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We discuss the issue of the local quark-hadron duality at high energies in two- and four-dimensional QCD.
A mechanism of the dynamical realization of the quark-hadron duality in two-dimensional QCD in the limit of
a large number of colord\,— (the 't Hooft mode), is considered. A similar mechanism of dynamical
smearing may be relevant in four-dimensional QCD. Although particular details of our results are model
dependent, the general features of the duality implementation conjectured previously get further support.
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[. INTRODUCTION studies of the issue of the quark-hadron duality, was sug-
gested in2],

In recent years the focus of the applications of the opera-
tor product expansiofOPE) [1] has shifted towards pro- N —
cesses with essentially Minkowskian kinematics. Perhaps the Im Hzconst?nzl o(&=n), @
most well-known example is the theory of inclusive decays
of heavy flavorgfor a review see, e.g., Rdi2]). This fact, where
as well as the increased demand for more accurate predic-
tions, puts forward the study of the quark-hadron duality as s
an urgent task. &= e

A detailed definition of the procedure which goes under
the name of the quark-hadron dualigykey element of every
calculation referring to Minkowskian quantitiesvas given
in Refs.[2,3]. In a nutshell, aruncatedOPE is analytically

and from now on we will drop an inessential constant in
front of the sum. The color factd¥,. is singled out for con-
) . venience. The imaginary part above represents, for positive
cqntmued{ term. Py term, from the Euclldgan _to t,hevalues ofs, a sum of infinitely narrow equidistant reso-
Minkowski domain. A smooth quark curve obtained in this \ances with equal residues. The distance between the reso-
way is supposed to coincide at high energiesergy re-  pances isA2. It definesIT(q?) everywhere in the complex
leases with the actual hadronic cross section. _ laneq?, through the standard dispersion relation, up to an
If duality is formulated in this way, it is perfectly obvious aqgitive constant which can be adjusted arbitrarily. It is not

that at finite energies deviations from duality must exist. Thegjfficult to see that the corresponding correlation function
difference between the measured physical cross section and a

smooth OPE prediction will be referred to as an oscillating- N,
exponentialduality violating component. In Ref.2] it was (g% =- >
shown that if we knew the leading asymptotic behavior of

the high order terms in the power series we could evaluat§here  is the logarithmic derivative of Euler’E function,
this component. Unfortunately, very little is known about gng

this aspect of OPE, and we have to approach the problem

from the other side—either by modeling the phenomefdin 92

or by studying some general features of the appropriate spec- e=
tral densities. One can also try to approach the problem

urely phenomenologically. Recent work in this direction is
Eepor)t/e?j in Refs[5 6]_g 4 In the Minkowski domain€ is positive, in the Euclidean

An illustrative spectral density, quite instructive in the dom;ir?g is positive. Then, the asymptotic expansion of
I1(g®) in deep Euclidean domain is well known,

: @

1
¢(8)+g

_P:

-2n
Moreover, usually one deals with the practical versfdh of 2 _ & + i_ _ n—1BL
e o nzl( 1) , 3

OPE, see Ref3] for further details. 2n
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whereB,, are the Bernoulli numbers. At large they grow  low-lying states is irrelevant in the regime with the factori-
factorially, asB,~(2n)! (see[7], page 23 We deal with ally growing coefficients. This is a specific feature of the
the sign alternating series. asymptotic series.

Although the spectral densitil) is admittedly a model, it The ¢ function model was originally suggested in Rigf|
was argued?] that a similar factorial growth of the coeffi- for the heavy-light quark systems. In R¢L4] it was noted
cients in the powefcondensateseries is a general feature. that it was more appropriate for the light-light quark systems
The spectral densityl) may be relevant in the limit of the Since in the heavy-light systems the resonances are not ex-
large number of colorsN.— =, when all mesons are infi- pected t_o be_ equ_ldlstant. Straightforward quaS|_cIaSS|caI esti-
nitely narrow. This limit is not realistic, however. Moreover, Mates yield in this case that the meson energiesasured
in this limit the local quark-hadron duality, as we defined it, oM the heavy quark masasymptotically scale agn. (See

nevertakes place since even at high energies the hadronfdS© Ref.[15], where this scaling law is reproduced in a

spectral density never becomes smooth, even approximatel'.ear potential mpde)LIn the presgnt paper we f'urther de-
One can smear it by hand, of course, but then deviation elop the ¢ function ansatz adapting it for the light-quark

from the local duality will be determined not only by the systems.

intrinsic hadronic d . is th in th I Id The issue of duality in the 't Hooft model was touched
intrinsic hadronic dynamics, as is the case in the real wor pon, in an applied aspeeak decays of heavy quaikn
but also by particular smearing procedure — they will depen

