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Parton-hadron duality in QCD sum rules: Quantum-mechanical examples

B. Blok* and M. Lublinsky†

Department of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel
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Motivated by recent work on three-point QCD sum rules in heavy quark physics, we use simple quantum
mechanical models to study the basic issue of duality in three-point sum rules. We show that while in all of
these models the duality in two-point sum rules works fine, the duality in three-point sum rules may be 100%
violated, leading to completely unreliable predictions for the matrix elements in question. The implications for
three-point QCD sum rules are discussed. A new estimate for the parameterl1 of HQET is given.
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I. INTRODUCTION

Recently there has been growing interest in the issue
parton-hadron duality in QCD@1–4#. This is due to both
theoretical and experimental progress. On the one hand
witness further improvements in theoretical methods of
vestigation of low energy properties of hadrons, such as
QCD sum rules and heavy quark effective theory. Th
methods enable one to calculate the hadronic properties
rectly from QCD, in a model independent way. These me
ods heavily rely on the validity of the parton hadron duali

In addition to theoretical advances, one can now comp
the predictions of these methods with the growing amoun
the new experimental data. This leads naturally to renew
interest in the fundamentals of these methods, i.e., in
issue of how reliable they are.

One especially important application of the idea of t
parton-hadron duality is the QCD sum rules@5# ~see also
Ref. @6# for review!. For the past 20 years QCD sum rul
have been widely and successfully used to predict ma
~the so called two-point QCD sum rules! and the coupling
constants~three-point QCD sum rules! of different hadrons
and their decays.

The basic procedure in QCD sum rules is the followi
one: one calculates the physical quantity—the polariza
operator of a certain number of currents in two ways. Fi
we calculate the polarization operator in terms of quarks
gluons, using asymptotic freedom. Then, we calculate
same polarization operator in terms of hadrons, using dis
sion relations. One then equates the results from the pa
model ~the so called theoretical part of the QCD sum ru!
with the sum over the hadron states~the so called phenom
enological part of the sum rule!. Usually, we are intereste
only in the properties of the lowest lying resonance. T
contribution of the higher resonances created by the gi
currents is taken into account using the so called continu
model@7#. In other words, we approximate the hadron sp
tral density~i.e., the imaginary part of the polarization op
erator! by some smeared function. The standard approac
to assume that the corresponding smeared function is
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approximated by the spectral density of the theoretical p
of the sum rule. The assumed validity of this approach
derlies all practical QCD sum rule calculations. It is exac
the issue of whether the parton hadron duality holds.

The issue of the parton hadron duality and the clos
related issue of the right model for the continuum are
new. The subject was discussed in detail in the early pa
by Shifman, Vainshtein and Zakharov@5#, following the
classical discussion by Poggio, Quinn and Weinberg@8# of
the parton hadron duality in the case of thee12e2 annihi-
lation.

Unfortunately, one cannot rigorously check the part
hadron duality directly in QCD. Although many argumen
support duality, one cannot tackle the issue without the
plicit theory of confinement. Consequently, one has to ch
the hadron parton duality~or, rather, its analogues! in sim-
pler models. The existence~nonexistence! of duality in these
models is a strong argument for~against! the parton hadron
duality in real QCD.

While we are still unable to study the issue of dual
directly in QCD, one can learn a lot by studying vario
exactly solvable models, the simplest of which are the qu
tum mechanical potential models. These models have b
used to gain insight into the issue of the parton hadron d
ity in the case of two-point QCD sum rules@9,15,16#.

The goal of the present paper is to study the analogu
the parton-hadron duality for three-point sum rules in t
quantum-mechanical potential models. The issue has bec
epecially relevant recently, due to the extensive use of th
point QCD sum rules for the determination of different p
rameters of heavy quark physics~see e.g. the review@10#!. In
particular, it was found that different QCD sum rules lead
contradictory values of several fundamental parameters
heavy quark effective theory~HQET!, like ^BuDW 2/(2mB)uB&
@11,12#; these values, in turn, differ from the ones predict
on the basis of the analysis of the experimental data@13,14#.
This requires us to go back and check once again the b
assumptions behind the QCD sum rule method.

Our present study confirms the old results@9,15,16# that
state that the duality works excellently for the two-point su
rules. However, for the same models where the two-po
duality works excellently, we shall see that we may enco
ter serious problems in the study of the three-point sum ru
Namely, we shall see that not only local duality, but al
generalized duality~in the sense defined in Ref.@17#! are
2676 © 1998 The American Physical Society
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57 2677PARTON-HADRON DUALITY IN QCD SUM RULES: . . .
violated in the situation when the two-point sum rules wo
excellently.
We shall consider in this note three basic models:

~A! The harmonic oscillator. This is the potential mod
described by the potential

V~r !5vr 2/2. ~1.1!

~B! The linear oscillator. This model is the basis of t
realistic potential models;

V~r !5ar . ~1.2!

~C! The last model to consider is the linear potential p
turbed by the Coulombic interaction that imitates the effe
of the as corrections in the potential models:

V~r !5ar 2b/r . ~1.3!

The three-point sum rules for the harmonic oscillator w
already studied in Refs.@17, 18#. ~The numerical mistake
made in Ref.@17# in the three-point sum rule for oscillato
~but not, of course, for the QCD sum rules for the slope
Isgur-Wise function! was improved in Ref.@18#!. In Ref.
@17#, it was shown that the duality may hold for the harmon
oscillator in generalized sense only: a one-dimensional i
gral of the phenomenological spectral density is dual to
corresponding integral of the theoretical part of the sum ru
However, later investigation@18# showed that even this du
ality does not take place, and the three-point sum rules
harmonic oscillator do not reproduce the true values. H
we shall see that the harmonic oscillator case is not an
ception but the general situation. The duality in three-po
sum rules breaks down because the coupling signs bec
alternating. In all three models in question, the duality bre
for the sum rules determining ground state matrix eleme
of the following operators:

O1;r 2, O3;r . ~1.4!

~Note the close analogy between the operatorO1 and the
operator that determines the fundamental parameter of
HQET—the slope of the Isgur-Wise function.!

As a result of the duality breaking, the standard co
tinuum model@7# does not describe the true spectral dens
for the first several resonances. So, the sum rules give
swers that differ from the right ones~here, in quantum me
chanics, we know, of course, the exact values! by 30–50 %.
On the other hand, in the case of the kinetic energy oper
O2;2]2, all nondiagonal transitions give positive contrib
tions. The sum rules do work and the duality is not brok
Nevertheless, there is a big continuum contribution lead
to large uncertainties in the predictions.

This paper is organized as follows. In Sec. II, we revie
the notion of duality and discuss the duality in the two-po
sum rules for the potential models mentioned in the Int
duction. In Sec. III, we study the duality in the three-po
quantum mechanical sum rules. The duality fails for the
eratorsÔ1 ,Ô3 , and we trace the origin of its failure. On th
other hand, for the operatorÔ2 the duality holds, and we
investigate the corresponding sum rules. In Sec. IV, we g
our conclusions and discuss possible implications of our
l
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sults for QCD. The details of the exact solution of the qua
tum mechanical models at hand are given in Appendix
while the details of the calculations of the theoretical part
the sum rules are given in Appendix B.

II. DUALITY AND TWO-POINT SUM RULES

Let us recall now in more detail what do we mean
quark hadron duality in the case of the QCD sum rules. C
sider the functionf (q2) at some tensor structure in the p
larization operator of two currents in the sum rule. One c
culatesf by means of the operator product expansion~OPE!
in the Euclidean domain of momentaq2<0:

f ~q2!;a01a1 /q41••• . ~2.1!

