PHYSICAL REVIEW D VOLUME 57, NUMBER 5 1 MARCH 1998

Intermediate scales,u parameter, and fermion masses from string models

Gerald Cleaver, Mirjam CvetjicJose R. Espinosa, Lisa Everett, and Paul Langacker
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396
(Received 16 June 1997; published 23 January 1998

We address intermediate scales within a class of string models. The intermediate scales occur due to the SM
singletsS; acquiring non-zero VEVs due to radiative breaking; the mass sqmlafrelﬂ S is driven negative at
Mrag due toO(1) Yukawa couplings of5; to exotic particlegcalculable in a class of string modgl3he actual
VEV of S depends on the relative magnitude of the non-renormalizable terms of thé’f}‘iﬁd\AK in the
superpotential. We mainly consider the case in whichShare charged under an additional non-anomalous
U(1)’' gauge symmetry and the VEVs occur aldrgandD-flat directions. We explore various scenarios in
detail, depending on the type of Yukawa couplings to the exotic particles and on the initial boundary values of
the soft SUSY breaking parameters. We then address the implications of these scenariogfpathmeter
and the fermionic masses of the standard md&#)556-282(98)03905-9

PACS numbgs): 11.25.Mj, 12.15.Hh, 12.60.Jv

[. INTRODUCTION vacua often predict an additional nonanomaldu¢l)’
gauge symmetry in the observable sector. It has been argued

One prediction of the weakly coupled heterotic string is[9] that for this class of string vacua with an additional
the tree level gauge coupling unification at U(1)’ broken by a single standard model singbethe mass
Mgtring™0u X 5X 10'" GeV [1], wheregy, is the gauge cou- scale of theU(1)’ breaking should be in the electroweak
pling at the string scaleM ing is the only mass scale that range(and not larger than a TéVThat is, if theU (1)’ is not
appears in the effective Lagrangian of such string vacua, angroken at a large scale through string dynamics, Uifé)’
thus is one mass scale naturally provided by string theory. preaking may be radiative if there are Yukawa couplings of

However, one of the major obstacles to connecting string»(1) of S to exotic particles. The scale of the symmetry
theory to the low energy world is the absence of a fullypreaking is then set by the soft supersymmetry breaking

satisfactory scenario for supersymmet§USY) breaking,  scalemy, in analogy to the radiative breaking of the elec-
either at the level of world-sheet dynamics or at the level ofroweak symmetry described above.

the effective theory. The SUSY breaking induces soft mass Recently, a model was considergtD] in which the two

parameters which provide another scale in the theory that cagm Higgs doublets couple to the SM singlet, and the gauge
hopefully provide a link betweeM i,y andMz, the scale  symmetry breaking scenarios and mass spectrum were ana-
of electroweak symmetry breaking. For example, in modelgyzed in detail. A major conclusion of this analysis was that
with radiative breaking one of the Higgs masses squared rung |arge class of string models not only predicts the existence
from an initial positive valuem§ at Mgying t0 @ negative of additional gauge bosons and exotic matter particles, but
value, ofO(—mS), at low energies, so that the electroweakcan often ensure that their masses are in the electroweak
scale is set by the soft supersymmetry breaking sogle range. Depending on the values of the assumed soft super-
(and not by the intermediate scale at which the mass squaresymmetry breaking mass parametersMad; i,q, €ach spe-
goes through zejo cific model leads to calculable predictions, which can satisfy
In spite of this difficulty, string theory does provide cer- the phenomenological bounds. In addition, the model consid-
tain generic and, for a certain class of string vacua, definitered in[10,11] forbids an elementary term for appropriate
predictions. With the assumption of soft supersymmetryU(1)’ charges, but an effective is generated by the elec-
breaking masses as free parameters, the features of the strimgweak scale vacuum expectation val#EV) of the sin-
models, such as the explicitly calculable structure of the suglet, thus providing a natural solution to theproblem.
perpotential, provide specific predictions for the low energy However, the qualitative picture changes if there are cou-
physics. plings in the renormalizable superpotential of exotic particles
For example, one can restrict the analysis to a set of stringp two or more mirrorlike singletsS; charged under the
vacua which havé=1 supersymmetry, the standard modelU(1)’. In this case, the potential may hae and F-flat
(SM) gauge group as a part of the gauge structure, and directions, along which it consists only of the quadratic mass
particle content that includes three SM families and at leasterms due to the soft supersymmetry breaking mass squared
two SM Higgs doublets, i.e., the string vacua which have aparametersn?. If there is a mechanism to drive the linear
least the ingredients of the minimal supersymmetric standardombinationm? that is relevant along the flat directions
model (MSSM) and thus the potential to be realistiSuch negative afu,,4>M, theU(1)’ breaking is at an interme-
diate scale. On the other hand, if some individugl are
negative bum? remains positive, then th-flat direction is
A number of such modelgot necessarily consistent with gauge Not relevant and the breaking occurs near the electroweak
unification were constructed as orbifold mod¢R 3] with Wilson ~ scale, similar to the case of only one singlet.
lines, as well as models based on the f@erld-sheet fermionic A large number of string models have ingredients that can
constructiong4—7]. For a review and references 4é&3. lead to such scenarios:
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(i) SM singletsS; which do not have renormalizable self- masses or naturally smalhon-seesayvDirac or Majorana
interactions of the superpotentid flatness. masses can be generated.
(i) If such singletsS, are charged under additional nona-  Finally, in Sec. VI we draw some conclusions.
nomalousU(1)" factors, more than on& with opposite
relative signs for the additiondl (1)’ charges may ensure [Il. INTERMEDIATE SCALE VEV

D-flat directions. This is the case that we focus on in this 1 oo e o e 1o generate intermediate scale

Paper. I—_|oweve_r, similar considerations hold for a single SCAYEVs in supersymmetric theories utilizes the flat directions
lar S which carries no gauge quantum numbers and therefor&enerically present in these modélst]. The discussion in

has noD terms. _ this section applies to a general class of supersymmetric
(iii) Most importantly, in a large class of models sUsh  models with flat directions; string modd[s5] discussed sub-

can couple to additional exotic particles via Yukawa CoU-sequently in general possess these features.

plings of O(1). Such Yukawa couplings can then lead to  For example, consider a model with two chiral multiplets

radiative breaking, by driving some or all of the soff & and$, that are singlets under the standard model gauge
parameters negative f,4>Mz. group, but carry charge®, andQ, under an extraJ(1)’.2

In the case of pure radiative breaking, the minimum of the|f these Charges have Opposite S|g@LQ2<0), the scalar
potential occurs near the scale .y, and so the nonzero field directionS with

VEV of §’s is at an intermediate scale. In principle, non-
renormalizable terms in the superpotential compete with the (Sp)=cosag(S), (Sy)=sina(S), (1)
radiative breaking. These terms are generically present in.

most string models. If such terms dominate at scales beIO\XY'th

Mrad, they will determine the VEV of5;. In this case, the Q]

order of magnitude of the VEV depends on the order of the tar? ag= m 2
non-renormalizable terms, but is also at an intermediate 2

scale.

is D flat. If S, andS, do not couple among themselves in the

: The purpose of th|s paper is to mvestlgate the nature. Olenormalizable superpotential, the directidn is alsoF flat
intermediate scales in a class of string models. Intermedla\tgnd the only contribution to the scalar potential aldis
scales are of importance, as they are often utilized in ph

e-. 2 2 2 2

: . nma + . -
nomenological modelge.g., for neutrino massgsand may given by the soft mass ter 1|Sll my| S,”. If we con

: R . centrate on thdreal) components=v2 ReS along the flat
also have important cosmological implicatioesg., in the N
) : ) ? ? . direction,
inflationary scenariofl2]). In this paper, we also investigate
the implications of intermediate scales for the standard
model sector of the theory, specifically for tjeparameter,
ordinary fermion masses, and Majorana and Dirac neutringhe potential is simply