. i , ; he recent publicatiof6]. We do not comment on this work
on the_ weight function chosen for smearing, the |r_1terval Ofnow, since a detailed analysis of this problem is under way
smearing, and so on. In the actual world the smearing occurg,q will be reported elsewhere.

dynamically since at high energies the resonance widths be- Tpe paper is organized as follows. Section Il briefly re-
come non-negligible. The limits & —c andN.—c are not  c¢aJIs the basic strategy of the OPE-based calculations. Here
interchangeable. we outline the main elements of the analysis to be presented

Here we suggest and study more realigtignamically  below. In Sect. Il we first discuss the 't Hooft model in the
smearegispectral densities compatible with all general prop-leading 1N, approximation. Then we calculate the reso-
erties of quantum chromodynamics. Starting from infinitelynance widths and evaluate the polarization operator of the
narrow resonances, as in Ed), we introduce finite widths, two scalar currents in taking into accountN}/corrections.
ensuring smooth behavior. Technically, in the first part of theln Sec. IV we present qualitative arguments why the imple-
paper the problem of duality is analyzed in the two-mentation of duality obtained in the 't Hooft model must be
dimensional 't Hooft model[8] (see, also[9-13). The also relevant, at a qualitative level, in four-dimensional
quark confinement in this model is built-in. We then try to QCD. Section V gives conclusions and outlines possible
abstract general features of this solution, which may persigthysical applications of our results.
in QCD. In the second part of the paper an attempt is made
to work out the same mechanism in four dimensions. ' ope BASED STRATEGY, SUM RULES, AND DUALITY

Dynamical “smearing” of the spectral densities occurring
in QCD due to nonvanishing resonance widths, exhibits the The issue of “deviations from duality” caused much con-
same features of the high-energy behavior as was suggestion in the recent literature. Therefore, to begin with, we
in Refs.[2] and[3] on the basis of rather naive models, e.g.,remind the reader the basic strategy and explain, in clear
instanton models. Namely, the approach of the spectral derierms, where the deviations can occur and where there can be
sity to the smooth limi{the deviation from dualityis expo-  no deviations.
nential, with oscillations. This pattern seems to be general First of all, all calculations based on the operator product
and may be considered now as a well-established modeéxpansion are carried out in the Euclidean domain. Only
independent fact. At the same time, the exponent determiraway from the physical cuts this procedure is well defined.
ing the rate of the damping of the duality violations dependsAny calculation consists of several crucial elements: identi-
on details of the large distance dynamics. We were unable tfication of the operators which can appear in the expansion,
find it from first principles, and had to settle for model- separation of hard virtual momentaigher than a normaliza-
dependent determinations. tion point i) from soft virtual moment@ower thanu) and,

Let us note that several useful results on the relation befinally, calculation of the expansion coefficients in front of
tween duality violations and the divergence of the powerelevant operators. The latter is carried out in terms of quarks
expansion were presented in REf4], and we incorporate and gluons. That is why the normalization popatmust be
them? The very idea of using the 't Hooft model as a theo- chosen sufficiently high, and the calculation must be done in
retical laboratory adequate to the problem was formulatedhe Euclidean domain. Even if in some problems calculations
there. Moreover, it was notdd4] that the leading asymptot- are conveniently presented in such a way as if they were
ics of the high-order coefficients does not require the knowl-done in the Minkowski domain, actually the corresponding
edge of the exact mass spectrum. Suffice it to know the leadesults must be understood as an analytic continuation.
ing term in then dependence, whereis the radial excitation The connection between the Euclidean predictions and
number, which immediately translates in the leading factoriameasurable quantities is established via dispersion relations.
behavior of the coefficients. In particular, the position of theln this way one can get certain sum rules. A large variety of

them is offered on the market. If the Euclidean quantity is

appropriately chosen, th@uclidean operator product ex-
2We strongly disagree, however, with some particular calculationgansionconvergesThe best-known example of such an ap-
and expressions presented in this paper. propriate choice is provided by the Shifman-Vainshtain-
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Zakharov(SVZ) sum rules[16] obtained by virtue of the Breit-Wigner approximation. This resonance-saturated polar-
Borel transformation of the dispersion representation. Conization operator will be referred to as phenomenological. We
sider, for instance, the model of R¢R], see Eq.(2). The  will confront it with the truncated power expansion. The dif-
1/Q? expansion oflI(g?) in the Euclidean domain is facto- ference between these two expressions gives an idea of the
rially divergent. At the same time, theM? expansion of the duality violation.
Borel-transformed quantity has a finite radius of conver-
gence. Indeed, the SVZ sum rule in the case at hand has the A. The 't Hooft model: Generalities
form Two-dimensional QCD is described by the Lagrangian