Here the coefficienta0 corresponds to the perturbatio
theory and the coefficientsai , i>1 correspond to the matrix
elements of the relevant operators over the QCD vacu
~Possibly, the coefficientsa0 ,ai depend logarithmically on
q2!. The functionf is a smooth function of its argumentq2.
Its imaginary part, denotedsp(s), is a smooth function as
well. Another way to calculatef is to express it in terms o
hadron properties by means of the dispersion relation:

f ~q2!5E Im f ~s!

~s2q2!
ds. ~2.2!

The imaginary partsh(s)[Im f(s) involved equals the sum
of the delta functions over hadronic resonances contribu
into the tensor structure in question:

sh~s!5(
n

bn
2d~s2mn

2!. ~2.3!

Now, the parton-hadron duality assumes that, starting
some thresholds1 , the integrals of the hadronic spectral de
sity sh(s) and the partonic one,sp(s), with exponential
weights coincide:

E
s1

`

sp~s!e2s/M2
ds;E

s1

`

sh~s!e2s/M2
ds. ~2.4!

The minimals1 satisfying this equation is called the du
ality threshold. For QCD sum rules to work,s1 must lie
between the masses of the ground state and the first ex
state contributing tof . In other words, the hadron spectr
density, averaged over some interval ofs, must be approxi-
mately equal to the spectral density calculated in the pa
model. Of course, this is true for the exact spectral densit
However, oursp(s) is only a part of the exact spectral de
sity, namely the part corresponding to the first several te
in the OPE, analytically continued to Minkowsky space.

Once we know what the duality means in QCD, let
consider its quantum mechanical analogue. The quan
mechanical analogue of the polarization operator of two c
rents in QCD is the time dependent Green function:

S0~0,T!5(
n

ucn~0!u2e2EnT. ~2.5!
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2678 57B. BLOK AND M. LUBLINSKY
Here n runs over the S-states only. This function describ
the propagation from the point~0,0! to the point~0,T! in the
Euclidean time. One can calculate the functionS0 in two
ways. First, we can calculate it as a power series inT for
short times. The leading term in such a series is an analo
of the parton model contribution in QCD; the higher term
imitate the matrix elements of operators in the operator pr
uct expansion. Second, one can use the explicit formula~2.5!
and calculateS0 as a sum over the hadron states. In pract
we are interested in the properties of the ground state. So
represent

S0~0,T!5uc0~0!u2e2E0T1E
Ec

`

dEsh~E!e2ET, ~2.6!

wheresh(E) is the exact spectral density,

sh~E!5 (
n51

d~E2En!ucn~0!u2. ~2.7!

Note that the leading term in the perturbation expansion
theS0(T) can also be represented as the integral of the s
tral densitysp(E) timese2ET. Then the quantum mechan
cal duality means that, after average over some energy in
val,

sh~E!;sp~E!, E>Ec . ~2.8!

Equivalently, the integrals of the spectral functions tim
e2ET are approximately equal as functions ofT. The integral
of the exact spectral density in the right-hand side~RHS! can
be also calculated as the difference between the exact G
function S0(T) and the known exact expression for th
ground state. Define

C0~T!5
S0~0,T!2uc0~0!u2e2E0T

uc0~0!u2e2E0T , ~2.9!

and

Cp~T!5
*Ec

` dEsp~E!e2ET

uc0~0!u2e2E0T . ~2.10!

Below the functionsC0(T) and Cp(T) are called ‘‘con-
tinuum’’ functions. If the parton hadron duality holds, the
two functions must approximate one another for sufficien
smallT ~corresponding to sufficiently largeE!. Once duality
is established, one can write the sum rule to determine
ground state parameters. In order to obtain the sum rule
simply rewrite equation~2.6! differently:

uc0~0!u2e2E0T5S0~0,T!2E
Ec

`

dEsp~E!e2ET.

~2.11!

Here, for S0 we use the power expansion, which can
obtained in perturbation theory. By fitting the RHS of equ
tion ~2.11! to exponent one is able to determine both grou
state energyE0 and its residueuc0(0)u2. The ground state
energy can be easily obtained by first taking logarithm
~2.6! and then differentiating with respect to timeT. Since
our method is an approximate one, we have to introduc
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notion of fiducial region. By fiducial domain we mean
window in T where two following conditions hold simulta
neously. The first one is a control over the power expans
of S0 . Usually one demands for the last kept term in t
expansion to saturate less than 30% of the whole express
This way the upper edge of the window is determined. T
second condition is a ground state dominance. This requ
ment is needed in order to suppress the relative contribu
of the exited states. This condition determines a lowest e
of the window. Practically the contribution of all exite
states@the integral term in~2.11!# is required to be less tha
30%. The fiducial domain corresponds to the region wh
two asymptotics~small T and largeT! matches. The impor-
tant fact is that the sum rule~2.11! are essentially threshold
dependent. Usually we do not know the value of the thre
old parameterEc except the general point that it should l
somewhat below the energy of the first exited state~which
we do not know too!. However, the standard philosophy o
sum rules is to seek for a region~in Ec! whereEc depen-
dence is small. The sum rule is then called stable. The va
tion of the result withEc produces an error, which is un
avoidable in the sum rule method. Two-point sum ru
discussed below happen to be very stable with respect to
threshold variation. We depict the sum rules with only o
optimal value for the threshold parameters, which we defi
by the best fit to exact known results. In all models, t
optimal values appear to be very close to the guesses typ
in practice, e.g., the midpoint between the lowest obser
states.

Let us illustrate the quantum mechanical duality for tw
point sum rules for the~A!, ~B!, ~C! models discussed in
Introduction@9,15–18#. Although similar discussions are a
ready present in the literature, we shall also consider th
models for the sake of completeness and as simple illus
tions of more complicated cases of Sec. III.

Consider the harmonic oscillator first. We use the dime
sionless unitsv51 and 2m51. The left, theoretical part o
the sum rule can be represented as a perturbation series

S0
har~0,T!5S 1

4pTD 3/2S 12
1

4
T21

19

480
T42

691

120960
T61••• D .

~2.12!

The corresponding spectral function is

sp~E!5
1

4p2 AE. ~2.13!

Consider now the right hand side of the sum rule. T
spectral densitysh(E) can be represented as a sum of de
functions. For sufficiently high energies the summation c
be approximately substituted by the integration@9,17#. Using
En53/212n and ucn(0)u25(1/2p)3/2@(2n11)!!/2nn! #,
one obtains

sh
har~E!;(

n
S 2

p D 1/2 En
1/2

~2p!3/2 d~E2En!

'E S 2

p D 1/2

En
1/2S 1

2p D 3/2

d~E2En!
dEn

2
5

1

4p2 AE.

~2.14!
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57 2679PARTON-HADRON DUALITY IN QCD SUM RULES: . . .
The latter is just the theoretical spectral density~2.13!. We
see that for sufficiently high energies the duality holds
deed.

We can make more detailed estimates, relevant for
sum rules. Define the continuum functionsC0

h(T) andCp
h(T)

~2.9!, ~2.10!.
These two functions approximate each other very well

T<1.7, ~see Fig. 1, where the two functions are depicted
the optimum value ofEc52.6!. Once duality is established
one can write the sum rule to determine the ground s
parameters. The fiducial region in this sum rule must,
course, be inside the region where the duality holds. Strai
forward calculations~see Refs.@9# for details! show that this
is true indeed, and the resulting values coincide with
exact ones very accurately.

