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Illustrative example of how quark-hadron duality might work
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We discuss the issue of the local quark-hadron duality at high energies in two- and four-dimensional QCD.
A mechanism of the dynamical realization of the quark-hadron duality in two-dimensional QCD in the limit of
a large number of colors,Nc→` ~the ’t Hooft model!, is considered. A similar mechanism of dynamical
smearing may be relevant in four-dimensional QCD. Although particular details of our results are model
dependent, the general features of the duality implementation conjectured previously get further support.
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I. INTRODUCTION

In recent years the focus of the applications of the ope
tor product expansion~OPE! @1# has shifted towards pro
cesses with essentially Minkowskian kinematics. Perhaps
most well-known example is the theory of inclusive deca
of heavy flavors~for a review see, e.g., Ref.@2#!. This fact,
as well as the increased demand for more accurate pre
tions, puts forward the study of the quark-hadron duality
an urgent task.

A detailed definition of the procedure which goes und
the name of the quark-hadron duality~a key element of every
calculation referring to Minkowskian quantities! was given
in Refs.@2,3#. In a nutshell, atruncatedOPE is analytically
continued, term by term, from the Euclidean to t
Minkowski domain.1 A smooth quark curve obtained in th
way is supposed to coincide at high energies~energy re-
leases! with the actual hadronic cross section.

If duality is formulated in this way, it is perfectly obviou
that at finite energies deviations from duality must exist. T
difference between the measured physical cross section a
smooth OPE prediction will be referred to as an oscillatin
exponential~duality violating! component. In Ref.@2# it was
shown that if we knew the leading asymptotic behavior
the high order terms in the power series we could evalu
this component. Unfortunately, very little is known abo
this aspect of OPE, and we have to approach the prob
from the other side—either by modeling the phenomenon@3#
or by studying some general features of the appropriate s
tral densities. One can also try to approach the prob
purely phenomenologically. Recent work in this direction
reported in Refs.@5,6#.

An illustrative spectral density, quite instructive in th

1Moreover, usually one deals with the practical version@4# of
OPE, see Ref.@3# for further details.
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studies of the issue of the quark-hadron duality, was s
gested in@2#,

Im P5const
Nc

2 (
n51

`

d~E2n!, ~1!

where

E5
s

L2
,

and from now on we will drop an inessential constant
front of the sum. The color factorNc is singled out for con-
venience. The imaginary part above represents, for pos
values of s, a sum of infinitely narrow equidistant reso
nances, with equal residues. The distance between the
nances isL2. It definesP(q2) everywhere in the complex
planeq2, through the standard dispersion relation, up to
additive constant which can be adjusted arbitrarily. It is n
difficult to see that the corresponding correlation function

P~q2!52
Nc

2pFc~«!1
1

« G , ~2!

wherec is the logarithmic derivative of Euler’sG function,
and

«52
q2

L2
52E.

In the Minkowski domainE is positive, in the Euclidean
domain « is positive. Then, the asymptotic expansion
P(q2) in deep Euclidean domain is well known,

P~q2!→2
Nc

2pF ln«1
1

2«
2 (

n51
~21!n21

Bn«22n

2n G , ~3!
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whereBn are the Bernoulli numbers. At largen they grow
factorially, asBn;(2n)! ~see@7#, page 23!. We deal with
the sign alternating series.

Although the spectral density~1! is admittedly a model, it
was argued@2# that a similar factorial growth of the coeffi
cients in the power~condensate! series is a general feature
The spectral density~1! may be relevant in the limit of the
large number of colors,Nc→`, when all mesons are infi
nitely narrow. This limit is not realistic, however. Moreove
in this limit the local quark-hadron duality, as we defined
never takes place since even at high energies the hadr
spectral density never becomes smooth, even approxima
One can smear it by hand, of course, but then deviati
from the local duality will be determined not only by th
intrinsic hadronic dynamics, as is the case in the real wo
but also by particular smearing procedure – they will depe
on the weight function chosen for smearing, the interval
smearing, and so on. In the actual world the smearing oc
dynamically, since at high energies the resonance widths
come non-negligible. The limits ofE→` andNc→` are not
interchangeable.

Here we suggest and study more realistic~dynamically
smeared! spectral densities compatible with all general pro
erties of quantum chromodynamics. Starting from infinite
narrow resonances, as in Eq.~1!, we introduce finite widths,
ensuring smooth behavior. Technically, in the first part of
paper the problem of duality is analyzed in the tw
dimensional ’t Hooft model@8# ~see, also,@9–13#!. The
quark confinement in this model is built-in. We then try
abstract general features of this solution, which may per
in QCD. In the second part of the paper an attempt is m
to work out the same mechanism in four dimensions.

