)/[g°A(g%)?+B(g?)?], must be analytic over the PAQDZ+B(qD)2 2K +3(K') +0 M)’
shaded region in Fig. 1, (3.19
Im(g?)12 into Egs.(3.12 and(3.13 gives
Re(g?)>—mi+ %. (3.8 | )
- A an 1= 22 [ 4 [1+2(k4_k"‘)2}
m A —1]=— — —_—
Equivalently, the function defined by RUAP 3 (2m)* (k—k')?
XA[(k—k")%] -
O'Q(K,K)Zm, (3.9 iK'+2(K’, k)
1
must be analytic over the shaded regionKri0. +0 m_) (3.16
R

The confinement criterion th&(p) should be free from
timelike poles on the negative repf axis translates in the and
heavy quark case to a requirement thaf should be free
from poles on the imaginang axis. The stronger conjecture (02 A2 A dék’ K K')?2 1
[72], that the qgark propagator should be an entire fungtlon of B'(P% )—Zzlf (2m)4 A[( )71 iK' +3(K',x)
p¢ translates in the heavy quark formalism to a conjecture
that o should be an entire function &.

From Eq.(3.6), we have that the renormalization condi-
tion Eq.(2.4) is equivalent to

+0

1
—) (3.17

Mg

From Egs.(2.6), (2.7), (3.2), (3.3) and(3.7) we have
1+vy, 1

SP == | (310 3(K, k) =[B'(p?,A%) —mgA (p2,A%) ] [ p2— 7],
K=« (3.18
to zeroth order in Mhg. Typically we choosex to be on the  which gives
negative imaginanK axis, as the heavy quark propagator
asymptotes to the bare propagatorkas- —i«, as can be s A4 A dk [ k—K?
seen from Fig. 1. (Kor)= 3 2m)? | (k=K')2
B. Heavy quark DSE XA[(k—k')z] —(K—k)|,

To illustrate the derivation of the renormalized heavy KT +2(K0)
quark DSE, we choose Landau gadge=0 in Eq. (2.13] (3.19
and, for the time being, work with the rainbow or bare vertex

approximation whereK on the left hand side is related kounder the inte-

grand via Eq(3.4), and a similar definition exists relating’

I.(p,a)=1v,- (31) andk’. Here we have assumed that E¢.5 and (3.1
imply Z;=1+0(1/mg).
Using Dirac trace identities to project out from E@2.1) to As noted aboveK andk, are interchangeable to leading

(2.3 a pair of coupled integral equations gives order, except where they occur in the denominator of the
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heavy fermion propagator[1K'+3(K’)] in the integrand 1
of Eqg. (3.19. This is because, for any gluon propagator
with a realistic asymptotic UV behavior, all powers lof
must be retained in the denominator to maintain the same
degree of divergence in the heavy fermion DSE as in thehat is, the shift is that required to ensure that the new heavy
original equation(2.1). With this observation, and choosing quark propagator passes through the renormalization point
k.= (0,K) and the renormalization poittf,x), we arrive at o q(knew:knew =1/ikney, Referring to Fig. 1 we see that this

:UQ(Knew_iam-Kold)u (3.29

I Knew

the leading order heavy quark DSE is equivalent to a shift in the position of the origin of tKe
4 rr diK 1 plane along thg? axis corresponding to changimg by an
S(K,k)= = : amountom.
’ 3 (2m)* ik, +k'2/(2mg) + 2 (K} , &) One can also demonstrate that the mass differences be

tween any two heavy quark-light antiquark meson states cal-
culated from the Bethe-Salpeter formalism set out in Ref.
[12] is independent of the renormalization point.

k/ZA K_k/2 k/2
[| EALK— k2K )

(K—kjy)2+k'|?
(3.20

We show in the Appendix that, with the smeared FR gluon
propagatorAnsatzEq. (2.17), and assuming a hierarchy of  our main concern in this paper is to compare how the
scales analytic structure of the heavy quark propagator solutions is
affected by the approximations employed both for the quark-
me, |KI, [« <mg<A, (329 gluon vertex and the gluon propagator. In an earlier work
[12] an attempt was made to study the heavy quark-light
antiquark meson spectrum using a combination of rainbow
DSE and ladder BSE. It was found that, if a simple Gaussian
Ansatzis used for the gluon propagator, complex conjugate
, (3.22 poles occur in the heavy quark propagator which prevent
solution of the meson BSE. Below we systematically explore
asmg— . With the more severely truncated Gaussian gluorfh€ movement of the poles as the bare vertex of the rainbow
propagator Eq'(215)’ the renormalization poink can be apprOX_Imatlon IS replaced by a Ball-Chiu vertex, and as the
taken to—ic and thek’?2/(2mg) term in the denominator of Gaussian gluon propagator is replaced by the more realistic
the integrand ignored with impunity. Frank and Roberts propagator.