S=S; COSagts; sinag, 3

masses.
In Sec. Il, we give a general discussion of radiative break- -
ing along a flat direction and study two different mechanisms V(s)=5m’s", (4)

(radiative corrections and non-renormalizable terthat sta-
bilize the potential and fix an intermediate scale VEV. Wewhere
also examine the implications for the low energy particle

spectrum of such type of scenarios. m2=m? co€ aq+ms sir? aq

In Sec. lll, we explore the range qf,,4 that can arise ) )
assuming that the flat direction has large Yukawa couplings [ My N mz |Q1Q;| 5
to exotic fields(as is typically expected in string modgls Q4 1Qal) 104 +1Q4)” ©

[13]. We consider three different models, with varied quan-
tum numbers for the exotic fields, and in each case we exwhich is evaluated at the scale=s. We assume thah? is
amine the effect onu,,4 Of different choices of boundary positive at the string scée&m2=m§ if we assume universal-
conditions for the soft masses. The relevant renormalizatioity.) However,m? can be driven to negative values at the
group equations, with exact analytic solutions and usefupjectroweak scale &, and/orS, have a large Yukawa cou-
simplified approximations, are given in the Appendix.

In Sec. IV, we discuss the size and structure of non
renormalizable contributiong30] to the superpotential ex-
pected in string model32,29,3]. These terms are relevant 2We assume that the supersymmetry breaking is due to hidden
to fix the intermediate scale and can also play an importargector fields that are not charged under the additiar@l)’: i.e.,
role in connection with the physics of the effective low- theU(1)’ belongs to the observable sector. Thus, the mixing of the
energy theory. In particular, in Sec. V we study how theseU(1)y andU(1)’ gauge kinetic energy terms, which can arise due
contributions may offer a natural solution to teproblem  to the one-loop(field theoretical corrections or genus-one correc-
and generate a hierarchy of standard model ordinary fermiofons in string theory16], can be neglected in the analysis of the
masses in rough agreement with observation. We also indROft supersymmetry breaking mass parameters.
cate that interesting neutrino masses can arise from suchin some string models it is in principle possible to obtaif<0
terms. Both the ordinary seesaw mechanism for Majoran#r some scalar field, depending on its modular welgi.
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pling t_o other fields in _the superpotentfaln thig case, the (sy=[V(—mZ) MKKFD = ) ~ (Mg ME)VKFD)
potential develops a minimum along the flat direction &d (10)
acquires a VEV. From the minimization condition

where mg1=O(|m|)=0O(My) is a typical soft supersym-

dav , 1 metry breaking scale. In this equationm? is evaluated at
ds m*+ §3m2 s=0 ©®  the scaleuk =(s) and has to satisfy the necessary condition
m=s m?(uk)<O0. If non-renormalizable terms are negligible be-

low waq, NO solution to Eq.(10) exists and(s) is fixed
solely by the runningn?.

The massMg of the physical fields in the vacuunys)
can be obtained easily in both types of breaking scenarios. In
@ both casesMg is of the soft breaking scale or smaller and
not of the intermediate scalg). For pure radiative break-

(Where B82=u dm?/du), one sees that the VE) is de-
termined by

2 (s ©
m-(u <S>) Zﬁmza

ing,
which is satisfied very close to the scalg,yq at whichm? )
crosses zero. This scale is fixed by the renormalization grouRAZ_ d?v _ 1 d _ Mot
evolution of parameters fronMgyins down to the elec- ST 4L <>_ Bm2+§“@3mz <>_'3m2~ 162"
s=(s n=(s

troweak scale and will lie at some intermediate scale. The (12)

precise value depends on the couplingségﬁ and the par-
ticle content of the model, as we discuss in the next sectiorin the last expression we give an order of magnitude esti-

The stabilization of the minimum along the flat direction mate: The RG beta function fan? is the sum of several
can also be due to non-renormalizable terms in the superpderms of ordermg(th (multiplied by some coupling con-
tential, which lift the flat direction for sufficiently large val- stants, and part of the 162 suppression can be compensated
ues ofs. If these terms are important below the scalgq, when all the terms are included.
they will determine(s). The relevant non-renormalizable  In the case of stabilization by non-renormalizable terms,
terms are of the forrfi

M3=2(K+1)(—m?)~mZ,. (12)

o K,\

Wir= (M_:) S**K, (8 In the preceding discussion, we have ignored the presence
of scalar fields other thasy ands, in the potential. In addi-

tion, there are extra degrees of freedom from the two sin-

glets. The real field transverse to the flat direction, @j.is

forced to take a very small VEV of ordan?,./(s). The

physical excitations along that transverse direction Haye

to soft mass correctiongn intermediate scale mass

whereK=1,2,... andMyp, is the Planck scale. The coeffi-
cients ax will be discussed in Sec. IV. Depending on the
U(1)' charges, not all values &f are allowed. For example,
if Q;=—Q,, U(1)" invariance dictatesWyg~(5,S,)"
~8 and only odd values oK should be considered. If
Q1=%, Q= —1/5, Wyr~(5,5;)"~S", and so on. M?=g1%(Qi(s1)*+Q5(s2)). (13
Including theF term from Eq.(8), the potential along is
The two pseudoscalar degrees of freedomS|mim S,, are
g2+K\ 2 massless: The potential is invariant under independent ro-
—K) , (9) tations of the phases @&, andS, so that the spontaneous
M breaking of thidJ (1)< U (1) symmetry gives two Goldstone
B . oK#l bosons. One of théJ(1)'s is identified with the gauged
where M—CK'\2/|P|l{(62Y|§), and the coefficientCc=[2"""/ (1)’ and the corresponding Goldstone boson is absorbed
((K+2)(K+3)%] takes the value$0.29, 0.53, 0.67, py thez’, which has precisely the same intermediate mass
0.76, 0.82 for K=(1,2,3,4,5). The VEV of is therl given by Eq.(13). The other massless pseudoscalar remains
in the physical spectrum and can acquire a mass if there are
. . . ' . terms in the potential that break the othg(1) symmetry
Another case which often occurs is that in which, eng,goes explicitly (e.g., in the presence éfW, terms). The fermi-

negative bum? remains positive. In that case tBeflatness is not  gpic part of theZ’-S,-S, sector consists of three neutralinos
important:S,; acquires an electroweak scale VEV whi,)=0, so (E’ 3 3 ). The combination
191 192)

that theU (1)’ is broken at or near the electroweak scale, similar to
the case discussed j@,10].
5The notation for superfields and their bosonic and fermionic

foll hat dfL0]. - . . . g
components follows that ¢fL0] is light, with mass of ordem;; if the minimum is fixed by

6, 2+ K G K H

One can also hav.e terms of the forrhS CD_/MP" whered is non-renormalizable terms. If the minimum is instead deter-
a standard model singlet that does not acquire a VEV. These have . 5 = -
similar implications as the terms in E(g). mined by the running om®, S is massless at the tree level

For simplicity, we do not include in Eq9) soft terms of the type but acquires a mass at one loop of ordey,/(4m). The

(AWyg+ H.C.) with A~mg,. Such terms do not affect the order of two other neutralinos have masdds+ 3 M, whereM] is
magnitude estimates that follow. theU(1)" soft gaugino mass.