Consider now the case of the linear oscillator. We u
units wherea51. The LHS of the sum rule is given by th
asymptotic expansion of the propagator in perturbat
theory. The corresponding Green function was obtained
Ref. @21# ~see also Appendix B!:

S0
L~0,T!5

1

~4pT!3/2S 12
Ap

2
T3/21

5

12
T31••• D ,

~2.15!

whereas the corresponding parton spectral function is g
by Eq.~2.13!. Here and below, the indexL denotes the linea
oscillator problem.

Pass now to the right-hand side~RHS! of the sum rule.
Proceeding in the same spirit as for the harmonic oscilla
the local duality for high energies can be established. We
some exact results on the problem, collected in Appendix
The square of the wave-functionucn

L(0)u2 equals 1/(4p).
The large n asymptotic behavior of the energy leve
En

L5(3/2pn)2/3. The level densitysh
L(n) is

sh
L~n!;

1

4p (
k

d~k2n!'
1

4p E d~k2n!dn5
1

4p
.

~2.16!

The energy density issh
L(E)5sh

L(n) (]n/]E), which coin-
cides with the ‘‘bare’’ spectral function~2.13!.

The duality for sufficiently high energies established,
turn to the sum rule. The appropriate ‘‘continuum’’ function
C0

L(T) andCp(T) of ~2.9! and ~2.10! are depicted in Fig. 2
for the optimal energy thresholdEc53.4. The fit is perfect

FIG. 1. Harmonic oscillator. Duality for the two-point function
Continuum functionsC0

har and Cp are plotted vsT. The energy
thresholdEc52.6.
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and we can plot the sum rule for the ground state ene
~Fig. 3!. One obtainsE0

L'(2.3560.05), while the exact
value isE0exact

L 52.338. We see the sum rules really do wor
Our last example of two-point functions, is C model wi

its ‘‘linear1Coulomb’’ potential. The model and its numer
solution are described in Appendix A, while the perturbati
expansion of the propagator is presented in Appendix B.
low, numerical solutions of the model will be referred to
exact ones:

S0
lc~0,T!5

1

~4pT!3/2S 11b0ApT1/21b0
2 p2

6
T2b0

3

2
T2

2
p2

2
T3/21

5

12
T31••• D . ~2.17!

The parameterb050.57 is defined in Appendix A. In
QCD, parton spectral density acquires corrections due toas
terms in the operator product expansion~OPE!. In C model,
the Coulomb interaction imitates the role of theseas terms.
The parton spectral function~2.13! is modified:

sp
lc~E!5

1

4p2 E1/21
b0

8p
1

b0
2

48
E21/2. ~2.18!

Unfortunately, contrary to the previous examples we
not know exact solutions of the problem. However, it is na
ral to believe that the duality holds as in above cases,
though we were not able to prove it explicitly.

FIG. 2. Linear oscillator. Duality for the two-point function
Continuum functionsC0

L and Cp are plotted vsT. The energy
thresholdEc53.4.

FIG. 3. Linear oscillator. Sum rule for the ground state ener
The dashed line corresponds to the exact valueE0exact

L 52.338. The
energy thresholdEc53.4.
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2680 57B. BLOK AND M. LUBLINSKY
Following the procedure described above, the continu
functionsC0

lc(T) andCp
lc(T) ~2.9! and~2.10! were computed

and plotted for the optimal thresholdEc52.9 ~Fig. 4!.
Within the window (0.2<T<0.9), the duality is valid and
we can study the sum rules. Figure 5 presents the sum
for the ground state energy. The sum rule res
E0

lc51.9060.05 matches well the exact oneE0exact
lc 51.83.

III. DUALITY IN THREE-POINT SUM RULES

The goal of the present section is to study the issue of
duality in the three-point sum rules. While we have seen
the previous chapter that the duality holds for the two-po
sum rules~in quantum mechanics at least!, the situation for
the three-point sum rules is clearly more complicated.
deed, let us recall the general procedure of the analysi
three-point sum rules in QCD@19#. One considers the func
tion f (q1

2 ,q2
2) at the appropriate tensor structure of the p

larization operator of three currents. One can calculate
function in two ways: using operator product expansion~the
theoretical part of the sum rule! and saturating by resonance
~the phenomenological part of the sum rule!. For simplicity
we shall restrict ourselves here by transitions between
same hadron under the action of some current. Then, a
the Borel transformation in variablesq1

2 ,q2
2 the phenomeno-

logical part of the sum rule can be represented as

FIG. 4. Linear1 Coulomb potential. Duality for the two-poin
function. Continuum functionsC0

lc and Cp
lc are plotted vsT. The

energy thresholdEc52.9.

FIG. 5. Linear1 Coulomb potential. Sum rule for the groun
state energy. The dashed line corresponds to the exact v
E0exact

lc 51.828. The energy thresholdEc52.9.
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f ~M1
2 ,M2

2!5gb0
2e2m2~1/M1

2
11/M2

2
!

1E ds1ds2sh~s1 ,s2!e2s1 /M1
2
2s2 /M2

2
.

~3.1!

Hereg is the relevant coupling constant,b0
2 is the square of

the residue of the lowest lying resonance created by the
rent,m is its mass andM1

2 ,M2
2 are the relevant Borel param

eters. Local duality means that the latter integral, taken o
some part of the (s1 ,s2) plane is well approximated by th
corresponding integral of the imaginary partsp(s1 ,s2) of the
theoretical part of the sum rule~calculated using Wilson
OPE!. Even if the local duality does not hold, for the thre
point sum rules it is possible to have the generalized dua
In fact, if there are sign alternating transition, it was argu
in Ref. @17# that it may be senseless to speak about lo
duality. The parton model density is likely to be concentra
in the narrow area around the diagonal of the (s1 ,s2) plane,
while the hadron density is spread over the whole plane
was shown in Ref.@17# that in this case only ‘‘generalized’
duality makes sense: the partonic spectral density, integr
in the direction orthogonal to the diagonal is approximat
equal to the hadron spectral density, integrated in the s
direction:

f ~M2!5gb0
2e2m0

2
~1/M2!1E

s0

`

dssh~s!e2s/M2
. ~3.2!

Heresh(s) is given by the integral

sh~s!5E dAsh~s1 ,s2!, ~3.3!

A5(s12s2)/2. The parameters0 is the continuum threshold
~see Fig. 6!. The Borel parameters areM25M1

25M2
2 and we

stick to the symmetric point. We can define the parton sp
tral density exactly in the same way:

f ~M2!5E sp~s!e2s/M2
ds. ~3.4!

Only for such sum rule there is a hope that the duality~de-
fined in this generalized sense! is not violated.

Consider now the quantum mechanical analogue of
sum rule~3.2!. The analogue of the polarization operator
three currents in quantum mechanics is the function@17#:

lue

FIG. 6. (s1 ,s2) plane. Direction orthogonal to the diagonal is
direction of the integration for the generalized duality.
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Si~t1 ,t2!5E d3rK ~0,t11t2 ,r ,t1!Ôi~r !K~r ,t1,0,0!

5E d3r(
l

e2Elt2c l~0!c l* ~r !Ôi~r !

3(
n

e2Ent1cn~r !cn* ~0!. ~3.5!

HereK(r ,t1,0,0) is the amplitude of the quark propagati
from the point (0,0) to the point (r ,t1) in the Euclidean
time. At the point (r ,t1) the operatorÔi is inserted.

The vacuum expectation value~VEV! of the operatorÔi
is defined as

^0uÔi u0&5E d3rc0* ~r !Ôi~r !c0~r !. ~3.6!

