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Intermediate scales,m parameter, and fermion masses from string models

Gerald Cleaver, Mirjam Cveticˇ, Jose R. Espinosa, Lisa Everett, and Paul Langacker
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396

~Received 16 June 1997; published 23 January 1998!

We address intermediate scales within a class of string models. The intermediate scales occur due to the SM
singletsSi acquiring non-zero VEVs due to radiative breaking; the mass squaredmi

2 of Si is driven negative at
m rad due toO~1! Yukawa couplings ofSi to exotic particles~calculable in a class of string models!. The actual

VEV of Si depends on the relative magnitude of the non-renormalizable terms of the typeŜi
K13/MK in the

superpotential. We mainly consider the case in which theSi are charged under an additional non-anomalous
U(1)8 gauge symmetry and the VEVs occur alongF- andD-flat directions. We explore various scenarios in
detail, depending on the type of Yukawa couplings to the exotic particles and on the initial boundary values of
the soft SUSY breaking parameters. We then address the implications of these scenarios for them parameter
and the fermionic masses of the standard model.@S0556-2821~98!03905-8#

PACS number~s!: 11.25.Mj, 12.15.Hh, 12.60.Jv
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I. INTRODUCTION

One prediction of the weakly coupled heterotic string
the tree level gauge coupling unification
Mstring;gU3531017 GeV @1#, wheregU is the gauge cou-
pling at the string scale.Mstring is the only mass scale tha
appears in the effective Lagrangian of such string vacua,
thus is one mass scale naturally provided by string theor

However, one of the major obstacles to connecting str
theory to the low energy world is the absence of a fu
satisfactory scenario for supersymmetry~SUSY! breaking,
either at the level of world-sheet dynamics or at the leve
the effective theory. The SUSY breaking induces soft m
parameters which provide another scale in the theory that
hopefully provide a link betweenMstring andMZ , the scale
of electroweak symmetry breaking. For example, in mod
with radiative breaking one of the Higgs masses squared
from an initial positive valuem0

2 at Mstring to a negative
value, ofO(2m0

2), at low energies, so that the electrowe
scale is set by the soft supersymmetry breaking scalem0
~and not by the intermediate scale at which the mass squ
goes through zero!.

In spite of this difficulty, string theory does provide ce
tain generic and, for a certain class of string vacua, defi
predictions. With the assumption of soft supersymme
breaking masses as free parameters, the features of the
models, such as the explicitly calculable structure of the
perpotential, provide specific predictions for the low ener
physics.

For example, one can restrict the analysis to a set of st
vacua which haveN51 supersymmetry, the standard mod
~SM! gauge group as a part of the gauge structure, an
particle content that includes three SM families and at le
two SM Higgs doublets, i.e., the string vacua which have
least the ingredients of the minimal supersymmetric stand
model ~MSSM! and thus the potential to be realistic.1 Such

1A number of such models~not necessarily consistent with gaug
unification! were constructed as orbifold models@2,3# with Wilson
lines, as well as models based on the free~world-sheet! fermionic
constructions@4–7#. For a review and references see@8#.
570556-2821/98/57~5!/2701~15!/$15.00
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vacua often predict an additional nonanomalousU(1)8
gauge symmetry in the observable sector. It has been arg
@9# that for this class of string vacua with an addition
U(1)8 broken by a single standard model singletS, the mass
scale of theU(1)8 breaking should be in the electrowea
range~and not larger than a TeV!. That is, if theU(1)8 is not
broken at a large scale through string dynamics, theU(1)8
breaking may be radiative if there are Yukawa couplings
O~1! of S to exotic particles. The scale of the symmet
breaking is then set by the soft supersymmetry break
scalem0 , in analogy to the radiative breaking of the ele
troweak symmetry described above.

Recently, a model was considered@10# in which the two
SM Higgs doublets couple to the SM singlet, and the gau
symmetry breaking scenarios and mass spectrum were
lyzed in detail. A major conclusion of this analysis was th
a large class of string models not only predicts the existe
of additional gauge bosons and exotic matter particles,
can often ensure that their masses are in the electrow
range. Depending on the values of the assumed soft su
symmetry breaking mass parameters atMstring , each spe-
cific model leads to calculable predictions, which can sati
the phenomenological bounds. In addition, the model con
ered in@10,11# forbids an elementarym term for appropriate
U(1)8 charges, but an effectivem is generated by the elec
troweak scale vacuum expectation value~VEV! of the sin-
glet, thus providing a natural solution to them problem.

However, the qualitative picture changes if there are c
plings in the renormalizable superpotential of exotic partic
to two or more mirrorlike singletsSi charged under the
U(1)8. In this case, the potential may haveD- and F-flat
directions, along which it consists only of the quadratic ma
terms due to the soft supersymmetry breaking mass squ
parametersmi

2 . If there is a mechanism to drive the linea
combination m2 that is relevant along the flat direction
negative atm rad@MZ , theU(1)8 breaking is at an interme
diate scale. On the other hand, if some individualmi

2 are
negative butm2 remains positive, then theD-flat direction is
not relevant and the breaking occurs near the electrow
scale, similar to the case of only one singlet.

A large number of string models have ingredients that c
lead to such scenarios:
2701 © 1998 The American Physical Society
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2702 57GERALD CLEAVER et al.
~i! SM singletsSi which do not have renormalizable sel
interactions of the superpotential~F flatness!.

~ii ! If such singletsSi are charged under additional non
nomalousU(1)8 factors, more than oneSi with opposite
relative signs for the additionalU(1)8 charges may ensur
D-flat directions. This is the case that we focus on in t
paper. However, similar considerations hold for a single s
lar S which carries no gauge quantum numbers and there
has noD terms.

~iii ! Most importantly, in a large class of models suchSi

can couple to additional exotic particles via Yukawa co
plings of O~1!. Such Yukawa couplings can then lead
radiative breaking, by driving some or all of the softmi

2

parameters negative atm rad@MZ .
In the case of pure radiative breaking, the minimum of

potential occurs near the scalem rad , and so the nonzero
VEV of Si ’s is at an intermediate scale. In principle, no
renormalizable terms in the superpotential compete with
radiative breaking. These terms are generically presen
most string models. If such terms dominate at scales be
m rad , they will determine the VEV ofSi . In this case, the
order of magnitude of the VEV depends on the order of
non-renormalizable terms, but is also at an intermed
scale.

The purpose of this paper is to investigate the nature
intermediate scales in a class of string models. Intermed
scales are of importance, as they are often utilized in p
nomenological models~e.g., for neutrino masses!, and may
also have important cosmological implications~e.g., in the
inflationary scenarios@12#!. In this paper, we also investigat
the implications of intermediate scales for the stand
model sector of the theory, specifically for them parameter,
ordinary fermion masses, and Majorana and Dirac neut
masses.

In Sec. II, we give a general discussion of radiative bre
ing along a flat direction and study two different mechanis
~radiative corrections and non-renormalizable terms! that sta-
bilize the potential and fix an intermediate scale VEV. W
also examine the implications for the low energy parti
spectrum of such type of scenarios.

In Sec. III, we explore the range ofm rad that can arise
assuming that the flat direction has large Yukawa coupli
to exotic fields~as is typically expected in string model!
@13#. We consider three different models, with varied qua
tum numbers for the exotic fields, and in each case we
amine the effect onm rad of different choices of boundary
conditions for the soft masses. The relevant renormaliza
group equations, with exact analytic solutions and use
simplified approximations, are given in the Appendix.

In Sec. IV, we discuss the size and structure of n
renormalizable contributions@30# to the superpotential ex
pected in string models@32,29,31#. These terms are relevan
to fix the intermediate scale and can also play an impor
role in connection with the physics of the effective low
energy theory. In particular, in Sec. V we study how the
contributions may offer a natural solution to them problem
and generate a hierarchy of standard model ordinary ferm
masses in rough agreement with observation. We also i
cate that interesting neutrino masses can arise from s
terms. Both the ordinary seesaw mechanism for Major
s
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masses or naturally small~non-seesaw! Dirac or Majorana
masses can be generated.

Finally, in Sec. VI we draw some conclusions.