1
TKT2)

1
V(s)= > m?s?
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This pattern of masses can be easily understood; in the Ill. RADIATIVE BREAKING
absence of supersymmetry breaking, a nonzero VEV along

the flat direction breaks the)(1)" gauge symmetr_y but radiative or by non-renormalizable termdepend on the
Ieave; supersymmetry unbroken. Thus, Fhe resulting SPeGLale 1. at which some combination of squared soft
trum is arranged in supersymmetric multiplets:  One masiasses is driven to negative values in the infrared. In this
sive vector multiplefconsisting of theZ’ gauge vector bo-  section we present several examples in which the breaking of
son, one real scalar and one Dirac fermitias massM;,  the extraU(1)’ can take place naturally at an intermediate
and one chiral multipletconsisting of the complex scal&  scale and examine the range of the sqag; .
and its Weyl fermion partne®) remains massless. The pres-  For the sake of concreteness, we consider three models in
ence of soft supersymmetry breaking terms modifies the picwhich one or both of the singlets couples to exotic super-
ture slightly, liting the mass degeneracy of the componentdields in the renormalizable superpotential:
in a given multiplet by amounts proportional to the soft Model (1): S; couples to exotiSU(3) tripletsD,, D, in
breaking. the superpotential

The rest of the fields that may be present in the model can o
be classified into two types; those that couple directly in the W=hD;D,S;. (16)

renormalizable superpotential AELZ will acquire intermedi- A . ) A
ate scale masses, and those which do not can be kept light. In Model (Il): S, couples to exoticSU(3) triplets Dy, D,
particular, all the usual MSSM fields should belong to the@ndS; to exoticSU(2) doubletd.,, L, in the superpotential
latter class. The particle spectrum at the electroweak scale PR  a

thus contains the usual MSSM fields and one extra chiral W=hpD1D;S;+h L;L,S,. (17)

rr?ultlplletS(S, S) .remnan.t of theJ(1) brea.kmg alor?g Ehe flat Model (IIl): S; couples toN, identical pairs of MSSM

direction? The interactions among the light multiplStand singlets, charged undéf(1)’, in the superpotential

MSSM fields are suppressed by powers of the intermediate

scale. At the renormalizable level, the only interaction be- Noo

tween the MSSM fields and the intermediate scale fields w=h> $,5,5. (18)

arises from thdJ(1)' D terms in the scalar potential. The =t

resultin.g effect _after integrating oup the fie_Ids which haveye have analyzed the renormalization group equations

heavy mtermedlate_ scale masgé8] is a shift of the soft (RGE$ of each model to determine the rangegf,q as a

masses of MSSM fields charged under the ekia)": function of the values of the parameters at the string scale. In
principle, we could consider other models, such as a varia-
tion of model(ll) in which the same singlet couples to the

_ (15  exotic triplets and doublets throughW=hpD;D,S,

Q1—Q +h,L,L,S;, or a variation of mode({lll) in which the sin-

glet couples to additional singlets that are not a seNpf

identical pairs throughV==; ;C; ;55;S;. For simplicity,

we restrict our consideration to these three models, because

Both mechanisms for fixing an intermediate VEMirely

The U(1)" D-term contribution to the scalar quartic cou-
Sling ofl_lightr:‘ields_ chargegl_ under tlhe(l)’_ ollrops out after they can be analyzed analyticafly.
ecoupling these intermediate scale particles. : I _
Non-renormalizable interactions between MSSM fields,[ha\ive assume gauge coupling unificationMtying, such
and theS, , fields, which can play an important rofe.qg., for
the generation of thw_parameter and fermion masgeare gg=gg=g?=gio=go, (19)
discussed separately in Sec. IV.
Before closing this section, we remark in passing that ayhich is approximately consistent with the observed gauge
similar intermediate scale breaking can occur inkthe sec-  coupling unification'® At the one-loop level, the singlets in
tor of the theory, where, in the absence of a fundamental model (1l1) do not affect the gauge coupling unification of
parameter, the directingz Hg is also flat. The condition the MSSM. Modelll) is also consistent with gauge coupling
mf; +mg_>0 on the Higgs soft masses would prevent theunification if the D;, L; are approximately degenerate in
formation of such a dangerous intermediate scale minimuninass, because they have the appropriate quantum numbers to
This is however not a necessary condition; the breakindit into multiplets ofSU(5). However, the presence of exotic
could well occur first along th8 flat direction, generating an
effective u parameter that can lift the9=H3 flat direction.
The determination of which breaking occurs first would re- 9Even simpler analytic examples, neglecting trilingarterms,
quire an analysis of the effective potential in the early Uni-gaugino masses, and the running of the Yukawas, are given in the
verse. Appendix of[9].
Owe assume a grand unified thedUT) normalization for the
Abelian gauge couplings, such thgi=kgy,, wheregy is the

. r s — 5
8n the case of a sing!8 and no additionall (1)’ there is also one ~ coupling usually calledy’ in the standard model anki= 3. In
extra chiral multiplet at the electroweak scale. general, the string models considered could Ha#e%
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TABLE I. Model (1). Singlet coupled to tripletsV=hD,D,S; .

Q1,Q> A%/mq M2/ mg Mrad (GEV) Q1,Q> A%/mq Mjp/mg Mrad (GEV)

-11 1.0 1.0 2.%10% -11 0.3 0.3 2.610°
-11 1.0 0.1 - —23 1.0 1.0 3.x10°
-11 3.0 1.0 1.%10% -1 1.0 1.0 2.x10¢
-1,1 3.0 0.1 1.x10% -13 1.0 1.0 2.X10°
-1 5.0 1.0 8.&10'° -13 1.0 1.0 2.x10°
-11 1.0 0.5 2.&10° 11 1.0 0.1 6.0¢10°
-11 0.5 0.5 2.X10° —11 1.0 0.1 1.5¢10'
-11 0.7 0.7 3.x10° 11 1.0 0.1 2.x10°

triplets not part of anSU(5) multiplet violates the gauge The first and third models have only one trilinear coupling,
coupling unification in mode(l). This problem can be re- with initial value A°. We do consider the possibility of non-
solved if there are other exotics which do not coupleS{o  universal trilinear coupling®\, AE in the analysis of the
but contribute to the running of the gauge coupliig®., second model.
generally have electroweak scale masses so they will nQ%ach case for a range of boundary conditions to determine
precisely cancel the effects of the triplets except by accidentye range ofy,.,. Each of the models considered has the
However, mode(l) |s_st|II _u_seful to illustrate the basic ideas. advantage that it is possible to obtain exact analytical solu-
For the sake of simplicity, we assume t_hat the boundar¥ions to the RGEs, which yield insight into the nature of the
conditions for the Yukawa couplings are given by L
dependence of the parameters on their initial values. Exact
solutions[19] are possible in these models because the RGEs
hO=gyv2, (200  for the Yukawa couplings are decoupled. In more compli-
cated cases, e.g., if the same singlet couples to both triplets
and doublets, no simple exact solutions exist. It is also useful

orbifold constructions at a special point in moduli spice. to consider simpler semi-analytic solutions to the RGEs, in

Thus, the analysis presented below relies on large Yukaw#Nich the running of the gauge couplings and gaugino
couplings to exotic fields, which are a generic feature of dNasses is neglected in the solutions of the RGEs of the other

class of string models considered. However, the specififarameters. The exact and semi-analytic solutions are pre-
choice of exotic couplings in Eqg16), (17), and (18) is sented in the Appendix. The results of the renormalization

as calculated in string models based on fermiodigX Z,)

chosen for concreteness in order to illustrate different symgroup analysis are presented in Tables 111l for modbls

metry breaking scenarios. (1I1), respectively. The evolution of the parameters of model
In the analysis, we assume unification of gaugino massed) is shown in some representative graphs.

