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Analytic structure of heavy quark propagators
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The renormalized quark Dyson-Schwinger equation is studied in the limit of the renormalized current heavy
quark massmR→`. We are particularly interested in the analytic pole structure of the heavy quark propagator
in the complex momentum plane. Approximations in which the quark-gluon vertex is modelled by either the
bare vertex or the Ball-ChiuAnsatzand the Landau gauge gluon propagator takes either a Gaussian form or a
Gaussian form with an ultraviolet asymptotic tail are used.@S0556-2821~98!00303-8#

PACS number~s!: 12.38.Lg, 12.38.Aw, 12.39.Hg
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I. INTRODUCTION

The solution of approximate Dyson-Schwinger equatio
~DSE! has proved to be an effective means for modell
quark propagators in hadronic physics@1#. Recent calcula-
tions within the genre of models which we shall refer to
the DSE technique include those of the light hadron sp
trum @2,3# and of electromagnetic form factors of the pio
and kaon@4#. Although no rigorous proof exists, it is th
philosophy of the DSE technique that one possible signa
confinement in QCD should be the absence of timelike po
in the quark propagator@5#. It has furthermore been conjec
tured that the propagatorS(p) could be an entire function in
the complexp2 plane@6,7#. Such a scenario would, for in
stance, avoid certain unpleasant consequences which ca
sult when modelling mesons via the Bethe-Salpeter equa
which samples the quark propagator over a region of
complex plane.

Determining the analytic structure of fermion propagat
in QCD @8,9# or other confining theories@10,11# by the direct
solution of model DSEs is not easy. It appears that the p
or branch cut structure obtained in any particular mode
heavily dependent on the approximations employed. In g
eral, two aspects of the quark DSE must be approxima
the quark-gluon vertex, and the gluon propagator. In t
paper, we shall look at both these aspects within the he
quark sector. In existing numerical studies in the light qu
sector which produce propagators with conjugate singul
ties @8,9#, the quark gluon vertex has usually been appro
mated by the bare vertex~the so called rainbow approxima
tion!. In Ref. @7#, however, it was shown that an enti
function propagator can be obtained if the vertex function
modelled by a more sophisticated form respecting the Wa
Takahashi identity. This suggests that it is worthwhile e
ploring the importance of accurately modelling the qua
gluon vertex, as well as the gluon propagator, when study
the analytic structure of the quark propagator.

In a recent development, the DSE technique has been
tended to the realm of heavy quarks@12,13# in a way in-
spired by heavy quark effective theory~HQET! @14#. The
purpose of this exercise was twofold. Firstly, if one acknow
edges the success of the DSE technique in the light qu
sector, it is clear that the dynamics of confined particles
driven by nonperturbative dynamical self-dressing.
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HQET, non-perturbative self-dressing and the detailed a
lytic structure of the heavy quark propagator are largely
nored. It is important to know whether this is justified,
whether the successes of HQET are purely fortuitous. S
ondly, one has the hope that an accurate determination o
heavy quark propagator will eventually prove useful f
building phenomenological models of heavy quark hadro

In Ref. @12# a preliminary attempt is made to calculate t
spectrum of heavy quark-light antiquark mesons by using
combination of rainbow DSE and ladder Bethe-Salpe
equation~BSE!. It is found that, within the limitations of the
model, the pole structure of the heavy quark propagator p
vents solution of the meson BSE. This is clearly a shortco
ing of the approximations involved. In Ref.@13# the heavy
quark DSE is examined from the point of view of the gau
technique. This is essentially an improvement on the rainb
approximation to the quark-gluon vertex which is design
to respect the Ward-Takahashi identity. An alternative
proach, and one which we follow in this paper, is to repla
the bare vertexAnsatzwith the Ball-Chiu vertexAnsatz@15#.
We shall see that in the heavy fermion limit the gauge te
nique and the Ball-Chiu vertex are equivalent.

Regarding the gluon propagator, our treatment diff
from Ref.@13# in that it is principally numerical, enabling u
to concentrate on a more realistic class of model glu
propagators. Specifically we study the simple GaussianAn-
satzemployed in Ref.@12#, designed to model the infrare
enhanced behavior of the gluon propagator, and a model
posed by Frank and Roberts~FR! @16# which includes both
an enhanced infrared behavior and the known asympt
ultraviolet behavior. In order to deal with the FR propagat
it has been necessary to formulate a properly renormal
version of the heavy quark DSE of Ref.@12#.

In summary, our main finding is as follows: Improvin
the vertexAnsatzdoes little to improve the analytic structur
of the quark propagator. However, improving theAnsatzem-
ployed for the gluon propagator, particularly by including
realistic asymptotic ultraviolet tail, moves poles in the hea
quark propagator to a less intrusive part of the complex m
mentum plane. This portends well for future application
the heavy quark DSE technique.

The layout of the paper is as follows. In Sec. II we su
marize the renormalized quark DSE and the approximati
we shall be employing for the quark-gluon vertex and glu
276 © 1997 The American Physical Society
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57 277ANALYTIC STRUCTURE OF HEAVY QUARK PROPAGATORS
propagator. In Sec. III we summarize the heavy quark f
malism and derive a renormalized DSE for the heavy qu
propagator. Numerical solutions to these equations are
cussed in Sec. IV. Conclusions are drawn and suggest
for the direction of future work are given in Sec. V.

II. THE QUARK DYSON-SCHWINGER EQUATION

Our starting point is the renormalized quark DSE@1#

S8~p,L!5Z1~m2,L2!
4g2

3 EL d4q

~2p!4

3Dmn~p2q!gmS~q!Gn~q,p!, ~2.1!

where we have used a Euclidean metric in which timel
vectors satisfyp252pMinkowski

2 ,0, and for which$gm ,gn%
52dmn . Our aim is to solve the DSE for the renormalize
quark propagatorS(p,m), which we write in the form

S~p,m!5
1

ig•pA~p2,m2!1B~p2,m2!