IV. RESULTS

the integral in Eq.(3.20 is independent of the ultraviolet
cutoff A, and the heavy quark self-energy behaves like

. Mg
E(K,K)NZId(K—K)m(E

C. Choice of renormalization point A. Gaussian gluon propagator

At the end of the day, physical quantities must be insen-
sitive to the choice of renormalization poikt In this section
we note that the freedom to choose the renormalization point As noted in the previous section, if the gluon propagator
is equivalent to the notion of a “residual mass” in HQET EQ. (2.19 is used, we may set the renormalization point

1. Rainbow approximation

[21,14, that is, the notion that to zeroth order inmfy, ~ =—i% and ignore thek'?/(2mg) term in Eq.(3.20. Fur-
physical quantities computed in HQET do not depend on théhermore, there is no need to distinguish between the inde-
choice ofmg. pendent momentum variablés andk,. With these simpli-

After formally carrying out the spatial momentum inte- fications the Landau gauge, rainbow heavy quark DSE
gration in Eq.(3.20, one obtains an equation generically of becomes

the form
S (k)= 4 d*’ |k=k'|* A((k—k")?) @1
E(K,K)ZW—IK Y3 ) @2m* (k=K)? ikj+3(ky) '
:J dK'[T(K=K")=T(k=K")Joo(K', k), Choosing the infrared dominant gluon propagator @ql4),
o the DSE reduces to an algebraic equation with solution
(3.23
for some kernell, and withoq defined by Eq(3.9). It is 1 _ 3u’ A V3u
possible to show from this generic form that the effect of > —ikgt 2 kg if 0$k4<_2 :
making a change of renormalization pPoOiRt — Kpeyw IS S(ky) =1 . 5
equivalent to a shift of the quark propagator solution along r kot K2 3L T V3pu
the imaginaryK axis: 2 4 44 a2

4.2
O'Q(K,Knew):(TQ(K_i(sm,K0|d), (324)

where ém is the solution to or, using the definition{3.9
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8 3u’ V3 z iV
ol ik k2] ifosk,<E, F(z)ze’zzj et VT o2 erf—iz), (4.9
ko 3u 4 2 0 2
OolKa)= : 2
iz ( —Kgt /ki_ 3L) if k= @ is Dawson'’s integral. We note that this solution is an entire
3u 4 2 function ofk,, which, as pointed out earlier, is a desirable

(4.3 feature of a quark propagator. This comes as no surprise, as

) ] ) it is simply the heavy quark limit of the model considered in

Alternatively, choosing the Gaussian gluon propagatoiRet 7], in which it was demonstrated that the combination

Eq.(2.19 and carrying out thel°k integration, we obtainthe ot Ba|I-Chiu vertex and infrared dominant gluon propagator

integral equatiori22] leads to an entire function propagator for all values of the
bare current quark mass.

w? o 1 It is of interest to determine to what extent this analytic

2(ky)= m f_xdk4 ik, +3 (k) structure is a feature of the Ball-Chiu vertex, and to what

extent it is a feature of the infrared dominant gluon propaga-

a Y tor. If the infrared dominant propagator is replaced by the
x4 ol E—(kzl—ké’l)2 e (kamky) T Gaussian smeared form E(R.15, we obtain the integral
equation
k,—k, 2 -
+ kK2 en‘c(| 4\/_4|)], (4.9 z(kﬂr):—’u f dky ———=— !
a 202w )= ik, +2(kg)

where erfz=1—erfz is the complementary error function. a 'y
This equation can be solved numerically. X i \a 5—(k4—kﬁ)2 e (kamky)a

2. Ball-Chiu vertex

- | s [ Tka=ky
If any of the minimal Ball-ChiuAnsatzEq. (2.9), the + |k, —ky|® erf 7
Curtis-PenningtornsatzEgs.(2.8) and(2.10), or the Haeri @