The corresponding sum rule can be written as

Si~t1 ,t2!5uc0~0!u2^0uÔi u0&e2E0~t11t2!

1E
s0

`

ds1ds2sh~s1 ,s2!e2s1t12s2t2. ~3.7!

Here,sh(s1 ,s2) is the exact spectral density. Bysp(s1 ,s2)
we denote the theoretical spectral function obtained, as
the two-point functions, from theT-expansion ofSi . From
above it is clear that we must study the symmetric sum ru
i.e.,t15t25T/2 ~see Ref.@17# for details!. We need to com-
pare thesp(s) integrated with the weighte2sT, with the
corresponding integral ofsh(s). Here s5(s11s2)/2, and
sh,p(s) are the spectral densities obtained from the spec
densitiessh,p(s1 ,s2) after the integration over the variab
A5(s12s2)/2 in the same way as in eq.~3.3!.

Let us now consider the sum rules and duality for th
models considered above and for the operators:

Ô1~r !5r 2/6; Ô2~r !52]2; Ô3~r !5r .

A. Harmonic oscillator

Since the operatorÔ3 has no analogue in QCD, the su
rules only for two operatorsÔ1 and Ô2 will be discussed.
These sum rules were already investigated in Refs.@17, 18#.
For the sake of completeness their analysis is included
extended:

S1
har~T/2,T/2!5

1

32p3/2

1

T1/2S 12
1

3
T21

44

640
T42

692

60480
T6

1••• D ;

S2
har~T/2,T/2!5

3/2

~4p!3/2

1

T5/2S 12
1

6
T21

5

288
T41••• D .

~3.8!

The corresponding parton spectral density is
or

s,

al

e

nd

sp1
har~E!5

1

32p2 E21/2;

sp2
har~E!5

3/2

~4p!3/2S 4

3Ap
E3/22

1

6Ap
E21/2D . ~3.9!

In order to check duality let us, as for the two-point fun
tions, Eqs.~2.9! and~2.10!, define the appropriate continuum
functions:

Ci~T!5
Si~T/2,T/2!2uc0~0!u2e2E0T^0uÔi u0&

uc0~0!u2e2E0T^0uÔi u0&
;

Cpi~T!5
*Ec

` dEsp~E!e2ET

uc0~0!u2e2E0T^0uÔi u0&
. ~3.10!

We shall use here the exact answers for the harmonic o
lator:

E0
har53/2; uc0

har~0!u251/~2p!3/2;

^0uÔ1u0&har51/3E0
har; ^0uÔ2u0&har51/2E0

har.
~3.11!

Let us consider the sum rules for the matrix eleme

^0uÔ1u0&har and^0uÔ2u0&har. For the operatorÔ1 both func-
tions C1

har and Cp1
har are depicted for the energy thresho

Ec52 ~Fig. 7!. An important fact is immediately noticeable
The true continuum is negative and cannot be approxima
by any positive asymptotics. Hence, no duality persists up
the first exited state. Note also that although the continu
contribution to the theoretical part of the sum rule is alm
negligible ~less than 5%!, the real contribution of the exited
states is significant and is about 40% of the ground state.
choice ofEc52 was motivated by standard guess—it is
midpoint between two observed statesE053/2 and
(E01E1)/255/2. The displayed picture is not sensitive
the threshold variation and the duality is broken for a
threshold parameter.

Let us illustrate how duality breaking becomes fatal f
the sum rule. The sum rule is obtained by transforming
continuum in equation~3.7! to the LHS and then dividing the
expression by the two-point sum rule@Eq. ~2.11!#:

FIG. 7. Harmonic oscillator. Duality for the three-point func

tion. Insertion of the operatorÔ1 . Continuum functionsC1
har and

Cp1
har are plotted vsT. The energy thresholdEc52.
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2682 57B. BLOK AND M. LUBLINSKY
^0uÔi u0&5
Si~T/2,T/2!2*Ec

` dEspi~E!e2ET

S0~T!2*E
c
0

`
dEsp0~E!e2ET

. ~3.12!

HereSi andS0 are obtained by perturbation theory. Like
the previous case of two-point functions we have to de
mine a fiducial region. The same conditions of the grou
state dominance and the control over the power expans
are applied. Of course, for the three-point sum rule~3.12! we
obtain two fiducial domains. One corresponds to the
menator~three-point part! and another—to the denominato
~two-point part!. The final window is then obtained in th
matching region. In some three-point sum rules discus
below continuum contributions are not small. Thus, the st
dard prescription of the method~requirement for the con
tinuum to be less than 30%! may lead to a situation when th
window almost shrinks to a point. In such cases we incre
the bound up to 50%. An important notice is that three-po
sum rules~3.12! depend on two~in general independent!
threshold parametersEc

0 andEc . While Ec
0 has to be fitted by

the corresponding two-point sum rule,Ec is a varying pa-
rameter of the three-point sum rules. In practice, one usu
takes both thresholds equal. Below we present some a
ments showing that in realityEc is likely to be less than its
two-point partnerEc

0 . Like for the operatorÔ1 ~see above!,
in all three-point functions, which display the duality brea
ing, we take for the energy thresholdEc the value, which is
somewhat close to midpoint between two lowest obser
states. In all these cases, the sum rules appear to be a
nonsensitive to the threshold variation and our main con
sions on duality violation remain to be valid.

Figure 8~a! shows the sum rule for̂0uÔ1u0&har with the
energy thresholdEc52.5. Within the window (0.5<T<1.6)
the answer given by the sum rule is about 45% off from
exact one~3.11!. Thus, the sum rule leads to complete
wrong prediction. In the Ref.@18#, it was argued that this
failure is due to nondiagonal transitions, which are nega
and numerically large. These transitions are not sufficien
suppressed and they produce a strong influence on the
rule. Sign alternating nature of the exact spectral den
sh(E) leads to the duality breaking at high energies.

FIG. 8. Harmonic oscillator.~a! Three-point sum rules for VEV

of the operatorÔ1 . The energy thresholdEc52. ~b! Three-point

sum rules for VEV of the operatorÔ1 with N53 explicitly taken
resonances. The energy thresholdEc

N55. The dashed line corre

sponds to the exact value^0uÔ1u0&exact
har 51/3E0

har
r-
d
ns

-

d
-

se
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d
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e
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illustrate the point, we include in the sum rule explicitly
few low lying resonances. Correspondingly, the continu
thresholdEc rises:

E
Ec

`

dEspi~E!e2ET→(
k51

N

ak
i e2ẼkT1E

Ec
N

`

dEspi~E!e2ET.

~3.13!

Here, k runs over a numberN of the first low lying reso-
nances in equation~3.5!. The residues are denoted byak

i ,

while the resonances are ordered by their energy levelsẼk .
For the case of the harmonic oscillator exact analytic exp
sions for the energy levelsẼk and the residues of the intere
ak

i are known@17#. The energyẼk53/21k:

ak
15

1

~2p!3/2

4k13

6

1

22k

~2k11!!

~k! !2 , k even;

ak
15~21!

1

~2p!3/2

2k13

3

1

22k

~2k11!!

~k! !2 , k odd.

The sign alternating nature of the exact spectral function
clearly observed.

We expect the energy thresholdEc
N to be of order

ẼN—the energy of the last explicitly taken resonance. S
rule with continuum of the form~3.13! is depicted forN53
on Fig. 8~b! (Ec

N55). The desired plateau is clearly restore

FIG. 9. Harmonic oscillator. Duality for the three-point func

tion. Insertion of the operatorÔ2 . Continuum functionsC2
har and

Cp2
har are plotted vsT. The energy thresholdEc52.

