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Parton-hadron duality in QCD sum rules: Quantum-mechanical examples
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Motivated by recent work on three-point QCD sum rules in heavy quark physics, we use simple quantum
mechanical models to study the basic issue of duality in three-point sum rules. We show that while in all of
these models the duality in two-point sum rules works fine, the duality in three-point sum rules may be 100%
violated, leading to completely unreliable predictions for the matrix elements in question. The implications for
three-point QCD sum rules are discussed. A new estimate for the parameteHQET is given.
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I. INTRODUCTION approximated by the spectral density of the theoretical part

of the sum rule. The assumed validity of this approach un-

Recently there has been growing interest in the issue oferlies all practical QCD sum rule calculations. It is exactly
parton-hadron duality in QCI)1—4]. This is due to both the issue of whether the parton hadron duality holds.

theoretical and experimental progress. On the one hand, we 1n€ issué of the parton hadron duality and the closely

related issue of the right model for the continuum are not

witness further improvements in theoretical methods of m_new. The subject was discussed in detail in the early paper

vestigation of low energy properties of hadrons, such as thBy Shifman, Vainshtein and Zakhard®], following the

QCD sum rules and heavy quark effectlve.theory. Thes?;lassical discussion by Poggio, Quinn and WeinH@igof
methods enable one to calculate the hadronic properties dine parton hadron duality in the case of #ie—e™~ annihi-
rectly from QCD, in a model independent way. These methigtion.
ods heavily rely on the validity of the parton hadron duality.  Unfortunately, one cannot rigorously check the parton
In addition to theoretical advances, one can now comparfiadron duality directly in QCD. Although many arguments
the predictions of these methods with the growing amount ofupport duality, one cannot tackle the issue without the ex-
the new experimental data. This leads naturally to reneweglicit theory of confinement. Consequently, one has to check
interest in the fundamentals of these methods, i.e., in ththe hadron parton dualitfor, rather, its analogugsn sim-
issue of how reliable they are. pler models. The existen¢aonexistenceof duality in these
One especially important application of the idea of themodels is a strong argument f@against the parton hadron
parton-hadron duality is the QCD sum rulgs] (see also duality in real QCD.
Ref. [6] for review). For the past 20 years QCD sum rules While we are still unable to study the issue of duality
have been widely and successfully used to predict masséhrectly in QCD, one can learn a lot by studying various
(the so called two-point QCD sum rujeand the coupling €Xxactly solvable models, the simplest of which are the quan-
constantgthree-point QCD sum ruleof different hadrons tum mechanical potential models. These models have been
and their decays. used to gain insight into the issue of the parton hadron dual-
The basic procedure in QCD sum rules is the followingity in the case of two-point QCD sum rul¢8,15,14.
one: one calculates the physical quantity—the polarization The goal of the present paper is to study the analogue of
operator of a certain number of currents in two ways. Firstthe parton-hadron duality for three-point sum rules in the
we calculate the polarization operator in terms of quarks anfluantum-mechanical potential models. The issue has become
gluons, using asymptotic freedom. Then, we calculate th&pecially relevant recently, due to the extensive use of three-
same polarization operator in terms of hadrons, using dispefoint QCD sum rules for the determination of different pa-
sion relations. One then equates the results from the partdidmeters of heavy quark physiczee e.g. the revieyd0)). In
model (the so called theoretical part of the QCD sum yule particular, it was found that different QCD sum rules lead to
with the sum over the hadron statéke so called phenom- contradictory values of several fundamental parameters of
enological part of the sum ruleUsually, we are interested heavy quark effective theoffHQET), like <B|I52/(2mB)|B)
only in the properties of the lowest lying resonance. Thg11,12; these values, in turn, differ from the ones predicted
contribution of the higher resonances created by the givenn the basis of the analysis of the experimental §&8a14].
currents is taken into account using the so called continuurithis requires us to go back and check once again the basic
model[7]. In other words, we approximate the hadron spec-assumptions behind the QCD sum rule method.
tral density(i.e., the imaginary part of the polarization op-  Our present study confirms the old resUyls15,14 that
erato) by some smeared function. The standard approach istate that the duality works excellently for the two-point sum
to assume that the corresponding smeared function is wetlles. However, for the same models where the two-point
duality works excellently, we shall see that we may encoun-
ter serious problems in the study of the three-point sum rules.
*Email address: PHR34BB@vmsa.technion.ac.il Namely, we shall see that not only local duality, but also
TEmail address: mal@techunix.technion.ac.il generalized dualityin the sense defined in Refl7]) are
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violated in the situation when the two-point sum rules worksults for QCD. The details of the exact solution of the quan-

excellently. tum mechanical models at hand are given in Appendix A,

We shall consider in this note three basic models: while the details of the calculations of the theoretical part of
(A) The harmonic oscillator. This is the potential model the sum rules are given in Appendix B.

described by the potential

V(r)= wr2/2. (1.1) II. DUALITY AND TWO-POINT SUM RULES

Let us recall now in more detail what do we mean by
(B) The linear oscillator. This model is the basis of the quark hadron dua“ty in the case of the QCD sum rules. Con-
realistic potential models; sider the functionf(g?) at some tensor structure in the po-
larization operator of two currents in the sum rule. One cal-
V(r)=ar. (1.2 culatesf by means of the operator product expan<iofrE

(C) The last model to consider is the linear potential per-In the Euclidean domain of momentg=0:

turbed by the Coulombic interaction that imitates the effects

2y _ 44 ...
of the a, corrections in the potential models: f(@)~ap+a/qit--- . 2.0

V(r)=ar—pgir. (1.3 Here the coeﬁicien_ta_lo cor(esponds to the perturbatipn
theory and the coefficients, i=1 correspond to the matrix

The three-point sum rules for the harmonic oscillator wereeléments of the relevant operators over the QCD vacuum.
already studied in Refd17, 18. (The numerical mistake (Possibly, the_ coe_fﬂuentao,ai depe_nd Iog_anthmu:ally on
made in Ref[17] in the three-point sum rule for oscillator °)- The functionf is a smooth function of its argumexq.

(but not, of course, for the QCD sum rules for the slope oflts imaginary part, denoted(s), is a smooth function as
|Sgur_Wise functiom was improved in Ref[lS]) In Ref. well. Another way to calculaté is to express it in terms of
[17], it was shown that the duality may hold for the harmonichadron properties by means of the dispersion relation:
oscillator in generalized sense only: a one-dimensional inte-
gral of the phenomenological spectral density is dual to the
corresponding integral of the theoretical part of the sum rule.
However, later investigatiofil8] showed that even this du-
ality does not take place, and the three-point sum rules foThe imaginary partr,(s)=Im f(s) involved equals the sum
harmonic oscillator do not reproduce the true values. Herepf the delta functions over hadronic resonances contributing
we shall see that the harmonic oscillator case is not an exnto the tensor structure in question:

ception but the general situation. The duality in three-point

sum rules breaks down because the coupling signs become B ) )

alternating. In all three models in question, the duality breaks on(s)= ; Brd(s—my). 2.3

for the sum rules determining ground state matrix elements

of the following operators:

Im f(s)

m ds. (2.2)

f(g?)=

Now, the parton-hadron duality assumes that, starting at
some threshold,, the integrals of the hadronic spectral den-
sity on(s) and the partonic oneg,(s), with exponential