5
1

Z2~m2,L2!@ ig•p1m0~L!#1S8~p,L!
.

~2.2!

The unrenormalized self-energy is written

S8~p,L!5 ig•p@A8~p2,L2!21#1B8~p2,L2!. ~2.3!

If the renormalization scale is set such that

S~p!up25m25
1

ig•p1mR~m2!
, ~2.4!

it follows from Eqs. ~2.2! and ~2.3! that renormalized and
bare quantities are related by

Z2~m2,L2!522A8~m2,L2!, ~2.5!

A~p2,m2!511A8~p2,L2!2A8~m2,L2!, ~2.6!

B~p2,m2!5mR~m2!1B8~p2,L2!2B8~m2,L2!. ~2.7!

The set of equations~2.1! and~2.5! to ~2.7! together with
the ‘‘Abelian approximation’’Z15Z2 can be solved numeri
cally for the propagator functionsA and B once the renor-
malized quark-gluon vertex functionGm , the renormalized
gluon propagator Dmn , the renormalization poin
@m,mR(m)# and cutoffL are specified. The precise forms
the quark-gluon vertex and gluon propagator are unkno
and must be modelled by appropriateAnsätze. We next sum-
marize theAnsätzeemployed in this paper.

A. Quark-gluon vertex

The most general form of the quark-gluon vertex cons
tent with Lorentz andCPT invariance, satisfying the Ward
-
k
is-
ns

e

n

-

identity iGm(p,p)5]m
p S21(p) and Ward-Takahashi identity1

i (p2q)mGm(p,q)5S21(p)2S21(q), and free of kinematic
singularities has been given by Ball and Chiu@15#. It takes
the form

Gm~p,q!5Gm
BC~p,q!1Gm

T~p,q!, ~2.8!

where

Gm
BC~p,q!5

1

2
@A~p2!1A~q2!#gm1

~p1q!m

~p22q2! H @A~p2!

2A~q2!#
g•p1g•q

2
2 i @B~p2!2B~q2!#J ,

~2.9!

andGm
T(p,q) is an otherwise unconstrained piece satisfyi

the conditions (p2q)mGm
T(p,q)50 andGm

T(p,p)50.
We mention two well studied vertexAnsätze falling

within this class. The first of these, introduced by Curtis a
Pennington@17# to ensure multiplicative renormalizability in
quantum electrodynamics, is defined by setting the tra
verse pieceGm

T equal to

Gm
TCP~p,q!5

A~p2!2A~q2!

2d~p,q!
@gm~p22q2!

2~p1q!m~g•p2g•q!#, ~2.10!

with

d~p,q!5
~p22q2!21@M2~p2!1M2~q2!2#2

p21q2 , ~2.11!

whereM5B/A.
The second of these, proposed by Haeri@18#, takes the

form

Gm
H~p,q!5

p2A~p2!2q2A~q2!

p22q2 gm

1
A~p2!2A~q2!

p22q2 g•pgmg•q

2 i
B~p2!2B~q2!

p22q2 ~g•pgm1gmg•q!.

~2.12!

It satisfies the above criteria and therefore must be of
form Eq. ~2.8!. Munczek@19# has shown that the Haeri ver
tex is identical to the spectral representation of the ver
used in the gauge technique, and this has in turn been
ployed in Ref.@13#.

1Strictly speaking, it is the Slavnov-Taylor identities, which i
clude ghost contributions, and not the Ward-Takahashi identi
which are relevant to QCD. By using the Ball-Chiu vertex we a
effectively ignoring the ghost self-energy and ghost-quark scat
ing kernel. This is a commonly used approximation@1#.
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B. Gluon propagator

In a general covariant gauge, the gluon propagator ta
the form

g2Dmn~k!5S dmn2
kmkn

k2 DD~k2!1g2j
kmkn

k4 , ~2.13!

wherej is the gauge fixing parameter. Perhaps the simp
Ansatzwhich has proved useful for modelling QCD is th
‘‘infrared dominant’’ model@6,7#

D IR~k2!5
3

16
~2p!4m2d4~k!. ~2.14!

In applications to hadronic physics,m is usually taken to be
of the order of 1 GeV@20#, which is the typical scale o
QCD. An obvious disadvantage of this model is that it n
glects completely any intermediate or ultraviolet behavi
One can go some way towards incorporating some inter
diate energy structure by using the computationally con
nient Gaussian model

DG~k2!5
3

16
~2p!4

m2

a2p2 e2k2/a. ~2.15!

We note that the infrared dominant gluon modelD IR , to-
gether with the minimal Ball-Chiu vertexGmn(p,q)
5Gmn

BC(p,q) defines precisely the light quark model cons
ered in Ref.@7#, whereas the Gaussian modelDG has been
used in our earlier rainbow approximation studies of hea
quarks@12#. Below we shall explore the effect on the an
lytic structure of the heavy quark propagator of combini
eitherD IR or DG with the Ball-Chiu vertex.

A more realistic model gluon propagator which go
some way toward modelling the asymptotically free ultrav
let behavior of QCD~neglecting logarithmic corrections! has
been proposed by Frank and Roberts@16#. It takes the form

DFR~k2!54p2dF4p2mt
2d4~k!1

12ek2/~4mt
2
!

k2 G ,

~2.16!

whered512/(3322Nf), Nf53 is the number of light quark
flavors, andmt'0.69 GeV is a parameter fitted to a range
calculated pion observables. In our numerical calculatio
we find it more convenient to consider a Gaussian smea
version of the FR propagator given by

DGFR~k2!5~2p!4
mt

2d

a2p2 e2k2/a14p2d
12ek2/~4mt

2
!

k2 .

~2.17!

This will enable comparisons to be made with the pu
Gaussian modelDG .