at Ming. Model (I): In Table I, we present the results of the analy-

sis of model(l). We first choose th&J(1)’ charge assign-

mentQ,=—Q,=—1 for the singletsS; andS, and inves-
tigate the nature oft,,4 as a function of the initial values of
the dimensionless ratios’/my andM ,,/my. The scale de-
and universaf scalar soft mass-squared parameters pendence of the Yukawa couplifgand the trilinear cou-
pling are shown in Fig. 1. With this choice bf(1)" charges
o andA’=mj, the breaking scale is of the order’¥@eV for
m;“=mg. (22)  values ofM,,= O(my). However, radiative breakinglong
the D-flat direction is not achieved for small values of the
initial gaugino masses, as is also shown in Fifp).2The
IAn overall normalization factor ofjpv2 at the string scale is gaugino mass parametisty;, governs the fixed point behav-
required if the three-gauge-boson coupling is tagge In this class  ior of the soft mass-squared paramet@swas also found in
of string models, cubic couplings in a superpotential can contain
additional factors of (¥2)", with ne{0,1,2,3. The powem cor-
responds to the number of Ising fermion oscillator excitations °The running of theJ (1)’ gauge coupling depends on the charge
paired with o, o_ factors (i.e., sets of order-disorder operators assignments of all of the fields in the theory, and so is highly model
present in the product of vertex operators associated with the mudependent. For simplicity, we assume thatthe )’ charge assign-
tiplets in the superpotential term. ments are such that the evolutiongif is identical to that ofy, .
2we do not consider nonuniversal soft mass-squared parametersi“The evolution of the Yukawa coupling for large initial values
because it is possible to explore the rangeupfy without this  demonstrates the fixed point behavior, as discussed in the Appen-
additional complication. dix.

MI=MI=M=M;’=M;, (21)
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FIG. 2. (a) Scale dependence of the soft mass-squared param-
eters of modell) in units of m, with Ay=my andM,,=0.1m,.
(b) Same, excepfy=3m, and M4,,=0.1m,. In each cas€);=
—Q,=—1. Bold curves are for exact solutions, and light curves
represent semi-analytic approximations.

FIG. 1. (a) Scale dependence of the Yukawa coupling of model
(1) for h®°=g,v2 andh®=10. (b) Scale dependence of the trilinear
coupling of model(l) in units of mg, with M;,,=0.1m,. In each
caseQ;=—Q,=—1. Bold curves are for exact solutions, and light
curves represent semi-analytic approximations.

[10]), such that small gaugino masses do not dn'\iesuffi- ratio of |Q,/Q,|, as can be seen from E). In particular,

ciently negative to overcome the fact tha does not run  |Q;/Q,|>1 will increase the relative weight ah2 and so

significantly because it does not have any couplings in thelecreaseu,,q, While |Q;/Q,|<1 will increase the relative

superpotentialS, will acquire an electroweak scale VEV in weight of mi and thus increasg,,q. Several examples of

this case, as was described in Sec. I. Increasing the value tiis type are presented in Table I. The valuesg.pfy for the

A® increasesu,,q4 dramatically (up to 107 GeV), for it examples withM ;,,/my=1.0 should be contrasted with the

drives m% negative at a higher scale; this behavior is alsovalue of 16° GeV obtained withQ,=—Q,=—1, and the

shown for the case oA%my=3.0, M;,,/my=0.1 in Fig. values withM,;,/my=0.1 should be compared with the re-

2(b). The breaking scale decreases significariity some  sult that radiative breaking does not occur in the case with

cases, all the way to the TeV rangshen bothA°’m, and  equal and opposit&(1)’ charges.

M,,»/mg are lowered simultaneously. This is to be expected, Model (Il): The results of the analysis of modgl) are

for this is equivalent to raising the initial value of the soft presented in Table II. In this case, bati andm3 are driven

mass-squared parameters and keepifigs M, in which  negative due to the large Yukawa couplings in the superpo-

casemf is driven negative at a lower scale. tential. Thus,u,,q is generally much higher than in the case
For a given set of boundary conditions, it is also possibleof the model previously discussed, of ordert®010t" GeV

to raise or loweru,,4 by choosing different values of the for Q;=—Q,=—1. The breaking scale increases with larger
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TABLE II. Model (I1). Singlets coupled to triplets and double#¥=hpD,D,S;+h, L;L,S,.

Q1.Q2  AYmM,AYMy  Myp/mMy  ppa(GeV)  Qp,Qy  AY/mg,Almy  Myp/My  firq (GEV)

-1,1 1.0,1.0 1.0 1R10% -11 1.0,3.0 0.1 4410
-1,1 1.0,1.0 0.1 1x10% -11 3.0,3.0 1.0 4010
-1,1 3.0,1.0 1.0 1.x10 -1,1 5.0,5.0 1.0 1.810Y
-1,1 3.0,1.0 0.1 1.x10 -11 0.3,0.3 0.3 1.810%
-1,1 1.0,3.0 1.0 4410 -11 0.1,0.1 0.1 7410

values ofM 1, andA°, and the effects of the gaugino masses1(® GeV from the case of no solutipiby assigning charges
are negligible for sufficiently large values @&°/my. The  such that|Q,/Q,|<1. The value ofu,,q can also be low-
breaking scale can be lowered to the range of &V by  ered substantiallye.g., to 16 GeV from 10 GeV) by
decreasing the values 8f/mg, andM ,,/my. In this model, choosing|Q; /Q,|>1.
changing the value ofQ;/Q,| does not have a significant ~ The results of this analysis demonstrate that within mod-
effect onu,,q, as the soft mass-squared parameters of botlls in which only one of the singlets couples to exotic matter
singlets are driven to negative values. in the renormalizable superpotent{auch as mode{l) and
Model (lll): In Table Ill, we present the results of the model(lll)], there is a broad range of values of the breaking
analysis of mode{lll ), in which S, couples to identical pairs scaleu,,q, from the TeV range up to around #0GeV. In
of singlets charged under tHg(1)’, and S, has no cou- many cases there is nd-flat solution, so that théJ(1)’
plings in the renormalizable superpotential. In this case, thereaking will be at the electroweak scale. While the non-
number of pairs of singlets is analogous to the group theorenormalizable terms will be important i, 4 is sufficiently
retical weight in the RGES, such tha is driven negative at  high, in many cases the scale of radiative breaking will de-
some scale. Whil&N,=3 gives the same weight as that of termine the VEV ofS. If both singlets have trilinear cou-
the first model with exotic triplets, the values @f,q shown  plings in the superpotentigéuch as in moddll)], the break-
in the first two entries of Table Il demonstrate that thising is strongly radiative, such that non-renormalizable terms
model does not mimic the first model. For example, the rewill dominate the symmetry breaking.
sults show that to obtain radiative breaking fft/my=1.0,
it is necessary to take large valuesNyf (such asN,=7 for
rad~ 10* GeV). This is due to the fact that mod@ll ) does
not have theSU(3) coupling, and so all of the parameters
have a smaller gauge contribution. In particular, the Yukawa The scenarios discussed in a general particle physics con-
coupling is weaker in modélll ), and som? is not driven to  text in the previous sections have interesting implications for
negative values as quickly as in mod#gl. This model also string models. In particular, in a large class of string models
differs from the previous models in that smaller values ofthe particle spectrum consists of SM singl&tsvhose(par-
M., yield larger values ofu,,q, Often by many orders of ticular combination ensures that they correspond Boflat
magnitude. Increasing the value 6P raises the breaking directions andF-flat directions at least for the renormalizable
scale dramatically even for small values I¥f, eventually terms in the superpotential. On the other hand, it is often the
dominating the effects of the gaugino masses. case that these fields do have non-renormalizable terms in
Several examples are also presented in Table Il in whiclthe superpotential, which along with the radiatively induced
the breaking scale is modified by choosing different valuesiegative mass-squared terms yield intermediate scales with
of |Q,/Q,| for a given set of boundary conditions. As in the implications for the SM sector of the theory.
first model, the scale can be raised significar(éyg., to For specific examples we shall concentrate on the type of

IV. INTERMEDIATE SCALE DUE TO
NON-RENORMALIZABLE TERMS IN STRING MODELS

TABLE IIl. Model (111). Singlet coupled to singlet pairsy=h= " §5,,5,5,.