(Note the close analogy between the operadgrand the Weights coincide:
operator that determines the fundamental parameter of the . .
HQET—the slope of the Isgur-Wise function. f op(s)e’s“\"zds~f JUh(s)efsleds. 2.4
As a result of the duality breaking, the standard con- s 5
tinuum model[ 7] does not describe the true spectral density
for the first several resonances. So, the sum rules give an- The minimals; satisfying this equation is called the du-
swers that differ from the right ondbere, in quantum me- ality threshold. For QCD sum rules to work; must lie
chanics, we know, of course, the exact vajusgs 30—50 %. between the masses of the ground state and the first excited
On the other hand, in the case of the kinetic energy operatastate contributing tdf. In other words, the hadron spectral
0,~ —¢?, all nondiagonal transitions give positive contribu- density, averaged over some intervalspfmust be approxi-
tions. The sum rules do work and the duality is not brokenmately equal to the spectral density calculated in the parton
Nevertheless, there is a big continuum contribution leadingnodel. Of course, this is true for the exact spectral densities.
to large uncertainties in the predictions. However, oura(s) is only a part of the exact spectral den-
This paper is organized as follows. In Sec. Il, we reviewsity, namely the part corresponding to the first several terms
the notion of duality and discuss the duality in the two-pointin the OPE, analytically continued to Minkowsky space.
sum rules for the potential models mentioned in the Intro- Once we know what the duality means in QCD, let us
duction. In Sec. Ill, we study the duality in the three-point consider its quantum mechanical analogue. The quantum
guantum mechanical sum rules. The duality fails for the opmechanical analogue of the polarization operator of two cur-

eratorsO;,05, and we trace the origin of its failure. On the rents in QCD is the time dependent Green function:
other hand, for the operatd, the duality holds, and we

investigate the corresponding sum rules. In Sec. IV, we give So(0 T)ZE |,(0)]2eEnT. (2.5
our conclusions and discuss possible implications of our re- ' R

O;~r2, Oj~r. (1.4
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Heren runs over the S-states only. This function describeshotion of fiducial region. By fiducial domain we mean a
the propagation from the poiri®,0) to the point(0,T) in the  window in T where two following conditions hold simulta-
Euclidean time. One can calculate the functi®nin two  neously. The first one is a control over the power expansion
ways. First, we can calculate it as a power serie§ ifor  of Sy. Usually one demands for the last kept term in the
short times. The leading term in such a series is an analoguexpansion to saturate less than 30% of the whole expression.
of the parton model contribution in QCD; the higher termsThis way the upper edge of the window is determined. The
imitate the matrix elements of operators in the operator prodsecond condition is a ground state dominance. This require-
uct expansion. Second, one can use the explicit forfiu. ~ ment is needed in order to suppress the relative contribution
and calculateS, as a sum over the hadron states. In practicepf the exited states. This condition determines a lowest edge
we are interested in the properties of the ground state. So waf the window. Practically the contribution of all exited
represent stateqthe integral term in2.11)] is required to be less than
30%. The fiducial domain corresponds to the region where
_ 2 T, [ —ET two asymptoticgsmall T and largeT) matches. The impor-
So(0.T)=[wo(O) e 0T+ fECdEUh(E)e , 28 tant fact is that the sum rul@.11) are essentially threshold
dependent. Usually we do not know the value of the thresh-

whereo(E) is the exact spectral density, old parameteiE; except the general point that it should lie
somewhat below the energy of the first exited stabich

on(E)= 2 S(E—E,)| ¢ (0)]2. 7 we do not !(now ton However, _th_e standard philosophy of
n=1 sum rules is to seek for a regigm E.) whereE; depen-

) ) ] ) dence is small. The sum rule is then called stable. The varia-
Note that the leading term in the perturbation expansion ofion of the result withE, produces an error, which is un-

the Sp(T) can also be rep_rg\;;ented as the integral of the spegypidable in the sum rule method. Two-point sum rules
tral densityo,(E) timese ='. Then the quantum mechani- giscussed below happen to be very stable with respect to the
cal duality means that, after average over some energy intefnreshold variation. We depict the sum rules with only one
val, optimal value for the threshold parameters, which we define
by the best fit to exact known results. In all models, the
on(E)~0op(E),  E=Ec. 2.8 optimal values appear to be very close to the guesses typical
Equivalently, the integrals of the spectral functions timesin Practice, e.g., the midpoint between the lowest observed
e ET are approximately equal as functionsTofThe integral ~ States. _ _
of the exact spectral density in the right-hand sig&lS) can .Let us illustrate the quantum mechanical dgahty for two-
be also calculated as the difference between the exact GreBRiNt sum rules for theA), (B), (C) models discussed in

function So(T) and the known exact expression for the Introduction[9,15-18. Although similar discussions are al-
ground state. Define ready present in the literature, we shall also consider these

models for the sake of completeness and as simple illustra-

So(0,T)— | ho(0)|?e EoT tions of more complicated cases of Sec. Ill.
Co(T)= [Uo(0)%e EoT (2.9 Consider the harmonic oscillator first. We use the dimen-
0 sionless unitsv=1 and 2n=1. The left, theoretical part of
and the sum rule can be represented as a perturbation series:

3/2

[ dEoy(E)e &7 1, 19, 691
c =27 280" ~ 120060
(2.12

|4h0(0)[ %€~ %o

har, _( 1 )
210 0 OD=\77

Below the functionsCy(T) and C(T) are called “con- The corresponding spectral function is

tinuum” functions. If the parton hadron duality holds, these

two functions must approximate one another for sufficiently 1

small T (corresponding to sufficiently large). Once duality op(B)=72 JE. (213
is established, one can write the sum rule to determine the

ground state parameters. In order to obtain the sum rule we Consider now the right hand side of the sum rule. The

Cy(M=

simply rewrite equatiori2.6) differently: spectral densityr,(E) can be represented as a sum of delta
. functions. For sufficiently high energies the summation can
|¢0(0)|2e—E0T:SO(0’T)_J dEo(E)e ET. be approximately substituted by the integratiérl7]. Using
£ E,=3/2+2n and |¢,(0)|2=(1/27)%?[(2n+1)!1/2"n!],

(2.1)  one obtains

Here, for S; we use the power expansion, which can be v2 gl

obtained in perturbation theory. By fitting the RHS of equa- (rﬂar(E)~2 (—) —ns,g S(E—E,)
tion (2.11) to exponent one is able to determine both ground mo\m o (2m)

state energyE, and its residué,(0)|2. The ground state 2\ 112 1 \32 dE 1
energy can be easily obtained by first taking logarithm of wf ( ) Eﬁ’z( 2—) S(E—E,) T”: yps \E.
(2.6) and then differentiating with respect to tinfe Since & &
our method is an approximate one, we have to introduce a (2.19

w
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FI.G' 1. Harmgnic ohscillator. Duality for the two-point function. FIG. 2. Linear oscillator. Duality for the two-point function.
Continuum functionsCg™ and C,, are plotted vsT. The energy Continuum functionsC} and C, are plotted vsT. The energy
thresholdg, =2.6. thresholdE.=3.4.

The latter is just the theoretical spectral dengyl3. We
see that for sufficiently high energies the duality holds in-
deed.