In the next section we consider the heavy quark limit
the quark Dyson-Schwinger equation. Our earlier analysi
this limit @12# employed the heavily damped gluon propag
tor DG , and so was free from ultraviolet divergences.
order to deal with a more realistic model, such as Eq.~2.17!,
it is necessary to develop a properly renormalized versio
the formalism.
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III. THE HEAVY QUARK LIMIT

A. Heavy quark propagator

In the absolute limit of heavy renormalized quark mass
mR(m2)→`, the dressed quark propagator Eq.~2.2! is domi-
nated by the bare formSbare

21 5 ig•p1mR . However it is im-
portant to isolate from the full inverse propagator finite ord
self-energy corrections to the bare inverse propagator wh
drive confining and remnant chiral symmetry breaking
fects. To this end we write the momentum variables occ
ring in the DSE Eq.~2.1! as

pm5 imR~m2!vm1km , qm5 imR~m2!vm1km8 , ~3.1!

where, for convenience, we takev5(0,1), sok•v5k4 . We
then write the renormalized quark propagator functions a

A~p2,m2!511
SA~K,k!

mR~m2!
, ~3.2!

B~p2,m2!5mR~m2!1SB~K,k!, ~3.3!

where we have defined the independent momentum vari

K5
p21mR

2

2imR
5k41

k2

2imR
, ~3.4!

and renormalization point

k5
m21mR

2

2imR
, ~3.5!

in the complexK plane. The change of variablep2→K in-
duced by the transformation Eq.~3.4! is illustrated in Fig. 1.
In general, when working to zeroth order in 1/mR , one can
use the approximationK5k4 ~an approximation which was
used in Ref.@12#!. An exception to this rule, relevant t
models such as Eq.~2.17! for which the gluon propagator is
not heavily ultraviolet damped, is in the denominator of t

FIG. 1. The change of variablesp2→K used to represent the
heavy quark propagator in the region of the bare fermion mass
p252mR

2. For the change of variables in the DSE to be valid, t
quark propagator must be analytic over the shaded region.



SE

ra

to
a

q.
a

e
o

ur

i-

or

vy

ex

g
the
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heavy quark propagator in the integrand in the quark D
This point will become clearer at the end of Sec. III B.

From Eqs.~2.2!, ~3.2! and ~3.3! we have

S~p,m!5
11g4

2

1

iK 1S~K,k!
1OS 1

mR
D , ~3.6!

where we have defined the heavy quark self-energy

S~K,k!5SB~K,k!2SA~K,k!. ~3.7!

We find in general that the DSE leads to a single integ
equation for the complex valued functionS(K,k). The form
given by Eq. ~3.6! represents the heavy quark propaga
in the dominant region near the bare propagator m
pole p252mR

2. Obtaining an integral equation forS(K)
involves the change of integration*d4q→*d4k8
5*2`

` dk48*0
`dukuuku2 induced by the change of variable E

~3.1!. For this change of integration to be valid, the prop
gator, and hence the functionsA(q2)/@q2A(q2)21B(q2)2#
and B(q2)/@q2A(q2)21B(q2)2#, must be analytic over the
shaded region in Fig. 1,

Re~q2!.2mR
21

@ Im~q2!#2

4mR
2 . ~3.8!

Equivalently, the function defined by

sQ~K,k!5
1

iK 1S~K,k!
, ~3.9!

must be analytic over the shaded region ImK,0.
The confinement criterion thatS(p) should be free from

timelike poles on the negative realp2 axis translates in the
heavy quark case to a requirement thatsQ should be free
from poles on the imaginaryK axis. The stronger conjectur
@7#, that the quark propagator should be an entire function
p2 translates in the heavy quark formalism to a conject
that sQ should be an entire function ofK.

From Eq.~3.6!, we have that the renormalization cond
tion Eq. ~2.4! is equivalent to

S~p,m!up25m25
11g4

2

1

iKU
K5k

, ~3.10!

to zeroth order in 1/mR . Typically we choosek to be on the
negative imaginaryK axis, as the heavy quark propagat
asymptotes to the bare propagator asK→2 i`, as can be
seen from Fig. 1.

B. Heavy quark DSE

To illustrate the derivation of the renormalized hea
quark DSE, we choose Landau gauge@j50 in Eq. ~2.13!#
and, for the time being, work with the rainbow or bare vert
approximation

Gm~p,q!5gm . ~3.11!

Using Dirac trace identities to project out from Eqs.~2.1! to
~2.3! a pair of coupled integral equations gives
.

l

r
ss

-

f
e

A8~p2,L2!511
4Z1

3p2 EL d4q

~2p!4 Fp•q

12
p•~p2q!q•~p2q!

~p2q!2 G
3D@~p2q!2#

A~q2!

q2A21B2 , ~3.12!

B8~p2,L2!54Z1EL d4q

~2p!4 D@~p2q!2#
B~q2!

q2A21B2 .

~3.13!

Substituting

A~q2!

q2A~q2!21B~q2!2 5
1

2mR

1

iK 81S~K8!
1OS 1

mR
2 D ,

~3.14!

B~q2!

q2A~q2!21B~q2!2 5
1

2

1

iK 81S~K8!
1OS 1

mR
D ,

~3.15!

into Eqs.~3.12! and ~3.13! gives

mR@A8~p2,L2!21#5
2Z1

3 EL d4k8

~2p!4 F112
~k42k48!2

~k2k8!2 G
3D@~k2k8!2#

1

iK 81S~K8,k!

1OS 1

mR
D , ~3.16!

and

B8~p2,L2!52Z1EL d4k8

~2p!4 D@~k2k8!2#
1

iK 81S~K8,k!

1OS 1

mR
D . ~3.17!