Dynamical ‘‘smearing’’ of the spectral densities occurrin
in QCD due to nonvanishing resonance widths, exhibits
same features of the high-energy behavior as was sugge
in Refs.@2# and@3# on the basis of rather naive models, e.
instanton models. Namely, the approach of the spectral d
sity to the smooth limit~the deviation from duality! is expo-
nential, with oscillations. This pattern seems to be gen
and may be considered now as a well-established mo
independent fact. At the same time, the exponent determ
ing the rate of the damping of the duality violations depen
on details of the large distance dynamics. We were unabl
find it from first principles, and had to settle for mode
dependent determinations.

Let us note that several useful results on the relation
tween duality violations and the divergence of the pow
expansion were presented in Ref.@14#, and we incorporate
them.2 The very idea of using the ’t Hooft model as a the
retical laboratory adequate to the problem was formula
there. Moreover, it was noted@14# that the leading asymptot
ics of the high-order coefficients does not require the kno
edge of the exact mass spectrum. Suffice it to know the le
ing term in then dependence, wheren is the radial excitation
number, which immediately translates in the leading facto
behavior of the coefficients. In particular, the position of t

2We strongly disagree, however, with some particular calculati
and expressions presented in this paper.
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low-lying states is irrelevant in the regime with the facto
ally growing coefficients. This is a specific feature of th
asymptotic series.

Thec function model was originally suggested in Ref.@2#
for the heavy-light quark systems. In Ref.@14# it was noted
that it was more appropriate for the light-light quark syste
since in the heavy-light systems the resonances are no
pected to be equidistant. Straightforward quasiclassical e
mates yield in this case that the meson energies~measured
from the heavy quark mass! asymptotically scale asAn. ~See
also Ref. @15#, where this scaling law is reproduced in
linear potential model.! In the present paper we further de
velop thec function ansatz adapting it for the light-quar
systems.

The issue of duality in the ’t Hooft model was touche
upon, in an applied aspect~weak decays of heavy quarks!, in
the recent publication@6#. We do not comment on this work
now, since a detailed analysis of this problem is under w
and will be reported elsewhere.

The paper is organized as follows. Section II briefly r
calls the basic strategy of the OPE-based calculations. H
we outline the main elements of the analysis to be prese
below. In Sect. III we first discuss the ’t Hooft model in th
leading 1/Nc approximation. Then we calculate the res
nance widths and evaluate the polarization operator of
two scalar currents in taking into account 1/Nc corrections.
In Sec. IV we present qualitative arguments why the imp
mentation of duality obtained in the ’t Hooft model must b
also relevant, at a qualitative level, in four-dimension
QCD. Section V gives conclusions and outlines possi
physical applications of our results.

II. OPE-BASED STRATEGY, SUM RULES, AND DUALITY

The issue of ‘‘deviations from duality’’ caused much co
fusion in the recent literature. Therefore, to begin with, w
remind the reader the basic strategy and explain, in c
terms, where the deviations can occur and where there ca
no deviations.

First of all, all calculations based on the operator prod
expansion are carried out in the Euclidean domain. O
away from the physical cuts this procedure is well defin
Any calculation consists of several crucial elements: ide
fication of the operators which can appear in the expans
separation of hard virtual momenta~higher than a normaliza
tion pointm) from soft virtual momenta~lower thanm) and,
finally, calculation of the expansion coefficients in front
relevant operators. The latter is carried out in terms of qua
and gluons. That is why the normalization pointm must be
chosen sufficiently high, and the calculation must be done
the Euclidean domain. Even if in some problems calculatio
are conveniently presented in such a way as if they w
done in the Minkowski domain, actually the correspondi
results must be understood as an analytic continuation.

The connection between the Euclidean predictions
measurable quantities is established via dispersion relati
In this way one can get certain sum rules. A large variety
them is offered on the market. If the Euclidean quantity
appropriately chosen, the~Euclidean! operator product ex-
pansionconverges. The best-known example of such an a
propriate choice is provided by the Shifman-Vainshta
s
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57 2693ILLUSTRATIVE EXAMPLE OF HOW QUARK- . . .
Zakharov ~SVZ! sum rules@16# obtained by virtue of the
Borel transformation of the dispersion representation. C
sider, for instance, the model of Ref.@2#, see Eq.~2!. The
1/Q2 expansion ofP(q2) in the Euclidean domain is facto
rially divergent. At the same time, the 1/M2 expansion of the
Borel-transformed quantity has a finite radius of conv
gence. Indeed, the SVZ sum rule in the case at hand ha
form

NcL
2

2p

e2L2/M2

12e2L2/M2 5
1

pE e2s/M2
Im P~s!ds, ~4!

~in the left-hand sideL2 plays the role of the inverse slope
of the Regge trajectory!. Assume that the left-hand side wa
calculated theoretically, using OPE, as an expansion
1/M2. The domain of convergence of the power expansio
determined by the position of the nearest singularity in
complex M2 plane. It is quite obvious that the expansio
converges at

uM2u.
L2

2p
. ~5!

Not only the radius of convergence is finite, due to the fac
2p in the denominator the domain of convergence extend
quite low values ofM2. If L2;2 GeV2, the power
series is convergent at as low values ofM2 as 0.4 GeV2.
This fact was empirically observed long ago@16#.