II. INTERMEDIATE SCALE VEV

A well-known mechanism to generate intermediate sc
VEVs in supersymmetric theories utilizes the flat directio
generically present in these models@14#. The discussion in
this section applies to a general class of supersymme
models with flat directions; string models@15# discussed sub-
sequently in general possess these features.

For example, consider a model with two chiral multiple
Ŝ1 and Ŝ2 that are singlets under the standard model ga
group, but carry chargesQ1 andQ2 under an extraU(1)8.2

If these charges have opposite signs (Q1Q2,0), the scalar
field directionS with

^S1&5cosaQ^S&, ^S2&5sin aQ^S&, ~1!

with

tan2 aQ[
uQ1u
uQ2u

, ~2!

is D flat. If Ŝ1 andŜ2 do not couple among themselves in th
renormalizable superpotential, the direction~1! is alsoF flat
and the only contribution to the scalar potential alongS is
given by the soft mass termsm1

2uS1u21m2
2uS2u2. If we con-

centrate on the~real! components5& ReS along the flat
direction,

s5s1 cosaQ1s2 sin aQ , ~3!

the potential is simply

V~s!5
1

2
m2s2, ~4!

where

m25m1
2 cos2 aQ1m2

2 sin2 aQ

5S m1
2

uQ1u
1

m2
2

uQ2u D uQ1Q2u
uQ1u1uQ2u

, ~5!

which is evaluated at the scalem5s. We assume thatm2 is
positive at the string scale3 ~m25m0

2 if we assume universal
ity.! However,m2 can be driven to negative values at th
electroweak scale ifŜ1 and/orŜ2 have a large Yukawa cou

2We assume that the supersymmetry breaking is due to hid
sector fields that are not charged under the additionalU(1)8: i.e.,
theU(1)8 belongs to the observable sector. Thus, the mixing of
U(1)Y andU(1)8 gauge kinetic energy terms, which can arise d
to the one-loop~field theoretical! corrections or genus-one correc
tions in string theory@16#, can be neglected in the analysis of th
soft supersymmetry breaking mass parameters.

3In some string models it is in principle possible to obtainm2,0
for some scalar field, depending on its modular weight@17#.
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pling to other fields in the superpotential.4 In this case, the
potential develops a minimum along the flat direction andS
acquires a VEV. From the minimization condition

dV

ds
5S m21

1

2
bm2D U

m5s

s50 ~6!

~wherebm25m dm2/dm!, one sees that the VEV̂s& is de-
termined by

m2~m5^s&!52
1

2
bm2, ~7!

which is satisfied very close to the scalem rad at which m2

crosses zero. This scale is fixed by the renormalization gr
evolution of parameters fromMstring down to the elec-
troweak scale and will lie at some intermediate scale. T
precise value depends on the couplings ofŜ1,2 and the par-
ticle content of the model, as we discuss in the next sect

The stabilization of the minimum along the flat directio
can also be due to non-renormalizable terms in the supe
tential, which lift the flat direction for sufficiently large val
ues ofs. If these terms are important below the scalem rad ,
they will determine^s&. The relevant non-renormalizabl
terms5 are of the form6

WNR5S aK

M Pl
D K

Ŝ31K, ~8!

whereK51,2, . . . andM Pl is the Planck scale. The coeffi
cients aK will be discussed in Sec. IV. Depending on th
U(1)8 charges, not all values ofK are allowed. For example
if Q152Q2 , U(1)8 invariance dictatesWNR;(Ŝ1Ŝ2)n

;Ŝ2n and only odd values ofK should be considered. I

Q15 4
5 , Q25 21/5, WNR;(Ŝ1Ŝ2

4)n;Ŝ5n, and so on.
Including theF term from Eq.~8!, the potential alongs is

V~s!5
1

2
m2s21

1

2~K12! S s21K

MK D 2

, ~9!

where M5CKM Pl /aK , and the coefficientCK5@2K11/
((K12)(K13)2)] 1/(2K) takes the values~0.29, 0.53, 0.67,
0.76, 0.82! for K5(1,2,3,4,5). The VEV ofs is then7

4Another case which often occurs is that in which, e.g.,m1
2 goes

negative butm2 remains positive. In that case theD flatness is not
important:S1 acquires an electroweak scale VEV while^S2&50, so
that theU(1)8 is broken at or near the electroweak scale, similar
the case discussed in@9,10#.

5The notation for superfields and their bosonic and fermio
components follows that of@10#.

6One can also have terms of the formaK
KŜ21KF̂/M Pl

K , whereF is
a standard model singlet that does not acquire a VEV. These
similar implications as the terms in Eq.~8!.

7For simplicity, we do not include in Eq.~9! soft terms of the type
(AWNR1H.c.) withA;mso f t . Such terms do not affect the order o
magnitude estimates that follow.
p

e

n.

o-

^s&5@A~2m2!MK#1/~K11! 5mK;~mso f tMK!1/~K11! ,
~10!

where mso f t5O(umu)5O(MZ) is a typical soft supersym
metry breaking scale. In this equation,2m2 is evaluated at
the scalemK5^s& and has to satisfy the necessary conditi
m2(mK),0. If non-renormalizable terms are negligible b
low m rad , no solution to Eq.~10! exists and^s& is fixed
solely by the runningm2.

The massMS of the physical fields in the vacuum^s&
can be obtained easily in both types of breaking scenarios
both cases,MS is of the soft breaking scale or smaller an
not of the intermediate scalês&. For pure radiative break
ing,

MS
2[

d2V

ds2U
s5^s&

5S bm21
1

2
m

d

dm
bm2D U

m5^s&

.bm2;
mso f t

2

16p2 .

~11!

In the last expression we give an order of magnitude e
mate: The RG beta function form2 is the sum of severa
terms of ordermso f t

2 ~multiplied by some coupling con
stants!, and part of the 16p2 suppression can be compensat
when all the terms are included.

In the case of stabilization by non-renormalizable term

MS
252~K11!~2m2!;mso f t

2 . ~12!

In the preceding discussion, we have ignored the prese
of scalar fields other thans1 ands2 in the potential. In addi-
tion, there are extra degrees of freedom from the two s
glets. The real field transverse to the flat direction, Eq.~3!, is
forced to take a very small VEV of ordermso f t

2 /^s&. The
physical excitations along that transverse direction have~up
to soft mass corrections! an intermediate scale mass

MI
25g18

2~Q1
2^s1&

21Q2
2^s2&

2!. ~13!

The two pseudoscalar degrees of freedom, ImS1, Im S2, are
massless: The potential is invariant under independent
tations of the phases ofS1 and S2 so that the spontaneou
breaking of thisU(1)3U(1) symmetry gives two Goldston
bosons. One of theU(1)’s is identified with the gauged
U(1)8 and the corresponding Goldstone boson is absor
by the Z8, which has precisely the same intermediate m
given by Eq.~13!. The other massless pseudoscalar rema
in the physical spectrum and can acquire a mass if there
terms in the potential that break the otherU(1) symmetry
explicitly ~e.g., in the presence ofAWNR terms.!. The fermi-
onic part of theZ8-S1-S2 sector consists of three neutralino
(B̃8, S̃1 , S̃2). The combination

S̃5cosaQS̃11sin aQS̃2 ~14!

is light, with mass of ordermso f t if the minimum is fixed by
non-renormalizable terms. If the minimum is instead det
mined by the running ofm2, S̃ is massless at the tree lev
but acquires a mass at one loop of ordermso f t /(4p). The

two other neutralinos have massesMI6
1
2 M18 , whereM18 is

the U(1)8 soft gaugino mass.

c

ve
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2704 57GERALD CLEAVER et al.
This pattern of masses can be easily understood; in
absence of supersymmetry breaking, a nonzero VEV al
the flat direction breaks theU(1)8 gauge symmetry bu
leaves supersymmetry unbroken. Thus, the resulting s
trum is arranged in supersymmetric multiplets: One m
sive vector multiplet~consisting of theZ8 gauge vector bo-
son, one real scalar and one Dirac fermion! has massMI ,
and one chiral multiplet~consisting of the complex scalarS

and its Weyl fermion partnerS̃! remains massless. The pre
ence of soft supersymmetry breaking terms modifies the
ture slightly, lifting the mass degeneracy of the compone
in a given multiplet by amounts proportional to the so
breaking.