Q1.Q2.N,  A%my  Myp/my  pag(GeV)  Qp,Qu N,  A%my  Myp/mg  pag (GeV)

-1,1,3 1.0 1.0 - -1,1,8 15 0.1 3.910%
-1,1,3 1.0 0.1 - -1,1,10 1.5 1.0 8.%10
-1,1,7 1.0 1.0 - -1,1,3 3.0 1.0 7.910%2
-1,1,7 1.0 0.1 3.410 -1,1,3 3.0 0.1 3.8101°
-1,1,8 1.0 1.0 - -1,1,4 3.0 1.0 4.810%
-1,1,8 1.0 0.1 3.%10° -1,1,4 3.0 0.1 4.210%
-1,1,10 1.0 1.0 1.%10° ~113 1.0 0.1 6.410"
-1,1,10 1.0 0.1 1.x10% -113 15 0.1 1.x10°
-1,1,3 15 1.0 - ~148 1.5 0.1 4.410

-118 15 1.0 3.x10° ~12.4 3.0 0.1 3.6¢10"
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non-renormalizable terms in a class of fermionic construc- :(za')K/?,/.\K+3 (25)

tions. In such models, there are a number of SM sindlets

which are in general charged under additioddlL)’ factors. g\

TheD flatness is ensured if tHé(1)’ charges of at least two :(2a')K/2( E) g7Cklk (26)

S’s have opposite signs. For the sake of concreteness we

confine ourselves to the case of t8gs, with theD-flatness

constraint satisfying Eql). Since theS, are massless states M=K i

at Mgying, they have no bilinear terms in the superpotential. Pl J

We also require that in the superpotential the trilinear self-

couplings ofS; and the trilinear terms of or to the MSSM  whereg is the gauge coupling @l i,q, 7=Vv2 is a nor-

particle content be absent as well. This is often the case dumalization factor(defined so that the three-gauge-boson and

to either (world-sheel selection rulegas demonstrated be- two-fermion—one-gauge-boson couplings are simgly

low) and/or target space gauge coupling unification. 2a’z(64«77)/(M§,|gz) is the string tensiorf1], Cx is the
The analysis of the previous section has shown that couecoefficient of O(1) that encompasses different renormaliza-

plings to exotic particles with a Yukawa coupling 6(1)  tion factors in the operator product expansi@PE of the

can ensure a radiative breaking f§fs. On the other hand, string vertex operatorgincluding the target space gauge

K
gnCklk (27)

in general there are non-renormalizable self-couplingg'sf ~ group Clebsch-Gordon coefficieits ~ and
in the superpotential. It is convenient to rewrite E8). as ax= (47" gnCyl«. 1k is a world-sheet integral of the
type
wi=S8® 51" 23
K™ M ' ( ) IK:fd223“'dZZK+2
where we have absorbed the coefficieft in the definition Xf(zy=2,2,=123,....Zx+2,2+3=0), (28

of mass scaleM. [M is related to M in Eqg. (9 as ) )
M=C¢M.] For simplicity we have not displayed the depen_wherezi is the world-sheet coordinate of the vertex operator
dence ofM onK or the detailed form of the operators. of thei'" string state. As a function of the world-sheet coor-

If p, and p, are the unique relative primes defined by dinates,fy is a product of correlation functions formed re-
P2/p1=|Q1)/|Q,|, then, as discussed in Sec. U(1)' in-  Spectively from the spacetime kinematics, Lorentz symme-
variance permits values ok>0 in Eq. (23) such that try, ghost charge, local non-Abelian symmetries, local and
3+K=(p;+p,)Nn, wheren is an integer. World-sheet selec- 9lobal U(1) symmetries, andnonchiral Ising model fac-
tion rules further constraik through restrictions on [20—  tors in each of the vertex operators for the R fields. All
24]. For example, in the free fermionic constructiormust ~ orrelators but the Lorentz and Ising ones are of exponential
be an even integer in the case of only t&g thus limitingk  form. For non-Abelian symmetries and fo(1) symmetries
to only odd values, independent of the values of phe and ghost systems these exponential correlators have the re-

Fermionic world-sheet selection rules further require thafSPective generic forms
both singletsS; must originate from twisted world-sheet su- o
persymmetri(ii.e., Ramongl sectors ofamodel_fcmnynon— H gQi-J =H 29 and H gQiH :H 299
renormalizable terms of the forf23) to appear in the super- i i) [ i<y
potential. In contrast, for a renormalizable trilinear self- (29

coupling S term to appear, one of the tw® must have its . - :
origin in the untwisted Neveu-Schwarz sector while the othe?VNe'€ Zj=2i—2;. In this languageQ; is imaginary for
comes from a Ramond sect@#2,23. Thus, renormalizable ghost _systems. . L
(K=0) and non-renormalizablek(>0) terms of the form While th(nT Il_orentz corre!ator is norj-exponent|aIL|tIZES nev-
(23) are mutually exclusive. ertheless trivial and contnbuteg a smple factorzef’? to

The coefficients of the non-renormalizable couplings carfx - On the other hand, the various Ising correlators are ge-

be calculated in a large class of string models. For the fre@€rically non-trivial. This makesy difficult to compute. In
fermionic construction, coefficient values can be cast inf@ct, Ising correlators generally prevent a closed form ex-

terms of the K+ 3)-point string amplitudeA 5, in the  Pression for an integrak [23]. Nevertheless, Ising fermions
following form:1® may be necessary in fermionic models for obtaining realistic
gauge groups andquasijrealistic phenomenology23,7].

1\K a | K Thus, although the Ising correlation functions mdkein-
(_) E(_) , (24) creasingly difficult to compute akK grows in value, Ising

M Mbp, correlation functions generally enter string amplitudes.

From [23,25 we infer that1,~70 and |,~400. In
[23,25, the non-renormalizable terms for whidh and I,

19 these terms we have already chosenihgiatness constraint, Were calculated involved only one and two MSSM singlets,
and thus the non-renormalizable self-coupling is expressed in termf&Spectively. However, we do not expect that the values of
of the S field [defined in Eq(1)] only. |§inglets gr |Singlets gssociated with terms composed totally of

18For the explicit calculation of the non-renormalizable terms in aS-type singlets will generically vary significantly from the
class of fermionic models, s¢@3,25. values obtained when some non-singlets are involved.
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For a K=1 term composed solely of non-Abelian It is expected that the interference termd jnare generi-

singletd’ carryingU(1)’ charge[6], we have explicitly cal- cally such thai c<1%, and thusM>M . In particular, for

culated a value fot$"9'®'. For comparative purposes we K=1 we obtainM;~3x 10" GeV usingl,~70 and, for

relate ourl$"9'®S to the associated four-point string ampli- K=2, M,~7x 10" GeV usingl ,~400.

tude A5 "9'®' via the normalization

retee 901 oo V. NON-RENORMALIZABLE COUPLING
ASIN :ﬂle giets (30 TO THE MSSM PARTICLES

o o The flat directionS can have a set of non-renormalizable
This is the same normalization as[@6], where the value of  couplings to MSSM states that offer solutions to therob-

I, was 77.7. The four singlet case produces lem [26] and yield mass hierarchies between generations
[28]. The non-renormalizablg-generating terms are of the
i form
| §inglets Z\Qf d?z|z| " Y1—2"3%2 (3D
AS P
By shifting z—z+1 and converting the world-sheet coordi- W, ~H;H ZS( M) . (36)
nate z to polar coordinatesr(6), the integral can be ex-
pressed as

In addition, the effective soft SUSY-breaking term,
BH;H,+H.c. in the Higgs potential, which is necessary for
(32 a correct electroweak symmetry breaking, can appear via

|ii”9"“3=4\f2f drf do
0 0 mixed F terms from a superpotenttal

+r2—2r cos @’