From Eqs.~2.6!, ~2.7!, ~3.2!, ~3.3! and ~3.7! we have

S~K,k!5@B8~p2,L2!2mRA8~p2,L2!#2@p2→m2#,
~3.18!

which gives

S~K,k!5
4

3 EL d4k8

~2p!4 F uk2k8u2

~k2k8!2

3D@~k2k8!2#
1

iK 81S~K8,k!
2~K→k!G ,

~3.19!

whereK on the left hand side is related tok under the inte-
grand via Eq.~3.4!, and a similar definition exists relatingK8
and k8. Here we have assumed that Eqs.~2.5! and ~3.16!
imply Z1511O(1/mR).

As noted above,K andk4 are interchangeable to leadin
order, except where they occur in the denominator of
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280 57C. J. BURDEN
heavy fermion propagator 1/@ iK 81S(K8)# in the integrand
of Eq. ~3.19!. This is because, for any gluon propagatorD
with a realistic asymptotic UV behavior, all powers ofk8
must be retained in the denominator to maintain the sa
degree of divergence in the heavy fermion DSE as in
original equation~2.1!. With this observation, and choosin
km5(0,K) and the renormalization point~0,k!, we arrive at
the leading order heavy quark DSE

S~K,k!5
4

3 EL d4k8

~2p!4

1

ik481k82/~2mR!1S~k48 ,k!

3H uk8u2D@~K2k48!21uk8u2#

~K2k48!21uk8u2 2~K→k!J .

~3.20!

We show in the Appendix that, with the smeared FR glu
propagatorAnsatzEq. ~2.17!, and assuming a hierarchy o
scales

mt , uKu, uku!mR!L, ~3.21!

the integral in Eq.~3.20! is independent of the ultraviole
cutoff L, and the heavy quark self-energy behaves like

S~K,k!;2id~k2K !lnS mR

mt
D , ~3.22!

asmR→`. With the more severely truncated Gaussian glu
propagator Eq.~2.15!, the renormalization pointk can be
taken to2 i` and thek82/(2mR) term in the denominator o
the integrand ignored with impunity.

C. Choice of renormalization point

At the end of the day, physical quantities must be ins
sitive to the choice of renormalization pointk. In this section
we note that the freedom to choose the renormalization p
is equivalent to the notion of a ‘‘residual mass’’ in HQE
@21,14#, that is, the notion that to zeroth order in 1/mR ,
physical quantities computed in HQET do not depend on
choice ofmR .

After formally carrying out the spatial momentum int
gration in Eq.~3.20!, one obtains an equation generically
the form

S~K,k!5
1

sQ~K,k!
2 iK

5E
2`

`

dK8@T~K2K8!2T~k2K8!#sQ~K8,k!,

~3.23!

for some kernelT, and withsQ defined by Eq.~3.9!. It is
possible to show from this generic form that the effect
making a change of renormalization pointkold→knew is
equivalent to a shift of the quark propagator solution alo
the imaginaryK axis:

sQ~K,knew!5sQ~K2 idm,kold!, ~3.24!

wheredm is the solution to
e
e

n

n

-

nt

e

f

g

1

iknew
5sQ~knew2 idm,kold!, ~3.25!

that is, the shift is that required to ensure that the new he
quark propagator passes through the renormalization p
sQ~knew,knew!51/iknew. Referring to Fig. 1 we see that thi
is equivalent to a shift in the position of the origin of theK
plane along thep2 axis corresponding to changingmR by an
amountdm.

One can also demonstrate that the mass differences
tween any two heavy quark-light antiquark meson states
culated from the Bethe-Salpeter formalism set out in R
@12# is independent of the renormalization point.

IV. RESULTS

Our main concern in this paper is to compare how
analytic structure of the heavy quark propagator solution
affected by the approximations employed both for the qua
gluon vertex and the gluon propagator. In an earlier wo
@12# an attempt was made to study the heavy quark-li
antiquark meson spectrum using a combination of rainb
DSE and ladder BSE. It was found that, if a simple Gauss
Ansatzis used for the gluon propagator, complex conjug
poles occur in the heavy quark propagator which prev
solution of the meson BSE. Below we systematically explo
the movement of the poles as the bare vertex of the rainb
approximation is replaced by a Ball-Chiu vertex, and as
Gaussian gluon propagator is replaced by the more real
Frank and Roberts propagator.

A. Gaussian gluon propagator

1. Rainbow approximation

As noted in the previous section, if the gluon propaga
Eq. ~2.15! is used, we may set the renormalization pointk
52 i` and ignore thek82/(2mR) term in Eq. ~3.20!. Fur-
thermore, there is no need to distinguish between the in
pendent momentum variablesK andk4 . With these simpli-
fications the Landau gauge, rainbow heavy quark D
becomes

S~k4!5
4

3 E d4k8

~2p!4

uk2k8u4

~k2k8!2

D„~k2k8!2
…

ik481S~k48!
. ~4.1!

Choosing the infrared dominant gluon propagator Eq.~2.14!,
the DSE reduces to an algebraic equation with solution

S~k4!55
1

2 S 2 ik41A3m2

4
2k4

2D if 0<k4,
)m

2
,

i

2 S 2k41Ak4
22

3m2

4 D if k4>
)m

2
,

~4.2!

or, using the definition~3.9!
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57 281ANALYTIC STRUCTURE OF HEAVY QUARK PROPAGATORS
sQ~k4!55
8

3m2 S 2 ik41A3m2

4
2k4

2D if 0<k4,
)m

2
,

8i

3m2 S 2k41Ak4
22

3m2

4 D if k4>
)m

2
,

~4.3!

Alternatively, choosing the Gaussian gluon propaga
Eq. ~2.15! and carrying out thed3k integration, we obtain the
integral equation@22#

S~k4!5
m2

2a2Ap
E

2`

`

dk4

1

ik481S~k48!