The rest of the fields that may be present in the model
be classified into two types; those that couple directly in

renormalizable superpotential toŜ1,2 will acquire intermedi-
ate scale masses, and those which do not can be kept ligh
particular, all the usual MSSM fields should belong to t
latter class. The particle spectrum at the electroweak s
thus contains the usual MSSM fields and one extra ch

multiplet (S, S̃) remnant of theU(1)8 breaking along the fla

direction.8 The interactions among the light multipletŜ and
MSSM fields are suppressed by powers of the intermed
scale. At the renormalizable level, the only interaction b
tween the MSSM fields and the intermediate scale fie
arises from theU(1)8 D terms in the scalar potential. Th
resulting effect after integrating out the fields which ha
heavy intermediate scale masses@18# is a shift of the soft
masses of MSSM fields charged under the extraU(1)8:

dmi
252Qi

m1
22m2

2

Q12Q2
. ~15!

The U(1)8 D-term contribution to the scalar quartic co
pling of light fields charged under theU(1)8 drops out after
decoupling these intermediate scale particles.

Non-renormalizable interactions between MSSM fie
and theS1,2 fields, which can play an important role~e.g., for
the generation of them parameter and fermion masses!, are
discussed separately in Sec. IV.

Before closing this section, we remark in passing tha
similar intermediate scale breaking can occur in theH1,2 sec-
tor of the theory, where, in the absence of a fundamentam
parameter, the directionH1

05H2
0 is also flat. The condition

mH1

2 1mH2

2 .0 on the Higgs soft masses would prevent t

formation of such a dangerous intermediate scale minim
This is however not a necessary condition; the break
could well occur first along theS flat direction, generating an
effectivem parameter that can lift theH1

05H2
0 flat direction.

The determination of which breaking occurs first would
quire an analysis of the effective potential in the early U
verse.

8In the case of a singleS and no additionalU(1)8 there is also one
extra chiral multiplet at the electroweak scale.
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III. RADIATIVE BREAKING

Both mechanisms for fixing an intermediate VEV~purely
radiative or by non-renormalizable terms! depend on the
scale m rad at which some combination of squared so
masses is driven to negative values in the infrared. In
section we present several examples in which the breakin
the extraU(1)8 can take place naturally at an intermedia
scale and examine the range of the scalem rad .

For the sake of concreteness, we consider three mode
which one or both of the singlets couples to exotic sup
fields in the renormalizable superpotential:

Model ~I!: Ŝ1 couples to exoticSU(3) tripletsD̂1 , D̂2 in
the superpotential

W5hD̂1D̂2Ŝ1 . ~16!

Model ~II !: Ŝ1 couples to exoticSU(3) triplets D̂1 , D̂2

andŜ2 to exoticSU(2) doubletsL̂1 , L̂2 in the superpotentia

W5hDD̂1D̂2Ŝ11hLL̂1L̂2Ŝ2 . ~17!

Model ~III !: Ŝ1 couples toNp identical pairs of MSSM
singlets, charged underU(1)8, in the superpotential

W5h(
i 51

Np

ŜaiŜbiŜ1 . ~18!

We have analyzed the renormalization group equati
~RGEs! of each model to determine the range ofm rad as a
function of the values of the parameters at the string scale
principle, we could consider other models, such as a va
tion of model~II ! in which the same singlet couples to th
exotic triplets and doublets throughW5hDD̂1D̂2Ŝ1

1hLL̂1L̂2Ŝ1 , or a variation of model~III ! in which the sin-
glet couples to additional singlets that are not a set ofNp

identical pairs throughW5( i , jCi , j Ŝi Ŝj Ŝ1 . For simplicity,
we restrict our consideration to these three models, beca
they can be analyzed analytically.9

We assume gauge coupling unification atMstring , such
that

g3
05g2

05g1
05g18

05g0 , ~19!

which is approximately consistent with the observed gau
coupling unification.10 At the one-loop level, the singlets in
model ~III ! do not affect the gauge coupling unification
the MSSM. Model~II ! is also consistent with gauge couplin
unification if the Di , Li are approximately degenerate
mass, because they have the appropriate quantum numb
fit into multiplets ofSU(5). However, the presence of exoti

9Even simpler analytic examples, neglecting trilinearA terms,
gaugino masses, and the running of the Yukawas, are given in
Appendix of @9#.

10We assume a grand unified theory~GUT! normalization for the
Abelian gauge couplings, such thatg15AkgY , where gY is the

coupling usually calledg8 in the standard model andk5
5
3 . In

general, the string models considered could havekÞ 5
3 .
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TABLE I. Model ~I!. Singlet coupled to triplets:W5hD̂1D̂2Ŝ1 .

Q1 ,Q2 A0/m0 M1/2/m0 m rad ~GeV! Q1 ,Q2 A0/m0 M1/2/m0 m rad ~GeV!

21,1 1.0 1.0 2.731010 21,1 0.3 0.3 2.03103

21,1 1.0 0.1 - 2
5
4 , 3

4
1.0 1.0 3.33108

21,1 3.0 1.0 1.531015
2

5
4 , 1

3
1.0 1.0 2.13104

21,1 3.0 0.1 1.131015 21,1
3 1.0 1.0 2.33105

21,1 5.0 1.0 8.831016 21,1
4 1.0 1.0 2.13103

21,1 1.0 0.5 2.63107
2

1
2 ,1 1.0 0.1 6.03108

21,1 0.5 0.5 2.43106
2

1
3 ,1 1.0 0.1 1.531011

21,1 0.7 0.7 3.23108
2

1
3 , 1

2
1.0 0.1 2.33105
-
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triplets not part of anSU(5) multiplet violates the gauge
coupling unification in model~I!. This problem can be re
solved if there are other exotics which do not couple toS1
but contribute to the running of the gauge couplings@e.g.,
additionalSU(2) doublets; i.e., model~I! is a limiting case
of model~II ! ashL goes to zero#. The additional exotics will
generally have electroweak scale masses so they will
precisely cancel the effects of the triplets except by accid
However, model~I! is still useful to illustrate the basic idea

For the sake of simplicity, we assume that the bound
conditions for the Yukawa couplings are given by

h05g0&, ~20!

as calculated in string models based on fermionic (Z23Z2)
orbifold constructions at a special point in moduli space11

Thus, the analysis presented below relies on large Yuk
couplings to exotic fields, which are a generic feature o
class of string models considered. However, the spec
choice of exotic couplings in Eqs.~16!, ~17!, and ~18! is
chosen for concreteness in order to illustrate different sy
metry breaking scenarios.

In the analysis, we assume unification of gaugino mas
at Mstring ,

M3
05M2

05M1
05M18

05M1/2, ~21!

and universal12 scalar soft mass-squared parameters

mi
025m0

2 . ~22!

11An overall normalization factor ofg0& at the string scale is
required if the three-gauge-boson coupling is to beg0 . In this class
of string models, cubic couplings in a superpotential can con
additional factors of (1/&)n, with nP$0,1,2,3%. The powern cor-
responds to the number of Ising fermion oscillator excitatio
paired with s1s2 factors ~i.e., sets of order-disorder operator!
present in the product of vertex operators associated with the
tiplets in the superpotential term.

12We do not consider nonuniversal soft mass-squared parame
because it is possible to explore the range ofm rad without this
additional complication.
ot
t.

y

a
a
c

-

es

The first and third models have only one trilinear couplin
with initial valueA0. We do consider the possibility of non
universal trilinear couplingsAD

0 , AL
0 in the analysis of the

second model.
The RGEs of the models~16!–~18! are presented in a

general form in the Appendix.13 We have solved the RGEs i
each case for a range of boundary conditions to determ
the range ofm rad . Each of the models considered has t
advantage that it is possible to obtain exact analytical so
tions to the RGEs, which yield insight into the nature of t
dependence of the parameters on their initial values. Ex
solutions@19# are possible in these models because the RG
for the Yukawa couplings are decoupled. In more comp
cated cases, e.g., if the same singlet couples to both trip
and doublets, no simple exact solutions exist. It is also us
to consider simpler semi-analytic solutions to the RGEs,
which the running of the gauge couplings and gaug
masses is neglected in the solutions of the RGEs of the o
parameters. The exact and semi-analytic solutions are
sented in the Appendix. The results of the renormalizat
group analysis are presented in Tables I–III for models~I!–
~III !, respectively. The evolution of the parameters of mo
~I! is shown in some representative graphs.