FIG. 10. Harmonic oscillator. Three-point sum rules for VEV

the operatorÔ2 . The dashed line corresponds to the exact va

^0uÔ2u0&exact
har 51/2E0

har. The energy thresholdEc52.
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The situation with the operatorÔ2 strongly differs from
the picture described above. Despite the fact that the no
agonal transitions are not vanishing, they are of the sa
sign as the diagonal. Here we use the equation of motio
obtain residuesak

2 :

ak
25

Ẽk

~2p!3/22
3

2
ak

1 , k even; ak
25~21!

3

2
ak

1 , k odd.

~The factor 3/2 in front ofak
1 is due to definition of the

operatorÔ1 .!
Thus, the exact spectral function is always positive. T

fact will be shown to be crucial for the duality to hold. I
order to check the duality, the continuum functionsC2

har and
Cp2

har, Eq. ~3.10!, are depicted~Fig. 9! for the optimal energy
thresholdEc52. Both functions match excellently and th
duality is established. Consequently, the sum rule for V
of the kinetic energy operator can be investigated~Fig. 10!.
An important remark is in order. In the case at hand, c
tinuum dominates in the sum rule~it saturates more than
50%! and the window is practically absent. The obtain
sum rule displays strong sensitivity to the continuum thre
old. Thus, such a behavior of the sum rule is much like
one obtained in QCD@12#. Nevertheless, fitting the energ
threshold, the exact result~3.11! can be easily reproduced

^0uÔ2u0&har50.5 atEc52. At this point we disagree with the
conclusions of Ref.@18# on the sum rule failure. In this pa
per, the continuum threshold was taken the same as for
two-point function Ec52.5. However, in the three-poin
function at hand,E52.5 is the energy level of the first non
diagonal transition state. Consequently, for the sum rule
value of the energy threshold eventually has to be ta
lower.

B. Linear oscillator

With the same emphasise on duality, let us investigate
three-point functions for the linear potential. The opera
Ô3 plays now a role of the potential and it is the virial pa
ner of the operatorÔ2 . Since no exact propagator is know
asymptotic expansions of the three-point functions@Eq.
~3.5!# are obtained perturbatively. Details of this compu
tions are presented in Appendix B:

FIG. 11. Linear oscillator. Duality for the three-point functio

Insertion of the operatorÔ3 . Continuum functionsC3
L andCp3

L are
plotted vsT. The energy thresholdEc53.3.
i-
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S1
L~T/2,T/2!5

1

32p3/2

1

T1/2X12S Ap2
4

3Ap
D T3/21

S 247

128
2

16&

15 DT31•••C;
S2

L~T/2,T/2!5
3

16p3/2

1

T5/2X12
4

3Ap
T3/2

1S 52&

45
2

1664

1440DT31•••C;
S3

L~T/2,T/2!5
1

4p2

1

T
X12SA2p2

7Ap

8 DT3/2

1S 35

48
2

5p

64DT31•••C. ~3.14!

The corresponding parton spectral densities are

sp1
L ~E!5

1

32p2 E21/2;

sp2
L ~E!5

3

16p3/2S 4

3Ap
E3/22

4

3Ap
D ;

sp3
L ~E!5

1

4p2 . ~3.15!

The general picture with the three-point sum rules for
linear oscillator is very similar to the one of the harmon
oscillator. We start from the operatorÔ3 and check the du-
ality first. Figure 11 shows the continuum functionsC3

L and
Cp3

L @Eq. ~3.10!#; Ec53.3. Again, the true continuum is
mostly negative and cannot be represented by the asym
ics. A best fit would be reached in the ‘‘no continuum
approximation. Consider now the sum rule for the VEV
the operator. The window for the linear oscillator is mov
to the left: 0.3<T<0.7. Comparing to the exact numeric

FIG. 12. Linear oscillator.~a! Three-point sum rules for VEV of

the operatorÔ3 . The energy thresholdEc53.3. ~b! Three-point

sum rules for VEV of the operatorÔ3 with N511 explicitly taken
resonances. The energy thresholdEc

N57. The dashed line corre

sponds to the exact value^0uÔ3u0&exact
L 51.559.
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2684 57B. BLOK AND M. LUBLINSKY
result ^0uÔ3u0&exact
L 51.559, onê 0uÔ3u0&L51.160.1 yield

by the sum rule@Fig. 12~a!# is 35% smaller. We account her
for the situation, when the positive diagonal transitions
most cancel the negative nondiagonal matrix elements. T
results in the fact that the large number of resonances m
be explicitly taken in Eq.~3.13! in order for the sum rule to
be saturated. Figure 12~b! presents the sum rule atN511
~The numerical values for the residuesak are given in the
Tables II and III!. The energy threshold isEc57 that lies
between third and fourth energy levels.

Consider now the operatorÔ1 . The sum rule displays the
same problem with duality as for the harmonic oscillator.
duality persists up to the first exited state. Figure 13 sho
the sum rule for VEV of the operator together with an im
proved continuum model~3.13!. The plateau is restore
whenN511 transitions are taken explicitly.

Let us turn now to the three-point function withÔ2 op-
erator inserted. The corresponding hadron spectral func
is positive. As it was argued above, positive spectral fu
tions do not cause duality breaking. The case at hand c
firms this statement. Although the sum rule strongly depe
on the continuum threshold parameter, it, neverthele
yields the correct value~Fig. 14!; ^0uÔ2u0&L50.8160.01,
compared to the exact^0uÔ2u0&exact

L 50.779. The optimal en-

FIG. 13. Linear oscillator. Three-point sum rules for VEV of th

operatorÔ1 and the sum rule withN511 explicitly taken reso-
nances. The dashed line corresponds to the exact v

^0uÔ1u0&exact
L 50.486. The energy thresholdsEc53.3, Ec

N57.

FIG. 14. Linear oscillator. Three-point sum rules for VEV of th

operator Ô2 . The dashed line corresponds to the exact va

^0uÔ2u0&exact
L 50.779. The energy thresholdEc52.8.
l-
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ergy threshold parameter isEc52.8, which is significantly
below the threshold parameter corresponding to the t
point sum rule.

As a common property of the three-point functions w
sign changing spectral functions, we see that a large am
of resonances must be taken into account explicitly. In ot
words, no duality is valid in the low energy area. This effe
is due to the fact, which was already mentioned. The wind
moves to the left, where exited states are not sufficien
suppressed.

C. Linear 1 Coulomb model

Coulomb term added to the potential improves a bit
situation slightly throwing out the window to the right. How
ever, the general picture of the duality breaking still persis
We now present our results for the three-point sum-rules
‘‘linear 1 Coulomb’’ potential. The three-point function
~3.5! are obtained by perturbation~see Appendix B!:

S1
lc~T/2,T/2!5

1

32p3/2

1

T1/2X11b0

4~p21!

3Ap
T1/21b0

21.358T

2b01.179T22S Ap2
4

3Ap
D T3/2

1S 247

128
2

16&

15 DT3C;
S2

lc~T/2,T/2!5
3

16p3/2

1

T5/2X11b0

412p

3Ap
T1/21b0

20.985T

2b00.89T22
4

3Ap
T3/2

1S 52&

45
2

1664

1440DT3C;
S3

lc~T/2,T/2!5
1

4p2

1

T
X11b01.679T1/21b0

21.477T

2b01.179T22SA2p2
7Ap

8 DT3/2

1S 35

48
2

5p

64DT3C. ~3.16!