N_A2 e~ A?M? e 1 o

2 1_e_Az/Mz=;f e "N imIl(s)ds, (4 L=-;G3,G},+a'(iD—mod’, ©®

4 TRV uv

(in the left-hand side\ 2 plays the role of the inverse slope wheref is the flavor index. Since the multiflavor aspect is
of the Regge trajectojy Assume that the left-hand side was irrelevant for our problem, we shall consider, for simplicity,
calculated theoretically, using OPE, as an expansion imne flavor; correspondingly, the indéxvill be omitted here-
1/M2. The domain of convergence of the power expansion isfter. If the gauge coupling of the theorygsit is convenient
determined by the position of the nearest singularity in theo introduce an effective coupling
complex M? plane. It is quite obvious that the expansion L
converges at 9°=9°N,, (7)
) 2 which stays constant in the limN.—o. The coupling con-
M |>§- ) stantg has dimension of mass; it sets the scale for all dimen-
sional quantities in the chiral limit, i.em— 0. We introduce
Not only the radius of convergence is finite, due to the factothe scale
24 in the denominator the domain of convergence extends to .
quite low values ofM?2. If A2~2 GeV?, the power , 97 9°Ng
series is convergent at as low valuesMf as 0.4 GeVf. K= ’ ®)
This fact was empirically observed long afi®5].

If we consider the SVZ sum rule inside the convergenceand measure all quantities in these units, e.g., the quark mass
domain of OPHsee Eq.5)], and aim at predicting the ex-
ponential integral on the right-hand side of E4) per se it
is meaningless to speak about deviations from OPE. In thi§vhiIe the mass of thath meson
formulation of the problenthere are no deviations

The problem of deviations arises when we try to predict
the spectral density Inhl point-by point, at larges, or cer-
tain integrals of Iml1, not directly reducible to “good” sum and so or
rules of the type(4). Certainly, if we assume that Ifl is As was shown by 't Hooft, the model with the Lagrangian
smooth starting from some boundary vabeEq. (4) allows  (6) is exactly solvable in the limiN.—o. The bound state
us to predict ImII(s) ats>s, unambiguously. If an oscil- spectrum includes an infinite number of bound states whose
lating component is allowed, however, one can always inmasses lie on an almost linear trajectory. The properties of
vent such a wild oscillating function, which, being integratedthese bound states are described by the 't Hooft equation
with the exponential weight, gives a contribution on the left-

y2=m? u?,

2_ A2
o=y u?,

hand side of the sum rul@) less than the last term of the ) (YP—=1)dpp(X)  [ta(y)dy
power expansion retained, no matter how small this last term Hndn(X) = X(1=x) —f > 9
is. This component is referred to as duality violating. o (x=Y)

Clegrly., guantum ch_romodynamics a_ldmits only very Spe.ciﬁ%ere the integral is understood as a “principal value,”
oscillating-exponential components in the spectral densities, '

if at all. The question is what particular oscillating- 1 1 1 1
exponential functions are allowed by QCD dynamics. We —=lim3 — : 21_
first try to answer this question in the simpler context of the p? 02| (p+ie)® (p—ie)

't Hooft model, and then pass to discussion of QCD. ) . ]
Moreover,x is the momentum fraction of the meson carried

by the antiquark(in the infinite momentum framewhile 1

—x is that of the quarki,(x) is the wave function of the
The aim of this section is to study the quark-hadron du-nth bound state.

ality in the 't Hooft model. We shall first briefly review the The integral equatio®) must be solved with the bound-

't Hooft model in theN.— ¢ limit and discuss M, correc-  ary conditions

tions in this model. Our original contribution is calculating

the resonance widths for high excitations. Then, using these

widths, we suggest an ansatz for the asymptotic behavior of*Normalization of the coupling constamt coincides with that

the polarization operator of two scalar currents, based on thadopted in Refg.8] and[10], but differs from that in Ref[13].

Ill. THE 't HOOFT MODEL
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xB,  x—0,

, . 1 o+ X—w-+
d)n(X)—) (1—X)'B, Nl (10) fabc_l_wijo ¢a(x)¢b(X/w+)®c( 1— w+>
Here B is the smallestin the absolute valyeroot of the _ i ! X—w+
equation: w. wiff’a(x)q’b(X/wi)(l’c o, (17)
wBcot(wB)=1— 2. (11) where w. are two roots of the algebraic equation corre-
sponding to the mass-shell condition
Below we shall be interested in the massless case). In ) )
the massless limit, the lowest-lying stédtlee “pion”) can be , My me
found from Eg. (9) analytically. Indeed, the solution ma:j+ (1-w)’ (18)
¢o=const, corresponding t@,=0, obviously goes through.
We are interested, however, in highly excited states]1. The function® 4(x) is defined as
In the original papef8] 't Hooft suggested the following
approximation forg,(x) at largen, x not too close to 0 and 1 day)
1: (Da(x):f dy 5"
o (x=y)
bn(X)= V2sin(nx). (12 Using the above expressions for the decay couplings one