Integrating over the anglé results in

- A(‘s " s)K
Ismg|etsz4f2J'°°dr}&K 2_\/F - Wg~HH,S v +S M/ (37
1 o rr+1 \r+1
or from supersymmetry breaking terrf¢7] in the potential
= 2 2| of the type
ZS\QJO dlmK(m , (34)

P
+H.c., (39)

v~AHlH23(E

whereK is the complete elliptic integral of the first kind. M
Numerical approximation of Eq32) (after splitting inte-

gration overr into two separate regions<Or<1 and whereA~my,. In both cases, when the effectiyeparam-

0=<r=w) via Mathematica yields a value 6¥"9'°'*=63.7.  eter is of the order of the electroweak scade; m2,, auto-

As a test of the numerical approximation, we can also exmatically.

pand K in powers of 2/r/(r+1) [or in powers of Generational up, down, and electron mass terms appear,

21/(12+1)] and then integrate the first tw@r more terms respectively, via

in this series. This latter approach yield@®r two terms

ISnoletse (92) m2~62.8+10%, in  excellent agree-

mentwith our numerical approximatidf. Thus the non- -~ = OC(

singlet factor in the four-point string amplitude ¢25] [ i

causes I, to be about 20% larger thani$n9'ets,

B\
WeNHlLiEic(_) : (39)
The four states forming thik =1 superpotential term were de- ' M

notedHsq, Hay, Hay, andHsg in Table 2 of[6]. The first two of

these states originate in one sector of the model, while the latter tw@jith | denoting the generation numis&r.

resiide i%a second sector. This is the general pattern also followed Majorana and Dirac neutrino terms may also be present
in [23,25. .

via
18y=2/r/(r+1) is within the range of convergences<1 of
the series expansion,
2
K(x)=7—T 14 1 et 2. ] (35) 1%Although the values of th&! in the two terms of Eq(37) are
2 2] \2x4 expected to be of the same order of magnitude, they may vary

for all values ofr except forr =1. Atr=1, x reaches the end point somewhat. For simplicity, we ignore the distinction.

of convergencex=1, for which lim_,; K(x)—o. As consistency 2Alternatively, non-renormalizable chiral supermultiplet mass
between our two estimates 6f""9'®'S indicates, inclusion of this terms can be generated through anomald()’ breaking[29,30.
end point in the range of integration of the series expansion stillTypically, in that case the analogue )/M ~1/10, so that larger

permits using the series expansion. values ofP’ are required.
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TABLE IV. Fermion mass ratios with the top quark mass normalized to 1. The valuas, of, and
s-quark masses used in the rat{@sth thet-quark mass normalized to 1 from an assumed mass of 170 GeV
are estimates of the modified minimal subtractidfS) scheme current-quark masses at a spatel GeV.

The c- and b-quark masses are pole masses. An additional mass constraint for stable light neutrinos is
Zim, <6X 10" (i.e., 10 eV, based on the neutrino contributions to the mass density of the universe and
the growth of structur¢36].

m, : m, : m = 3x10°° . 7x10°3 : 1
my : mq : m = 6x10°° : 1x10°3 : 3%x10°?2
me : m, : m. = 0.3x10°° : 0.6x10°2 : 1x10°2
m,, : m, : m, = <6x10 % : <1x10°® : <1x10*
(I:| L)2) 3 prfiLi 5 pl/_ . Both of these intermediqte sqale scenarios are to be con-
wiMai_ 2-i (_) wen AL c(_) o trasted to the case in whig!8) is at the electroweak s_cale.
i M M ’ Livi M ’ Then, ueti~Mgo; Can be generated by a renormalizable

— (P=0) term[10].
Ma)  ~enca g\ Pt Quark and lepton masses can have hierarchical patterns
Woe,e ~ 1S M (40)  generated through

(vel represents the neutrino doublet component and we
have introduced neutrino singlets.)

When the VEV(S) is fixed solely by the running air?,
the size of theu parameter will be determined by the scale Msoft Pe/(K+1)
rag @and the value oP in Eq. (36), meri~ iy /MP. For mei~<Hl>< M )
example, forP=1 a reasonable..¢;~1 TeV would corre-
spond tou,,q~10'° GeV. On the other hand, concrete order |n Egs. (42) we ignore the running of the effective Yukawas
of magnitude estimates can be made when the VEV is ﬁxe%elow<s> (or beIOWMp| for mt) because such effects are
by non-renormalizable self-interactions 8f Generally, if  small compared to the uncertaintieshh
Mrad<<10'? GeV, running is the dominant factor, whereas, if  Comparison of the physical fermion mass ratié8] in
Mrad> 10" GeV, the non-renormalizable operatdROS  Taple IV with theoreticak andP dependent mass values in

mui~<H2>

P/ I(K+1 PLI(K+1
(msoft) Yi ( ) msoft) g ( )

, mdi~<Hl>( M

(42

dominate instead. With NRO-dominated Tgple V suggests that the set
(S)~ (Mg MK VKT the effective Higgu term takes the
form P1=P =Pg,=Pe =2,

msoft) (P=K)/(K+1)

Meff™ msoft( T (41) PéE PLIIZZ Pézz Pézz 1, (43)

The phenomenologically preferred choice among such term&hen used in tandem witK =5 or K=6, could produce a
is clearly P=K, vyielding a K-independentuesi~Mgoi- fairly realistic hierarchy for the first two generations in the

TABLE V. Non-renormalizable MSSM mass terms \ig). For mgo;~100 GeV,M~3Xx 10Y GeV.

P or P’ K=1 K=2 K=3 K=4 K=5 K=6 K=7
nk 1/(K+1)
(V"f‘) 2x10°8 7x10°6 1x10™* 8x10°* 3x10°3 6x10°3 1x10°?
(S) (GeV) 5x10° 2x 10 4x 108 2x10% 8x 10% 2x 101 3x10%
K-1 5% 10 1X10° 7x10° 1x10° 400 200 90
r’:‘:” K 1 1 1 1 1 1 1
oft
K+1 2x10°8 7x10°° 1x10°4 8x 1074 3x1073 6x10°3 1x10°2
0 1 1 1 1 1 1 1
1 2x10°8 7x10°6 1x10™* 8x107* 3x10°8 6x1073 1x1072
2 3x10°16 5x 101! 2x10°8 6x10°7 7x10°6 4x10°° 1x10™*
% 3 6x10"2%* 3x10716 2x10°1? 5x10°1° 2x1078 2x1077 2x10°6
i
4 1x10° 3% 2x10°% 3x10°16 4x10°13 5x10 1% 1x10°° 2x10°8

5 2x10°%° 2x10°%6 5x 1020 3x10°16 1x10°18 9x10 12 2x10710
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tan 8= (H)/(H)~1 limit?* Alternatively, taking the If WM is not present, a superpotential term INAéLD'V'c)
tan 8~50 limit would suggest slightly higher values fér e '
(while keeping the same set Bf values.