Model (I): In Table I, we present the results of the ana
sis of model~I!. We first choose theU(1)8 charge assign-
mentQ152Q2521 for the singletsŜ1 and Ŝ2 and inves-
tigate the nature ofm rad as a function of the initial values o
the dimensionless ratiosA0/m0 andM1/2/m0 . The scale de-
pendence of the Yukawa coupling14 and the trilinear cou-
pling are shown in Fig. 1. With this choice ofU(1)8 charges
andA05m0 , the breaking scale is of the order 1010 GeV for
values ofM1/25O(m0). However, radiative breaking~along
the D-flat direction! is not achieved for small values of th
initial gaugino masses, as is also shown in Fig. 2~a!. The
gaugino mass parameterM1/2 governs the fixed point behav
ior of the soft mass-squared parameters~as was also found in

in

s

l-

rs,

13The running of theU(1)8 gauge coupling depends on the char
assignments of all of the fields in the theory, and so is highly mo
dependent. For simplicity, we assume that theU(1)8 charge assign-
ments are such that the evolution ofg18 is identical to that ofg1 .

14The evolution of the Yukawa coupling for large initial value
demonstrates the fixed point behavior, as discussed in the Ap
dix.



th

e

s

d
ft

l

f

e

-
ith

po-
se

er

e
r

t

am-

es

2706 57GERALD CLEAVER et al.
@10#!, such that small gaugino masses do not drivem1
2 suffi-

ciently negative to overcome the fact thatm2
2 does not run

significantly because it does not have any couplings in
superpotential.S1 will acquire an electroweak scale VEV in
this case, as was described in Sec. I. Increasing the valu
A0 increasesm rad dramatically ~up to 1017 GeV!, for it
drives m1

2 negative at a higher scale; this behavior is al
shown for the case ofA0/m053.0, M1/2/m050.1 in Fig.
2~b!. The breaking scale decreases significantly~in some
cases, all the way to the TeV range! when bothA0/m0 and
M1/2/m0 are lowered simultaneously. This is to be expecte
for this is equivalent to raising the initial value of the so
mass-squared parameters and keepingA05M1/2, in which
casem1

2 is driven negative at a lower scale.
For a given set of boundary conditions, it is also possib

to raise or lowerm rad by choosing different values of the

FIG. 1. ~a! Scale dependence of the Yukawa coupling of mod
~I! for h05g0& andh0510. ~b! Scale dependence of the trilinea
coupling of model~I! in units of m0 , with M1/250.1m0 . In each
caseQ152Q2521. Bold curves are for exact solutions, and ligh
curves represent semi-analytic approximations.
e

of

o

,

e

ratio of uQ1 /Q2u, as can be seen from Eq.~5!. In particular,
uQ1 /Q2u.1 will increase the relative weight ofm2

2 and so
decreasem rad , while uQ1 /Q2u,1 will increase the relative
weight of m1

2 and thus increasem rad . Several examples o
this type are presented in Table I. The values ofm rad for the
examples withM1/2/m051.0 should be contrasted with th
value of 1010 GeV obtained withQ152Q2521, and the
values withM1/2/m050.1 should be compared with the re
sult that radiative breaking does not occur in the case w
equal and oppositeU(1)8 charges.

Model (II): The results of the analysis of model~II ! are
presented in Table II. In this case, bothm1

2 andm2
2 are driven

negative due to the large Yukawa couplings in the super
tential. Thus,m rad is generally much higher than in the ca
of the model previously discussed, of order 1013– 1017 GeV
for Q152Q2521. The breaking scale increases with larg

l
FIG. 2. ~a! Scale dependence of the soft mass-squared par

eters of model~I! in units of m0
2, with A05m0 and M1/250.1m0 .

~b! Same, exceptA053m0 and M1/250.1m0 . In each caseQ15
2Q2521. Bold curves are for exact solutions, and light curv
represent semi-analytic approximations.
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TABLE II. Model ~II !. Singlets coupled to triplets and doublets:W5hDD̂1D̂2Ŝ11hLL̂1L̂2Ŝ2 .

Q1 ,Q2 AD
0 /m0 ,AL

0/m0 M1/2/m0 m rad ~GeV! Q1 ,Q2 AD
0 /m0 ,AL

0/m0 M1/2/m0 m rad ~GeV!

21,1 1.0,1.0 1.0 1.031014 21,1 1.0,3.0 0.1 4.431015

21,1 1.0,1.0 0.1 1.131013 21,1 3.0,3.0 1.0 4.031016

21,1 3.0,1.0 1.0 1.131016 21,1 5.0,5.0 1.0 1.931017

21,1 3.0,1.0 0.1 1.131016 21,1 0.3,0.3 0.3 1.931012

21,1 1.0,3.0 1.0 4.431015 21,1 0.1,0.1 0.1 7.431011
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values ofM1/2 andA0, and the effects of the gaugino mass
are negligible for sufficiently large values ofA0/m0 . The
breaking scale can be lowered to the range of 1011 GeV by
decreasing the values ofA0/m0 andM1/2/m0 . In this model,
changing the value ofuQ1 /Q2u does not have a significan
effect onm rad , as the soft mass-squared parameters of b
singlets are driven to negative values.

Model (III): In Table III, we present the results of th
analysis of model~III !, in whichS1 couples to identical pairs
of singlets charged under theU(1)8, and S2 has no cou-
plings in the renormalizable superpotential. In this case,
number of pairs of singlets is analogous to the group th
retical weight in the RGEs, such thatm1

2 is driven negative at
some scale. WhileNp53 gives the same weight as that
the first model with exotic triplets, the values ofm rad shown
in the first two entries of Table III demonstrate that th
model does not mimic the first model. For example, the
sults show that to obtain radiative breaking forA0/m051.0,
it is necessary to take large values ofNp ~such asNp57 for
m rad;104 GeV!. This is due to the fact that model~III ! does
not have theSU(3) coupling, and so all of the paramete
have a smaller gauge contribution. In particular, the Yuka
coupling is weaker in model~III !, and som1

2 is not driven to
negative values as quickly as in model~I!. This model also
differs from the previous models in that smaller values
M1/2 yield larger values ofm rad , often by many orders o
magnitude. Increasing the value ofA0 raises the breaking
scale dramatically even for small values ofNp , eventually
dominating the effects of the gaugino masses.

Several examples are also presented in Table III in wh
the breaking scale is modified by choosing different valu
of uQ1 /Q2u for a given set of boundary conditions. As in th
first model, the scale can be raised significantly~e.g., to
s

th

e
-

-

a

f

h
s

105 GeV from the case of no solution! by assigning charges
such thatuQ1 /Q2u,1. The value ofm rad can also be low-
ered substantially~e.g., to 104 GeV from 1011 GeV! by
choosinguQ1 /Q2u.1.

The results of this analysis demonstrate that within m
els in which only one of the singlets couples to exotic mat
in the renormalizable superpotential@such as model~I! and
model~III !#, there is a broad range of values of the break
scalem rad , from the TeV range up to around 1016 GeV. In
many cases there is noD-flat solution, so that theU(1)8
breaking will be at the electroweak scale. While the no
renormalizable terms will be important ifm rad is sufficiently
high, in many cases the scale of radiative breaking will d
termine the VEV ofS. If both singlets have trilinear cou
plings in the superpotential@such as in model~II !#, the break-
ing is strongly radiative, such that non-renormalizable ter
will dominate the symmetry breaking.

IV. INTERMEDIATE SCALE DUE TO
NON-RENORMALIZABLE TERMS IN STRING MODELS

The scenarios discussed in a general particle physics
text in the previous sections have interesting implications
string models. In particular, in a large class of string mod
the particle spectrum consists of SM singletsSi whose~par-
ticular combination! ensures that they correspond toD-flat
directions andF-flat directions at least for the renormalizab
terms in the superpotential. On the other hand, it is often
case that these fields do have non-renormalizable term
the superpotential, which along with the radiatively induc
negative mass-squared terms yield intermediate scales
implications for the SM sector of the theory.