We can make more detailed estimates, relevant for th

sum rules. Define the continuum functloﬁg(T) andCy(T) its “linear+Coulomb” potential. The model and its numeric

(2.9, (2.10. . . solution are described in Appendix A, while the perturbative
These two functions approximate each other very well for . . . X

T<1.7, (see Fig. 1, where the two functions are depicted foroPanston of the propagator is presented in Appendix B. Be-

o 9- 4, L Pl low, numerical solutions of the model will be referred to as
the optimum value oE.=2.6). Once duality is established, X

; : exact ones:

one can write the sum rule to determine the ground staté
parameters. The fiducial region in this sum rule must, of 1
course, be inside the region where the duality holds. Straight- S(0,T)= @)
forward calculationgsee Refs[9] for detailg show that this ™
is true indeed, and the resulting values coincide with the 2
exact ones very accurately. - 7T3’2+ 1—2T3+ e ) .

Consider now the case of the linear oscillator. We use
units wherea=1. The LHS of the sum rule is given by the  The parameteb,=0.57 is defined in Appendix A. In

asymptotic expansion of the propagator in perturbationycp, parton spectral density acquires corrections dugsto
theory. The corresponding Green function was obtained iferms in the operator product expansi@PE). In C model,

and we can plot the sum rule for the ground state energy

(Fig. 3. One obtainsEg~(2.35+0.05), while the exact

galue ISE§eyac= 2.338. We see the sum rules really do work.
Our last example of two-point functions, is C model with

2772 3
1+ b\ /7 TY2+ boET—bOETZ

(2.1

Ref.[21] (see also Appendix B the Coulomb interaction imitates the role of theseterms.
J7 5 The parton spectral functiof2.13 is modified:
S5(0T) = ——=p| 1— 5T+ T3+ |, 2
(47TT) 2 12 |C(E)_ LEI/Z_{_ E + &E—llz (2 1&
(2.15 Op\E) =42 8w 48 ' '

whereas the corresponding parton spectral function is given

i . Unfortunately, t to th i I d
by Eqg.(2.13. Here and below, the inddx denotes the linear nrortuinarely, contrary 10 e previous examples we do

not know exact solutions of the problem. However, it is natu-

oscillator problem. ; : :
. . ral to believe that the duality holds as in above cases, al-
Pass how to the ”ght'h"?“.‘d sigeHS) of the sum ru!e. though we were not able to prove it explicitly.
Proceeding in the same spirit as for the harmonic oscillator,

the local duality for high energies can be established. We use L
some exact results on the problem, collected in Appendix A. -E 0
The square of the wave-functidw;(0)|? equals 1/(4r). -2.1
The large n asymptotic behavior of the energy levels 20
EL=(3/2n)?". The level densityrh(n) is s
1 1 1 2.4
L o _ ~ _ -
RN~ 7 ; S(k=n)~,— f S(k=mydn=—. as
(2.1 26
The energy density is(E) = o (n) (én/JE), which coin- 2.7
cides with the “bare” spectral functiof2.13). T
0 0.2 0.4 0.6 0.8 1

The duality for sufficiently high energies established, we
tqun to the sum rule. The appropriate “continuum” functions  FiG. 3. Linear oscillator. Sum rule for the ground state energy.
Co(T) andCy(T) of (2.9 and(2.10 are depicted in Fig. 2 The dashed line corresponds to the exact valg, = 2.338. The
for the optimal energy threshol,=3.4. The fit is perfect energy threshold = 3.4.
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FIG. 4. Linear+ Coulomb potential. Duality for the two-point FIG. 6. (s1,S,) plane. Direction orthogonal to the diagonal is a

function. Continuum function€ and C'pC are plotted vsT. The  direction of the integration for the generalized duality.
energy thresholdE,=2.9.
f(Mi,Mg):glgoe—mZ(quu/Mg)

Following the procedure described above, the continuum
functionsC§(T) andC%(T) (2.9 and(2.10 were computed +f ds,dS,07(Sy,S,) € 51/MI—52/M3,
and plotted for the optimal threshol&.=2.9 (Fig. 4.
Within the window (0.2T=<0.9), the duality is valid and 3.1
we can study the sum rules. Figure 5 presents the sum rule ) ] 5
for the ground state energy. The sum rule resultiereq is the relevant coupling constargy is the square of

Eloc: 1.90+ 0.05 matches well the exact OE%cexact: 1.83. the resi_du_e of the Iowegt Iinng resonance created by the cur-
rent,m is its mass and13,M3 are the relevant Borel param-

eters. Local duality means that the latter integral, taken over
some part of theg;,s,) plane is well approximated by the
corresponding integral of the imaginary patj(s, ,s,) of the

o ) theoretical part of the sum ruléalculated using Wilson
The goal of the present section is to study the issue of theypg Eyen if the local duality does not hold, for the three-

duality in the three-point sum rules. While we have seen inysint sum rules it is possible to have the generalized duality.
the previous chapter that the duality holds for the two-point, tact, if there are sign alternating transition, it was argued
sum rules(in quantum mechanics at legsthe situation for iy Ref. [17] that it may be senseless to speak about local
the three-point sum rules is clearly more complicated. Inyality. The parton model density is likely to be concentrated
deed, let us recall the general procedure of the analysis @f the narrow area around the diagonal of tilse,§,) plane,
three-point sum rules in QCEL9]. One considers the func- while the hadron density is spread over the whole plane. It
tion f(q2,q5) at the appropriate tensor structure of the po-was shown in Ref[17] that in this case only “generalized”
larization operator of three currents. One can calculate thiduality makes sense: the partonic spectral density, integrated
function in two ways: using operator product expangite in the direction orthogonal to the diagonal is approximately
theoretical part of the sum rylend saturating by resonances equal to the hadron spectral density, integrated in the same
(the phenomenological part of the sum pulBor simplicity ~ direction:

we shall restrict ourselves here by transitions between the "

same hadron under the action of some current. Then, after f(M2):ngefmé(1/M2)+j dsgh(s)e—s/MZ_ (3.2

the Borel transformation in variableg ,q5 the phenomeno- So

logical part of the sum rule can be represented as

Ill. DUALITY IN THREE-POINT SUM RULES

Here o, (s) is given by the integral

_E" o) | dAcy(s,.50), (3.3
A
-1.9 A=(s;—5,)/2. The parametes, is the continuum threshold
2 (see Fig. 6. The Borel parameters al?=M?=M3 and we
21 stick to the symmetric point. We can define the parton spec-
2.2 tral density exactly in the same way:
2.3 ,
24 f(M?)= j op(s)e” M ds. (3.9
25
26 e e 03 : - T Only for such sum rule there is a hope that the dudlitg-

fined in this generalized senss not violated.

FIG. 5. Linear+ Coulomb potential. Sum rule for the ground ~ Consider now the quantum mechanical analogue of the
state energy. The dashed line corresponds to the exact valwm rule(3.2). The analogue of the polarization operator of
EE.,..=1.828. The energy threshole,=2.9. three currents in quantum mechanics is the funcfibf:

Oexact
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3(71,72)=f d3rK (0,7, + 75,1, 71)O;(r)K(r,74,0,0)
=f d3r2| e B2y (0) 4 (1) Oi(r)

xg e EnmLy(r) i (0). (3.5

HereK(r,7,,0,0) is the amplitude of the quark propagation

from the point (0,0) to the pointr(7;) in the Euclidean
time. At the point ¢,7,) the operatolO; is inserted.