The corresponding spectral densities are

sp1
lc ~E!5

1

32p2 E21/2;

sp2
lc ~E!5

3

16p3/2S 4

3Ap
E3/21b0

412p

3Ap
E1b0

21.111E1/2

2
4

3Ap
2b00.50E21/2D ;

ue

e



p
lla
un
w

e

oi
ua

he

y-

in
ry,

dif-
n-
the
m
of
-
ak-
ys

by
al
ing
ns.
een
on-
se-
o-

a
e

t
igh
4th
ator.
not

pply
ork,
ers
a-
n

has
ll

lla-

the

is a
e is
ther

r

ac

r

va

r

value

57 2685PARTON-HADRON DUALITY IN QCD SUM RULES: . . .
sp3
lc ~E!5

1

4p2 ~11b00.948E21/2!. ~3.17!

The behavior of the sum rule for the kinetic energy o
erator is similar to ones of the harmonic and linear osci
tors. Because of the positiveness of the exact spectral f
tion no duality breaking is accounted for. Figure 15 sho
the sum rule at the optimal energy thresholdEc52.4. The

exact valuê 0uÔ2u0&exact
lc 50.972 and it matches well the on

given by the sum rule:̂0uÔ2u0& lc50.9660.02.

Let us now consider the operatorsÔ1 andÔ3 . Below we
plot two graphs representing our results on the three-p
functions with duality breaking. Figure 16 shows the us
sum rule and the sum rule withN55 explicitly taken reso-

nances (Ec55.5) for VEV of the operatorÔ3 . Note that this

operator is no more a virial partner of the operatorÔ2 . Tak-
ing five transitions explicitly we restore the plateau at t

exact level̂ 0uÔ3u0&exact
lc 51.401. Figure 17 closes our anal

sis. It describes the sum rule and the sum rule withN55
explicitly taken resonances for VEV of the operatorÔ1 ;

^0uÔ1u0&exact
lc 50.399.

FIG. 15. Linear1 Coulomb model. Three-point sum rules fo

VEV of the operatorÔ2 . The dashed line corresponds to the ex

value ^0uÔ2u0&exact
L 50.972. The energy thresholdEc52.4.

FIG. 16. Linear1 Coulomb model. Three-point sum rules fo

VEV of the operatorÔ3 and the sum rule withN55 explicitly
taken resonances. The dashed line corresponds to the exact

^0uÔ3u0&exact
L 51.401. The energy thresholdsEc52.9, Ec

N55.5.
-
-
c-
s

nt
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IV. CONCLUSION

Motivated by the recent work on three-point sum rules
QCD, especially connected to heavy quark effective theo
we studied the two- and three-point sum rules in three
ferent nonrelativistic quantum mechanical models with co
fining potentials. We have seen that though in all cases
two-point sum rules work perfectly well, the three-point su
rules may fail. Their predictions for the matrix elements
the operatorsÔ1,3 may differ by 30–50 % from the corre
sponding true values. The reason of the failure is the bre
down of duality. The theoretical spectral function is alwa
smooth and positive. On the other hand, we have seen
explicit calculation that the ‘‘phenomenological’’ spectr
density is wildly oscillating and even has a sign chang
component due to the sign changing nondiagonal transitio
We have seen that, though the diagonal transitions betw
radial excitations have positive transition constants, the n
diagonal transitions always have negative sign. Con
quently, duality does not work for the first several res
nances, even if one understands the duality in
‘‘generalized’’ sense~i.e., even after the integration in th
direction orthogonal to the diagonal!. The averaged ‘‘had-
ron’’ density strongly differs from the ‘‘theoretical’’ one. I
seems that the duality starts to work for energies h
enough. The corresponding threshold lies near the 3rd–
resonance and depends on the model and on the oper
However, this is of no practical interest, because one can
separate the leading resonance contribution in order to a
the sum rules. The standard continuum model does not w
and the smooth theoretical spectral density strongly diff
from real one. For the two-point sum rules the whole situ
tion is quite contrary: the duality does work in all know
examples~Sec. II!.

We have also seen that the absence of the continuum
no relation to the validity of the sum rule. In fact, sma
continuum contribution may arise from the mutual cance
tion of positive~diagonal! and negative~nondiagonal! tran-
sitions. Such a behavior is displayed by the sum rules for
matrix elements of the operatorsr and r 2. Moreover, it
seems that the absence of the continuum contribution
general feature of the sum rules whose right hand sid
contaminated by the sign changing transitions. On the o
hand, sum rules for the matrix element of the operator2]2

t

lue

FIG. 17. Linear1 Coulomb model. Three-point sum rules fo

VEV of the operatorÔ1 and the sum rule withN55 explicitly
taken resonances. The dashed line corresponds to the exact

^0uÔ1u0&exact
L 50.399. The energy thresholdsEc52.9, Ec

N55.5.



i-
th
er
n

no

r
su
n
s
tri
a

um
u
ic

li-
ow
re
th
o
a
id
b

es
ic

io
a
se
ir-
la
n

les
Th
ud

ie

or
f

he
e
o

a
e
re

nt
on

sed

as
re
-

We
lead
e

-
r
the
y

ined
ed
tion

e
d in

us-
un-
nd.

wn
ro
ra-
nts
sec-

a

2686 57B. BLOK AND M. LUBLINSKY
work sufficiently well, despite the fact that they are dom
nated by large continuum. The duality holds thanks to
positiveness of the spectral density. This property is v
similar to that for the three-point sum rules for the transitio
under the action of Hamiltonian, where the duality is also
violated @18#.

One may conclude that the duality breaking is a gene
feature of the quantum mechanical analogue of the QCD
rules in the case of sign changing nondiagonal transitio
Furthermore, our study suggests that the duality still hold
all transitions are positive. However, the continuum con
bution to the sum rule is likely to be large and the result m
heavily depend on the continuum threshold.

Our results were obtained for the nonrelativistic quant
mechanical models. It will be very interesting to check if o
picture of the duality breaking still holds for the relativist
analogues of the models~A!, ~B!, and~C!.

Unfortunately, we do not know yet, what may be imp
cations of our results in real QCD. Several conclusions, h
ever, can be reached. First, one must be very careful in p
ence of the sign alternating transitions contributing to
polarization operators. Second, the smallness of the c
tinuum contribution is not always of a good omen, and m
occur due to complicated cancellations in the right hand s
of the sum rule. Nevertheless, the situation in QCD may
considerably better. Borel transform in QCD may suppr
nondiagonal transitions stronger than in quantum mechan
and this may lead to the smallness of the contaminat
Perhaps, the degree of contamination depends on the m
element one calculates and the form of the sum rule cho

Certainly, further work is needed; in particular, it is des
able to investigate whether the complete relativistic calcu
tion improves the situation with duality. Detail examinatio
of whether in the three-point QCD and HQET sum ru
there are indeed sign changing transitions is required.
problem of their relative suppression must be carefully st
ied.