3H AaFa22~k42k48!2Ge2~k42k48!2/a

1Apuk42k48u
3 erfcS uk42k48u

Aa
D J , ~4.4!

where erfcz512erf z is the complementary error function
This equation can be solved numerically.

2. Ball-Chiu vertex

If any of the minimal Ball-ChiuAnsatzEq. ~2.9!, the
Curtis-PenningtonAnsatzEqs.~2.8! and~2.10!, or the Haeri
AnsatzEq. ~2.12! is used in place of the bare vertex, togeth
with the Landau gauge gluon propagator, we obtain in pl
of Eq. ~4.1! the equation

S~k4!5
4

3 E d4k8

~2p!4

uk2k8u2

~k2k8!2

D„~k2k8!2
…

ik481S~k48!

3F11
S~k4!2S~k48!

i ~k42k48! G . ~4.5!

It is interesting to note that, within the set of vertexAnsätze
we have considered, the heavy quark propagator is inse
tive to the transverse part of the vertex. This is not difficult
understand for the Curtis-Pennington vertex, in which
transverse part is heavily damped by the presence of
factor M4;m4 in the denominatord(p,q). However, in the
case of the Haeri vertex there is no such obvious mechan
and one is led to question whether the heavy quark prop
tor may be insensitive to a broad class ofAnsätzesatisfying
the criteria specified above Eq.~2.8!.

Taking the gluon propagator to be the infrared domin
form Eq. ~2.14!, gives the differential equation

S~k4!5
3m2

16i

d

dk4
ln@ ik41S~k4!#, ~4.6!

which, together with the boundary conditionsQ(k4)→0 as
k4→2 i`, admits the solution

sQ~k4!5b@Ape2b2k4
2
12iF ~2bk4!#, ~4.7!

wheresQ is defined by~3.9!, b52&/m) and
r

r
e

si-

e
he

m,
a-

t

F~z!5e2z2E
0

z

et2dt5
iAp

2
e2z2

erf~2 iz!, ~4.8!

is Dawson’s integral. We note that this solution is an ent
function of k4 , which, as pointed out earlier, is a desirab
feature of a quark propagator. This comes as no surprise
it is simply the heavy quark limit of the model considered
Ref. @7#, in which it was demonstrated that the combinati
of Ball-Chiu vertex and infrared dominant gluon propaga
leads to an entire function propagator for all values of
bare current quark mass.

It is of interest to determine to what extent this analy
structure is a feature of the Ball-Chiu vertex, and to wh
extent it is a feature of the infrared dominant gluon propa
tor. If the infrared dominant propagator is replaced by t
Gaussian smeared form Eq.~2.15!, we obtain the integral
equation

S~k4!5
m2

2a2Ap
E

2`

`

dk4

1

ik481S~k48!

3H AaFa22~k42k48!2Ge2~k42k48!2/a

1Apuk42k48u
3 erfcS uk42k48u

Aa
D J

3F11
S~k4!2S~k48!

i ~k42k48! G , ~4.9!

which can be solved numerically.

3. Numerical results: Gaussian gluon propagator

For the purpose of determining the analytic structure
the heavy fermion propagator obtained from the DSE w
the Gaussian gluon propagator Eq.~2.15!, it is sufficient to
look at the one parameter family of models obtained by sc
ing eitherm or a to unity. We choose to scalem to unity,
which amounts to working with a set of dimensionless qu
tities

k̂45k4 /m, â5a/m2, ŝQ5msQ . ~4.10!

This choice enables us to recover the infrared domin
model in the limita→0.

In Figs. 2 and 3 we plot the heavy quark self-ener
S(k4) as a function of realk4 obtained from the bare verte
DSE Eq.~4.4! and the Ball-Chiu vertex DSE Eq.~4.9! for
â51, 2 and 3. These results are obtained by iterating fr
an initial guess and using a Simpson’s rule quadrature.
find that the derivativelike terms in Eq.~4.9! prevent a nu-
merical solution for values ofâ less than 1, as numerica
noise in the function values becomes unstable with respe
iteration at small values ofk4 . This problem is a genera
feature of numerical treatments of DSEs with Ball-Chiu-li
vertices. Also plotted are theâ50 analytic results Eqs.~4.2!
and ~4.7!. In all cases the self-energy is characterized b
real part which peaks at zero and an imaginary part wh
peaks near the typical scale of the modelk4;m. The self-
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energy for negative realk4 can be obtained from these resu
using the reflection propertyS(2k4* )5S(k4)* .

To solve for the heavy quark propagator away from
realk4 axis we shift the contour of integration into the com
plex plane parallel to the realk4 axis and again solve itera
tively. We note that, to determineS(k4) for complex argu-
ments, it is necessary to move the contour of integration
pass through the pointk4 . This is because the radial part o
the d3k8 integration, carried out in going from Eq.~4.1! to
Eq. ~4.4! or from Eq.~4.5! to Eq. ~4.9!, creates a pinch sin
gularity atk485k4 in the error function term in Eq.~4.4! or
Eq. ~4.9!.

We have carried out a search for poles in the propag
functionsQ(k4) for a range of values ofa for both the bare
and Ball-Chiu vertex. Our results are listed in Table I. In
cases we find that the only observed poles occur for Imk4
.0, and thatsQ dies away to small values and is free fro
singularities over that part of the shaded region in Fig
accessible to our computer program. Of course we are un
to pass the contour of numerical integration through the p
itself, and these results are attained by extrapolation fr
results of contours which we gradually moved deeper i
the complex plane. We were unable to obtain a reason

FIG. 2. The heavy quark self-energyS(k4), from the DSE in
Landau gauge with a bare quark-gluon vertex and Gaussian g
propagator with parameters:m51 anda50 ~solid curve!, 1 ~long
dashes!, 2 ~short dashes! and 3~dotted curve!. The upper curves are
Re S and the lower curves ImS.
e

to

or

l

1
le

le
m
o
le

extrapolation for the Ball-Chiu vertex ata51, again because
of the iterative instability problem associated with the d
rivativelike term in Eq.~4.9!.