The vacuum expectation valy§¥EV) of the operatoO;
is defined as

<0|©i|0>=fd3r¢3<r>éi<r)¢o<r>. (3.6
The corresponding sum rule can be written as

S(Tlﬂ'z):|lﬂo(O)|2<0|©i|0>e*E0(7’1+7’2)

+J ds,ds,o(S1,S,)e 117 %272, (3.7)

So

Here, on(s1,S,) is the exact spectral density. By,(s;,S2)

we denote the theoretical spectral function obtained, as for Ci

the two-point functions, from th&-expansion ofS;,. From

2681

0.2
0.1 c™
0 T
-0.1
-0.2

-0.3
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hy /—\
-0.5
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FIG. 7. Harmonic oscillator. Duality for the three-point func-

tion. Insertion of the operatod;. Continuum functionscgar and
CB‘{“ are plotted vsT. The energy thresholl.=2.

har, _ —-1/2.
op1(BE)=352E" 7%
3/2 4

har, E3/2_ 1 E- 1/2

Upz(E):Wz e oV (3.9

In order to check duality let us, as for the two-point func-
tions, Eqs(2.9) and(2.10, define the appropriate continuum
functions:

S(TI2.T12)~ | #6(0)| e 5(0] ;] 0)
|40(0)|?e~F07(0]5;]0)

above it is clear that we must study the symmetric sum rules,

i.e., 7,=T1,=T/2 (see Ref[17] for detaily. We need to com-

pare theoy(s) integrated with the weighe ST, with the
corresponding integral of(s). Here s=(s;+5s,)/2, and

Jg dEoy(E)e” ET

C.,(T)= — .
o) (01 e 570/ 51[0)

(3.10

Uhvp(.s? are the spectral densi;ies obtgined from the s_pectra\;\/e shall use here the exact answers for the harmonic oscil-
densitiesoy, 5(S1,S,) after the integration over the variable lator:

A=(s;—5,)/2 in the same way as in e(3.3).

Let us now consider the sum rules and duality for three

models considered above and for the operators:

0,(r)=r26; O,(r)=—3% O(r)=r.

A. Harmonic oscillator

Since the operato®3 has no analogue in QCD, the sum
rules only for two operator®, and O, will be discussed.

These sum rules were already investigated in Réfs, 18|.

For the sake of completeness their analysis is included angy

extended:

692

1
har = — 5T =T —T°
SITI2T12)= 35 —p 710 (1 3" "640' 60480

+-ee
N TI2,T12) = gy | 1 ST24 T
S(T12, )—MT)s/zT—s/z 57 T2ga! T

(3.9

The corresponding parton spectral density is

Eot'=3/2; |yg(0)[>=1/(2m)>

<0| ©1|0>har: 1/3E83r; <0| ©2|0>har: 1/2E8ar.

(3.11

Let us consider the sum rules for the matrix elements

(0|01]|0)arand(0]|O5|0)py,. For the operato®, both func-
tions Ci*" and C3" are depicted for the energy threshold
E.=2 (Fig. 7). An important fact is immediately noticeable.
The true continuum is negative and cannot be approximated
any positive asymptotics. Hence, no duality persists up to
the first exited state. Note also that although the continuum
contribution to the theoretical part of the sum rule is almost
negligible (less than 5% the real contribution of the exited
states is significant and is about 40% of the ground state. Our
choice ofE.=2 was motivated by standard guess—it is a
midpoint between two observed statds;=3/2 and
(Eo+E)/2=5/2. The displayed picture is not sensitive to
the threshold variation and the duality is broken for any
threshold parameter.

Let us illustrate how duality breaking becomes fatal for
the sum rule. The sum rule is obtained by transforming the
continuum in equatiof.7) to the LHS and then dividing the
expression by the two-point sum rUlEqg. (2.11)]:
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FIG. 9. Harmonic oscillator. Duality for the three-point func-

FIG. 8. Harmonic oscillator(a Three-point sum rules for VEV  tion. Insertion of the operatod,. Continuum functionsC5*" and

N h _
of the operato®;. The energy thresholé,=2. (b) Three-point ~ Cp2 are plotted vsT. The energy thresholli.=2.
sum rules for VEV of the operatdd, with N=3 explicitly taken

resonances. The energy threshEEiZS. The dashed line corre-

sponds to the exact valy®|O,|0)1&" =1/3E5

illustrate the point, we include in the sum rule explicitly a
few low lying resonances. Correspondingly, the continuum
thresholdE, rises:

S(T/2T/2)— f£ dEoy,(E)e ET . N )
— " —— (3.12 f dEO'pi(E)e_ETHE aLe—EkT+f NdE(Tpi(E)e_ET.
So(T) — J odEopo(E)e Ec = £l

(3.13

HereS; andS, are obtained by perturbation theory. Like in Here,k runs over a numbeN of the first low lying reso-
the previous case of two-point functions we have to deternances in equatiof3.5. The residues are denoted By,

mine a fiducial region. The same conditions of the groundypile the resonances are ordered by their energy Iéggls
state dominance and the control over the power expansionsyy the case of the harmonic oscillator exact analytic expres-

are gpplled. .Of course, for. the three-point sum (G142 we sions for the energy levels, and the residues of the interest
obtain two fiducial domains. One corresponds to the nu-".

menator(three-point pajtand another—to the denominator ay are known[17]. The energyE, =3/2+k:
(two-point par}j. The final window is then obtained in the 1 4k+3 1 (2k+1)!

(0|O)]0)=

matching region. In some three-point sum rules discussed 1_ .
below continuum contributions are not small. Thus, the stan- % (2m¥ 6 2% (k)? k even;
dard prescription of the metho@equirement for the con-

tinuum to be less than 30Pmay lead to a situation when the 1 1 2k+3 1 (2k+1)!

window almost shrinks to a point. In such cases we increase a=(-1) (2m)%? 3 22K (kH? k- odd.

the bound up to 50%. An important notice is that three-point
sum rules(3.12 depend on twa(in general independent The sign alternating nature of the exact spectral function is
threshold parametes) andE,, . While EC has to be fitted by ~ clearly observed.

the corresponding two-point sum rulg, is a varying pa- We expect the energy threshoB} to be of order
rameter of the three-point sum rules. In practice, one usuaIIEN_the energy of the last explicitly taken resonance. Sum
takes both thresholds equal. Below we present some argygle with continuum of the fornt3.13 is depicted folN=3
ments showing that in realiti. is likely to be less than its  on Fig. §b) (EY'=5). The desired plateau is clearly restored.
two-point partnerES. Like for the operatoO; (see abovg

in all three-point functions, which display the duality break- < 62 > (E™)

ing, we take for the energy threshdiq the value, which is har %o
somewhat close to midpoint between two lowest observed
states. In all these cases, the sum rules appear to be almost ¢~
nonsensitive to the threshold variation and our main conclu-