Our work was essentially motivated by big discrepanc
among values of the matrix element^BuDW 2/(2mB)uB& ob-
tained using different sum rules~see Refs.@11, 12#! Conse-
quently, we work with simple nonrelativistic analogues f
the potential models of B-mesons and study the sum rules
nonrelativistic analogues of the HQET operatorDW 2/(2mB)
~and operators related toDW 2/(2mB) by the virial theorem!.
Our results imply that the value for the matrix element of t
operatorDW 2/(2mB) from Ref.@11# is underestimated. On th
other hand, the situation in quantum mechanics seems t
close to that considered in Ref.@12#. However, the strong
dependence on the continuum threshold implies that the
curacy of the relevant sum rule may be quite low. Moreov
in the text, we argued that the energy threshold of the th
point sum rule should be taken lower~about 20%, according
to our experience! than that of the corresponding two-poi
sum rule. The reason is that the contribution of the first n
e
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diagonal transition to the polarization operator is suppres
by the factor exp@2(E11E0)T/2#, while the contributions of
the first diagonal transition in the three-point sum rule
well as of the first excited state in the two-point sum rule a
suppressed by exp@2E1T#. Consequently, we decided to re
examine the sum rule of Ref.@12#. In the latter, the energy
threshold for the three-point sum rule (v0;121.2 GeV)
was taken exactly the same as for the two-point sum rule.
have seen above that this treatment of the sum rule may
to a significant overestimation of the matrix element. W
investigated the leading-order sum rule@Eqs. ~3.10! and
~3.12! of Ref. @12## for the kinetic energy operator for vari
ous three-point thresholdsv1;0.8 GeV. The results of ou
analysis are depicted on Fig. 18. The sum rule yields
following value for the matrix element of the kinetic energ
operator:^BuDW 2/(2mB)uB&520.360.1 GeV2 compared to
^BuDW 2/(2mB)uB&520.660.1 GeV2 for v1;1 GeV. The
obtained value is in a good agreement with the ones obta
in Refs.@13, 14#. ~Of course, this result must be consider
not as a QCD sum rule prediction, but rather as an indica
that there is no contradiction between Refs.@13, 14# and
QCD sum rule approach.!

Note added in proof.After this research was finished w
learned that the quantum mechanical duality was studie
Ref. @24# for S→P transitions.
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APPENDIX A

In the first part of this appendix we present some kno
information about solutions of the three-dimensional Sch¨-
dinger equation in the case of linear potential. Three ope
tors relevant to our study are defined. Their matrix eleme
are computed numerically and represented in tables. The

FIG. 18. The Ball and Braun sum rule to leading-order as
function of the Borel parametert for different values of the con-
tinuum thresholds: ~a! v051 GeV, v150.7 GeV; ~b!
v051.2 GeV,v150.85 GeV;~c! v051 GeV, v150.8 GeV. The
dashed line indicates the working region.
829
TABLE I. The energy levels of quantum mechanical problem with linear potential.

E0
L E1

L E2
2 E3

L E4
L E5

L E6
L E7

L E8
L E9

L

2.338 4.088 5.521 6.787 7.944 9.023 10.040 11.009 11.936 12.
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ond part of this appendix is devoted to the same analysis
the linear1 Coulomb potential.

1. Linear potential

We look for exact solutions of the three-dimension
Schrödinger equation:

@2]21ar #cn
L5Ẽn

Lcn
L . ~A1!

In the dimensionless variables,

En
L5Ẽn

L/a2/3; x5ra1/3.

Equation~A1! takes form

@2]21x#cn
L5En

Lcn
L . ~A2!

Since the wave-function of the orbitally exited states are v
ishing in the origin, we restrict our analysis to S-states on
The S-states of the equation~A2! are given by the normal
ized Airy functions:

cn
L5const3Ai ~x2En!/x. ~A3!

Imposing condition of nonsingularity on the wave functio
in the origin, we obtain the discrete spectrum:

Ai ~2En!50.

Table I presents ten first energy levels of the problem. T
ing into account the well-known fact~Ref. @20#!

Ai ~j→2`!;sinS 2

3
j2/31p/4D ,

we can determine a largen asymptotic behavior of the en
ergy levels:

2

3
~En!3/25np, n→`. ~A4!

An important and very special property of the Airy functio
is

TABLE II. Matrix elements of the operatorÔ1 between states o
linear potential problem.

^ i uÔ1u j &L
0 1 2 3 4

0 0.486 0.427 20.039 0.010 20.004
1 0.427 1.485 0.950 20.075 0.018
2 20.039 0.950 2.709 1.556 20.116
3 0.010 20.075 1.556 4.094 2.223
4 20.004 0.018 20.116 2.223 5.610
or

l

-
.

-

ucn
L~0!u25

1

4p
, ~A5!

and does not depend onn. However,

cn
L~0!5~21!n

1

A4p
.

Below, we present the exact numerical results for the m
trix elements of the following operators:

Ô15x2/6; Ô252]2; Ô35x.

The matrix elements are defined:

Mk
i j [^ i uÔku j &[E d3xc i

L* ~x!Ôk~x!c j
L~x!. ~A6!

Note that by the equation of motion

M2
i j 5Eid

i j 2M3
i j . ~A7!

The lowest quarters of the matricesM1 andM3 age given by
Tables II and III respectively.

2. Linear 1 Coulomb potential

@2]21V~r !#cn
lc5Ẽn

lccn
lc . ~A8!

The potentialV(r ) is taken of the form

V~r !5ar 2
4

3

as~r !

r
; as~r !5

2p

9ln~d1g/r !
. ~A9!

Here,as(r ) is a running coupling constant and it reflects t
asymptotic freedom of the strong interaction. In order to p
to dimensionless variables the following change of variab
is performed:

x5~2ma!1/3r ; Elc5Ẽn
lc~2m/a2!1/3.

In the new variables equation~A8! reads

@2]21x2b~x!/x#cn
lc5En

lccn
lc ;

b~x!5
8p~4m2/a!1/3

27ln„d1g~2ma!1/3/x…

. ~A10!

TABLE III. Matrix elements of the operatorÔ3 between states
of linear potential problem.

^ i uÔ3u j &L
0 1 2 3 4

0 1.559 0.653 20.197 0.101 20.064
1 0.653 2.725 0.974 20.275 0.134
2 20.197 0.974 3.680 1.248 20.341
3 0.101 20.275 1.248 4.524 1.493
4 20.064 0.134 20.341 1.493 5.296
84
TABLE IV. The energy levels of quantum mechanical problem with linear1 Coulomb potential.

E0
lc E1

lc E2
lc E3

lc E4
lc E5

lc E6
lc E7

lc E8
lc E9

lc

1.828 3.745 5.245 6.551 7.735 8.833 9.865 10.845 11.783 12.6
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In Appendix B we present a perturbative determination
the propagator for the given problem. Unfortunately, t
procedure cannot be performed~at least analytically! if the
running logarithm is present. Since we do not wish to int
duce any uncertainty due to the logarithm factorization,
fix the running coupling constantas at some value. A specia
choice of the parameters is not important for our analy
but to be concrete we choose some quasirealistic ones@22#:
the string tensiona50.14 GeV2; d52; g51.87 GeV21;
for the constituent mass we takem50.35 GeV. When re-
lated problems are investigated within QCD the running c
pling constantas is usually of order 0.3. In our studyas is
set to be 0.28, which corresponds to some fixed poin
space, namelyx050.088. In the text, a parameterb0 is used
and it is defined asb0[b(x0) ~A10!.

In order to solve equation~A10!, we consider the Cou
lomb potential as a perturbation. Solution of the nonp
turbed problem was described above. The Hamilton~A10! is
diagonalized in the basis of the wave functions~A3!:

cn
lc~x!5 (

k51

NL

Cn
kck

L~x!. ~A11!

In order to obtain the low energy spectrum it is sufficie
to take into account only a few levels~hereNL denotes the
number of levels!. Table IV presents eigenvalues comput
by the numerical diagonalization.

Products of the wave functions in the origin are

Cnm
lc [cn

lc~0!cm
lc* ~0!5

1

4p (
k,k8

NL

Cn
kCm

k8~21!k1k8.

~A12!