We also list in Table I the results of using the mod
gluon propagator

g2Dmn~k2!5dmnDG~k2!, ~4.11!

whereDG is given by Eq.~2.15!. Forms such as Eq.~4.11!
are frequently used in phenomenological modelling~see for
instance Ref.@2#! and are sometimes referred to as propa
tors in a ‘‘Feynman-like gauge,’’ though of course they a
generally not of the form of Eq.~2.13!. The sole advantage
of the Feynman-like gauge is that it leads to considera
simplified calculations. In our case it is possible to loca
poles more accurately because there is no pinch singula
requiring the contour of integration to pass through the po
in question. Once the propagator has been solved on the
k4 axis, the value of the propagator can be calculated at
point in the complex plane by integrating once along the r
axis. Nevertheless, we have also repeated our pole calc
tions by shifting the contour and extrapolating as in the La
dau gauge case as a check on the consistency of the
methods and find that they agree to within the accur
given in Table I of the corresponding Landau gauge resu
A Feynman-like gauge propagator was also used in Ref.@12#
dealing with the ladder Bethe-Salpeter equation for
heavy quark-light antiquark system. There it was dem

on
FIG. 3. The same as Fig. 2, except with the Ball-Chiu qua

gluon vertex.
the

TABLE I. Position k4 /m of poles in the heavy quark propagator closest to the realk4 axis, using the

Gaussian gluon propagatorAnsatzDG . Numerical instabilities prevent an accurate location of the pole in
case indicated by a question mark.

â5a/m2

Landau gauge Feynman-like gauge

bare vertex BC vertex bare vertex BC vertex

0.5 60.51010.415i ? 60.546610.5109i ?
1 60.37810.506i ? 60.338310.6758i 0.4429i
2 0.466i 0.31i 0.3844i 0.3130i
3 0.307i 0.252i 0.2880i 0.2554i
4 0.251i 0.219i 0.2408i 0.2210i
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57 283ANALYTIC STRUCTURE OF HEAVY QUARK PROPAGATORS
strated that the model with bare quark gluon vertex a
Gaussian Feynman-like gauge gluon propagator had no
lutions because of poles in the heavy and light quark pro
gators. Ideally, one would like improvements in the DS
approximations to move the poles further from the realk4
axis to avoid the region of thek4 plane sampled by a Bethe
Salpeter calculation.

From Table I we conclude that simply replacing the ba
vertex by the Ball-Chiu vertex in itself does nothing to im
prove the pole structure of the heavy quark propagator, ei
for the Landau gauge gluon propagator or the Feynman-
gluon propagator. In particular we find that, as the Gauss
width a increases, a mass pole pole moves in along
imaginary k4 axis. A pole on the imaginary axis indicate
that the fermion can propagate as a free particle, and
position on the positive imaginary axis gives the contribut
to the quark mass from the dynamical self-dressing. For
bare vertex, the pole splits into conjugate pairs either sid
the imaginary axis asa decreases. In this instance the qua
becomes a confined particle. Numerical difficulties describ
above prevented us from confirming that the same situa
occurs in the case of the Ball-Chiu vertex. Asa→0 we must
recover the solution Eq.~4.7!, which is an entire function
with an essential singularity at infinity.

We see from Table I that, when poles occur, their posit
remains almost unchanged in going from Landau
Feynman-like gauge if the Ball-Chiu vertex is used, but n
ne

to

t
at
d
o-

a-

e

er
e
n
e

he

e
of

d
n

n
o
t

if the bare vertex is used. In a properly formulated gau
covariant calculation, the position of any propagator m
pole should be independent of the gauge fixing proced
@23#. While we certainly do not claim that that our treatme
is gauge covariant, it is amusing to note that replacing
bare vertex by the Ball-Chiu vertex~and Feynman gauge b
the computationally convenient Feynman-like gauge! ap-
pears to go some way towards satisfying this requiremen

B. Frank and Roberts gluon propagator

We now return to the renormalized DSE Eq.~3.20! with
the gluon propagatorD set equal to the smeared FRAnsatz
Eq. ~2.17!. For numerical simplicity we shall restrict our
selves to the rainbow approximationGm(p,q)5gm . We set

K5X1 iY, k5 ih. ~4.12!

Assuming the contour of integration can be deformed to p
through k485K for the integral of the first term in chain
brackets in Eq.~3.20!, and throughk485k for the second
term, we further set

k485x1 iY and k485x1 ih, ~4.13!

respectively in each of these two terms. We also make
replacementk82/(2mR)→(x21uk8u2)/(2mR) without affect-
ing S to leading order. This gives
S~X1 iY,ih!5
4

3 E
2`

` dx

2p E d3k8

~2p!3 H 1

ix2Y1~x21uk8u2!/~2mR!1S~x1 iY!

uk8u2

~x2X!21uk8u2
D@~x2X!21uk8u2#

2
1

ix2h1~x21uk8u2!/~2mR!1S~x1 ih!

uk8u2

x21uk8u2 D@x21uk8u2#J . ~4.14!

For the purpose of carrying out the numerics, it is convenient to change to the polar coordinatesx5rcosf, uk8u
5r sinf, giving finally

S~X1 iY,ih!5
1

3p3 E
0

`

drE
0

p

dfr 3 sin2 fH 1

ir cosf2Y1r 2/~2mR!1S~r cosf1 iY!

r 2 sin2 f

r 222Xr costf1X2

3D~r 222Xr cosf1X2!2
1

ir cosf2h1r 2/~2mR!1S~r cosf1 ih!
sin2 fD~r 2!J . ~4.15!
pa-

t of
ula-
t
on
of
r-

lly
This equation is first solved numerically along the li
Im K5h, ~i.e. Y5h!, and the functionS along this line is
stored for subsequent calculations at arbitraryY.