0.8

sions on duality violation remain to be valid. 06
Figure 8a) shows the sum rule fof0|O;|0)y, With the Y R e e S
energy threshol&.=2.5. Within the window (0.5T<1.6)
the answer given by the sum rule is about 45% off from the %4
exact one(3.11). Thus, the sum rule leads to completely 0.3
wrong prediction. In the Ref[18], it was argued that this T

failure is due to nondiagonal transitions, which are negative 02 025 05 o075 1 12 135 175
and numerically large. These transitions are not sufficiently

suppressed and they produce a strong influence on the sum FIG. 10. Harmonic oscillator. Three-point sum rules for VEV of
rule. Sign alternating nature of the exact spectral densityhe operatorO,. The dashed line corresponds to the exact value
on(E) leads to the duality breaking at high energies. To(0|0,|0)" =1/2E}". The energy thresholf,=2.

exact
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FIG. 11. Linear oscillator. Duality for the three-point function. 0.2 0.4 0.6 0.8 1

Insertion of the operataD;. Continuum function<C andCh, are

o . . e
plotted vsT. The energy thresholli,=3.3. FIG. 12. Linear oscillator(a) Three-point sum rules for VEV of

the operatorQ;. The energy threshol&,=3.3. (b) Three-point

) . ) ~ ) sum rules for VEV of the operatdd; with N=11 explicitly taken
The situation with the operatdd, strongly differs from  yegonances. The energy thresh@li=7. The dashed line corre-
the picture described above. Despite the fact that the nondgponols o the exact valy@|Os|0)\, ..~ 1.559.

agonal transitions are not vanishing, they are of the sam

sign as the diagonal. Here we use the equation of motion to 1 1 4
obtain residuesy : S&(T/Z,T/Z)z 5 T 1_( \/;_ ﬁ 324
Ex 3 3 247 16V2

aﬁzm—zaﬁ, k even; aﬁ=(—1)§a§, k odd. (@_F>T3+m :
(The factor 3/2 in front ofa; is due to definition of the L 3 4 .
operatorO; .) SA(T12,T12)= 75 am 75\ 1~ 3\/;1_

Thus, the exact spectral function is always positive. This
fact will be shown to be crucial for the duality to hold. In 52v2 1664 _,
order to check the duality, the continuum functid®$" and 45 1440 B
ngr, Eg.(3.10, are depictedFig. 9) for the optimal energy
thresholdE.= 2. Both functions match excellently and the 1 1 77
duality is established. Consequently, the sum rule for VEV S§(T/2,T/2): —= 1_( 27— _) T3/2
of the kinetic energy operator can be investigateid). 10. 4= T 8
An important remark is in order. In the case at hand, con- 35 5i
tinuum dominates in the sum rul@ saturates more than +(___) 3 (3.14
50%) and the window is practically absent. The obtained 48 64

sum rule displays strong sensitivity to the continuum thresh:l_he corresponding parton spectral densities are
old. Thus, such a behavior of the sum rule is much like the P gp P
one obtained in QCD12]. Nevertheless, fitting the energy 1

threshold, the exact resulB.11) can be easily reproduced: o5 (E)====E 12

- 2
(0]0,|0)1a= 0.5 atE,=2. At this point we disagree with the 32m
conclusions of Ref[18] on the sum rule failure. In this pa- 3 4 4
per, the continuum threshold was taken the same as for the o (E)= —3,7<—E3’2— _> ;
two-point function E.=2.5. However, in the three-point P 1677\ 3/ 3Jm
function at handE=2.5 is the energy level of the first non-
diagonal transition state. Consequently, for the sum rule the L _
value of the energy threshold eventually has to be taken ‘Tps(E)_m' (3.19
lower.

L
p

The general picture with the three-point sum rules for the
linear oscillator is very similar to the one of the harmonic
oscillator. We start from the operat@, and check the du-

With the same emphasise on duality, let us investigate thgjity first. Figure 11 shows the continuum functiog}§ and
tpree—pomt functions for the linear potential. The operatorCrLJ3 [Eq. (3.10]; E,=3.3. Again, the true continuum is
O3 plays now a role of the potential and it is the virial part- mostly negative and cannot be represented by the asymptot-
ner of the operato®,. Since no exact propagator is known, ics. A best fit would be reached in the “no continuum”
asymptotic expansions of the three-point functidi&). approximation. Consider now the sum rule for the VEV of
(3.5] are obtained perturbatively. Details of this computa-the operator. The window for the linear oscillator is moved
tions are presented in Appendix B: to the left: 0.3<xT=<0.7. Comparing to the exact numerical

B. Linear oscillator
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< é > ergy threshold parameter 5,=2.8, which is significantly
08 'L below the threshold parameter corresponding to the two-

point sum rule.

As a common property of the three-point functions with
sign changing spectral functions, we see that a large amount
of resonances must be taken into account explicitly. In other
words, no duality is valid in the low energy area. This effect
is due to the fact, which was already mentioned. The window
moves to the left, where exited states are not sufficiently
suppressed.

NV T

0.2 0.4 0.6 0.8 1 C. Linear + Coulomb model

FIG. 13. Linear oscillator. Three-point sum rules for VEV of the  Coulomb term added to the potential improves a bit the
operatorO; and the sum rule witiN=11 explicitly taken reso- Situation slightly throwing out the window to the right. How-
nances. The dashed line corresponds to the exact valuéver, the general picture of the duality breaking still persists.
(0/04]0)% .= 0.486. The energy threshol@s=3.3, EN=7. We now present our results for the three-point sum-rules in

“linear + Coulomb” potential. The three-point functions
. ~ (3.5 are obtained by perturbatidsee Appendix B
result (0|O3|0)5, .= 1.559, one(0|O50)-=1.1+0.1 yield

by the sum rulgFig. 12a)] is 35% smaller. We account here

1
| _
for the situation, when the positive diagonal transitions al- St(T/2,T/2)= Wﬁm(ﬂbo

most cancel the negative nondiagonal matrix elements. This

results in the fact that the large number of resonances must

be explicitly taken in Eq(3.13 in order for the sum rule to
be saturated. Figure {td presents the sum rule &=11
(The numerical values for the residuag are given in the
Tables Il and Il). The energy threshold IE.=7 that lies
between third and fourth energy levels.

Consider now the operat@,. The sum rule displays the
same problem with duality as for the harmonic oscillator. No

4(m—1
¥T1’2+ b31.358"
3r

4
—bol.179r%—| Jr— —=|T%
i (ﬁ 3\ )

a
(247 16\/2) 3)
+| 755~ 72| T°):

128 15

v

3 44217
duality persists up to the first exited state. Figure 13 shows S'ZC(TIZ,T/Z): 16,372 T—5,—2(1+ bo e T2+ h20.985T

the sum rule for VEV of the operator together with an im-
proved continuum mode(3.13. The plateau is restored
whenN=11 transitions are taken explicitly.

Let us turn now to the three-point function with, op-
erator inserted. The corresponding hadron spectral function
is positive. As it was argued above, positive spectral func-
tions do not cause duality breaking. The case at hand con-
firms this statement. Although the sum rule strongly depends
on the continuum threshold parameter, it, nevertheless,

yields the correct valugFig. 14; (0/0,|0)-=0.81+0.01,
compared to the exaé0|0,|0)%,..=0.779. The optimal en-

<0,>.