If we consider the SVZ sum rule inside the convergen
domain of OPE@see Eq.~5!#, and aim at predicting the ex
ponential integral on the right-hand side of Eq.~4! per se, it
is meaningless to speak about deviations from OPE. In
formulation of the problemthere are no deviations.

The problem of deviations arises when we try to pred
the spectral density ImP point-by point, at larges, or cer-
tain integrals of ImP, not directly reducible to ‘‘good’’ sum
rules of the type~4!. Certainly, if we assume that ImP is
smooth starting from some boundary values0, Eq.~4! allows
us to predict ImP(s) at s.s0 unambiguously. If an oscil-
lating component is allowed, however, one can always
vent such a wild oscillating function, which, being integrat
with the exponential weight, gives a contribution on the le
hand side of the sum rule~4! less than the last term of th
power expansion retained, no matter how small this last t
is. This component is referred to as duality violatin
Clearly, quantum chromodynamics admits only very spec
oscillating-exponential components in the spectral densit
if at all. The question is what particular oscillating
exponential functions are allowed by QCD dynamics. W
first try to answer this question in the simpler context of t
’t Hooft model, and then pass to discussion of QCD.

III. THE ’t HOOFT MODEL

The aim of this section is to study the quark-hadron d
ality in the ’t Hooft model. We shall first briefly review th
’t Hooft model in theNc→` limit and discuss 1/Nc correc-
tions in this model. Our original contribution is calculatin
the resonance widths for high excitations. Then, using th
widths, we suggest an ansatz for the asymptotic behavio
the polarization operator of two scalar currents, based on
-
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Breit-Wigner approximation. This resonance-saturated po
ization operator will be referred to as phenomenological. W
will confront it with the truncated power expansion. The d
ference between these two expressions gives an idea o
duality violation.

A. The ’t Hooft model: Generalities

Two-dimensional QCD is described by the Lagrangian

L52
1

4
Gmn

a Gmn
a 1 q̄ f~ iD” 2mf !q

f , ~6!

where f is the flavor index. Since the multiflavor aspect
irrelevant for our problem, we shall consider, for simplicit
one flavor; correspondingly, the indexf will be omitted here-
after. If the gauge coupling of the theory isg, it is convenient
to introduce an effective coupling

ḡ25g2Nc , ~7!

which stays constant in the limitNc→`. The coupling con-
stantg has dimension of mass; it sets the scale for all dim
sional quantities in the chiral limit, i.e.,m→0. We introduce
the scale

m25
ḡ2

p
5

g2Nc

p
, ~8!

and measure all quantities in these units, e.g., the quark m

g25m2/m2,

while the mass of thenth meson

mn
25mn

2/m2,

and so on.3

As was shown by ’t Hooft, the model with the Lagrangia
~6! is exactly solvable in the limitNc→`. The bound state
spectrum includes an infinite number of bound states wh
masses lie on an almost linear trajectory. The properties
these bound states are described by the ’t Hooft equatio

mn
2fn~x!5

~g221!fn~x!

x~12x!
2
«

0

1fn~y!dy

~x2y!2
. ~9!

Here the integral is understood as a ‘‘principal value,’’

1

p2
5 lim

e→0

1

2F 1

~p1 i e!2
1

1

~p2 i e!2G .

Moreover,x is the momentum fraction of the meson carri
by the antiquark~in the infinite momentum frame!, while 1
2x is that of the quark;fn(x) is the wave function of the
nth bound state.

The integral equation~9! must be solved with the bound
ary conditions

3Normalization of the coupling constantg coincides with that
adopted in Refs.@8# and @10#, but differs from that in Ref.@13#.
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fn~x!→H xb, x→0,

~12x!b, x→1.
~10!

Here b is the smallest~in the absolute value! root of the
equation:

pbcot~pb!512g2. ~11!

Below we shall be interested in the massless case,g50. In
the massless limit, the lowest-lying state~the ‘‘pion’’ ! can be
found from Eq. ~9! analytically. Indeed, the solution
f05const, corresponding tom050, obviously goes through
We are interested, however, in highly excited states,n@1.

In the original paper@8# ’t Hooft suggested the following
approximation forfn(x) at largen, x not too close to 0 and
1:

fn~x!5A2sin~npx!. ~12!

Recent calculations@17#, exploiting a new and improved nu
merical procedure~the so-called spline method!, show that
for the massless case a better approximation for largen is

fn~x!5A2cos~pnx!. ~13!

This formula works very well numerically everywhere e
cept the very end pointsx50,1, and a slightx-dependent
shift whenx;0.5.

Note that the wave functions~13! satisfy the proper
boundary conditions for the massless case, which co
sponds tob equal to zero and, hence,

fn~0!5C,fn~1!5PC. ~14!

HereP51 for the states with the even parity andP521 for
the states with the odd parity, and the constantCÞ0.

The mass spectrum in the massless case was foun
’t Hooft. The asymptotic behavior ofmn

2 is

mn
25p2n$11O@ ln~n!/n#1•••%. ~15!