For specific examples we shall concentrate on the type
TABLE III. Model ~III !. Singlet coupled to singlet pairs:W5h( i 51
Np ŜaiŜbiŜ1 .

Q1 ,Q2 ,Np A0/m0 M1/2/m0 m rad ~GeV! Q1 ,Q2 ,Np A0/m0 M1/2/m0 m rad ~GeV!

21,1,3 1.0 1.0 - 21,1,8 1.5 0.1 3.931011

21,1,3 1.0 0.1 - 21,1,10 1.5 1.0 8.731011

21,1,7 1.0 1.0 - 21,1,3 3.0 1.0 7.931012

21,1,7 1.0 0.1 3.43104 21,1,3 3.0 0.1 3.831013

21,1,8 1.0 1.0 - 21,1,4 3.0 1.0 4.831014

21,1,8 1.0 0.1 3.53107 21,1,4 3.0 0.1 4.231015

21,1,10 1.0 1.0 1.43107
2

1
3 ,1,3 1.0 0.1 6.43104

21,1,10 1.0 0.1 1.131010
2

1
2 ,1,3 1.5 0.1 1.03105

21,1,3 1.5 1.0 - 21,4
5 ,8 1.5 0.1 4.43104

21,1,8 1.5 1.0 3.23108
21,2

3 ,4 3.0 0.1 3.631012
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non-renormalizable terms in a class of fermionic constr
tions. In such models, there are a number of SM singletSi
which are in general charged under additionalU(1)8 factors.
TheD flatness is ensured if theU(1)8 charges of at least two
Si ’s have opposite signs. For the sake of concreteness
confine ourselves to the case of twoSi ’s, with theD-flatness
constraint satisfying Eq.~1!. Since theSi are massless state
at Mstring , they have no bilinear terms in the superpotent
We also require that in the superpotential the trilinear s
couplings ofSi and the trilinear terms of oneSi to the MSSM
particle content be absent as well. This is often the case
to either ~world-sheet! selection rules~as demonstrated be
low! and/or target space gauge coupling unification.

The analysis of the previous section has shown that c
plings to exotic particles with a Yukawa coupling ofO~1!
can ensure a radiative breaking forSi ’s. On the other hand
in general there are non-renormalizable self-couplings ofŜi ’s
in the superpotential. It is convenient to rewrite Eq.~8! as15

WK5Ŝ3S Ŝ

M
D K

, ~23!

where we have absorbed the coefficientaK in the definition
of mass scaleM . @M is related toM in Eq. ~9! as
M5CKM .# For simplicity we have not displayed the depe
dence ofM on K or the detailed form of the operators.

If p1 and p2 are the unique relative primes defined
p2 /p15uQ1u/uQ2u, then, as discussed in Sec. II,U(1)8 in-
variance permits values ofK.0 in Eq. ~23! such that
31K5(p11p2)n, wheren is an integer. World-sheet selec
tion rules further constrainK through restrictions onn @20–
24#. For example, in the free fermionic constructionn must
be an even integer in the case of only twoSi , thus limitingK
to only odd values, independent of the values of thepi .

Fermionic world-sheet selection rules further require t
both singletsSi must originate from twisted world-sheet s
persymmetric~i.e., Ramond! sectors of a model foranynon-
renormalizable terms of the form~23! to appear in the super
potential. In contrast, for a renormalizable trilinear se
coupling Ŝ3 term to appear, one of the twoSi must have its
origin in the untwisted Neveu-Schwarz sector while the ot
comes from a Ramond sector@22,23#. Thus, renormalizable
(K50) and non-renormalizable (K.0) terms of the form
~23! are mutually exclusive.

The coefficients of the non-renormalizable couplings c
be calculated in a large class of string models. For the
fermionic construction, coefficient values can be cast
terms of the (K13)-point string amplitude,AK13 , in the
following form:16

S 1

M D K

[S aK

M Pl
D K

, ~24!

15In these terms we have already chosen theD-flatness constraint
and thus the non-renormalizable self-coupling is expressed in te
of the S field @defined in Eq.~1!# only.

16For the explicit calculation of the non-renormalizable terms i
class of fermionic models, see@23,25#.
-

e

l.
f-

ue

u-

t

r

n
e

n

5~2a8!K/2AK13 ~25!

5~2a8!K/2S g

2p D K

ghCKI K ~26!

5M Pl
2KS 4

Ap
D K

ghCKI K ~27!

whereg is the gauge coupling atMstring , h5& is a nor-
malization factor~defined so that the three-gauge-boson a
two-fermion—one-gauge-boson couplings are simplyg!,
2a8[(64p)/(M Pl

2 g2) is the string tension@1#, CK is the
coefficient ofO~1! that encompasses different renormaliz
tion factors in the operator product expansion~OPE! of the
string vertex operators~including the target space gaug
group Clebsch-Gordon coefficients!, and
aK[(4/Ap)KghCKI K . I K is a world-sheet integral of the
type

I K5E d2z3•••d2zK12

3 f K~z15`,z251,z3 ,...,zK12 ,zK1350!, ~28!

wherezi is the world-sheet coordinate of the vertex opera
of the i th string state. As a function of the world-sheet coo
dinates,f K is a product of correlation functions formed re
spectively from the spacetime kinematics, Lorentz symm
try, ghost charge, local non-Abelian symmetries, local a
global U(1) symmetries, and~non-!chiral Ising model fac-
tors in each of the vertex operators for the 31K fields. All
correlators but the Lorentz and Ising ones are of exponen
form. For non-Abelian symmetries and forU(1) symmetries
and ghost systems these exponential correlators have th
spective generic forms

K)
i

eiQW i•JWL 5)
i , j

zi j
QW i•QW j and K)

i
eiQiHL 5)

i , j
zi j

QiQj

~29!

where zi j 5zi2zj . In this language,Qi is imaginary for
ghost systems.

While the Lorentz correlator is non-exponential, it is ne
ertheless trivial and contributes a simple factor ofz12

21/2 to
f K . On the other hand, the various Ising correlators are
nerically non-trivial. This makesI K difficult to compute. In
fact, Ising correlators generally prevent a closed form
pression for an integralI K @23#. Nevertheless, Ising fermion
may be necessary in fermionic models for obtaining realis
gauge groups and~quasi-!realistic phenomenology@23,7#.
Thus, although the Ising correlation functions makeI K in-
creasingly difficult to compute asK grows in value, Ising
correlation functions generally enter string amplitudes.

From @23,25# we infer that I 1;70 and I 2;400. In
@23,25#, the non-renormalizable terms for whichI 1 and I 2
were calculated involved only one and two MSSM single
respectively. However, we do not expect that the values
I 1

singletsor I 2
singletsassociated with terms composed totally

S-type singlets will generically vary significantly from th
values obtained when some non-singlets are involved.

s
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For a K51 term composed solely of non-Abelia
singlets17 carryingU(1)8 charge@6#, we have explicitly cal-
culated a value forI 1

singlets. For comparative purposes w
relate ourI 1

singlets to the associated four-point string amp
tudeA4

singlets via the normalization

A4
singlets5

g

2p

1

4
I 1

singlets. ~30!

This is the same normalization as in@25#, where the value of
I 1 was 77.7. The four singlet case produces

I 1
singlets52&E d2zuzu21u12zu23/2. ~31!

By shifting z→z11 and converting the world-sheet coord
nate z to polar coordinates (r ,u), the integral can be ex
pressed as

I 1
singlets54&E

0

`

drE
0

p

du
1

11r 222r cosu
. ~32!

Integrating over the angleu results in

I 1
singlets54&E

0

`

dr
1

r

2Ar

r 11
KS 2Ar

r 11D ~33!

58&E
0

`

dl
2

l 211
KS 2l

l 211D , ~34!

whereK is the complete elliptic integral of the first kind.
Numerical approximation of Eq.~32! ~after splitting inte-

gration over r into two separate regions 0<r<1 and
0<r<`! via Mathematica yields a value ofI singlets563.7.
As a test of the numerical approximation, we can also
pand K in powers of 2Ar /(r 11) @or in powers of
2l /( l 211)# and then integrate the first two~or more! terms
in this series. This latter approach yields~for two terms!
I 1

singlets'(9/&)p2'62.8610%, in excellent agree
mentwith our numerical approximation.18 Thus the non-
singlet factor in the four-point string amplitude of@25#
causes I 1 to be about 20% larger thanI 1

singlets.