Ansatqu. (2.12) is used in place of the bare vertex,. tqgether 3 (kg)— 3 (K})
with the Landau gauge gluon propagator, we obtain in place —, 4.9
of Eqg. (4.1) the equation i(ka—ky)
4 d%’ |[k—K'|2 A((k—Kk')?) which can be solved numerically.
E Ky)=75 [ 7 ’
(k=3 (2m)* (k—k')? iky+3(ky) 3. Numerical results: Gaussian gluon propagator
3 (kg)—3(k}) For the purpose of determining the analytic structure of
[ W} (4.5  the heavy fermion propagator obtained from the DSE with
1(ka—ka) the Gaussian gluon propagator Eg.15), it is sufficient to

. . - . look at the one parameter family of models obtained by scal-
It is interesting to note that, within the set of vertBrsdze ing either « or « to unity. We choose to scalg to unity

we have considered, the heavy quark propagator is insensjhich amounts to working with a set of dimensionless quan-

tive to the transverse part of the vertex. This is not difficult tojjjes

understand for the Curtis-Pennington vertex, in which the

transverse part is heavily damped by the presence of the Q4:k4/%

factor M*~m* in the denominatod(p,q). However, in the

case of the Haeri vertex there is no such obvious mechanisnthis choice enables us to recover the infrared dominant

and one is led to question whether the heavy quark propaga@nodel in the limita— 0.

tor may be insensitive to a broad classAofsaze satisfying In Figs. 2 and 3 we plot the heavy quark self-energy

the criteria specified above E.8). 3, (k,) as a function of reak, obtained from the bare vertex
Taking the gluon propagator to be the infrared dominanpsg Eq.(4.4) and the Ball-Chiu vertex DSE Ed4.9) for

form Eq. (2.14), gives the differential equation a=1, 2 and 3. These results are obtained by iterating from

) an initial guess and using a Simpson'’s rule quadrature. We
S(ky) = 3Lik In[ik,+3 (Kq)1, (4.6) find that the derivativelike ter[ns in E¢4.9 prevent a nu-
161 dk, merical solution for values of less than 1, as numerical

. . - noise in the function values becomes unstable with respect to
which, together with the boundary conditiery(ks) —0 as  jteration at small values of,. This problem is a general

k4— —ic, admits the solution feature of numerical treatments of DSEs with Ball-Chiu-like
52 vertices. Also plotted are the=0 analytic results Eqg4.2)
oq(ks)=BL\me P X+ 2iF (— Bky)], (47 and(4.7). In all cases the self-energy is characterized by a

real part which peaks at zero and an imaginary part which
whereoq is defined by(3.9), 8=2v2/uv3 and peaks near the typical scale of the mollgt . The self-
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Re/lm (k)
Re/lm X(k,,)

0.0 0.5 1.0 1.5 2.0

FIG. 2. The heavy quark self-enerd(k,), from the DSE in FIG. 3. The same as Fig. 2, except with the Ball-Chiu quark-
Landau gauge with a bare quark-gluon vertex and Gaussian gluogiuon vertex.
propagator with parameterg:=1 anda=0 (solid curve, 1 (long
dashey 2 (short dashesand 3(dotted curve The upper curves are
Re X, and the lower curves Irx.

extrapolation for the Ball-Chiu vertex at=1, again because
of the iterative instability problem associated with the de-
rivativelike term in Eq.(4.9).
) . We also list in Table | the results of using the model
energy for negative re&l, can be obtained from these results gyon propagator
using the reflection property (—kj) == (ks)*. 5 5 5

To solve for the heavy quark propagator away from the 9°D (k) =6,,A6(K%), (419
realk, axis we shift the contour of integration into thg COM- \yhereAg is given by Eq.(2.15. Forms such as Eq4.11)
plex plane parallel to the re#l, axis and again solve itera- g, frequently used in phenomenological modelligge for
tively. We note that, to determin®(k,) for complex argu-  jnstance Ref[2]) and are sometimes referred to as propaga-
ments, it is necessary to move the contour of integration t@ors in a “Feynman-like gauge,” though of course they are
pass through the poirk,. This is because the radial part of generally not of the form of Eq(2.13. The sole advantage
the d°k’ integration, carried out in going from E¢4.1) to  of the Feynman-like gauge is that it leads to considerably
Eq. (4.4) or from Eq.(4.5) to Eq.(4.9), creates a pinch sin- simplified calculations. In our case it is possible to locate
gularity atk,=k, in the error function term in Eq4.4) or  poles more accurately because there is no pinch singularity
Eq. (4.9. requiring the contour of integration to pass through the point