Note that the mass formula~15! does not depend on th
choice of the wave function, Eq.~13! or the ’t Hooft choice,
at least in the leading inn approximation@17#.

B. The meson widths

As was already mentioned, in the limitNc→` the bound
states in the ’t Hooft model are stable, their widths vani
However, once one takes into account the leading 1/Nc cor-
rection, the resonances begin to decay. In the first orde
1/Nc expansion there are only two-particle decaysa→b1c.
The relevant coupling constantsgabc are given by the fol-
lowing formula @10–12,17,18#:

gabc5m2Ap

Nc
@12~21!~sa1sb1sc!#~ f abc

1 1 f abc
2 !.

~16!

Here sa is the parity of theath resonance. The constan
f abc

6 are determined from the following expressions:
e-

by

.

in

f abc
6 5

1

12v6
E

0

v6

fa~x!fb~x/v6!FcS x2v6

12v6
D

2
1

v6
E

v6

1

fa~x!Fb~x/v6!fcS x2v6

12v6
D , ~17!

where v6 are two roots of the algebraic equation corr
sponding to the mass-shell condition

ma
25

mb
2

v
1

mc
2

~12v!
. ~18!

The functionFa(x) is defined as

Fa~x!5
«

0

1

dy
fa~y!

~x2y!2
.

Using the above expressions for the decay couplings
can readily calculate the resonance widths in the lead
1/Nc approximation. They are given by

Ga5
1

8ma
(

b
(

c

gabc
2

AI ~ma ,mb ,mc!
, ~19!

whereI is the standard ‘‘triangular’’ function

I ~ma ,mb ,mc!5
1

4
@ma

22~mb1mc!
2#@ma

22~mb2mc!
2#.

~20!

The sum in Eq.~19! runs over all mesonsb andc with the
constraintmb1mc,ma .

Our task was to establish the asymptotic behavior of
widths, as a function of the excitation number, at large v
ues ofn, in the leading 1/Nc approximation~all widths are
proportional to 1/Nc ; the excitation numbern will be tem-
porarily calleda in this section!. In order to find the widths
we first computed analytically, using the wave functio
~13!, the overlap integrals~17!. The answer can be expresse
via the integral sine and cosine functions and was obtai
using theREDUCE program. Since it is very bulky it seem
unreasonable to present here the final expression@19#. After
computing the overlap integral we performed numerica
summation over all possibleb andc in Eq. ~19! for a up to
500. The result for the widths exhibits a remarkable patte
The widths of the individual levels oscillate near a smoo
square-root curve, see Fig. 1. This figure shows the width
theath state vsa, up toa5500. The result of averaging ove
the interval of 20 resonances is depicted in Fig. 2. We
that the curve of the averaged resonance widthsG(a)[Ga is
very well approximated by the function

G~a!5
Am

p2Nc

Aa@11O~1/a!#, ~21!

where the parameterm is introduced in Eq.~8!, andA is a
constant which will be given below.

Since the square-root law~21! for the~averaged! widths is
valid in such a large interval of the excitation numbers a
turns out to be so accurate, it seems plausible that this
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mula could be obtained analytically. This is an interest
question by itself, especially in four-dimensional QCD. U
fortunately, we were unable to find exact analytic solution
far. Some qualitative arguments in favor of the exact squ
root dependence are discussed in Sec. IV. The nume
value of the constantA is

A50.4460.05. ~22!

Below this result for the~averaged! widths will be used for
determining the asymptotic behavior of the polarizati
operator.4

Since the 1/Nc result for the decay width grows witha,
one may worry about the 1/Nc

2 corrections. If they grew with
a sufficiently fast this could invalidate Eq.~21! in the inter-
val of the excitation numbers we are interested in, nam
a5constNc , where the constant above can be numerica
large, but it does not scale withNc . Using quasiclassica
arguments~see Sec. IV! one can show that the actual 1/Nc

expansion parameter in Eq.~21! is Aa/Nc . This means that
at a5const Nc correctionsO(1/Nc

2) and higher are negli-
gible.

Concluding this section let us note that the same squ
root was reported previously in Ref.@18#. We failed to re-
produce the arguments of this work leading to the squa
root law, however. What is important is that the const
analogous toA in Ref. @18# is claimed to be proportional to
1/Am, and, thus, blows up for massless quarks. This po
perplexing questions. The coincidence looks completely
cidental.

C. The Breit-Wigner approximation: An ansatz
for the polarization operator

Once we had found the resonance widths, we can ca
late the polarization operator in the Breit-Wigner approxim

4Let us note that if one calculates the widths with the wave fu
tions ~12!, the square-root behavior of Eq.~21! is intact, but the
value of the constantA is different, A8;0.007, i.e.;50 times
smaller. This fact indicates that the square-root law is not sens
to the precise form of the wave functions, while the value of
coefficientA is.