] -~ ] can readily calculate the resonance widths in the leading
Recent calculationEl7], exploiting a new and improved nu- 1\ _ approximation. They are given by
merical procedurdthe so-called spline methfydshow that

for the massless case a better approximation for large 1 92
abc
Pemg 2 S —2 g
bn(X) = \2cog mnx). (13 ab ¢ (M, my,me)
This formula works very well numerically everywhere ex- wherel is the standard “triangular” function
cept the very end pointg=0,1, and a slighik-dependent 1
shift whenx~-0.5. _ _ (Mg mp, M) = 7 [MG— (My+mg)?J[mZ— (mp—me)?].
Note that the wave functiongl3) satisfy the proper

boundary conditions for the massless case, which corre- (20

sponds to8 equal to zero and, hence, The sum in Eq(19) runs over all mesonb andc with the

constraintmy+mg,<m,.

Our task was to establish the asymptotic behavior of the
widths, as a function of the excitation number, at large val-
ues ofn, in the leading M. approximation(all widths are
l;):)roportional to IN.; the excitation numben will be tem-
p%rarily calleda in this sectiof. In order to find the widths
we first computed analytically, using the wave functions
(13), the overlap integralél7). The answer can be expressed
via the integral sine and cosine functions and was obtained
using theREDUCE program. Since it is very bulky it seems
unreasonable to present here the final expreddidh After
computing the overlap integral we performed numerically
summation over all possible andc in Eq. (19) for a up to
500. The result for the widths exhibits a remarkable pattern.

B. The meson widths The widths of the individual levels oscillate near a smooth

As was already mentioned, in the linhit,— the bound square-root curve, see Fig. 1. This figure shows th'e width of
states in the 't Hooft model are stable, their widths vanishh€ath state v&, up toa=>500. The result of averaging over
However, once one takes into account the leadimg, bor- the interval of 20 resonances is depicted in Fig. 2. We see
rection, the resonances begin to decay. In the first order iffat the curve of the averaged resonance widlttes) =I", is
1/N,, expansion there are only two-particle decaysb+c. ~ Very well approximated by the function
The relevant coupling constantg,. are given by the fol-

#n(0)=C,én(1)=PC. 14

HereP =1 for the states with the even parity aRe- — 1 for
the states with the odd parity, and the cons@#t0.

The mass spectrum in the massless case was found
't Hooft. The asymptotic behavior qﬁﬁ is

wi=mw2n{1+0[In(n)/n]+---}. (15)
Note that the mass formulél5) does not depend on the

choice of the wave function, E¢13) or the 't Hooft choice,
at least in the leading in approximation17].

lowing formula[10-12,17,18 I'(a)= Ap \/5[1+O(1/a)], (22
N,
2T a\(oatopto ft -
Yape™ # Nc[l (=1) P71 (Fapct Tapo)- where the parametex is introduced in Eq(8), andA is a

(16)  constant which will be given below.
Since the square-root la(21) for the (averageglwidths is
Here o, is the parity of theath resonance. The constants valid in such a large interval of the excitation numbers and
f 1o are determined from the following expressions: turns out to be so accurate, it seems plausible that this for-
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FIG. 1. The width of theath state(in units of,m-r’zNC_l) as a FIG. 2. Smeared widths in the same interval afand the
function ofa up toa=500. square-root fit, Eq(21).

mula could be obtained analytically. This is an interestingjon. Here we shall consider the most interesting case of the
question by itself, especially in four-dimensional QCD. Un-po|arization operator of the two scalar currents. Let us start
fortunately, we were unable to find exact analytic solution SGrom this polarization operator in tié,— o limit [10,20.

far. Some qualitative arguments in favor of the exact square pefine the two-point function of the scalar currerts
root dependence are discussed in Sec. IV. The numericazla]_

value of the constam is

A=0.44+0.05. (22) (g% =i f d?x€(0| T{j(x),j(0)}|0). (23)

Below this result for thdaverageg widths will be used for

determining the asymptotic behavior of the polarization!n the Ne—ce limit II is given by[10]

operator’ - ,
Since the I result for the decay width grows with, T(q?)= — 2 On

one may worry about the NIf corrections. If they grew with 9 A0 Q2—m2+ie

a sufficiently fast this could invalidate E¢21) in the inter-

val of the excitation numbers we are interested in, namelyHere the constantg,, are the current residues

a=constN., where the constant above can be numerically

large, but it does not scale witN.. Using quasiclassical (0]j(x)|ny=g5,. (25

argumentgsee Sec. Y one can show that the actualNL/ ) )

expansion parameter in E(1) is Va/N,. This means that Note that the residues vanish for eve10], so that the sum

at a=constN, correctionsO(1/N2) and higher are negli- N Ed. (24) runs over odch gnly. Below we shgll be inter-

