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We use asymptotic Padspproximants to predict the four- and five-logpfunctions in QCD andN=1
supersymmetric QCD, as well as the quark mass anomalous dimensions in Abelian and non-Abelian gauge
theories. We show how the accuracy of our previgifunction predictions at the four-loop level may be
further improved by using estimators weighted over negative numbers of flGM&BAP’s). The accuracy of
the improved four-loop results encourages confidence in the new fiveAdopction predictions that we
present. However, the WAPAP approach does not provide improved results for the anomalous mass dimen-
sion, or for Abelian theorie§S0556-282(98)05105-4

PACS numbgs): 11.10.Gh, 11.15.Bt

I. INTRODUCTION and statistical mechani¢8]. In recent years, these have been
applied to obtain successful numerical predictions in various
One of the greatest challenges in QCD is the calculatiomuantum field theories, including QCD, and justifications for
of higher orders in perturbation theory. Phenomenologicallysome of these successes have been found in some math-
these are important because the relatively large valug af  ematical theorems [4] on the convergence and
accessible energies implies that many orders of perturbatiorenormalization-scale invariance of PA’s. These theorems
theory are required in order to make precise quantitativapply, in particular, to perturbative QCD series dominated by
tests. Theoretically, one expects the coefficients of the perenormalon singularities, and in the largg-limit.
turbative series for many QCD quantities to diverge factori- Based on these theorems, a new method was introduced
ally, and the rates of these divergences may cast light ofg] for estimating the next-order coefficients in perturbative
issues in nonperturbative QCD, such as the existence angLiantum field theory series on the basis of the known lower-
magnitudes of condensates and higher-twist effgts order results and plausible conjectures on the likely high-
On the other hand, while progress in the exact calculagrger behavior of the series, as also reviewed in Sec. II. This
tions of higher-order terms in perturbative QCD ser!es hagnethod “corrects” the conventional Pad@proximant pre-
been startling, with many new multiloop results having re-gjction (PAP) of the next term in the series by using an
cently become available?], existing perturbative techniques asymptotic error formula, providing improved predictions

may not enat_)le much further progress in exact calculz_ation§nat we call asymptotic Padepproximant predictions
to be made in the near future. Thus various approxmatTAPAP,S)
A .

techniques and numerical estimates may have a useful role APAP’s have already provided successful predictions for

play. Among these, one may mention exact calculations o . . . .

certain perturbative coefficients in the larye-limit, and the {he perturbative Coef.fICIe.ntS in the supsequent qalculatlon of
the four-loop B function in QCD, as discussed in Sec. lll,

emerging lore of renormalord]. Also of potential use in X . . ;
QCD are Padepproximant{PA’s), as described in Sec. Il and have also provided interesting resultdis 1 supersym-

of this paper, which have previously demonstrated their util-Metric QCD (SQCD [6]. The purpose of this paper is to

ity in applications to problems in condensed-matter physic®rovide a more complete account of these predictions, to
show how their accuracy may be improved in certain cases

by a judicious weighting over negative numbers of flavors

*Email address: John.Ellis@cern.ch Ng, and to extend these predictions to five loops in QCD in
TEmail address: dij@amtp.liv.ac.uk Sec. V, and to SQCD in Sec. VI. We also discuss analogous
*Email address: drtj@amtp.liv.ac.uk predictions for the QCD anomalous quark mass dimension in
SEmail address: marek@vm.tau.ac.il Sec. VIl where the “regular” APAP gives very good results,
'Deceased. but the new weighting method does not improve matters. In
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Sec. VIII we consider Abelian gauge theories, with less suc- PQPM+1_ St Ml

cessful results. ONIM+1= (2.4
Before deriving these predictions, there is a technical is- Snem+1

sue which should be clarified, that may also illuminate angg the asymptotic form

interesting physics point. As a general rugefunctions are

scheme-dependent beyond one loop, and a theory with a M!AM

single perturbative coupling constagt such as QCD, is ON+M+1=—

scheme-dependent beyond two loops, if one considers ana-

lytic redefinitions ofg. In particular, the QCIB function can  asN— o, for fixed M, where

be transformed to zero beyond two loops, by making a suit-

able choice of renormalization schetén our analysis of Linmp=N+M+aM+b, (2.6

QCD, we use the modified minimal subtraction scheme ]
(MS), and inN=1 SQCD we favor the dimensional reduc- and A4, a, andb are constants. This theorem not only guar-