1.1

1

0.9

0.8

0.7

0.6 T

0 0.2 0.4 0.6 0.8

FIG. 14. Linear oscillator. Three-point sum rules for VEV of the
operator ©,. The dashed line corresponds to the exact value
(0]0,|0)%,..=0.779. The energy threshole,=2.8.

4
—00.89T2— —=T3"2
’ Vm

s2v2 1664 |
45 1440 )

i T/2T/2—iE 1+bol.679MY24+p21.477T
S&( ’)_4772T+°' +b21.

7w

- b01.1791'2—( V2m— T) T2

(35 577) 3)
2o (3.16

The corresponding spectral densities are

1
Ic — —1/2.
opi(B)=352E 5

+2

cr'rfz(E)=—33,7 iE3’2+b04 E+b31.111FE?
167\ 3\ 3w

4
——=- bOO.S(EUZ) ;

3w
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FIG. 15. Linear+ Coulomb model. Three-point sum rules for ~ FIG. 17. Linear+ Coulomb model. Three-point sum rules for
VEV of the operatoiO,. The dashed line corresponds to the exactVEV of the operatorO; and the sum rule witiN=>5 explicitly
value<0|©2|O)L =0.972. The energy threshole, = 2.4 taken resonances. The dashed line corresponds to the exact value

exac! N N s

(0|04|0)L,..=0.399. The energy thresholiig=2.9, EN=5.5.

IV. CONCLUSION

1
o E)= 221+ bo0.94& ~1?). (3.17

Motivated by the recent work on three-point sum rules in
QCD, especially connected to heavy quark effective theory,
we studied the two- and three-point sum rules in three dif-

The behavior of the sum rule for the kinetic energy op-ferent nonrelativistic quantum mechanical models with con-
erator is similar to ones of the harmonic and linear oscillafining potentials. We have seen that though in all cases the
tors. Because of the positiveness of the exact spectral funéwo-point sum rules work perfectly well, the three-point sum
tion no duality breaking is accounted for. Figure 15 showsules may fail. Their predictions for the matrix elements of

the sum rule at the optimal energy thresh&g=2.4. The
exact valug0|O,|0) ..=0.972 and it matches well the one
given by the sum rule¢0|0,|0)°=0.96+0.02.

Let us now consider the operatddg andO,. Below we

the operatorsf)m may differ by 30-50 % from the corre-
sponding true values. The reason of the failure is the break-
down of duality. The theoretical spectral function is always
smooth and positive. On the other hand, we have seen by
explicit calculation that the “phenomenological” spectral

plot two graphs representing our results on the three-poindensity is wildly oscillating and even has a sign changing
functions with duality breaking. Figure 16 shows the usualcomponent due to the sign changing nondiagonal transitions.

sum rule and the sum rule with=>5 explicitly taken reso-
nances E.=5.5) for VEV of the operatof)g,. Note that this
operator is no more a virial partner of the operabor. Tak-

ing five transitions explicitly we restore the plateau at thequently,

exact level0|O|0)’ .= 1.401. Figure 17 closes our analy-
sis. It describes the sum rule and the sum rule Wth5

explicitly taken resonances for VEV of the operatdr ;
<O|Ol|0>l§xactzo'399'

A
< O3>
18

1.6
1.4
1.2
1
0.8
0.6

T

0.2

0.4 0.6 0.8 1

FIG. 16. Linear+ Coulomb model. Three-point sum rules for
VEV of the operator©3 and the sum rule witiN=5 explicitly

We have seen that, though the diagonal transitions between
radial excitations have positive transition constants, the non-
diagonal transitions always have negative sign. Conse-
duality does not work for the first several reso-
nances, even if one understands the duality in a
“generalized” sense(i.e., even after the integration in the
direction orthogonal to the diagonalThe averaged “had-
ron” density strongly differs from the “theoretical” one. It
seems that the duality starts to work for energies high
enough. The corresponding threshold lies near the 3rd—4th
resonance and depends on the model and on the operator.
However, this is of no practical interest, because one cannot
separate the leading resonance contribution in order to apply
the sum rules. The standard continuum model does not work,
and the smooth theoretical spectral density strongly differs
from real one. For the two-point sum rules the whole situa-
tion is quite contrary: the duality does work in all known
examplegSec. l)).

We have also seen that the absence of the continuum has
no relation to the validity of the sum rule. In fact, small
continuum contribution may arise from the mutual cancella-
tion of positive (diagona) and negativegnondiagonal tran-
sitions. Such a behavior is displayed by the sum rules for the
matrix elements of the operators and r?. Moreover, it
seems that the absence of the continuum contribution is a
general feature of the sum rules whose right hand side is

taken resonances. The dashed line corresponds to the exact valgentaminated by the sign changing transitions. On the other

(0]O3|0)5,0c=1.401. The energy threshol@&=2.9, EY=5.5.

hand, sum rules for the matrix element of the operator
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work sufficiently well, despite the fact that they are domi- 0
nated by large continuum. The duality holds thanks to the 0.1
positiveness of the spectral density. This property is very 02
similar to that for the three-point sum rules for the transitions 3 os
under the action of Hamiltonian, where the duality is also not Z
violated[18]. © 04
One may conclude that the duality breaking is a general x4 %3
feature of the quantum mechanical analogue of the QCD sum 0.6
rules in the case of sign changing nondiagonal transitions. -0.7
Furthermore, our study suggests that the duality still holds if 08
all transitions are positive. However, the continuum contri- 03 04 05 06 07 08 09 f
bution to the sum rule is likely to be large and the result may t [GeV]

heavily depend on the continuum threshold. .

Our results were obtained for the nonrelativistic quantum FIG. 18. The Ball and Braun sum rule to leading-order as a
mechanical models. It will be very interesting to check if Ourf_unctlon of the Borel parametarfor different values of the con-
picture of the duality breaking still holds for the relativistic i"Uum  thresholds: @ wo=1 GeV, ©,=0.7GeV; (b)
analogues of the mode(#\), (B), and(C). @=1.2 GeV, w;=0.85 GeV;(C) wo=1GeV, w,=0.8 GeV. The

Unfortunately, we do not know yet, what may be impli- 92Shed line indicates the working region.
cations of our results in real QCD. Several conclusions, howdiagonal transition to the polarization operator is suppressed
ever, can be reached. First, one must be very careful in pregy the factor exp—(E;+Ey)T/2], while the contributions of
ence of the sign alternating transitions contributing to thethe first diagonal transition in the three-point sum rule as
polarization operators. Second, the smallness of the corwell as of the first excited state in the two-point sum rule are
tinuum contribution is not always of a good omen, and maysuppressed by ekp E;T]. Consequently, we decided to re-
occur due to complicated cancellations in the right hand sidexamine the sum rule of Reff12]. In the latter, the energy
of the sum rule. Nevertheless, the situation in QCD may béhreshold for the three-point sum rulevd~1—1.2 GeV)
considerably better. Borel transform in QCD may suppresvas taken exactly the same as for the two-point sum rule. We
nondiagonal transitions stronger than in quantum mechanic§ave seen above that this treatment of the sum rule may lead
and this may lead to the smallness of the contaminationfO @ significant overestimation of the matrix element. We
Perhaps, the degree of contamination depends on the mativestigated the leading-order sum rJiEgs. (3.10 and
element one calculates and the form of the sum rule chosefd-12 of Ref. [12]] for the kinetic energy operator for vari-