Presumablym;, is associated with a renormalizable cou-
pling (P(,3=O). The other third family masses do not fit

quite as well: They are too small to be associated with (H Msoft
renormalizable couplings, but somewhat larger than is ex- My e (H2) M
pected forPg =P; =1 for K=5 or K=6. However, given

the roughness of the estimates and the simplicity of the=or example, fok =5 the experimental neutrino upper mass
m(_)del,the ovgrall pattern of the masses |s.qU|te encouragingmits given in Table IV allow PL =4 PL =3, and
It is also possible that, andm, are associated with some 11 2¥3
other mechanism, such as non-renormalizable operators irE!LSVgBZ- Masses corresponding t®, =4 or 5 (mLiuiC
i%

volving the VEV of an entirely different singlet. =0.9 eV or 102 eV, respectivelyare in the range interest-
There is an obvious constraint on a string model thaj,, for solar and atmospheric neutrinos, oscillation experi-

could produce a generational mass hierarchy along thesrﬁents, and dark matter.

lines, containing P;—1=P;=P, +1=1 fermion mass Neutrino singlets can acquire a Majorana mass through

terms, in tandem with #=K =5 or 6 u term. A combina- \™a)

tion of world-sheet selection rules ati(1)’ charges must "

preventu-generating terms witP <5 from appearing, while

allowing the low orderP; fermion mass terms. 1£J(1)’ Msoft

charges could be assigned by fiat to each state, then the m,e,e~ msoft(T

U(1)' symmetry should be able to accomplish this by itself.

However,U(1)' charge assignments are related to modular

invariance and thus they cannot be freely chosen for manyhich can be very large or small, depending on the sign of

states. World-sheet selection rules must likely play a role irPVic,,ic— K. Laboratory and cosmological constraints depend

constrainingP. , _ on the ¢ lifetimes (if it decay9, cosmological production
The neutrino mass terms in Eqe40) offer various and annihilation rates, and mixings with each other and with

possibilities® for achieving small neutrino mass€86], o plet neutrinos. These in turm depend on other couplings,
some not involving a traditional seesaw mechanis]. DN o renormalizable couplings not associated
|

(
Very light non-seesaw doublet neutrino Majorana masses ar%UCh asWy

can naturally yield heavier physical Dirac neutrino masses of
the form

PLV_C/(KJr 1)
) (] (45)

P_Vicyic—K/(KJr 1)
) , (46)

iV.

possible viaw{"¥ of the form with the mass. Generally, however, the constraints are very
v weak due to the absence of normal weak interactions, espe-
(H)? [ Meort Pl L J(K+D) cially for heav.yuiC (PVFVF§ K).
MLL™~ "W M If both W andW'{® terms are present, the standard
i7 i
P iK1 seesaw mechanism can produce light neutrinos via diagonal-
m m LiL; . . . i
~<H2>< soft ( soft) “iti <1 eV. (44) ization of the mass matrix for Eq&15), (46). The light mass
M M eigenstate is

The upper bound on neutrino masses from this téren, the
case of P{ =0) is around 10%eV (using
(Hp)~mgo;=100 GeV andM=3x 10" GeV), which is
too small to be relevant to dark matter or Mikheyey- (47)
Smirnov-WolfensteinMSW) conversions in the Suf86].

- m
light __ 2 . "lsoft
Mseesaw mLiV?;/m,,icVic msoft( M

, _
) (2P e+ K=Pye,0l(K+1)

while the heavy mass eigenstate is to first ordeg,c as

given by Eq.(46). Various combinations oK, PL_VC and
2in Table V we have used the computed value of __ _ i _
M;~3Xx 10 GeV as the value for alM. To test the validity of Pvicvic produce viable masses for three generations of light
this approximation, we have also determinea,, /(H;) and n ; e T _pf—

: eutrinos. For example, witk=5 andP, .=P/.={2,1} for
Hetf! Msos fOr K=2 usingM,~7x 10 GeV and fork =3 using P Lipp 2.3
an extrapolatedM, value of 11x10' GeV. For P<5 and i=1,2, respectivelythe values ofK and P;_, , discussed
P’<K+5, the better estimates &, and M5 reducemq  /(H;)  above for the quarks and electronand with eitheP| =1
and e/ Mgott, respectively, only by factors aP(1) in compari- , , ] . ) R
son to the values afng  /(H;) and ueri/Mgor; given in thek =2 or PL3VC: Pu3:O (involving a renormalizable Dirac neutrino
andK =3 columns of Table V. However, larger valuesR&ndP’  term), the light eigenvalues of the three generations fall into
y|e|d inCreaSing Signiﬁcant reductions Ier,L/<H|> and the hlerarchy of X 1075 ev, 1X 1072 eV, and either

/aLreeffl/J;nesgﬁ, respectively, when the better estimates\f andMs 1. 102 oy or 5 eV for Preom P! .+1. This range is
. [ 17

220ther applications of non-renormalizable operators to neutrindagain of interest for laboratory and non-accelerator experi-
mass includg 34] and[35]. ments.



2712 GERALD CLEAVER et al. 57

VI. CONCLUSIONS w=0(mgys) for K=P, thus providing a phenomenologi-

cally acceptable value for the parameter[Another possi-

We have explored the nature of intermediate scale scez..” . . "
narios for effective supergravity models as derived within :b'“ty is that in which _theU_(l) is broken at the electroyveak
cale and the effective is generated by a renormalizable

class of string vacua. In particular, we explored a class o 7= : . .
string models which, along with the SM gauge group and theerm'] We are able to obtain interesting hierarchies for the

MSSM particle content, contain massless SM sirigle . quark and lepton masses for appropriate valueB.oAlso,

L small (non-seesayDirac or Majorana neutrino masses can
In addition, we assumed that the effects of supersymmetr% ; i, ) .

; : e obtained, or the traditional seesaw mechanism can be in-
breaking are parametrized by soft mass parameters.

The necessary condition for the intermediate mass Scec_orporated, depending on the nature of the non-

nario is the existence db-flat andF-flat directions in the renormallz?blg oper:ators: | . .

renormalizable part of th& sector. In this case, the only In conc usion, the string mode_s provide an important

renormalizable terms of the oteﬁtial are due,to the sof ramework in which the intermediate scales can naturally
d ¢ % It tF;] . fth ft ccur and provide interesting implications for theparam-

mass-squared parametens. € running ot the soft mass ﬁter and the fermion mass hierarchy of the MSSM sector.

parameters is such that the effective mass squared, along the

flat direction, becomes negative at,>M,, the S’s ac-

quire a non-zero VEV at an intermediate scal@nother ACKNOWLEDGMENTS

possibility is that individual mass squares, but not the effec-  This work was supported in part by U.S. Department of

tive combination for théD-flat direCtion, are negative. Then Energy Grant No. DOE-EY-76-02-3071. We thank P. Stein-
the VEV is of the order of the electroweak scale. hardt and 1. Zlatev for useful discussions.

Importantly, in a large number of string models, in par-

ticular for a class of fermionic constructions, there exist SM _
singlets S; with flat directions at the renormalizable level, APPENDIX:  RENORMALIZATION GROUP ANALYSIS

which couple to additional exotic particles via Yukawa cou- | the standard model singl&; [with U(1)’ chargeQ,]
plings of O(1). Such Yukawa couplings in turn ensure the couples in the superpotential

radiative breaking, by driving the sorfni2 parameters nega-
t|Ve atMrad>Mz. W:hA E E Al
For simplicity we confined the concrete analysis to the SEE A

case in which there is an additiondl(1)’ symmetry, and ¢ i fieldE®. (i | inal der th
two SM singletsS, , have opposite signs of thel(1)’ to a set of exotic field&? , (in general non-singlets under the