17The four states forming thisK51 superpotential term were de
notedH30, H32, H37, andH39 in Table 2 of@6#. The first two of
these states originate in one sector of the model, while the latter
reside in a second sector. This is the general pattern also follo
in @23,25#.

18x[2Ar /(r 11) is within the range of convergence 0<x,1 of
the series expansion,

K~x!5
p

2 H11S12Dx1S133

234D
2

x21• • •J, ~35!

for all values ofr except forr 51. At r 51, x reaches the end poin
of convergence,x51, for which limx→1 K(x)→`. As consistency
between our two estimates ofI 1

singlets indicates, inclusion of this
end point in the range of integration of the series expansion
permits using the series expansion.
-

It is expected that the interference terms inI K are generi-
cally such thatI K,I 1

K , and thusM.M1 . In particular, for
K51 we obtainM1;331017 GeV using I 1;70 and, for
K52, M2;731017 GeV usingI 2;400.

V. NON-RENORMALIZABLE COUPLING
TO THE MSSM PARTICLES

The flat directionS can have a set of non-renormalizab
couplings to MSSM states that offer solutions to them prob-
lem @26# and yield mass hierarchies between generati
@28#. The non-renormalizablem-generating terms are of th
form

Wm;Ĥ1Ĥ2ŜS Ŝ

M
D P

. ~36!

In addition, the effective soft SUSY-breakingB term,
BH1H21H.c. in the Higgs potential, which is necessary f
a correct electroweak symmetry breaking, can appear
mixed F terms from a superpotential19

WB;Ĥ1Ĥ2ŜS Ŝ

M
D P

1Ŝ3S Ŝ

M
D K

, ~37!

or from supersymmetry breaking terms@27# in the potential
of the type

V;AH1H2SS S

M D P

1H.c., ~38!

whereA;mso f t . In both cases, when the effectivem param-
eter is of the order of the electroweak scale,B;mso f t

2 auto-
matically.

Generational up, down, and electron mass terms app
respectively, via

Wui
;Ĥ2Q̂i Û i

cS Ŝ

M
D Pui

8

, Wdi
;Ĥ1Q̂i D̂ i

cS Ŝ

M
D Pdi

8

,

Wei
;Ĥ1L̂ i Êi

cS Ŝ

M
D Pei

8

, ~39!

with i denoting the generation number.20

Majorana and Dirac neutrino terms may also be pres
via

o
ed

ill

19Although the values of theM in the two terms of Eq.~37! are
expected to be of the same order of magnitude, they may v
somewhat. For simplicity, we ignore the distinction.

20Alternatively, non-renormalizable chiral supermultiplet ma
terms can be generated through anomalousU(1)8 breaking@29,30#.
Typically, in that case the analogue of^s&/M;1/10, so that larger
values ofP8 are required.
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TABLE IV. Fermion mass ratios with the top quark mass normalized to 1. The values ofu-, d-, and
s-quark masses used in the ratios~with the t-quark mass normalized to 1 from an assumed mass of 170 G!
are estimates of the modified minimal subtraction (MS) scheme current-quark masses at a scalem'1 GeV.
The c- and b-quark masses are pole masses. An additional mass constraint for stable light neutr
( imn i

<6310211 ~i.e., 10 eV!, based on the neutrino contributions to the mass density of the universe
the growth of structure@36#.

mu : mc : mt 5 331025 : 731023 : 1
md : ms : mb 5 631025 : 131023 : 331022

me : mm : mt 5 0.331025 : 0.631023 : 131022

mne
: mnm

: mnt
5 ,6310211 : ,131026 : ,131024
w
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e

WLiLi

~Maj!;
~Ĥ2L̂ i !

2

M
S Ŝ

M
D PLiLi

9

, WLin i
c

~Dir!
;Ĥ2L̂ i n̂ i

cS Ŝ

M
D P

Lin i
c8

,

Wn
i
cn

i
c

~Maj!
;n̂ i

cn̂ i
cŜS Ŝ

M
D P̄n i

cn i
c

. ~40!

~n̂PL̂ represents the neutrino doublet component and
have introduced neutrino singletsn̂c.!

When the VEV^S& is fixed solely by the running ofm2,
the size of them parameter will be determined by the sca
m rad and the value ofP in Eq. ~36!, me f f; m rad

P11/M P. For
example, forP51 a reasonableme f f;1 TeV would corre-
spond tom rad;1010 GeV. On the other hand, concrete ord
of magnitude estimates can be made when the VEV is fi
by non-renormalizable self-interactions ofS. Generally, if
m rad!1012 GeV, running is the dominant factor, whereas,
m rad@1012 GeV, the non-renormalizable operators~NROs!
dominate instead. With NRO-dominate
^S&;(mso f tM

K)1/(K11), the effective Higgsm term takes the
form

me f f;mso f tS mso f t

M D ~P2K !/~K11!

. ~41!

The phenomenologically preferred choice among such te
is clearly P5K, yielding a K-independentme f f;mso f t .
e

d

s

Both of these intermediate scale scenarios are to be
trasted to the case in whicĥS& is at the electroweak scale
Then, me f f;mso f t can be generated by a renormalizab
(P50) term @10#.

Quark and lepton masses can have hierarchical patt
generated through

mui
;^H2&S mso f t

M D Pui
8 /~K11!

, mdi
;^H1&S mso f t

M D Pdi
8 /~K11!

,

mei
;^H1&S mso f t

M D Pei
8 /~K11!

. ~42!

In Eqs.~42! we ignore the running of the effective Yukawa
below ^S& ~or below M Pl for mt! because such effects ar
small compared to the uncertainties inM .

Comparison of the physical fermion mass ratios@33# in
Table IV with theoreticalK andP dependent mass values
Table V suggests that the set

P18[Pu1
8 5Pd1

8 5Pe1
8 52,

P28[Pu2
8 5Pd2

8 5Pe2
8 51, ~43!

when used in tandem withK55 or K56, could produce a
fairly realistic hierarchy for the first two generations in th
TABLE V. Non-renormalizable MSSM mass terms via^S&. For mso f t;100 GeV,M;331017 GeV.

P or P8 K51 K52 K53 K54 K55 K56 K57

Smsoft

M D1/~K11!

231028 731026 131024 831024 331023 631023 131022

^S& ~GeV! 53109 231012 431013 231014 831014 231015 331015

K21 53107 13105 73103 13103 400 200 90

mef f

msoft
K 1 1 1 1 1 1 1

K11 231028 731026 131024 831024 331023 631023 131022

0 1 1 1 1 1 1 1
1 231028 731026 131024 831024 331023 631023 131022

2 3310216 5310211 231028 631027 731026 431025 131024

mQ,L

^Hi&
3 6310224 3310216 2310212 5310210 231028 231027 231026

4 1310231 2310221 3310216 4310213 5310211 131029 231028

5 2310239 2310226 5310220 3310216 1310213 9310212 2310210
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tanb[ ^H2&/^H1&;1 limit.21 Alternatively, taking the
tanb;50 limit would suggest slightly higher values forK
~while keeping the same set ofP8 values!.

Presumablymt is associated with a renormalizable co
pling (Pu3

8 50). The other third family masses do not

quite as well: They are too small to be associated w
renormalizable couplings, but somewhat larger than is
pected forPd3

8 5Pe3
8 51 for K55 or K56. However, given

the roughness of the estimates and the simplicity of
model, the overall pattern of the masses is quite encourag
It is also possible thatmb andmt are associated with som
other mechanism, such as non-renormalizable operator
volving the VEV of an entirely different singlet.

There is an obvious constraint on a string model t
could produce a generational mass hierarchy along th
lines, containing P18215P285Pu3

8 1151 fermion mass

terms, in tandem with aP5K55 or 6 m term. A combina-
tion of world-sheet selection rules andU(1)8 charges must
preventm-generating terms withP,5 from appearing, while
allowing the low orderPi8 fermion mass terms. IfU(1)8
charges could be assigned by fiat to each state, then
U(1)8 symmetry should be able to accomplish this by itse
However,U(1)8 charge assignments are related to modu
invariance and thus they cannot be freely chosen for m
states. World-sheet selection rules must likely play a role
constrainingP.