We have carried out a search for poles in the propagatdn question. Once the propagator has been solved on the real
function o(k,) for a range of values ok for both the bare k, axis, the value of the propagator can be calculated at any
and Ball-Chiu vertex. Our results are listed in Table I. In all point in the complex plane by integrating once along the real
cases we find that the only observed poles occur fokJm axis. Nevertheless, we have also repeated our pole calcula-
>0, and thato dies away to small values and is free from tions by shifting the contour and extrapolating as in the Lan-
singularities over that part of the shaded region in Fig. 1dau gauge case as a check on the consistency of the two
accessible to our computer program. Of course we are unabtaethods and find that they agree to within the accuracy
to pass the contour of numerical integration through the polgjiven in Table | of the corresponding Landau gauge results.
itself, and these results are attained by extrapolation frorA Feynman-like gauge propagator was also used in [R&f.
results of contours which we gradually moved deeper intadealing with the ladder Bethe-Salpeter equation for the
the complex plane. We were unable to obtain a reasonableeavy quark-light antiquark system. There it was demon-

TABLE I. Positionk,/u of poles in the heavy quark propagator closest to the kgalxis, using the
Gaussian gluon propagatdnsatzA ;. Numerical instabilities prevent an accurate location of the pole in the
case indicated by a question mark.

Landau gauge Feynman-like gauge
a=al u? bare vertex BC vertex bare vertex BC vertex
0.5 +0.510+0.415 ? +0.5466t+0.5109 ?
1 +0.378+0.508 ? +0.3383+0.6758 0.4429

2 0.466 0.31 0.3844 0.3130
3 0.307 0.252 0.2880 0.2554
4 0.251 0.219 0.2408 0.2210
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strated that the model with bare quark gluon vertex andf the bare vertex is used. In a properly formulated gauge
Gaussian Feynman-like gauge gluon propagator had no sgevariant calculation, the position of any propagator mass
lutions because of poles in the heavy and light quark propapole should be independent of the gauge fixing procedure
gators. Ideally, one would like improvements in the DSE[23]. While we certainly do not claim that that our treatment
approximations to move the poles further from the real is gauge covariant, it is amusing to note that replacing the
axis to avoid the region of thie, plane sampled by a Bethe- bare vertex by the Ball-Chiu vertgand Feynman gauge by
Salpeter calculation. the computationally convenient Feynman-like gauge-
From Table | we conclude that simply replacing the barepears to go some way towards satisfying this requirement.
vertex by the Ball-Chiu vertex in itself does nothing to im-
prove the pole structure of the heavy quark propagator, either B. Frank and Roberts gluon propagator

for the Landau gauge gluon propagator or the Feynman-like We now return to the renormalized DSE E8.20 with

gluon propagator. In particular we find that, as the Gaussia
width « increases, a mass pole pole moves in along th%e gluon propagatah set equal.tp the smeared 5‘3‘35“2
g. (2.17. For numerical simplicity we shall restrict our-

imaginaryk, axis. A pole on the imaginary axis indicates . S =
that the fermion can propagate as a free particle, and th%elves to the rainbow approximatidi)(p,q)= 7, . We set

position on the positive imaginary axis gives the contribution K=X+iY, «k=in. (4.12
to the quark mass from the dynamical self-dressing. For the
bare vertex, the pole splits into conjugate pairs either side oAssuming the contour of integration can be deformed to pass
the imaginary axis ag decreases. In this instance the quarkthrough k,=K for the integral of the first term in chain
becomes a confined particle. Numerical difficulties describegyrackets in Eq.(3.20, and throughk,= « for the second
above prevented us from confirming that the same situatiofarm we further set
occurs in the case of the Ball-Chiu vertex. As>0 we must
recover the solution Eg4.7), which is an entire function ky=x+iY and k,=x+inz, (4.13
with an essential singularity at infinity.

We see from Table | that, when poles occur, their positiorrespectively in each of these two terms. We also make the
remains almost unchanged in going from Landau toreplacemenk’?/(2mg)— (x2+|k’|?)/(2mg) without affect-
Feynman-like gauge if the Ball-Chiu vertex is used, but noting 2, to leading order. This gives

- de d3k’ [ 1 k|2
(

!
E(X+'Y"”):§f 2m)° | ix—Y+ O+ K D) (2mp) + S (x+1Y) (x—X)2+|k’

e

E AL(x=X)?+[k'|?]