tion (DRED) schemé The successes of the APAP procedureamees th.e convergence of thg PAP’s, but also specifies the
indicate that asymptotia and the convergence of PAP’s ar@Symptotic form of theycorrecﬂon.s. , ,
remarkably precocious in these schemes. In the SQCD case, 1€ idea of APAP’s is to fit the magnitude of this
there exists an alternative scheni@lovikov-Shifman- @Symptotic correction using the known low-order perturba-
Vainshtein-Zakharo¥NSV2)] [7], associated with the Wil- tive coeﬁﬁments, ,and apply the _resgltlng numerlcal_corrgctlon
sonian action, in which there is an all-orders relation be{© the nave PAP's. In the applications discussed in this pa-
tween B, and the quark anomalous dimensio. The  P€l W€ work with[0/1], [1/1], and[2/1] PA’s, so thatM
NSVZ scheme differs perturbatively from DRE[B], and =.1 throughout. For example, four-loop predictions are ob-
therefore provides a distinct test for the APAP method. wdained as fOHOWf,ALn thze Ccadtina=2, the[1/1] Paddeac!s to
compare predictions foB, in both DRED and NSVZ, find- the nave PAPS;""=S)/S,. The improved APAP estimate
ing that they are less compelling in the latter case: perhap$ then given by

minimal subtraction schemes are more amenable to Pade PAP

techniques? If so, it would be interesting to fathom the rea- SAPAP_ S3 2.7)
son. As already noted, these techniques are not so successful 1+63,°

for the quark mass anomalous dimension, or for Abelian

theories. Perhaps these instances also provide clues whffiere, motivated by its appropriatenessdifi field theory,
and why the Padenagic works. we choosea+b=0 in the QCD application discussed in

Sec. lll, and A is then determined by comparing, to

SHAP=32/S,. Alternatively, we could have chosen a value of

A and determine@+b from &§,. However, as we shall see,
We start by recalling relevant aspects of the formalism forwhen we go to five loops, knowledge 6§ and 65 enables us

PA’s and APAP’s, and establishing our notation. For a gedo fit both A anda+b simultaneously.

neric perturbative series

(2.5

M
Linmi

II. FORMALISM

Ill. APPLICATION TO THE FOUR-LOOP B FUNCTION

N
max IN QCD
S()= 2 Sx", (2.9 o .
n=0 The APAP method was applied in R¢E] to estimate the
i four-loop QCDg-function coefficientBs, on the basis of the
the Padeapproximan{ N/M](x) is given by[3] lower-order terms
ag+ax+---ayx™ —Uc, 4
[N/M]= >t N (2.2) Bo=75Ca— 5 TeNg,

b0+ b1X+ e bMXM !

B1=%CE—4CeTeNe— ZCATENE, (3.0)
with by=1, and the other coefficients chosen so that res7 3 )

2= 2 CA+ Ne[2CE T — 2CrCATE — 7°CATE]
[N/M]=S+0O(xN*M+1), (2.3
+NE[ T CeTE+ FFCATE],

The coefficient of the<N*M*1 term in Eq.(2.3) is the PAP
estimateSL 1,1 of Sy+w+1- If the perturbative coefficients
S, diverge asn! for large n, it is possible to showW4] that
the relative error

known before the appearance of the explicit four-loop calcu-
lation [9]. The quadratic Casimir coefficien@, andC for

the adjoint and fundamental representations are given for the
case ofSU(N¢) by

NZ—1
Yn fact, it can even be transformed to zero beyoneloop by a Ca=Nc, CF:—ZNC ) (3.2
nonanalytic redefinition of involving In g: such redefinitions are
associated with the Wilsonian action in supersymmetric theories. and we assume the standard normalisation so That .
2We recall that DRED corresponds to minimal subtraction in con-We denote byN, the number of group generators, so that for
junction with regularization by dimensional reduction. SU(N¢) we haveNp= Né— 1.
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TABLE |. Exact four-loop results for the QCP function, com- B3~29 243.0- 6946.3N+ 405.085N,2:+ 1.499 31\|3,
pared with the original APAP’s in the first column, and improved (3.6)

APAP’s obtained from a weighted average over negailgg WA-

PAP), as discussed in the text. The numbers in parentheses are thghereasg; is given by the coefficients shown in Table |
error estimates from Ref5]. when one omits the quartic Casimir contributions.