gible. ested in the behavior dfi (q°) for large|q®|> w*. This be-

Concluding this section let us note that the same squard!@avior is dominated by the terms in the siizd) with large
root was reported previously in RefL8]. We failed to re- n>1[10,14,2Q. In order to calculate this sum explicitly we

produce the arguments of this work leading to the squaretheén need the large behavior ofg, . It was determined in
root law, however. What is important is that the constanthe same classical papgt0] from the requirement of the
analogous taA in Ref.[18] is claimed to be proportional to compatibility of the expa2r15|or(2_4)_ and the perturbation
1/Jym, and, thus, blows up for massless quarks. This posed1€0ry asymptotics in th@“—ce limit,

perplexing questions. The coincidence looks completely ac-

(24)

. N 2
cidental. H(qz)—>— 2—°|n—, sz_qz_ (26)
™
C. The Breit-Wigner approximation: An ansatz
for the polarization operator The coefficientsy,, for sufficiently large oddh must be in-
Once we had found the resonance widths, we can Calcdj_ependent oh and are equal to

late the polarization operator in the Breit-Wigner approxima-

P P gnerapp g=Nemp?. (27)

Then, taking into account the lineardependence of mass
“squared one can approximate the polarization opef2®r
for sufficiently large|q?| by the ¢ function,

“Let us note that if one calculates the widths with the wave func
tions (12), the square-root behavior of E(RD) is intact, but the
value of the constanA is different, A’~0.007, i.e.~50 times
smaller. This fact indicates that the square-root law is not sensitive N Q2 1

. . . c
to the precise form of the wave functions, while the value of the (g®>)-1(0)=— — (o), o=—1—+=. (29
coefficientA is. 2m 2m2u? 2
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We hasten to emphasize again that this formula is not sup

posed to work at nonasymptotic values@f. For instance, it

does not contain the massless “pion.” Moreover, by shifting
a little bit the masses and residues of the low-lying reso-

nances we lefl(g?) “breathe” at smallQ? without chang-
ing the asymptotic behavior.

What will happen if we take into account finite widths of

the resonances? To answer this question we calcll&@?)
in the Breit-Wigner approximation(The continuation of the

Breit-Wigner formula in the complex plane, away from the
resonance position, is not unambiguous. We choose a spe
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Lower side of the cut ,Im z

Iqu] R ©,

Rez

Cut
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ReQ
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n
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Upper side of the cut

(a) (b)

cific continuation leading to proper analytic properties of the

polarization operator, see belgvithe inverse propagator of
the nth bound state can be written as

D, (6%)=—[a*~mi+2(g?)], (29
whereZ (g?) a function of order M, reflecting the possibil-

ity of the transitionsa—bc—a. This function is known at
2_ 2.

g°=m;:
2 2 Amﬁ

Im X (g°=m)=m,I",= N (30
T N¢

Here we used Eqg13) and(19). Now we can write
A Q2

-1_~2 _ < 2

D, =Q (1 w4NC|nA2 +mp,. (31

It is easy to see that) atq?=m? Eq. (30) is satisfied{ii) the

FIG. 3. Analytical structure of the polarization operat@. The
polarization operator must be analytic everywhere in the complex
Q? plane, except the cut running on the negative real semiaxis of
Q? (positive real semiaxis af?). The imaginary part of the polar-
ization operator must be positive at the upper side oftheut; (b)

The mapping of th&? plane onto the plane, Eq(33). The physi-

cal sheet on th&? plane corresponds to thzeplane with the shaded
sector removed. The boundaries of the sector correspond to the
lower and upper sides of thg cut.

where

G2 4 ! 35

o= 2’ X (35

The constant in front ofy(o) is adjusted in such a way as to
leave intact the higiQ? asymptotics, see E¢26). The term
proportional toA is clearly subleading in N.. Strictly
speaking, we should have omitted it at the level of accuracy
accepted here.

pole is shifted to an unphysical sheet, so that on the physical gy construction, all singularities of the polarization opera-

sheet there are no singularities except the cut at positive re
g°. The property(i) is quite obvious. Let us comment on the

property ii).

fbr (34) are on the unphysical sheet. The discontinuity at the
cut g>=0 will be calculated below.

The easiest way to demonstrate that there are no singu- p. OPE and the asymptotics of the polarization operator
larities on the physical sheet is as follows. Observe, that at

our level of accuracy one can write, instead of E2fl),

D, '=(z+m?), (32

where

7= QZ(Q2/2772,LL2)_A/7T4NC. (33)
Here the constanA? in Eq. (31) is adjusted in accordance
with Eq. (35) below.