1 |kr|2
Cix— p+ OCH K D) (2mg) + 3 (x+ip) x2+[K']|

5 A[X2+|K'|2]}. (4.14
For the purpose of carrying out the numerics, it is convenient to change to the polar coordiratesse, |K'|
=r sin ¢, giving finally

1 r2 sirf ¢
ir cos¢—Y+r2/(2mg)+3(r cos¢p+iY) r’—2Xr cog ¢+ X?

S(X4iY,ig)= % J:er;d¢r3 Sir? ¢[

1

2_ 2y _
X A(r"=2Xr cos ¢+ X% ir cosp—n+r2/(2mg)+3(r cos¢+in)

Sir? ¢pA(r?) 1. (4.15

ThIS equation iS firSt SOIVed numerica”y along the Iine Gaussian propagataxe with the parameter ChOiCé:O.S
Im K=17, (i.e. Y=17), and the functior, along this line is  results in a pair of conjugate poles in the heavy quark propa-
stored for subsequent calculations at arbitréry gator. The heavy quark mass is setg=5.0 GeV.

In Fig. 4 we plot the modulugro(K)| of the heavy quark
propagator for the full Gaussian FR propagakesrg and in

We have numerically solved E¢4.19 over a region of  Fig. 5 plot the same quantity using only the Gaussian part of
the complexK plane with the smeared FR gluon propagator ; with the parameters otherwise unchanged. Both calcula-
Agrr. Our parameter choices ang=0.69 GeV, in agree- tions have been done using the renormalization paint
ment with Ref.[16], and a=16mZad/3=0.5643 (GeV} =—1.0 GeV, and to clarify the comparison the same region
corresponding tar=0.5. The choice of: is designed so that of theK plane is displayed in both plots. The calculation of
a comparison can be made between the full FR propagatarg(K) involves a shift of integration path to a contour par-
and the Gaussian propagator E2.15 obtained by keeping allel to the real axis passing through the pdintDeforming
only the first term in Eq(2.17). From Table | we know that the contour to include points behind the pole is a numerically

1. Numerical results: Frank and Roberts propagator
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tail is included in the gluon propagator. Since it is the prox-
imity of the pole to the real axis which prevented a solution
to BSE in our earlier studies, this movement of the pole
portends well for future possible studies of heavy quark me-
sons if careful attention is paid to the asymptotic ultraviolet
behavior of the gluon propagator.

However, a note of caution is in order. A different choice
of renormalization point would result in the plots in Figs. 4
and 5 shifting by different amounts respectively along the
imaginary axis, ensuring that both plots pass through the
L same pointog(«)=1/ix. Consequently, the actual amount

RBELIRLLL LR : by which the pole moves away from the rdalaxis as a

; result of adding an asymptotic tail to the gluon propagator is
an artefact of the choice of renormalization point, though the
movement will always be away from the real axis. Of course
only by carrying though the BSE calculation completely can
one say for certain whether bound state meson solutions can
be obtained.

Re K (GeV)

FIG. 4. The modulu$oq(K)| of the heavy quark propagator in V. CONCLUSIONS AND OUTLOOK

the complexK plane obtained by solving the heavy quark DSE in  \y/e have explored the analytic structure of heavy quark
rainbow approximation with a Gaussian smeared Frank and ROberﬁropagators following a recently proposed formalism which
AnsatzA e for the gluon propagator. Input parameter values arey,, q,\q jdeas both from the DSE technique and HQET. It is
given in the text. our belief that, if the successes of HQET are to be properly
] ] o ) understood, we must first understand how the nonperturba-
tedious exercise which is unlikely to enhance our underyje dynamics of QCD affect the heavy quark propagator.
standing, so no results are given for the part of khglane  \yithin the light quark sector the analytic structure of the
behind the pole in Fig. 5. _ quark propagator is perhaps best understood in terms of
In the process of carrying out our computations, we havenadel Dyson-Schwinger equations. It is therefore a worth-
observed that the shift property resulting from changes ofyhile exercise to extend the DSE technique to the heavy
renormalization point, namely E¢B.24), is indeed respected quark limit.
by our numerical solutions. In fact, the full plotin Fig. 4was  Tne initial attempt in this directiofil2] failed essentially
pieced together by altering the renormalization point to 0byecause the approximations used led to spurious propagator
tain sol_utions in s_trips of the complex plane parallel to thepoles which prevented solution of the bound state Bethe-
real axis, and using Eq3.29 to match solutions where ggipeter equations. Two approximations were involved:
strips overlapped. modelling of the quark-gluon vertex and of the gluon propa-
We note a clear movement of the propagator pole furthegaior, We have focused on each of these aspects in turn in
away from the reaK axis when the asymptotic ultraviolet g paper. In order to deal with an improvédsatzfor the
gluon propagator with a realistic asymptotic ultraviolet be-
havior, it has been necessary to formulate a properly renor-
malized version of the heavy quark DSE technique proposed
in Ref.[12]. As an interesting corollary to our formalism we
observe that the freedom to choose the renormalization point
is tantamount to the freedom in zeroth order HQET to
choose the heavy quark mass up to a residual mass.