The neutrino mass terms in Eqs.~40! offer various
possibilities22 for achieving small neutrino masses@36#,
some not involving a traditional seesaw mechanism@37#.
Very light non-seesaw doublet neutrino Majorana masses
possible viaWLiLi

(Maj) of the form

mLiLi
;

^H2&
2

M S mso f t

M D PLiLi
9 /~K11!

;^H2&S mso f t

M D3S mso f t

M D PLiLi
9 /~K11!

!1 eV. ~44!

The upper bound on neutrino masses from this term~i.e., the
case of PLiLi

9 50! is around 1024 eV ~using

^H2&;mso f t5100 GeV andM5331017 GeV!, which is
too small to be relevant to dark matter or Mikheye
Smirnov-Wolfenstein~MSW! conversions in the Sun@36#.

21In Table V we have used the computed value
M1;331017 GeV as the value for allM . To test the validity of
this approximation, we have also determinedmQ,L /^Hi& and
me f f /mso f t for K52 usingM2;731017 GeV and forK53 using
an extrapolatedM3 value of 1131017 GeV. For P,5 and
P8,K15, the better estimates ofM2 and M3 reducemQ,L /^Hi&
andme f f /mso f t , respectively, only by factors ofO~1! in compari-
son to the values ofmQ,L /^Hi& andme f f /mso f t given in theK52
andK53 columns of Table V. However, larger values ofP andP8
yield increasing significant reductions inmQ,L /^Hi& and
me f f /mso f t , respectively, when the better estimates ofM2 andM3

are used.
22Other applications of non-renormalizable operators to neut

mass include@34# and @35#.
h
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e
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If WLiLi

(Maj) is not present, a superpotential term likeWLin i
c

(Dir)

can naturally yield heavier physical Dirac neutrino masses
the form

mLin i
c;^H2&S mso f t

M D P
Lin i

c8 /~K11!

. ~45!

For example, forK55 the experimental neutrino upper ma
limits given in Table IV allow PL1n

1
c8 >4, PL2n

2
c8 >3, and

PL3n
3
c8 >2. Masses corresponding toPLin i

c8 54 or 5 ~mLin i
c

50.9 eV or 1022 eV, respectively! are in the range interest
ing for solar and atmospheric neutrinos, oscillation expe
ments, and dark matter.

Neutrino singlets can acquire a Majorana mass thro
Wn

i
c

(Maj)
,

mn
i
cn

i
c;mso f tS mso f t

M D P̄n i
cn i

c2K/~K11!

, ~46!

which can be very large or small, depending on the sign
P̄n

i
cn

i
c2K. Laboratory and cosmological constraints depe

on the n i
c lifetimes ~if it decays!, cosmological production

and annihilation rates, and mixings with each other and w
doublet neutrinos. These in turn depend on other couplin
such asWLin i

c
(Dir)

or renormalizable couplings not associat

with the mass. Generally, however, the constraints are v
weak due to the absence of normal weak interactions, e
cially for heavyn i

c ( P̄n
i
cn

i
c<K).

If both WLin i
c

(Dir)
and Wn

i
cn

i
c

(Maj)
terms are present, the standa

seesaw mechanism can produce light neutrinos via diago
ization of the mass matrix for Eqs.~45!, ~46!. The light mass
eigenstate is

mseesaw
light ;mLin i

c
2

/mn
i
cn

i
c;mso f tS mso f t

M D ~2P
Lin i

c8 1K2 P̄n i
cn i

c!/~K11!

,

~47!

while the heavy mass eigenstate is to first ordermn
i
cn

i
c as

given by Eq.~46!. Various combinations ofK, PLin i
c8 and

P̄n
i
cn

i
c produce viable masses for three generations of li

neutrinos. For example, withK55 andPLin i
c8 5Pi85$2,1% for

i 51,2, respectively~the values ofK and Pi 51,28 discussed
above for the quarks and electrons!, and with eitherPL3n

3
c8 51

or PL3nc8 5Pu3
8 50 ~involving a renormalizable Dirac neutrin

term!, the light eigenvalues of the three generations fall in
the hierarchy of 331025 eV, 131022 eV, and either
131022 eV or 5 eV for P̄n

i
cn

i
c5PLin i

c8 11. This range is

again of interest for laboratory and non-accelerator exp
ments.
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VI. CONCLUSIONS

We have explored the nature of intermediate scale s
narios for effective supergravity models as derived within
class of string vacua. In particular, we explored a class
string models which, along with the SM gauge group and
MSSM particle content, contain massless SM singlet~s! Si .
In addition, we assumed that the effects of supersymm
breaking are parametrized by soft mass parameters.

The necessary condition for the intermediate mass
nario is the existence ofD-flat andF-flat directions in the
renormalizable part of theSi sector. In this case, the onl
renormalizable terms of the potential are due to the s
mass-squared parametersmi

2 . If the running of the soft mass
parameters is such that the effective mass squared, alon
flat direction, becomes negative atm rad@MZ , the Si ’s ac-
quire a non-zero VEV at an intermediate scale.~Another
possibility is that individual mass squares, but not the eff
tive combination for theD-flat direction, are negative. The
the VEV is of the order of the electroweak scale.!

Importantly, in a large number of string models, in pa
ticular for a class of fermionic constructions, there exist S
singletsSi with flat directions at the renormalizable leve
which couple to additional exotic particles via Yukawa co
plings ofO~1!. Such Yukawa couplings in turn ensure th
radiative breaking, by driving the softmi

2 parameters nega
tive at m rad@MZ .

For simplicity we confined the concrete analysis to t
case in which there is an additionalU(1)8 symmetry, and
two SM singletsS1,2 have opposite signs of theU(1)8
charges, thus ensuringD flatness foruQ1uuS1u25uQ2uuS2u2
@similar results are expected for the case of a single stan
model singlet and no additionalU(1)8#. In the analysis of
radiative breaking we considered three types of Yukawa c
plings @of O~1!# of Si to the exotic particles and a range
the boundary conditions on soft mass parameters atMstring .
For a large range of parameters we obtainedm rad in the
range 105– 1016 GeV ~or at m rad;MZ!.

In addition, we discussed the competition between
effects of the pure radiative breaking (^S&;m rad) and the
stabilization of vacuum due to the non-renormalizable ter
in the superpotential of the type ŜK13/MK

@^S&;(mso f tMK)1/(K11)#. Non-renormalizable terms in th
superpotential are generic~and calculable! in string models.
For a class of fermionic constructionsM;Mstring . These
terms are dominant for (mso f tMK)1/(K11),m rad .

In the case of the pure radiative breaking, the mass of
Higgs field~and its fermionic partner! associated with a non
zero VEV ofS is light and of orderMZ /(4p). On the other
hand, the breaking due to the non-renormalizable terms
plies a light Higgs field and the supersymmetric partner b
with the mass of orderMZ .

The non-renormalizable couplings ofSi ’s to the MSSM
particles in the superpotential in turn provide a mechanism
obtain an effectivem parameter and the masses for qua
and leptons. In the case of the pure radiative breaking
precise values of them parameter and the lepton-qua
masses crucially depend onm rad . When the non-
renormalizable terms dominate, these parameters ass
specific values in terms ofK and the orderP of the non-
renormalizable term by which they are induced. In particu
e-
a
f
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ry
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ft
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-

-
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e

s

e

-
h

to
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m5O(mso f t) for K5P, thus providing a phenomenolog
cally acceptable value for them parameter.@Another possi-
bility is that in which theU(1)8 is broken at the electrowea
scale and the effectivem is generated by a renormalizab
term.# We are able to obtain interesting hierarchies for t
quark and lepton masses for appropriate values ofP. Also,
small ~non-seesaw! Dirac or Majorana neutrino masses ca
be obtained, or the traditional seesaw mechanism can be
corporated, depending on the nature of the no
renormalizable operators.

In conclusion, the string models provide an importa
framework in which the intermediate scales can natura
occur and provide interesting implications for them param-
eter and the fermion mass hierarchy of the MSSM secto
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APPENDIX: RENORMALIZATION GROUP ANALYSIS

If the standard model singletS1 @with U(1)8 chargeQ1#
couples in the superpotential

W5hŜ1Ê1Ê2 ~A1!

to a set of exotic fieldsÊ1,2
a ~in general non-singlets under th

standard model group; the indexa is a multiplicity index not
necessarily associated with a gauge symmetry!, the one-loop
RGEs for couplings and soft masses can be integrated
lytically.