The physical sheet on the compl€¥ plane[Fig. 3a)] is
mapped onto a sheet with a “defect angle” on the complex

The expressioki34) for the polarization operator is clearly
not exact, since we have made a number of approximations.
They do not affect, however, the largg® asymptotics of
I1(Q?). Neither the leading asymptotics of high orders in the
1/Q? expansion depends on these approximations. Since we
are interested in the high energy behavior, distortions intro-
duced inll(Q?) at finite Q? by the approximations made are
not important. In particular, we will disregard the fact that
low-order terms in the §@? expansion of1(Q?) (“conden-
sates”) may come out with “wrong” coefficients. By adjust-
ing the positions and residues of a few lowest resonances we
can always get any desirable coefficients for any gifieite

plane[Fig. 3b)]. Going into the shaded area we pass to thehumber of terms in the @ expansion.

unphysical sheets. Note that the poleXflies in the shaded
area.

Let us first study the impact of the resonance widths on
I1(Q?) in the Euclidean domain. As we saw, the effect due

Assembling all pieces together we conclude that, with theo the nonvanishing widths essentially reduces to the substi-

resonance widths switched on, E¢24) and(28) are substi-
tuted by

I1(Q?) —I1(0)=consk >, D, *(Q?)

N¢

1 ~
= a5 o),

C1-Al(*N,) 27 39

tution of the variables defined in Eq.(26) by o, see Eq.
(33). Therefore, the change in the asymptoti@3 expansion
at large(Euclidean values ofQ? is rather insignificant. If at

N.= o thenth term of the power expansion@;,(Q?) ~¥n, at
the 1N, level it becomes
1 1 ,
Cn(QZ)kn(lfa)—>Cn(Q2)kn(1+aknan)' (36)
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~ A (37) 2.57
774NC.

(¢4

The second term on the right-hand side in B3§) is a small
1/N. correction which reminds us of a logarithmic anoma- 1 5}
lous dimension in QCD. Unlike the first term in E@6), the

logarithmic term develops an imaginary part at large positive

real values ofj?. If we treated Eq(36) in the framework of i
OPE (more exactly, in practical versidd]), then we would J U U U
predict that the spectral density 0.5
N¢ "S°  amk . . . . . ‘
ImIL(s)[ss 2= | 1 - nZl Cn(—s)kn , (38) 40 45 50 55 60 65

FIG. 4. The spectral density corresponding to E2f) in the
wheres=q? andn is the highest term retained in practical 't Hooft model, versus (in the units 2r2x2). N, is put equal to 3,
OPE. By construction, the prediction for the spectral densityand the normalization factor is chosen in such a way that asymp-
obtained from practical OPE is smooth. As a matter of facttotically the spectral density displayed must approach unity.
all correction terms in Eq(38) are suppressed by N/,
since a~1/N., and are numerically insignificant at large find the high energy behavior of the imaginary part of the
N;. polarization operator, we must go to the oscillation zone, to
Let us examine now the “physical spectral density,” i.e., energiesas> u2. Then

the imaginary part at positivg? following directly from Eq.

as S

1+2ex;{ - cos(—2
j T

(34). Our task is to reveal an oscillating component, not sup-
The unit term corresponds to the leading asymptdiicee-

N
pressed by N,. Im H(qz)—>7
In order to find the imaginary part analytically, it is con-
venient to use the reflection property of tiiefunction:
produces the OPE predictipnwhile the second term is an
oscillating-exponential component, missing in practical
OPE? It presents a deviation from duality we are hunting for
emember, by duality we understand a specific procedure
ormulated in Refs[2,3]).
The oscillating component is suppressed by the damping
exponential, exp € as/u?). A comment is in order regard-

ing the exponent,

(43)

Yo )=y(—0o )—mcot(wo )— 1o (39

It is obvious that the polarization operat(34) is a sum of
three terms, corresponding to three different terms on th
right-hand side of Eq(39). Moreover, it is evident that the
first and the third terms are smooth functionsgdt Their
contribution to the imaginary part of the polarization opera-
tor for large s corresponds to the smooth component ob-
tained from OPE, see the correction terms in B8).

In order to study the oscillating-exponential component a_SE A S (44)
one must consider the second term w? N, MZ'
Im TI(s)= &Im cot( 7o )= — & sinh(2y) This exponent determines the boundary between the oscilla-
= TO )= — , ) 2 3 . . .
2 2 cosh(2y)—cog2x) tion and the resonance zonsg,- 7N u“. This estimate is

(40 in accord with intuition. Indeed, the exponential suppression
of the oscillations should start when the resonance width
becomes larger than the distance between the neighboring
resonances. Sind&,~ u+/n/N.7° and the distance between

Xx=1m7 Re o~ — S [1—aln(s)], the _nei_ghboring resonancAsn,~ mu//n, this occurs at the
27 u? excitations numben~ 7*N.. Thus, the factor N, in Eq.
(44) is obvious. What is more remarkable, is a large addi-

where

_ as tional numerical suppressiom* pushing the boundary to
y=mlmo~—-_—. (41 higher energies and making the exponential suppression
2p weaker. It can be traced back to the numerical suppression of

the width in Eq.(21) which, in turn, is due to a strong nu-

merical suppression of the phase space. Because of this fact

the damping of the oscillations occurs very slowly in the

. ) 't Hooft model. Figure 4 shows Inlil in the window from

Im H(s)=& sinh(as/u*) (47  the 35th to 65th oscillation. We see that even here the oscil-
2

costas/u?)—cogs/mu?)