1. Numerical results: Frank and Roberts propagator

We have numerically solved Eq.~4.15! over a region of
the complexK plane with the smeared FR gluon propaga
DGFR. Our parameter choices aremt50.69 GeV, in agree-
ment with Ref. @16#, and a516mt

2âd/350.5643 (GeV)2

corresponding toâ50.5. The choice ofa is designed so tha
a comparison can be made between the full FR propag
and the Gaussian propagator Eq.~2.15! obtained by keeping
only the first term in Eq.~2.17!. From Table I we know that
r

or

Gaussian propagatorDG with the parameter choiceâ50.5
results in a pair of conjugate poles in the heavy quark pro
gator. The heavy quark mass is set tomR55.0 GeV.

In Fig. 4 we plot the modulususQ(K)u of the heavy quark
propagator for the full Gaussian FR propagatorDGFR and in
Fig. 5 plot the same quantity using only the Gaussian par
DG with the parameters otherwise unchanged. Both calc
tions have been done using the renormalization poink
521.0i GeV, and to clarify the comparison the same regi
of the K plane is displayed in both plots. The calculation
sQ(K) involves a shift of integration path to a contour pa
allel to the real axis passing through the pointK. Deforming
the contour to include points behind the pole is a numerica
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284 57C. J. BURDEN
tedious exercise which is unlikely to enhance our und
standing, so no results are given for the part of theK plane
behind the pole in Fig. 5.

In the process of carrying out our computations, we ha
observed that the shift property resulting from changes
renormalization point, namely Eq.~3.24!, is indeed respected
by our numerical solutions. In fact, the full plot in Fig. 4 wa
pieced together by altering the renormalization point to
tain solutions in strips of the complex plane parallel to t
real axis, and using Eq.~3.25! to match solutions where
strips overlapped.

We note a clear movement of the propagator pole furt
away from the realK axis when the asymptotic ultraviole

FIG. 4. The modulususQ(K)u of the heavy quark propagator i
the complexK plane obtained by solving the heavy quark DSE
rainbow approximation with a Gaussian smeared Frank and Rob
AnsatzDGFR for the gluon propagator. Input parameter values
given in the text.

FIG. 5. The same as Fig. 4, except with the gluon propag
Ansatzreplaced by only its Gaussian partDG , and all parameter
values otherwise unchanged.
r-

e
f

-

r

tail is included in the gluon propagator. Since it is the pro
imity of the pole to the real axis which prevented a soluti
to BSE in our earlier studies, this movement of the po
portends well for future possible studies of heavy quark m
sons if careful attention is paid to the asymptotic ultravio
behavior of the gluon propagator.

However, a note of caution is in order. A different choi
of renormalization point would result in the plots in Figs.
and 5 shifting by different amounts respectively along t
imaginary axis, ensuring that both plots pass through
same pointsQ(k)51/ik. Consequently, the actual amou
by which the pole moves away from the realK axis as a
result of adding an asymptotic tail to the gluon propagato
an artefact of the choice of renormalization point, though
movement will always be away from the real axis. Of cour
only by carrying though the BSE calculation completely c
one say for certain whether bound state meson solutions
be obtained.

V. CONCLUSIONS AND OUTLOOK

We have explored the analytic structure of heavy qu
propagators following a recently proposed formalism wh
borrows ideas both from the DSE technique and HQET. I
our belief that, if the successes of HQET are to be prope
understood, we must first understand how the nonpertu
tive dynamics of QCD affect the heavy quark propagat
Within the light quark sector the analytic structure of t
quark propagator is perhaps best understood in terms
model Dyson-Schwinger equations. It is therefore a wor
while exercise to extend the DSE technique to the he
quark limit.

The initial attempt in this direction@12# failed essentially
because the approximations used led to spurious propag
poles which prevented solution of the bound state Bet
Salpeter equations. Two approximations were involv
modelling of the quark-gluon vertex and of the gluon prop
gator. We have focused on each of these aspects in tur
this paper. In order to deal with an improvedAnsatzfor the
gluon propagator with a realistic asymptotic ultraviolet b
havior, it has been necessary to formulate a properly ren
malized version of the heavy quark DSE technique propo
in Ref. @12#. As an interesting corollary to our formalism w
observe that the freedom to choose the renormalization p
is tantamount to the freedom in zeroth order HQET
choose the heavy quark mass up to a residual mass.

We have first examined the effect of replacing the b
vertex with Ansätze based on the Ball-Chiu vertex@15#,
which is primarily designed to satisfy the Ward-Takaha
identity. Specifically, we have considered the minimal Ba
Chiu vertex and two variants: that proposed by Curtis a
Pennington@17# and that proposed by Haeri@18#. The two
variants differ from the minimal vertex by the inclusion o
extra transverse components. We find that, to zeroth orde
the inverse of the heavy quark mass, the heavy quark pro
gator is insensitive to which of the three aboveAnsätze is
used. One is led to question to what extent transverse a
tions to the minimal Ball-Chiu vertex can be ignored in d
termining the leading order heavy quark propagator. If th
can be ignored in general there are immediate benefit
using the heavy fermion limit as a test-case for studies
confining field theories.
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57 285ANALYTIC STRUCTURE OF HEAVY QUARK PROPAGATORS
In our numerical calculations we began with the Land
gauge form of the model Gaussian gluon propagatorDG , Eq.
~2.15!, which was employed~together with the bare vertex!
in previous studies@12#. Unfortunately, we find no improve
ment in the propagator pole structure in going from the b
vertex to the Ball-Chiu vertex while maintaining a Gauss
gluon propagator. That is to say, timelike mass poles indi
ing nonconfinement, or conjugate poles which are likely
interfere with the successful solution to bound state pr
lems, are not removed simply by improving the quark glu
vertex Ansatz alone. However, in the limit in which the
width of the Gaussian gluon propagator is taken to zero~the
‘‘infrared dominant model’’!, we do obtain an entire function
heavy quark propagator, free from singularities except
essential singularity at infinity. This is consistent with t
equivalent finite quark mass calculation@7#, and may provide
a useful propagator for phenomenological modelling p
poses.