The RGE equations have the general form23

@ t5 (1/16p2) ln(m/Mstr)#

dga

dt
5baga

3 ,
dMa

dt
52baga

2Ma , ~A2!

where the indexa runs over the different gauge group fa
tors, with gauge couplingga and gaugino massMa , and
ba5(RS(Ra)23C(Ga). The sum extends over chiral mu
tiplets with S(Ra) the Dynkin index of the correspondin
representation andC(Ga) the quadratic Casimir invariant o
the adjoint representation. With the MSSM particle conte

b3523, b251, andb15 33
5 . In the case of two fundamenta

SU(5) multiplets added to the MSSM particle conten

b3522, b252, andb15 38
5 . In writing these equations we

are neglecting the possible kinetic mixing@38,16# between
U(1)Y andU(1)8.

For the Yukawa coupling in Eq.~A1!,

dh

dt
5~T12!h32h(

a
r aga

2 , ~A3!

23The local~or global! symmetry associated with the multiplicit
in a for the E1,2 fields permits us to write the Yukawa couplingh
and the soft masses of these fields with noa indices.
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TABLE VI. Coefficients in RGEs for coupling ofŜ1 to triplets, doublets, andNp pairs of identical MSSM

singlets, via the superpotentialW5hŜ1Ê1Ê2 .

Ei;(SU(3),SU(2),U(1)Y ,U(1)8) T C3(Ei) C2(Ei) C1(Ei) C18(Ei)

D;(3,0,YD ,QD) 3 4
3 0 3YD

2 /5 QD
2 /k18

L;(0,2,YL ,QL) 2 0 3
4 3YL

2/5 QL
2/k18

Si;(0,0,0,QSi
) Np 0 0 0 QSi

2 /k18
al
where T5(ada
a , r a52@Ca(S1)1Ca(E1)1Ca(E2)#. In

Table VI, we list the values ofT and Ca(Ei) for specific
examples ofEi .

For the associated soft trilinear coupling,

dA

dt
52~T12!Ah222(

a
r aga

2Ma . ~A4!

Finally, for the soft masses of the scalar components ofS1
andD1,2,

dm1
2

dt
52Th2s228(

a
ga

2Ca~S1!Ma
2

12( 8
a

ka
21ga

2Qa~S1!Tr@Qam2#, ~A5!

dmE1,2

2

dt
52h2s228(

a
ga

2Ca~E1,2!Ma
2

12( 8
a

ka
21ga

2Qa~E1,2!Tr@Qam2#. ~A6!

We useds25m1
21mE1

2 1mE2

2 1A2, the primed summa-

tion extends only to Abelian gauge group factors, and theka
are normalization factors for the Abelian groups~e.g.,
k155/3 in a GUT normalizaton!.

The solutions for this set of equations24 are

ga
2~ t !5

g0
2

122bag0
2t

, ~A7!

Ma~ t !5M1/2

ga
2~ t !

g0
2 , ~A8!

h2~ t !5
E~ t !h0

2

11~T12!h0
2F~ t !

, ~A9!

A~ t !5A0e f~ t !1M1/2@H2~ t !2~T12!h0
2H3~ t !e f~ t !#,

~A10!

24Assuming universality of the soft masses at the string sc
Tr@Qam2#50 at all scales for non-anomalous Abelian groups.
m1
2~ t !5@123TRf~ t !#m0

22TRf~ t !e f~ t !A0
2

22TRf~ t !e f~ t !
H3~ t !

F~ t !
A0M1/2

1M1/2
2 H I 1~ t !2TRf~ t !

J~ t !

F~ t !

1T~T12!FH3~ t !

F~ t ! G2

Rf
2~ t !J , ~A11!

mE1,2

2 ~ t !5@123Rf~ t !#m0
22Rf~ t !e f~ t !A0

2

22Rf~ t !e f~ t !
H3~ t !

F~ t !
A0M1/2

1M1/2
2 H I E1,2

~ t !2Rf~ t !
J~ t !

F~ t !

1~T12!FH3~ t !

F~ t ! G2

Rf
2~ t !J , ~A12!

where

E~ t !5)
a

@122bag0
2t# r a /ba, ~A13!

F~ t !52E
t

0

E~ t8!dt8, ~A14!

e f~ t !5
1

11~T12!h0
2F~ t !

, ~A15!

Rf~ t !5h0
2F~ t !e f~ t !, ~A16!

H2~ t !522(
a

r aga
2~ t !t, ~A17!

H3~ t !522tE~ t !2F~ t !, ~A18!

I k~ t !52(
a

Ca~k!
1

ba
F12

1

~122bag0
2t !2G
~A19!

J~ t !52E
t

0

E~ t8!@H2
2~ t8!1I 1~ t8!1I E1

~ t8!

1I E2
~ t8!#dt8. ~A20!

e,
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It is instructive to write some of these functions in terms
the Yukawa coupling at its~pseudo!fixed point

hf
2~ t ![

E~ t !

~T12!F~ t !
. ~A21!

This is the running Yukawa coupling for largeh0 . It deter-
mines the infrared fixed point at the electroweak scale,
when h0;1 it is expected thath(t) approacheshf(t) for
sufficiently large2t @see Fig. 1~a!#. Whenh(t).hf(t) is a
good approximation, many terms simplify in the previo
analytic solutions. In particular,

e f~ t ![12
h2~ t !

hf
2~ t !
→0, Rf~ t ![

1

~T12!

h2~ t !

hf
2~ t !
→

1

~T12!
.

~A22!

In addition to the exact analytical solutions presen
above, it is useful to consider approximate analytical so
tions to the RGEs. In this semi-analytic approach, the r
ning gauge couplings and gaugino masses are replace
their average values:

ḡ a5
1

2
~ga~MZ!1g0!, ~A23!

M̄a5
1

2
~Ma~MZ!1M1/2!. ~A24!

With these approximations, the RGEs for the Yuka
coupling, soft trilinear coupling, and the soft masses can
solved easily. The Yukawa coupling has the approxim
solution

h2~ t !5
g̃2

12X~ t !
, ~A25!

in which

g̃215
1

T12 (
a

r a ḡa
2 , ~A26!

X~ t !5X0e2~T12! g̃2t, ~A27!

X0512S 12
g̃2

h0 2D . ~A28!

The approximate solution for the trilinear coupling is giv
by
s.

s.

.

f

d

d
-
-
by

e
e

A~ t !5
A0X~12X0!

X0~12X!
1m̃l

X

12X F 1

X
2

1

X0
1 ln

X

X0
G ,
~A29!

where

m̃l5
1

~T12! g̃2 (
a

r a ḡa
2M̄a , ~A30!

and the other quantities are defined above.
If the U(1)8 factors are neglected, the soft scalar ma

squared parameters have the following approximate s
tions:

m1
25S 12

T

T12Dm0
21

T

T12
S~ t !12T g̃2m̃2 ln

X

X0
,

~A31!

mE1,2

2 5S 12
1

T12Dm0
21

1

T12
S~ t !1S 2 g̃2m̃2

28(
a

Ca~E1,2!M̄a
2 ḡ a

2D ln
X

X0
, ~A32!

in which

m̃25
4

~T12! g̃2 (
a

Ca~E1,2!M̄a
2 ḡ a

2 , ~A33!

and

S~ t !5~m̃22m̃l
2!

12
X

X0

12X
1

X~12X0!

X0~12X!
S02

X~12X0!

X0
~A0

2m̃l!2

12
X

X0

~12X!2 1
X~12X0!

X0~12X!2 2~A02m̃l!m̃l ln
X

X0

1
X

12X
ln

X

X0
S m̃21m̃l

2
1

12X
ln

X

X0
D . ~A34!

The semi-analytic solutions are valid in the limit of sma
initial gaugino masses, such that the contribution of
gauginos to the evolution of the trilinear coupling and t
soft mass-squared parameters is small.
ys.
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@19# L. Ibáñez, and C. Lo´pez, Nucl. Phys.B233, 511 ~1984!; L.
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