Taking into account only the leading M, terms it is easy to
rewrite the spectral densityt0) as follows:

At as<u? we are in the resonance zoffeere and below we  ®In terms of an index introduced in Sec. V B of Ref3], Eq.
use the nomenclature of RéB], see Sec. 5)2In order to  (43) implies thate=2.
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lation amplitude is quite sizable. Unlike other features, ex-that the resonance widths must grow linearly with [22],
pected to be generic, this numerical aspect—a very slow rateiuch in the same way as in the 't Hooft model.
of the oscillation damping—is specific to the 't Hooft model  Let us remind the reader of the quasiclassical arguments
and is not expected to survive in four-dimensional QCD,of Ref.[22], showing thatl',~m, /N. in four-dimensional
since it is entirely due to “abnormally” narrow widths of the QCD. When a highly excited meson state is created by a
resonances in two-dimensional QCD. Semiquantitative estilocal source, it can be considered, quasiclassically, as a pair
mates of the damping exponent in four-dimensional QCDof (almost fre¢ ultrarelativistic quarks; each of them with
will be given in Sec. IV. energym,/2. These quarks are created at the origin, and then
In summary, forq?<0 the polarization operator is given fly back-to-back, creating behind them a flux tube of the
by the ¢ function of the positive real argument and is a chromoelectric field. The length of the tude~m,/A?
smooth function with no singularities. It is well approxi- whereA? is the string tension. The decay probability is de-
mated by its asymptotic expansion. The latter is most convetermined, to order N, by the probability of creating an
niently written in terms of the variable defined abovésee extra quark-antiquark pair. Since the pair creation can hap-
Eq. (35)], for which it becomes the standard asymptotic ex-pen anywhere inside the flux tube, it is natural to expect that
pansion of they function. In the Minkowskian domain, start-

ing from the scaleso~7r‘_‘,u2NC, one can approximate the FHNLLAzz_mn, 48)
polarization operator by its smooth asymptotiasalytically N¢ N¢
continued from the expansion in the Euclidean domplos . . . .
an exponentially decreasing and oscillating tef#8). whereB is a d|rT_1enS|on_Iess coefficient of ordgr 1.
Let us note in passing that theNE/ corrections due to
IV. FOUR-DIMENSIONAL QCD creation of two quark pairs are of ordb?/Nﬁ within this

picture. Since L~m,~n, the expansion parameter is
Unlike in the ‘t Hooft model, we cannot solve four- \/ﬁ/NC.
dimensional QCD. At the qualitative level, however, we can  Strictly speaking, the estimaté48) must be, rather,
apply the same ideas. The general pattern of the asymptotigewed as a lower bound, since the transverse fluctuations of
behavior will be the same, but the numerical aspects lookhe flux tube can increase the decay probability. However,

different. o _ o most likely, these transverse fluctuations will materialize in
Our goal in this section is to discuss the polarization opthe form of emission of glueballs, a subleadingli kffect,
erator of two vector currents: which is not considered here. It is not fully clear what impact

these fluctuations may have on the quark-antiquark pair pro-
HW(qZ):iJ exp(iqx)(0|T{jM(x)j,,(0)}|0)d4x. (45) duction. _It_seer_ns plausible that _they only affect the numeri-
cal coefficient in Eq(48), which is not calculated anyway.
Given all naivete of the arguments and the estintd®, at
the present stage it is reasonable to accept it as a working
. _— hypothesis.
1) = Uy, d00). (46) As was mentioned, in real QCD we expeBt-1, see

Because of the conservation of the vector current the polai€Stimates in Ref.22] and below. Apart from this numerical

Herej ,(x) is the vector current:

ization operator can be represented as difference, everything else is perfectly analogous to the con-
sideration we have carried out in the 't Hooft model. Hence,
HMV(qz):(q#qV_qZQ#V)H(qZ)_ (47) we conclude that in four-dimensional QCD a viable model of

the approach to asymptotics is provided by the sgnfienc-

Furthermore]1(qg?) is dimensionless, and is perfectly analo- tion:
gous to the polarization operat@1) we dealt with in the _
't Hooft model. According to the standard wisdom of multi- I1(Q?) —II(0)=consi)(o ), (49
color QCD, we expect that aN.=« and high energies
I1(g?) is representable as a sum of equidistant infinitely narwhere, in the case at hand,
row resonances, with a constant residue, i.e., we arrive at the 5\ 1-BiNgm
samey function. The dynamical smearing is again provided ~_ Q_
by the resonance widthéa 1N, effech. What is known U_(Am2>
about the widths of the highly excited states in four-
dimensional QCD? Here C is a numerical constant correlated with the position