Certainly, further work is needed:; in particular, it is desir- ©US three-point thresholds, ~0.8 GeV. The results of our

able to investigate whether the complete relativistic calcula@n@lysis are depicted on Fig. 18. The sum rule yields the

tion improves the situation with duality. Detail examination f/loWing value for the matrix element of the kinetic energy
of whether in the three-point QCD and HQET sum rulesOPerator:(B|D?/(2mg)|B)=—0.3+0.1 GeV¥ compared to
there are indeed sign changing transitions is required. ThéB|D?/(2mg)|B)=—0.6+0.1 GeV? for w;~1GeV. The
problem of their relative suppression must be carefully studobtained value is in a good agreement with the ones obtained
ied. in Refs.[13, 14. (Of course, this result must be considered
Our work was essentially motivated by big discrepancied!ot as a QCD sum rule prediction, but rather as an indication
among values of the matrix eleme(®|D2/(2mg)|B) ob- that there is no contradiction between Rdf$3, 14 and

. ; . CD sum rule approach.
tained using d|ﬁerent sum ruldsee Ref.s[.u’ 12)) Conse- N Note added inpgroofgjfter this research was finished we
quently, we work with simple nonrelativistic analogues for o5 e that the guantum mechanical duality was studied in
the potential models of B-mesons and study th% sum rules fgp ¢ [24] for S— P transitions.
nonrelativistic analogues of the HQET opera®f/(2mg)
(and operators related ©2/(2mg) by the virial theorem ACKNOWLEDGMENTS
Our results imply that the value for the matrix element of the  The authors are indebted to M. Shifman for useful discus-
operatorD?/(2mg) from Ref.[11] is underestimated. On the sions. This work was supported by the Israel Science Foun-
other hand, the situation in quantum mechanics seems to isiation under the contract 94805 and the Technion VPR fund.
close to that considered in Rdfl2]. However, the strong
dependence on the continuum threshold implies that the ac- APPENDIX A
curacy of the relevant sum rule may be quite low. Moreover, |In the first part of this appendix we present some known
in the text, we argued that the energy threshold of the threanformation about solutions of the three-dimensional Schro
point sum rule should be taken lowgbout 20%, according dinger equation in the case of linear potential. Three opera-
to our experiencethan that of the corresponding two-point tors relevant to our study are defined. Their matrix elements
sum rule. The reason is that the contribution of the first nonare computed numerically and represented in tables. The sec-

TABLE I. The energy levels of quantum mechanical problem with linear potential.

E§ E} E3 ES = E: Es ES Ej Es

2.338 4.088 5.521 6.787 7.944 9.023 10.040 11.009 11.936 12.829
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TABLE Il. Matrix elements of the operattﬁAD1 between states of TABLE lll. Matrix elements of the operat(fD3 between states

linear potential problem. of linear potential problem.

(i[Oalj) 0 1 2 3 4 (i[Oslj)L 0 : z 3 4

0 0.486 0.427 —0.039 0.010 —0.004 0 1.559 0.653 —0.197 0.101 —0.064

1 0.427 1.485 0.950 —0.075 0.018 1 0.653 2.725 0.974 —0.275 0.134
2 —0.039 0.950 2.709 1.556 —0.116 2 —0.197 0.974 3.680 1.248 —0.341

3 0.010 -0.075 1.556 4.094 2223 3 0.101 -0.275 1.248 4,524 1.493
4 —0.004 0.018 -0.116 2.223 5.610 4 —0.064 0.134 -0.341 1.493 5.296

ond part of this appendix is devoted to the same analysis for

1
Ly 2 _—
the linear+ Coulomb potential. [ 4n(0)*=5—, (AS)

: . and does not depend on However,
1. Linear potential

We look for exact solutions of the three-dimensional

LiO) —
Schralinger equation: Ua(0)=(— 1)”\/?.
[—d°+ ar]zph:E,L,l//rL] . (A1) Below, we present the exact numerical results for the ma-

. . . trix elements of the following operators:
In the dimensionless variables, A ) .
_ 0,=x%16; 0,=—¢% Oz=x.
EL=EL/a?® x=ra'® _ _
The matrix elements are defined:

Equation(Al) takes form ) A A
S L MEE<iIOkIJ>Ef A%yt * (O Y (x).  (A6)
[—ﬁ +X]l//n:Enl/’n- (AZ)
. ] ) ] Note that by the equation of motion
Since the wave-function of the orbitally exited states are van- . B N
ishing in the origin, we restrict our analysis to S-states only. MY =E;s8'!-MY. (A7)
The S-states of the equatidA2) are given by the normal-

ized Airy functions: The lowest quarters of the matrickl;, andM ; age given by

Tables Il and Il respectively.
L .
= XA (x—E)/x. A3
Yn=CONSKAI (X~ Ep)/x (A3) 2. Linear + Coulomb potential
Imposing condition of nonsingularity on the wave function ’ e =lc lc
in the origin, we obtain the discrete spectrum: [= "+ V() ]n=Eny . (A8)
The potentiaM(r) is taken of the form

_ B as(r) B 27
Table | presents ten first energy levels of the problem. Tak- Vh)=ar—g——; adr)= SIN(6+471)° (A9)

ing into account the well-known fa¢Ref. [20])

Ai(—E,)=0.

Here,a4(r) is a running coupling constant and it reflects the
asymptotic freedom of the strong interaction. In order to pass
to dimensionless variables the following change of variables
is performed:

we can determine a large asymptotic behavior of the en-

Ai(é— —oo)~sin(§§2’3+ 77/4) ,

ergy levels: x=(2ma)Y3; E°=Ef(2m/a?)'".

> In the new variables equatid/8) reads

< 3l2_ .

3B mnm N (A9 [— 4+ x—bO)/X] gl = EL L
An important and very special property of the Airy functions b(x) = 8m(4m?/ ) (AL0)
is 27In(6+ y(2ma)¥x) "

TABLE IV. The energy levels of quantum mechanical problem with linea€oulomb potential.

ES EY EY ES ES ES ES EY ES ES

1.828 3.745 5.245 6.551 7.735 8.833 9.865 10.845 11.783 12.684
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In Appendix B we present a perturbative determination of C
the propagator for the given problem. Unfortunately, this oo
procedure cannot be performéat least analyticallyif the 18

running logarithm is present. Since we do not wish to intro-
duce any uncertainty due to the logarithm factorization, we
fix the running coupling constaiat, at some value. A special 1.6
choice of the parameters is not important for our analysis,

1.7

.............
........
.....
......
....
.

but to be concrete we choose some quasirealistic [2@s 18
the string tensione=0.14 GeV; 6=2; y=1.87 GeV'%; 14
for the constituent mass we take=0.35 GeV. When re- 13
lated problems are investigated within QCD the running cou- N
pling constantag is usually of order 0.3. In our study is 1.2 10 20 30 %0 50 50 L
set to be 0.28, which corresponds to some fixed point in
space, namely,=0.088. In the text, a parametiy is used FIG. 19. Cg, as a function oNy .
and it is defined aby=b(xg) (A10).
In order to solve equatiofA10), we consider the Cou- TABLE V. CoefficientsC’ .
lomb potential as a perturbation. Solution of the nonper- il
turbed problem was described above. The Hamilst0) is ¢l 0 1 2 3 4
diagonalized in the basis of the wave functidAS):
1.83 —-1.66 —-1.58 1.53 1.47
e N KoL 1 —1.66 1.50 1.44 -1.39 -1.35
lﬂn(X):kZl Chth(x). (A1) ~158 1.44 137 -134 -131
3 1.53 —-1.39 —-1.34 1.32 1.28
In order to obtain the low energy spectrum it is sufficient4 1.47 -1.35 -131 1.28 1.25

to take into account only a few leve{eereN, denotes the
number of levels Table IV presents eigenvalues computed

by the numerical diagonalization. ) -
Products of the wave functions in the origin are TABLE VI. Matrix elements of the operatdd,; between states

of linear + Coulomb potential problem.