We conclude then that it is most likely the remainin
approximation, namely the Gaussian model gluon propa
tor, which is responsible for the poor analytic structure p
viously obtained for the quark propagator. To explore t
possibility, we have replaced the simple Gaussian glu
propagatorAnsatzof Ref. @12# by a Gaussian smeared ve
sion of the more sophisticated Frank and RobertsAnsatzDFR
given by Eq.~2.16!. In this case, convergence of the integ
in the DSE which is lost by naively retaining only the lowe
order of the 1/mR expansion of the quark propagator must
restored by judiciously including at least the spatially dep
dentO(1/mR) part:

S~p!5
11g4

2

1

ik41uku2/2mR1S~k4!
1O~mR

21!.

~5.1!

The renormalized current quark massmR then becomes an
ultraviolet regulator, and in the case of the FR propagator
lowest order contribution to the mass expansion of the he
quark self-energy behaves as ln(mR/mt), wheremt delineates
the scale at which the asymptotic ultraviolet behavior of
FR propagator sets in.

Our numerical solutions of the heavy quark DSE show
clear movement of the offensive propagator poles away fr
that part of the complex momentum plane likely to
sampled by a Bethe-Salpeter calculation of heavy quark
son states. However we caution that the amount by which
poles shift is, strictly speaking, dependent on the choice
renormalization point. Without carrying through the Beth
Salpeter analysis one cannot say for sure that the proble
solved. A further study of the BSE for heavy mesons is
pected to be the focus of future work.

Our work has also thrown up a couple of other interest
questions worthy of attention. First, it should be possible
check directly to what extent the propagator pole structur
invariant with respect to the choice of gauge fixing parame
j. As the positions of propagator poles should be gauge
dependent@23#, this provides a straightforward measure
the ability of a particular vertexAnsatzto respect gauge co
variance of the model.

Secondly, one is led to question the meaning of propa
tor poles obtained from a Euclidean DSE formalis
u
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Whether propagator poles obtained in this way are an a
fact of the approximations used or whether they are a ge
ine property of quark propagators has been an open que
for some time@1,10#.2 It is possible that the heavy fermio
limit may help to shed some light on this problem by dev
oping a Bethe-Salpeter formalism for heavy quarkoniu
states. It is well known that the nonrelativistic limit of th
Bethe-Salpeter equation for a heavy fermion-heavy anti
mion bound state can be written in the form of a Schro¨dinger
equation @25#. The derivation typically assumes physic
mass poles in the fermion propagators whose residues
tribute to the resulting Schro¨dinger equation. An analogou
derivation for the case of propagator poles which ha
moved off the timelike momentum axis as a result of a co
fining gluon propagator may help both with interpretation
quark propagator poles and with understanding the suc
of heavy quark potential models.
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APPENDIX: CONVERGENCE OF THE HEAVY
QUARK DSE

Consider the heavy quark DSE Eq.~3.20!, and suppose
we assume for the gluon propagatorAnsatzthe asymptotic
ultraviolet behavior

D~k2!;
4p2d

k2 for k2.mt
2, ~A1!

where mt is a scale parameter typically of the order of
GeV. This is the behavior exhibited by the smeared FRAn-
satzEq. ~2.17!. We demonstrate here that the right hand s
of Eq. ~3.20! is the finite difference of two logarithmically
divergent integrals.

We begin with the change of variables

k485r cosf, uk8u5r sin f, ~A2!

and hence

EL

d4k854pE dk48E duk8uuk8u2

54pE
0

L

drE
0

p

dfr 3 sin2 f. ~A3!

This gives

2In an interesting recent development, McKay and Munczek@24#
have examined the analytic structure of quark propagators whe
extra constraint that solutions of the DSE should be Fourier tra
formable is imposed.
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S~K,k!5
1

3p3 E
0

L

drE
0

p

df

3
r 5 sin4 f

ir cosf1r 2/~2mR!1S~r cosf!

3 FD~K222Kr cosf1r 2!

K222Kr cosf1r 2 2~K→k!G .
~A4!

Implicit in this equation is a hierarchy of scales given by E
~3.21!. Simply counting powers ofr in the integrand, we see
that each of the two terms diverges as

mREL dr

r
;mR ln L. ~A5!

On the other hand consider the difference of the t
terms. Forr .mt the part in square brackets is

F 4p2d

~K222Kr cosf1r 2!22~K→k!G
54p2dF4~K2k!cosf

r 5

1
2~K22k2!~6 cos2 f21!

r 6 G1OS 1

r 7D . ~A6!
v.

.

. B
.

o

NeglectingS(r cosf) in Eq. ~A4! for large r , we can ap-
proximate the propagator contribution to the integrand by

1

ir cosf1r 2/~2mR!
52

i cosf2r /2mR

r ~cos2 f1r 2/4mR
2 !

. ~A7!

Then, taking into account the hierarchy~3.21!, the contribu-
tion to the integrand forr .mt is approximately

16id~k2K !

3p E
mt

` dr

r E
0

p

df
sin4 f cos2 f

cos2 f1r 2/4mR
2 ~A8!

giving

S~K,k!;2id~k2K !lnS mR

mt
D as mR→`. ~A9!

The last step can be achieved using the crude approxima

cos2 f

cos2 f1r 2/4mR
2 'H 1 if r ,4mR

~4mR
2/r 2!cos2 f if r .4mR.

~A10!
tral
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