FIG. 1. The width of theath state~in units of mp22Nc
21) as a

function of a up to a5500.
g
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y,
y
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tion. Here we shall consider the most interesting case of
polarization operator of the two scalar currents. Let us s
from this polarization operator in theNc→` limit @10,20#.

Define the two-point function of the scalar currentsj

5 q̄q:

P~q2!5 i E d2xeiqx^0uT$ j ~x!, j ~0!%u0&. ~23!

In the Nc→` limit P is given by@10#

P~q2!52 (
n50

n5` gn
2

q22mn
21 i e

. ~24!

Here the constantsgn are the current residues

^0u j ~x!un&5gn . ~25!

Note that the residues vanish for evenn @10#, so that the sum
in Eq. ~24! runs over oddn only. Below we shall be inter-
ested in the behavior ofP(q2) for large uq2u@m2. This be-
havior is dominated by the terms in the sum~24! with large
n@1 @10,14,20#. In order to calculate this sum explicitly w
then need the largen behavior ofgn . It was determined in
the same classical paper@10# from the requirement of the
compatibility of the expansion~24! and the perturbation
theory asymptotics in theQ2→` limit,

P~q2!→2
Nc

2p
ln

Q2

m2
, Q2[2q2. ~26!

The coefficientsgn for sufficiently large oddn must be in-
dependent ofn and are equal to

gn
25Ncpm2. ~27!

Then, taking into account the linearn dependence of mas
squared one can approximate the polarization operator~23!
for sufficiently largeuq2u by thec function,

P~q2!2P~0!52
Nc

2p
c~s!, s5

Q2

2p2m2
1

1

2
. ~28!

-

e

FIG. 2. Smeared widths in the same interval ofa and the
square-root fit, Eq.~21!.
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We hasten to emphasize again that this formula is not s
posed to work at nonasymptotic values ofQ2. For instance, it
does not contain the massless ‘‘pion.’’ Moreover, by shifti
a little bit the masses and residues of the low-lying re
nances we letP(q2) ‘‘breathe’’ at smallQ2 without chang-
ing the asymptotic behavior.

What will happen if we take into account finite widths
the resonances? To answer this question we calculateP(Q2)
in the Breit-Wigner approximation.~The continuation of the
Breit-Wigner formula in the complex plane, away from th
resonance position, is not unambiguous. We choose a
cific continuation leading to proper analytic properties of t
polarization operator, see below.! The inverse propagator o
the nth bound state can be written as

Dn
21~q2!52@q22mn

21S~q2!#, ~29!

whereS(q2) a function of order 1/Nc reflecting the possibil-
ity of the transitionsa→bc→a. This function is known at
q25mn

2 :

Im S~q25mn
2!5mnGn5

Amn
2

p3Nc

. ~30!

Here we used Eqs.~13! and ~19!. Now we can write

Dn
215Q2S 12

A

p4Nc

ln
Q2

L2D 1mn
2 . ~31!

It is easy to see that~i! at q25mn
2 Eq. ~30! is satisfied;~ii ! the

pole is shifted to an unphysical sheet, so that on the phys
sheet there are no singularities except the cut at positive
q2. The property~i! is quite obvious. Let us comment on th
property~ii !.

The easiest way to demonstrate that there are no si
larities on the physical sheet is as follows. Observe, tha
our level of accuracy one can write, instead of Eq.~31!,

Dn
215~z1mn

2!, ~32!

where

z5Q2~Q2/2p2m2!2A/p4Nc. ~33!

Here the constantL2 in Eq. ~31! is adjusted in accordanc
with Eq. ~35! below.

The physical sheet on the complexQ2 plane@Fig. 3~a!# is
mapped onto a sheet with a ‘‘defect angle’’ on the complez
plane@Fig. 3~b!#. Going into the shaded area we pass to
unphysical sheets. Note that the pole ofDn lies in the shaded
area.

Assembling all pieces together we conclude that, with
resonance widths switched on, Eqs.~24! and~28! are substi-
tuted by

P~Q2!2P~0!5const3( Dn
21~Q2!

52
1

12A/~p4Nc!

Nc

2p
c~s̃ !, ~34!
p-

-

e-

al
al

u-
at

e

e

where

s̃5
z

2p2m2
1

1

2
. ~35!

The constant in front ofc(s̃) is adjusted in such a way as t
leave intact the highQ2 asymptotics, see Eq.~26!. The term
proportional to A is clearly subleading in 1/Nc . Strictly
speaking, we should have omitted it at the level of accur
accepted here.

By construction, all singularities of the polarization oper
tor ~34! are on the unphysical sheet. The discontinuity at
cut q2>0 will be calculated below.

D. OPE and the asymptotics of the polarization operator

The expression~34! for the polarization operator is clearl
not exact, since we have made a number of approximati
They do not affect, however, the largeQ2 asymptotics of
P(Q2). Neither the leading asymptotics of high orders in t
1/Q2 expansion depends on these approximations. Since
are interested in the high energy behavior, distortions in
duced inP(Q2) at finiteQ2 by the approximations made ar
not important. In particular, we will disregard the fact th
low-order terms in the 1/Q2 expansion ofP(Q2) ~‘‘conden-
sates’’! may come out with ‘‘wrong’’ coefficients. By adjust
ing the positions and residues of a few lowest resonances
can always get any desirable coefficients for any givenfinite
number of terms in the 1/Q2 expansion.