.',"’
1]
eseeanitl . . . .
5 / eadigi - .4 We have first examined the effect of replacing the bare
LR RRILLLE R H i H
‘ SN s e, /| vertex with Ansdze based on the Ball-Chiu verteKl5],
4 """'""i"'?"&n"'.'#""#&“s\\
LRI '.::'1:.'::"".' . . . . . . .
A e R e which is primarily designed to satisfy the Ward-Takahashi
v, SR S S S SSNeS S, H - e . ..
B S SN S e 1 identity. Specifically, we have considered the minimal Ball-
G b g S ST ey : ; . ;
R Chiu vertex and two variants: that proposed by Curtis and
R R R R .
0l R O R K A AT 0.3 Pennington[17] and that proposed by Hadi8]. The two
B O S S S S SSSvasss: 7 . . .. . .
0 R L s K (GeV) variants differ from the minimal vertex by the inclusion of
R Ry 0 1 e i i
0. R e extra transverse components. We find that, to zeroth order in
R IR the inverse of the heavy quark mass, the heavy quark propa-
RS, . . .. . . .
! N s /A gator is insensitive to which of the three aboiasaze is
Re K (GeV LA i ; i
(GeV) 1.5 used. One is led to question to what extent transverse addi-
-1 tions to the minimal Ball-Chiu vertex can be ignored in de-

termining the leading order heavy quark propagator. If they

FIG. 5. The same as Fig. 4, except with the gluon propagatoean be ignored in general there are immediate benefits in
Ansatzreplaced by only its Gaussian paXt;, and all parameter using the heavy fermion limit as a test-case for studies of
values otherwise unchanged. confining field theories.
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In our numerical calculations we began with the LandauWhether propagator poles obtained in this way are an arte-
gauge form of the model Gaussian gluon propagAtgr Eq.  fact of the approximations used or whether they are a genu-
(2.15, which was employedtogether with the bare vertgx ine property of quark propagators has been an open question
in previous studie§12]. Unfortunately, we find no improve- for some time[1,10].2 It is possible that the heavy fermion
ment in the propagator pole structure in going from the bardimit may help to shed some light on this problem by devel-
vertex to the Ball-Chiu vertex while maintaining a Gaussianoping a Bethe-Salpeter formalism for heavy quarkonium
gluon propagator. That is to say, timelike mass poles indicatstates. It is well known that the nonrelativistic limit of the
ing nonconfinement, or conjugate poles which are likely toBethe-Salpeter equation for a heavy fermion-heavy antifer-
interfere with the successful solution to bound state probmion bound state can be written in the form of a Sclimger
lems, are not removed simply by improving the quark gluonequation[25]. The derivation typically assumes physical
vertex Ansatzalone. However, in the limit in which the mass poles in the fermion propagators whose residues con-
width of the Gaussian gluon propagator is taken to Zéve tribute to the resulting Schdinger equation. An analogous
“infrared dominant model’}, we do obtain an entire function derivation for the case of propagator poles which have
heavy quark propagator, free from singularities except amoved off the timelike momentum axis as a result of a con-
essential singularity at infinity. This is consistent with thefining gluon propagator may help both with interpretation of
equivalent finite quark mass calculatipfl, and may provide quark propagator poles and with understanding the success
a useful propagator for phenomenological modelling pur-of heavy quark potential models.
poses.