CoefficientsCnm
lc appear to be slowly changing monoton

functions of the number of levelsNL taken into account in
equations~A11! and ~A12!. In order to extract these coeffi
cientsNL560 was taken and then the results were extra
lated. To illustrate the point we plotC00

lc as a function ofNL

~Fig. 19!. This function slowly approaches~as a power law!
to its limiting value C00

lc 51.83. Table V is devoted to th
coefficientsCnm

lc .
As for the linear potential, we present tables of nume

cally calculated exact matrix elements~Tables VI, VII, and
VIII !.

APPENDIX B

In this appendix, we present a perturbative derivation
propagators and matrix elements of interest. The poten
V(r )5ar 2b/r is considered as a perturbation to the fr
particle motion. To study ‘‘pure’’ linear potentialb must be
set to zero.

The ‘‘free’’ propagator is given by

G0~r ,T,r 8,t8!5
1

@4p~T2t8!#3/2expF2
~rW2r 8W !2

4~T2t8!
G .

~B1!

Note that in our units 2m51. This factor can be alway
restored in final expressions. The exact propagatorGex can
be expressed in a formal perturbation series:
f

-
e

s,

-

n

-

t

-

-

f
al

FIG. 19. C00
lc as a function ofNL .

TABLE V. CoefficientsCnm
lc .

Cnm
lc 0 1 2 3 4

0 1.83 21.66 21.58 1.53 1.47
1 21.66 1.50 1.44 21.39 21.35
2 21.58 1.44 1.37 21.34 21.31
3 1.53 21.39 21.34 1.32 1.28
4 1.47 21.35 21.31 1.28 1.25

TABLE VI. Matrix elements of the operatorÔ1 between states
of linear 1 Coulomb potential problem.

^ i uÔ1u j & lc
0 1 2 3 4

0 0.399 0.367 0.042 20.013 20.006
1 0.367 1.363 20.874 0.079 0.021
2 0.042 20.874 2.569 1.471 0.120
3 20.013 0.079 1.471 3.942 22.136
4 20.006 0.021 0.120 22.136 5.448

TABLE VII. Matrix elements of the operatorÔ2 between states
of linear 1 Coulomb potential problem.

^ i uÔ2u j & lc
0 1 2 3 4

0 0.972 20.810 20.338 0.216 0.162
1 20.810 1.483 1.093 20.390 20.237
2 20.338 1.093 1.934 21.348 20.445
3 0.216 20.390 21.348 2.342 1.582
4 0.162 20.237 20.445 1.582 2.718

TABLE VIII. Matrix elements of the operatorÔ3 between states
of linear 1 Coulomb potential problem.

^ i uÔ3u j & lc
0 1 2 3 4

0 1.401 0.607 0.197 20.105 20.068
1 0.607 2.615 20.929 0.271 0.136
2 0.197 20.929 3.591 1.206 0.336
3 20.105 0.271 1.206 4.447 21.454
4 20.068 0.136 0.336 21.454 5.227
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Gex~r ,T,r 8,t8!5G0~r ,T,r 8,t8!2E d3sE
t8

T

dtG0~r ,T,s,t!V~s!G0~s,t,r 8,t8!

1E d3sE
t8

T

dtE d3s8E
t8

t

dt8G0~r ,T,s,t!V~s!G0~s,t,s8,t8!V~s8!G0~s8,t8,r 8,t8!1••• . ~B2!

In the following analysis we retain only terms up to the second order in perturbation. All terms of the ordera3,b3,ab2,a2b
and higher will be systematically omitted. We denote:

Gex5G01aG1
L1a2G2

L1bG1
C1b2G2

C12abG2
LC;

G1
L5^G0usuG0&; G2

L5^G1
LusuG0&; G1

C5^G0u1/suG0&;

G2
C5^G1

Cu1/suG0&; G2
LC5^G1

Lu1/suG0&. ~B3!

Here, brackets denote the integration overs and t defined in Eq.~B2!. Unfortunately, these integrations cannot be done
closed form. However, the time integration can be performed. This is done with the aid of the following integrals~Ref. @23#!:

E
0

t

dt
1

@~ t2t!t#3/2expF2
x2

~ t2t!
2

y2

t G5
Ap

t3/2

x1y

xy
expF2

~x1y!2

t G ;
E

0

t

dt
1

~ t2t!3/2t1/2expF2
x2

~ t2t!
2

y2

t G5
Ap

xAt
expF2

~x1y!2

t G .
After the time integration is removed, the angular integration can be easily performed as well. The remaining integr

the radial components are of a nonreducible form, and we cannot proceed any further. Finally we arrive at the fo
expressions for the propagator components:

G1
L~r ,T,0,t8!52

1

~4p!3/2

r

2~T2t8!1/2F E
1

`

dxe2 x2r 2/4~T2t8!1e2 r 2/4~T2t8!G ;
G2

L~r ,T,0,t8!52
1

32p3/2

1

~T2t8!1/2 E
0

` dss4

r E
1

`

dwFe2 „r 1s~11w!…2/4~T2t8!2e2 ~ ur 2su1ws!2/4~T2t8!

1E
1

`

dyy~e2 „r 1s~11wy!…2/4~T2t8!2e2 ~ ur 2su1wys!2/4~T2t8!!G ;
G1

C~r ,T,0,t8!52
1

~4p!3/2

1/r

~T2t8!1/2 E
0

` dx

x
@e2 r 2~112x!2/4~T2t8!2e2 r 2~ u12xu1x!2/4~T2t8!#;

G2
C~r ,T,0,t8!52

1

~4p!3/2

1

2~T2t8!1/2 E
0

` ds

r E
0

` dx

x E
u12xu1x

112x

dw@e2 „r 1s~11w!…2/4~T2t8!2e2 ~ ur 2su1ws!2/4~T2t8!#;

G2
LC~r ,T,0,t8!52

1

~4p!3/2

1

2~T2t8!1/2 E
0

` dss2

r E
1

`

dwF E
1

`

dxx~e2 „r 1s~11wx!…2/4~T2t8!2e2 ~ ur 2su1wxs!2/4~T2t8!!

1e2 „r 1s~11w!…2/4~T2t8!2e2 ~ ur 2su1ws!2/4~T2t8!G .
In order to obtain equations~2.15! and ~2.17!, the limit r→0 is taken. At this limit the propagator components~B3! are
completely calculated analytically and results of Ref.@21# are recovered.

Having in our disposal the exact propagator~B3!, we can proceed in computing the matrix element of the operatorsÔi(r ).
We are interested only in the following amplitudes: the free propagation from the point~0,0!, in the point (r ,T/2), where the
operatorÔi(r ) is inserted, and then there is the free motion to the point (0,T).

^Gex~0,T,r ,T/2!uÔi~r !uGex~r ,T/2,0,0!&5^G0uÔi uG0&12a^G1
LuÔi uG0&1a2^G1

LuÔi uG1
L&12a2^G2

LuÔi uG0&12b^G1
CuÔi uG0&

1b2^G1
CuÔi uG1

C&12b2^G2
CuÔi uG0&12ab^G1

CuÔi uG1
L&12ab^G2

LCuÔi uG0&. ~B4!
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In the equation~B4! only three-dimensionalr integration is denoted by the brackets. The operatorÔi(r ) is one of the
following operators:

Ô1~r !5r 2/6; Ô2~r !52]25
1

r 2

]

]r S r 2
]

]r D ; Ô3~r !5r .

For any matrix element in~B4! r enters as a polynomial times Gaussian. Thus, ther integration can be easily done. A
remaining integrals have a fractional form and can be computed analytically or numerically. Final results of these calc
are formulated in the text~3.14!, ~3.16!.
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