Let us first study the impact of the resonance widths
P(Q2) in the Euclidean domain. As we saw, the effect d
to the nonvanishing widths essentially reduces to the sub
tution of the variables defined in Eq.~26! by s̃ , see Eq.
~33!. Therefore, the change in the asymptotic 1/Q2 expansion
at large~Euclidean! values ofQ2 is rather insignificant. If at
Nc5` thenth term of the power expansion isCn(Q2)2kn, at
the 1/Nc level it becomes

Cn

1

~Q2!kn~12a!
→Cn

1

~Q2!kn
~11aknlnQ2!, ~36!

FIG. 3. Analytical structure of the polarization operator.~a! The
polarization operator must be analytic everywhere in the comp
Q2 plane, except the cut running on the negative real semiaxi
Q2 ~positive real semiaxis ofq2). The imaginary part of the polar
ization operator must be positive at the upper side of theq2 cut; ~b!
The mapping of theQ2 plane onto thez plane, Eq.~33!. The physi-
cal sheet on theQ2 plane corresponds to thez plane with the shaded
sector removed. The boundaries of the sector correspond to
lower and upper sides of theq2 cut.
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a5
A

p4Nc

. ~37!

The second term on the right-hand side in Eq.~36! is a small
1/Nc correction which reminds us of a logarithmic anom
lous dimension in QCD. Unlike the first term in Eq.~36!, the
logarithmic term develops an imaginary part at large posit
real values ofq2. If we treated Eq.~36! in the framework of
OPE~more exactly, in practical version@4#!, then we would
predict that the spectral density

ImP~s!us@m25
Nc

2 F12 (
n51

n5n0

Cn

apkn

~2s!kn
G , ~38!

wheres5q2 andn0 is the highest term retained in practic
OPE. By construction, the prediction for the spectral den
obtained from practical OPE is smooth. As a matter of fa
all correction terms in Eq.~38! are suppressed by 1/Nc ,
since a;1/Nc , and are numerically insignificant at larg
Nc .

Let us examine now the ‘‘physical spectral density,’’ i.e
the imaginary part at positiveq2 following directly from Eq.
~34!. Our task is to reveal an oscillating component, not s
pressed by 1/Nc .

In order to find the imaginary part analytically, it is con
venient to use the reflection property of thec function:

c~s̃ !5c~2s̃ !2pcot~ps̃ !21/s̃ . ~39!

It is obvious that the polarization operator~34! is a sum of
three terms, corresponding to three different terms on
right-hand side of Eq.~39!. Moreover, it is evident that the
first and the third terms are smooth functions ofq2. Their
contribution to the imaginary part of the polarization ope
tor for large s corresponds to the smooth component o
tained from OPE, see the correction terms in Eq.~38!.

In order to study the oscillating-exponential compone
one must consider the second term

Im P~s!5
Nc

2
Im cot~ps̃ !52

Nc

2

sinh~2y!

cosh~2y!2cos~2x!
,

~40!

where

x5p Re s̃'2
s

2pm2
@12a ln~s!#,

y5p Im s̃'2
as

2m2
. ~41!

Taking into account only the leading inNc terms it is easy to
rewrite the spectral density~40! as follows:

Im P~s!5
Nc

2

sinh~as/m2!

cosh~as/m2!2cos~s/pm2!
. ~42!

At as!m2 we are in the resonance zone~here and below we
use the nomenclature of Ref.@3#, see Sec. 5.2!. In order to
-

e

y
t,

-

e

-
-

t

find the high energy behavior of the imaginary part of t
polarization operator, we must go to the oscillation zone
energiesas@m2. Then

Im P~q2!→
Nc

2 F112expS 2
as

m2D cosS s

pm2D G . ~43!

The unit term corresponds to the leading asymptotics~it re-
produces the OPE prediction!, while the second term is an
oscillating-exponential component, missing in practic
OPE.5 It presents a deviation from duality we are hunting f
~remember, by duality we understand a specific proced
formulated in Refs.@2,3#!.

The oscillating component is suppressed by the damp
exponential, exp (2as/m2). A comment is in order regard
ing the exponent,

as

m2
[

A

p4Nc

s

m2
. ~44!