We conclude then that it is most likely the remaining
approximation, namely the Gaussian model gluon propaga- ACKNOWLEDGMENT
tqr, which is.responsible for the poor analytic structure Pre-  The author is grateful to C. D. Roberts and P. Maris for
V|ou§Iy _obtamed for the quark propagator. To explore thIShe|pfu| discussions.
possibility, we have replaced the simple Gaussian gluon
propagatorAnsatzof Ref. [12] by a Gaussian smeared ver-
sion of the more sophisticated Frank and RobArtsatzA . APPENDIX: CONVERGENCE OF THE HEAVY
given by Eq.(2.16. In this case, convergence of the integral QUARK DSE

in the DSE which is lost by naively retaining only the lowest Consider the heavy quark DSE E€.20. and suppose

order of the Ithg expansion of the quark propagator must be .
restored by judiciously including at least the spatially depenwe assume for the gluon propagatensatzthe asymptotic

dentO(1/mg) part: ultraviolet behavior
R .

1 ) 41%d
+0O(mg 7). A(ko)~

k2
(5.9

S _1+y4
(p)= 2 ik4+|k|2/2mR+E(k4)

for k?>m?, (A1)

wherem, is a scale parameter typically of the order of 1

The renormalized current quark masg then becomes an L . L
ultraviolet regulator, and in the case of the FR propagator th((a;ev' This is the behavior exhibited by the smearedAiR

lowest order contribution to the mass expansion of the heavsatZEq' (2.17). We demonstrate here that the right hand side

quark self-energy behaves asrggmy), wherem, delineates gf Eq. (3.2_@ is tr:e finite difference of two logarithmically
the scale at which the asymptotic ultraviolet behavior of the ivergent '.“teg.ra S .

. We begin with the change of variables
FR propagator sets in.

Our numerical solutions of the heavy quark DSE show a
clear movement of the offensive propagator poles away from ky=r cos¢, |k'|=r sing, (A2)
that part of the complex momentum plane likely to be
sampled by a Bethe-Salpeter calculation of heavy quark me-
son states. However we caution that the amount by which th@
poles shift is, strictly speaking, dependent on the choice of
renormalization point. Without carrying through the Bethe- A, ) St
Salpeter analysis one cannot say for sure that the problem is J d’k :47Tf dk4J dlk’[[k’
solved. A further study of the BSE for heavy mesons is ex- A
pected to be the focus of future work. B T

Our work has also thrown up a couple of other interesting _4Wf0 drfo dgr® sir® ¢. (A3)
guestions worthy of attention. First, it should be possible to
check directly to what extent the propagator pole structure is =~
invariant with respect to the choice of gauge fixing parametef Nis gives
¢ As the positions of propagator poles should be gauge in-
dependen{23], this provides a straightforward measure of
the ability of a particular vertensatzto respect gauge co- 2 an interesting recent development, McKay and Mundzs§
variance of the model. have examined the analytic structure of quark propagators when an

Secondly, one is led to question the meaning of propagaextra constraint that solutions of the DSE should be Fourier trans-
tor poles obtained from a Euclidean DSE formalism.formable is imposed.

nd hence
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1 A T
E(K,K)Zﬁ JO dl’fo d(f)
rosin* ¢
T cos ¢+r2/(2mg)+3(r cos ¢)

A(K?—2Kr cos¢+r?)
K2?—2Kr cos¢+r?

—(K—«k)]|.

(Ad)

Implicit in this equation is a hierarchy of scales given by Eq.
(3.22). Simply counting powers af in the integrand, we see

that each of the two terms diverges as

A dr
me - MR In A (A5)
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Neglecting (r cos¢) in Eq. (A4) for larger, we can ap-
proximate the propagator contribution to the integrand by

1 B i cos¢—r/2mg
ir cosg+r2/(2mg)  r(coS ¢p+r2ama)’

(A7)

Then, taking into account the hierarct8.21), the contribu-
tion to the integrand for>m; is approximately

On the other hand consider the difference of the two

terms. For >m; the part in square brackets is

[ 47°d
—(K—«)

(K?—2Kr cos¢+r?)?

4(K—«)cos
=4772d[(+5)¢

2_ 2 _
2(K K)(r66CO§¢ 1)}+O(ri7>' (A6)

16id(k—K) (= dr sin* ¢ cos ¢
37 j ? o2 ¢+ r2l4mg (A8)
giving
. Mg
E(K,K)NZId(K—K)M(F as mg—w. (A9)
t

The last step can be achieved using the crude approximation

if r<4mg

1
%[(4m§/r2)co§ ¢ if r>4mg.
(A10)

cos ¢
cos ¢+r2/ama
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