: _ tandard model group; the indexis a multiplicity index not
charges, thus ensuring flatness for|Q,||S[2=|Q,[|S,|2 3 _ . .
[similar results are expected for the case of a single standa cessarily associated with a gauge symmethe one-loap
model singlet and no addition&(1)']. In the analysis of GEs for couplings and soft masses can be integrated ana-

o ; ; lytically.
radiative breaking we considered three types of Yukawa cou .
plings [of O(1)] o% S, to the exotic particBI/ePS and a range of _The RZGE equations have the general f&fm
the boundary conditions on soft mass paramete @f;g - [t= (1/1677) In(1/Ms1)]
For a large range of parameters we obtainegy in the q dM
range 167 _1016 GeV (or at praa~Mz). N % _ 03, —2=2b,g2M,, (A2)
In addition, we discussed the competition between the dt dt
effects of the pure radiative breakingS)~ u,,q) and the
stabilization of vacuum due to the non-renormalizable termsvhere the indexa runs over the different gauge group fac-
in the superpotential of the type SK*3/MmK  tors, with gauge couplingl, and gaugino mas#l,, and
[(S)~ (Mg M) YK+ D], Non-renormalizable terms in the ba=2gS(Rs) —3C(G,). The sum extends over chiral mul-
superpotential are generiand calculablgin string models.  tiPlets with S(R,) the Dynkin index of the corresponding
For a class of fermionic constructiond ~Min,. These representation an@(G,) the quadratic Casimir invariant of
terms are dominant fomfgy ( MK) YK+ D< 4y the adjoint representation. With the MSSM patrticle content,
In the case of the pure radiative breaking, the mass of thbz=—3,b,=1, andb; = %. In the case of two fundamental
Higgs field(and its fermionic partngmssociated with a non- SU(5) multiplets added to the MSSM particle content,

zero VEV ofSis light and of ordeMz/(4). On the other  p,= -2 b,=2, andb;= 2. In writing these equations we

hand, the breaking due to the non-renormalizable terms imMyre neglecting the possible kinetic mixifigs, 16 between
plies a light Higgs field and the supersymmetric partner botrU(l)Y andU(1)’.

with the mass of ordeM . _ For the Yukawa coupling in EA1),

The non-renormalizable couplings 8f's to the MSSM
particles in the superpotential in turn provide a mechanism to dh
obtain an effectivew parameter and the masses for quarks —=(T+2)h3-h>, rag2, (A3)
and leptons. In the case of the pure radiative breaking the dt a
precise values of theu parameter and the lepton-quark
masses crucially depend omu,,q. When the non-
renormalizable terms dominate, these parameters assuméThe local(or globa) symmetry associated with the multiplicity
specific values in terms df and the orderP of the non-  in « for the E, , fields permits us to write the Yukawa couplihg
renormalizable term by which they are induced. In particularand the soft masses of these fields withsndices.
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TABLE VI. Coefficients in RGEs for coupling c@l to triplets, doublets, and, pairs of identical MSSM
singlets, via the superpotentil=hS,E,E,.
Ei~(SU(3),SU(2),U(1)y,U(1)") T Cs(Ei) Ca(E) Cy(E) Cy(E)
D~(3,0Yp,Qp) 3 3 0 3Y2/5 Q2/ky,
L~(0,2Y,,Q.) 2 0 3 3Y2/5 Q2/ky,
Si~(0,0,0Qs) Np 0 0 0 Qé/kl/
where T=2,5;, ra=2[C4(S;y)+Ca(E1) +Cy(Ez)]. In m3(t)=[1—3TRe(t)Ima— TRe(t) er(t)A3
Table VI, we list the values off and C,(E;) for specific Ha(t)
examples of; . B 3(t
For the associated soft trilinear coupling, 2TRi(Der(t) F(t) AoM 12
A +M2. (t)—TR(t)ﬂ
G =2T+ 2)AR =2, 1,g2M,. (A4) vz )
a
H3(t) 2 2
+T(T+2) Ri(t) |, (Al
Finally, for the soft masses of the scalar componentS,of F(t)
and Dl,21 2 2 2
me, (U=[1—3Ry(t)Imo—Ry(t) e:()Ag
dm?
O 22 2 2 Ha(t)
gt 2mh 8; 92Ca(SUM; —2R¢(t) €4(1) o AoMar
+23 Kk 1g2Q.(S)THQ.m?],  (A5) 2 I
Z a Yalal=1 EULNE +M1s IEle(t)_Rf(t) %
Hs(t)]?
dmg | , , +(T+2) F3((t))} R?(t)], (A12)
i~ 2?0?82 g;Ca(E1M]
where
+22" ki '03Qa(E1 ) TMQML.  (AB)
E(t)=I1 [1-2b.gft]"="s, (A13)
a
We usedo?=mi+mg +mz +A? the primed summa-
tion extends only to Abelian gauge group factors, andkthe F(t)=2fOE(t’)dt’, (A14)
are normalization factors for the Abelian grougs.g., t
k,;=5/3 in a GUT normalizaton
The solutions for this set of equatidfisire = ALS
0= T TronFn (A19)
2
90
204N _
93D = 12 g% (A7) Ri(t) =h2F () (1), (A16)
g5(t) Ha(t)=—2 rag(bt, (A17)
My(t) =M yp—s—, (A8) a
Y
Ha(t)=—2tE(t) — F(t), (A18)
E(t)hg
h2(t)= > (A9) 1 1
1+(T+2)hgF(t)’ [ .(t)=2 Ky —|1— ———
(T+2)hgF(t) (=22 Ca(k) p-| 1= g2
A(t)=Ager(t) + Myd Ha(t) = (T+2)hgHs(t) er(1)], (A19)
(A10)
0
N 30 =2 [ B A 1) +g (1)
2*Assuming universality of the soft masses at the string scale, , ,
T Q,m?]=0 at all scales for non-anomalous Abelian groups. +l Ez(t )Jdt. (A20)
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It is instructive to write some of these functions in terms of ApX(1—Xo) X 1 1 X
the Yukawa coupling at it§pseudafixed point A(t)= Xo(1-X) +m, 1-X|X %o - TIn X,
h#(t)= E(U (A21) (A29)
f (T+2)F(t)’ where
This is the running Yukawa coupling for lardg . It deter- 1
mines the infrared fixed point at the electroweak scale, and my=———= > r,92M,, (A30)
when hy~1 it is expected thah(t) approached;(t) for (T+2)g? =
sufficiently large—t [see Fig. 18)]. Whenh(t)=hs(t) is a
good approximation, many terms simplify in the previousand the other quantities are defined above.
analytic solutions. In particular, If the U(1)’ factors are neglected, the soft scalar mass-
h2(t ) squared parameters have the following approximate solu-
e(=1— h=(t )—>0 Ri(t)= 1 by 1 tions:
f hZ(t) T T2 p2t) (T+2)°
A22 T T X
( ) 2 (1—m m§+T+22(t)+2Tg Inx—,
In addition to the exact analytical solutions presented 0( A31)
above, it is useful to consider approximate analytical solu-
tions to the RGEs. In this semi-analytic approach, the run- 1
ning gauge couplings and gaugino masses are replaced bym (1_ _— m2 —— S (t)+| 2g2m?
their average values: 12 T+2 T+2
_ 1 X
9a=5(9a(M2) + o), (A23) ~82 Ca(ErMZ07 [In o, (A32)
— 1 in which
MaZE(Ma(Mz)"‘ Myp). (A24)
With these approximations, the RGEs for the Yukawa m?= T+2)3 ; Ca(E1)M302, (A33)
coupling, soft trilinear coupling, and the soft masses can be g*
solved easily. The Yukawa coupling has the apprOX|mate nd
solution
=2 X
hz(t)=g— (A25) =% X(1—Xo) X(1—Xo)
1=X® (1) =(M?-m2) —2+ ~So- > (Ao
1-X  Xo(1—-X) Xo
in which
X
1 S g 1= Xo  X(1—Xo) X
—_— r,gs, (A26) =2 0 0 ot -
2 a ada m)\) (l X)2+X (l X)2 2(A0 m)\)m)\ In XO
=2
X(t)=Xe2 T2, (A27) X 0l meemet o X
+ 1_Xln X m2+m,? = Xln X" (A34)
32
Xo=1-{1- ho2/" (A28)  The semi-analytic solutions are valid in the limit of small

initial gaugino masses, such that the contribution of the
The approximate solution for the trilinear coupling is given gauginos to the evolution of the trilinear coupling and the

by soft mass-squared parameters is small.
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