1% , :
Crn= (0¥ (0)= 7= X CRCH(—1)**¥. ([Odiye O 1 2 3 4
k,k’

(A12) 0 0.399 0.367 0.042 —-0.013 -—0.006

L c . 1 0.367 1.363 —0.874 0.079 0.021
CoefficientsC;,, appear to be slowly changing monotonic , 0.042 —0874 2569 1.471 0.120
functions of the number of level, taken into account in 4 —0.013 0.079 1.471 3.942 —2.136
equationg/All) and(A12). In order to extract these coeffi- 4 —0.006 0.021 0.120 —2.136 5.448

cientsN; =60 was taken and then the results were extrapo-
lated. To illustrate the point we pl@(, as a function oN, A
(Fig. 19. This function slowly approachegss a power layw TABLE VII. Matrix elements of the operatdd, between states
to its limiting value C5,=1.83. Table V is devoted to the of linear + Coulomb potential problem.

coefficientsCS .

As for the linear potential, we present tables of numeri=(i|Ozli)c 0 1 2 3 4
cally calculated exact matrix elemen(fBables VI, VII, and 0 0972 —0810 —0338 0216 0162
vii). 1 —0.810 1.483 1.093 —-0.390 -—-0.237

2 —0.338 1.093 1934 —1.348 -0.445
APPENDIX B 3 0216 —-0.390 —1.348 2342  1.582
In this appendix, we present a perturbative derivation of 0.162 —0.237 —0.445 1.582 2.718

propagators and matrix elements of interest. The potentiat
V(r)=ar— B/r is considered as a perturbation to the free

article motion. To study “pure” linear potentig@ must be . -
P y'p P @ TABLE VIII. Matrix elements of the operatdD; between states

set to zero. . .
The “free” propagator is given by of linear + Coulomb potential problem.
G Tr't 1 (F_ r_7)2 <||63|J>Ic 0 1 2 3 4
ol = T T i) 1401 0607 0197 —0.105 -—0.068

(B1) 0.607 2.615 —0.929 0.271 0.136
0.197 —-0.929 3.591 1.206 0.336
—0.105 0.271 1.206 4.447 —1.454

—0.068 0.136 0.336 —1.454 5.227

Note that in our units &h=1. This factor can be always
restored in final expressions. The exact propag&drcan
be expressed in a formal perturbation series:

A WNPELO
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T
Ge"(r,T,r’,t’)=Go(r,T,r’,t’)—J d3sf d7rGy(r,T,s,7)V(S)Gg(s,7,r',t")
t!

T T
+fd3sf de dgs’f d7'Gy(r,T,s,7)V(S)Gy(s,7,8", 7 )V(s')Gy(s', 7' 1, t")+--- . (B2)
t’ t’

In the following analysis we retain only terms up to the second order in perturbation. All terms of thexdr8éra 82, a2
and higher will be systematically omitted. We denote:
G®=Gy+ aGt+ a?G5+ BGT+ B2GS + 20 BGLE
=(Gols|Go): G3=(Gils|Go); Gf=(Gol1/s|Go):
Gy =(G{|1/s|Go); G5 =(Gi|L/s|Gy). (B3)

Here, brackets denote the integration ogeandt defined in Eq.(B2). Unfortunately, these integrations cannot be done in
closed form. However, the time integration can be performed. This is done with the aid of the following intBgfal23]):

2 2

J'td oy _Jmxty _(x+y)?,
T T) AR T m T ATy & t |
t 1 Xy w (x+y)?

fodT(t—T)sllelzeX B (t—T)_7 _X_\/fex Tt

After the time integration is removed, the angular integration can be easily performed as well. The remaining integrals over
the radial components are of a nonreducible form, and we cannot proceed any further. Finally we arrive at the following
expressions for the propagator components:

, 1 r * 22Ty 2
GE(",T,OI ): — (47T)3/2 2(T_tl)l/2|:fl dxe XErel4(T—t )+e re/4(T—t ):|’

. 1 1 = dsg (=
Gh(r,T.0') = - f f dwi
0 1

e~ r+s(1+w)2aT—-t")_ e (r=sl +ws)2/4T—1")
32773/2 (T_t/)l/2 r

+ fwdyy(e’ (r+s(1+wy)24T—t') _ o= (|rs+wys)2/4{Tt’))} ;
1

G(f(r,T,O,t’)= . (4;)3/2 (T_lfr)l/z fw dYX[e_ r2(1+2x)2/4{T—t’)_e— r2(|1—x\+x)2/4(T—t')];
dS dX 1+2x 2 ' 2 ’
GC r,T,O,t’ J j j — (r+s(1+w))“/4T—t )_e— (Jr—s|+ws)“/4T—t") :
2( ) (4 )3/2 2(T t )1/2 - x|+x ]
GEC(r,T,O,t’)= N (471-)3/2 2(T 1t/)1/2 Jx dfsz fxdw fxdxx(e‘ (HS(HWX))ZWT_M_e_(lr_sHWXS)ZM(T_t,))
- 0 1 1

+ e TsA+w)AT—t") _ o= (Ir—s|+ws)?/4T—t")

In order to obtain equation&.15 and (2.17), the limit r—0 is taken. At this limit the propagator componef&3) are
completely calculated analytically and results of R&fl] are recovered.

Having in our disposal the exact propagatBB), we can proceed in computing the matrix element of the oper@dry.
We are interested only in the following amplitudes: the free propagation from the (Ogdtin the point ¢,T/2), where the

operatorO;(r) is inserted, and then there is the free motion to the poiri)(0,
(GOT,r,T/2)|0i(N)|G*(r,T/2,0,0) =(Go| Oi|Go) + 2a(G}| 01| Go) + a*( G| 01| GL) +2a*(G3| Oy Go) + 28( G| Oi| Go)

+ B GS|0i|GT) +28%G5|0i|Go) +2a B(GS|Oi| GI) + 2a8(G5° 0| Gy).  (BA)
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In the equation(B4) only three-dimensionat integration is denoted by the brackets. The operél;(rr) is one of the
following operators:

~ “ 10 0 ~
O4(r)=r?/6; Oz(r)=—a2=—2(9—r(r2—; Oz(r)=r.

r ar

For any matrix element ifiB4) r enters as a polynomial times Gaussian. Thus,rttietegration can be easily done. All
remaining integrals have a fractional form and can be computed analytically or numerically. Final results of these calculations
are formulated in the texB.14), (3.16.
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