This exponent determines the boundary between the osc
tion and the resonance zones,s0;p4Ncm

2. This estimate is
in accord with intuition. Indeed, the exponential suppress
of the oscillations should start when the resonance wi
becomes larger than the distance between the neighbo
resonances. SinceGn;mAn/Ncp

3 and the distance betwee
the neighboring resonancesDmn;pm/An, this occurs at the
excitations numbern;p4Nc . Thus, the factor 1/Nc in Eq.
~44! is obvious. What is more remarkable, is a large ad
tional numerical suppressionp4 pushing the boundary to
higher energies and making the exponential suppres
weaker. It can be traced back to the numerical suppressio
the width in Eq.~21! which, in turn, is due to a strong nu
merical suppression of the phase space. Because of this
the damping of the oscillations occurs very slowly in t
’t Hooft model. Figure 4 shows ImP in the window from
the 35th to 65th oscillation. We see that even here the os

5In terms of an indexs introduced in Sec. V B of Ref.@3#, Eq.
~43! implies thats52.

FIG. 4. The spectral density corresponding to Eq.~34! in the
’t Hooft model, versuss ~in the units 2p2m2). Nc is put equal to 3,
and the normalization factor is chosen in such a way that asy
totically the spectral density displayed must approach unity.
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2698 57B. BLOK, M. SHIFMAN, AND DA-XIN ZHANG
lation amplitude is quite sizable. Unlike other features,
pected to be generic, this numerical aspect—a very slow
of the oscillation damping—is specific to the ’t Hooft mod
and is not expected to survive in four-dimensional QC
since it is entirely due to ‘‘abnormally’’ narrow widths of th
resonances in two-dimensional QCD. Semiquantitative e
mates of the damping exponent in four-dimensional Q
will be given in Sec. IV.

In summary, forq2<0 the polarization operator is give
by the c function of the positive real argument and is
smooth function with no singularities. It is well approx
mated by its asymptotic expansion. The latter is most con
niently written in terms of the variables̃ defined above@see
Eq. ~35!#, for which it becomes the standard asymptotic e
pansion of thec function. In the Minkowskian domain, star
ing from the scales0;p4m2Nc , one can approximate th
polarization operator by its smooth asymptotics~analytically
continued from the expansion in the Euclidean domain! plus
an exponentially decreasing and oscillating term~43!.

IV. FOUR-DIMENSIONAL QCD

Unlike in the ‘t Hooft model, we cannot solve four
dimensional QCD. At the qualitative level, however, we c
apply the same ideas. The general pattern of the asymp
behavior will be the same, but the numerical aspects l
different.

Our goal in this section is to discuss the polarization o
erator of two vector currents:

Pmn~q2!5 i E exp~ iqx!^0uT$ j m~x! j n~0!%u0&d4x. ~45!

Here j m(x) is the vector current:

j m~x!5 ūgmd~x!. ~46!

Because of the conservation of the vector current the po
ization operator can be represented as

Pmn~q2!5~qmqn2q2gmn!P~q2!. ~47!

Furthermore,P(q2) is dimensionless, and is perfectly anal
gous to the polarization operator~21! we dealt with in the
’t Hooft model. According to the standard wisdom of mul
color QCD, we expect that atNc5` and high energies
P(q2) is representable as a sum of equidistant infinitely n
row resonances, with a constant residue, i.e., we arrive a
samec function. The dynamical smearing is again provid
by the resonance widths~a 1/Nc effect!. What is known
about the widths of the highly excited states in fou
dimensional QCD?

In the case at hand we do not have in our disposal qu
titative tools which would allow us to calculate the width
Such a calculation could have been performed in a nonc
cal string theory, were this theory available. Unfortunate
the issue is not worked out,6 and we have to resort to qual
tative arguments. If the string-based picture of color confi
ment is indeed valid, one can hardly avoid the conclus

6Some attempts in this direction were reported in Ref.@21#.
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that the resonance widths must grow linearly withmn @22#,
much in the same way as in the ’t Hooft model.

Let us remind the reader of the quasiclassical argume
of Ref. @22#, showing thatGn;mn /Nc in four-dimensional
QCD. When a highly excited meson state is created b
local source, it can be considered, quasiclassically, as a
of ~almost free! ultrarelativistic quarks; each of them wit
energymn/2. These quarks are created at the origin, and t
fly back-to-back, creating behind them a flux tube of t
chromoelectric field. The length of the tubeL;mn /L2

whereL2 is the string tension. The decay probability is d
termined, to order 1/Nc , by the probability of creating an
extra quark-antiquark pair. Since the pair creation can h
pen anywhere inside the flux tube, it is natural to expect t

Gn;
1

Nc
LL25

B

Nc
mn , ~48!

whereB is a dimensionless coefficient of order 1.
Let us note in passing that the 1/Nc

2 corrections due to
creation of two quark pairs are of orderL2/Nc

2 within this
picture. Since L;mn;An, the expansion parameter
An/Nc .

Strictly speaking, the estimate~48! must be, rather,
viewed as a lower bound, since the transverse fluctuation
the flux tube can increase the decay probability. Howev
most likely, these transverse fluctuations will materialize
the form of emission of glueballs, a subleading 1/Nc

2 effect,
which is not considered here. It is not fully clear what impa
these fluctuations may have on the quark-antiquark pair p
duction. It seems plausible that they only affect the nume
cal coefficient in Eq.~48!, which is not calculated anyway
Given all naivete of the arguments and the estimate~48!, at
the present stage it is reasonable to accept it as a wor
hypothesis.