In the case at hand we do not have in our disposal quaref the lowest resonance,
titative tools which would allow us to calculate the widths.
Such a calculation could have been performed in a noncriti-
cal string theory, were this theory available. Unfortunately,
the issue is not worked ofitand we have to resort to quali-
tative arguments. If the string-based picture of color confineThe normalization constant in front of thiefunction in Eq.
ment is indeed valid, one can hardly avoid the conclusior(49) will be chosen in the form

+C. (50)

2 2 I'o_B
mg=CAmM“ 1+ O(1/N,)], m—0=N—[1+O(1/NC)].
Cc

B -1
— 1_ ,
5Some attempts in this direction were reported in R2t]. ( Ncw)
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FIG. 5. The imaginary part of the polarization operator corre-
sponding to Eq(50) with Am?=1 GeV?, C=0.6 andB=0.78. 0.5 -
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so that the imaginary part at asymptotically higlis auto-
matically normalized to unity. The plot of Ifl is shown on Ma352 (GeV/cz)2

Fig. 5. Although fine details of this spectral density are

somewhat distorted compared to the actual experimentally FIG. 6. The spectral density in the vector isoscalar channel mea-
measured spectral densities in thée~ annihilation orr  Sured ine"e” annihilation andr hadronic decays.

decays(e.g., thep meson width comes out 1.5 larger than

the experimental onehe qualitative similarity of our model s in the previous analyses. The details are different. For
with experiment is remarkable. To substantiate the point wenstance, the instanton-based model discussed in R&&.
display a plot of the spectral density in the vector isoscalatjelds the interval between the successive oscillations grow-

channel borrowed from Ref23] (Fig. 6). ing with s, while our present result implies equidistant oscil-
The oscillation zone starts as,~Am*N(27B)"*.  |afions in thes scale. In this aspect the instanton-based

Above this boundary the asymptotic form of the oscillatingmodel is seemingly less realistic. Moreover, for obvious rea-

exponential terms, analogous to E43), is given by sons it does not allow one to trace the proNerependence,

while our present analysis does. Needless to say, it repro-
duces the desired regularity—the fact that the exponent gov-
erning the exponential damping of the oscillations is propor-
' tional to 1N,.
(51) The important lesson we draw is confirmation of a general
pattern of the duality-violating component in the spectral
Both, the onset of the oscillation zone and the oscillationdensities at high energies inferred previously: exponential
structure are in nice qualitative agreement with what we segharacter, modulated by oscillations. Particular details are
on Fig. 6 presenting experimental datae@re™ annihilation ~ model dependent. The 't Hooft model is solvable, and all
and = decays. questions can be explicitly answered. In four-dimensional
In summary, our model spectral densit§0), with the = QCD itis possible to provide only educated guesses. Further
appropriate values of parameters, properly captures all imefforts are needed to back them up by more solid calcula-
portant features which must be inherent to spectral densitig4ons.
in real QCD. First, the corresponding polarization operator is We believe that the suggested ansatz for the spectral den-
a sum of an infinite number of simple poles on the unphysisity, Egs.(49) and (50), gives a very good idea of the
cal sheet, so that the correct analytical properties ensue agduality-violating contributions. It is compatible with all gen-
tomatically. The 10? expansion has the right structure. The €ral principles of field theory, I, expansion of QCD, and
spectral density following from Eq949) and (50) is dy-  folklore knowledge which is universally believed to be true.
namically smeared by the resonance widths. Purely pictori- Although our discussion was phrased in terms of the spec-
ally it closely resembles what is measured experimentally. tral densities, its implications are wider. In particular, it is
quite probable that a component of the very same structure is
present in the so-called hard quantities without OPE, e.g.,
thrust. Recently it was realized that the perturbative predic-
In this paper we address the issue of the preasymptotitons for such quantities must be supplemented 16y dér-
component of the spectral density not seen in practical OPEections(for a review see, e.g[24]). If we are right, in the
This component oscillates, with the amplitude being expointermediate domain of moderate momentum transfers the
nentially damped. The approach to the problem is compleescillating component might be noticeable too.
mentary to that of Refg2,3]. It is gratifying to observe that An interesting question which deserves a new dedicated
the general features of the overall picture come out the samanalysis (independently of our model of duality-violating

27Bs 27s
ImIT(Q?) =const1+2exy — co
N.Am? Am?

V. CONCLUSIONS
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