As was mentioned, in real QCD we expectB;1, see
estimates in Ref.@22# and below. Apart from this numerica
difference, everything else is perfectly analogous to the c
sideration we have carried out in the ’t Hooft model. Hen
we conclude that in four-dimensional QCD a viable model
the approach to asymptotics is provided by the samec func-
tion:

P~Q2!2P~0!5constc~s̃ !, ~49!

where, in the case at hand,

s̃5S Q2

Dm2D 12B/Ncp

1C. ~50!

HereC is a numerical constant correlated with the positi
of the lowest resonance,

m0
25CDm2@11O~1/Nc!#,

G0

m0
5

B

Nc
@11O~1/Nc!#.

The normalization constant in front of thec function in Eq.
~49! will be chosen in the form

2S 12
B

Ncp
D 21

,
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so that the imaginary part at asymptotically highs is auto-
matically normalized to unity. The plot of ImP is shown on
Fig. 5. Although fine details of this spectral density a
somewhat distorted compared to the actual experimen
measured spectral densities in thee1e2 annihilation ort
decays~e.g., ther meson width comes out;1.5 larger than
the experimental one! the qualitative similarity of our mode
with experiment is remarkable. To substantiate the point
display a plot of the spectral density in the vector isosca
channel borrowed from Ref.@23# ~Fig. 6!.

The oscillation zone starts ats0;Dm2Nc(2pB)21.
Above this boundary the asymptotic form of the oscillati
exponential terms, analogous to Eq.~43!, is given by

ImP~Q2!5constF112expS 2
2pBs

NcDm2D cosS 2ps

Dm2D G .

~51!

Both, the onset of the oscillation zone and the oscillat
structure are in nice qualitative agreement with what we
on Fig. 6 presenting experimental data one1e2 annihilation
andt decays.

In summary, our model spectral density~50!, with the
appropriate values of parameters, properly captures all
portant features which must be inherent to spectral dens
in real QCD. First, the corresponding polarization operato
a sum of an infinite number of simple poles on the unphy
cal sheet, so that the correct analytical properties ensue
tomatically. The 1/Q2 expansion has the right structure. Th
spectral density following from Eqs.~49! and ~50! is dy-
namically smeared by the resonance widths. Purely pict
ally it closely resembles what is measured experimentall

V. CONCLUSIONS

In this paper we address the issue of the preasymp
component of the spectral density not seen in practical O
This component oscillates, with the amplitude being ex
nentially damped. The approach to the problem is comp
mentary to that of Refs.@2,3#. It is gratifying to observe tha
the general features of the overall picture come out the s

FIG. 5. The imaginary part of the polarization operator cor
sponding to Eq.~50! with Dm251 GeV2, C50.6 andB50.78.
The number of colors is set equal to three. The horizontal a
presentss, in GeV2.
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as in the previous analyses. The details are different.
instance, the instanton-based model discussed in Refs.@2,3#
yields the interval between the successive oscillations gr
ing with s, while our present result implies equidistant osc
lations in the s scale. In this aspect the instanton-bas
model is seemingly less realistic. Moreover, for obvious r
sons it does not allow one to trace the properNc dependence,
while our present analysis does. Needless to say, it re
duces the desired regularity—the fact that the exponent g
erning the exponential damping of the oscillations is prop
tional to 1/Nc .

The important lesson we draw is confirmation of a gene
pattern of the duality-violating component in the spect
densities at high energies inferred previously: exponen
character, modulated by oscillations. Particular details
model dependent. The ’t Hooft model is solvable, and
questions can be explicitly answered. In four-dimensio
QCD it is possible to provide only educated guesses. Fur
efforts are needed to back them up by more solid calcu
tions.

We believe that the suggested ansatz for the spectral
sity, Eqs. ~49! and ~50!, gives a very good idea of the
duality-violating contributions. It is compatible with all gen
eral principles of field theory, 1/Nc expansion of QCD, and
folklore knowledge which is universally believed to be tru

Although our discussion was phrased in terms of the sp
tral densities, its implications are wider. In particular, it
quite probable that a component of the very same structu
present in the so-called hard quantities without OPE, e
thrust. Recently it was realized that the perturbative pred
tions for such quantities must be supplemented by 1/Q cor-
rections~for a review see, e.g.,@24#!. If we are right, in the
intermediate domain of moderate momentum transfers
oscillating component might be noticeable too.

An interesting question which deserves a new dedica
analysis ~independently of our model of duality-violatin

-

is

FIG. 6. The spectral density in the vector isoscalar channel m
sured ine1e2 annihilation andt hadronic decays.
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contributions! is the behavior of the resonance widths as
function of the excitation number at highn in multicolor
four-dimensional QCD. Another obvious direction of expa
sion is combining thec function ansatz~49! with informa-
tion on specific low-dimension condensates which might
low one to obtain a fully realistic description of th
polarization operator in the entire complex plane.
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