These quartic Casimir terms appear for the first time at

APAP EXACT % DIFF  WAPAP % DIFF  four-loop order. They are analogous to the light-by-light
A, 23,600900 24,633 ~4203.70 24,606 —0.11 scatteri_ng terms ind—2),, and_ PA-based techniques can-
B, —6,400200 —6,375 ~0.393.14 —6374 —0.02 gcf); estimate th?]m on_th:ef basis o; I0\r/1ver—order teLms with
C, 35070) 3985 —12.217.6 4025 —1.00 bl (_arenttgrotu_p-t Sozretlcab tactors. IU'S tlermsf are tnotv\(n to
D, input 1.499 ~ input _ e important in §—2),,, but were relatively unimportant in

previous perturbative QCD applications. In the case3ef
they turn out to be about 15—20 % for smalf, but are
We recall that3s is a polynomial in the number of flavors Non-negligible forNg~5. Setting these terms aside, the
N, agreement between the predictions of R6f.and the exact
results of Ref[9] is remarkable. The predictions we present
B3=Az+BsNg+CyN2+D,NE, (3.3  inthe rest of this paper should all be understood as applying
to perturbative coefficients without the higher-order analogs

where D;=1.499 (for Nc=3) was already known from ©f such quartic Casimir terms. _
largeN¢ calculations. To justify applying the estima@5),  Following Ref.[5], the same APAP method was applied
we assume that the,~n! for largen, as discussed in Ref. N [6] to estimate the four-loogs function in SQCD. The
[5]. The predictions foAs, B, andC, resulting from fitting ~ agreement W|th_ known resglt; was again encouraging, and
the APAP results for &Ng<4 to a polynomial of form the APAP prowded a predictioa~2.4 fqr the unknovyn
(2.5) are compared to the exact results in the first columns ofonstant8] in the four-loop SQCDB function, as also dis-

Table I. cussed in Sec. V.
The exact four-loop coefficient of the QC®function for
N¢ colors is taken from the calculation of RéB], which IV. WEIGHTED APAP'S IN QCD

was published after the APAP estimate, Before going on to make new predictions for QCD and

abcdgabed SQCD at the five-loop level, we first draw attention to a
— C4 (180653 44 )+i (—80 4 194s refinement that offers an improvement on APAP’s in the
B3=Ca(“ass — 5 {3 N s T3 {3 ) ;
A four-loop QCD case. As can be seen in Table I, the signs of
the coefficients\;, B3, andC; alternate. A corollary of this
+NE| CE3TR(— 381484 136/ ) 4+ C2C TH( 2R — 88, is thaF the APAP prgdictiqns fddg~5 are sensitlij\//\eP to can-
cellations, and relatively inaccurate. Moreove§ ** has a
£ CaC2To(— 4204, 352 v 4 AG 3T pole at_NF=8.05 bgcagsﬁl var_lishes there. Conyersely, the
ACETe(= 57+ 7570s) FF numerical analysis is relatively stable foffictitious)
dabedgabed Ng<O0—there are no poles at negatiMg andS;™*" is quite

CiT§(7§f°+ 2s) smooth atNg=0, thanks to the pure gluon contribution. We
have observed empirically that more accurate predictions for
+C§T§ %?2_%1§3)+CACFT|2= 171521 448, ) the coeff_icieptsAg, B3, andC; are obta_lined if one makes
polynomial fits for some range afegativevalues ofNg.
doedggeed This does not of course imply the existence of a physical
+ N—A (=% +%°0) theory for negativéNg . At any finite order, the Pad&pprox-
imant prediction is trivially an analytic function o (ex-
+82CeT, (3.4  cept for isolated polgsand our goal is simply to find the
best match to a polynomial. Is there some systematic proce-
where{3={(3)=1.202 056 9.... The quartic Casimir coeffi- dure that we can adopt to determine the appropriate range of

2
+N2

T )
A

31424 3
+NE[223CAaTE

cients in Eq.(3.4) are given forSU(N¢) by Ng to use in the fit? The following is one method we have
explored.
abedaaned NE(NE—1)(NZ+36) We choose a range NT®<N=<0 over which we fit val-
da™da = 24 ' ues of A using the APAP formulas of Sec. Ill, and we de-
termine the arithmetic mean of the corresponding values of
No(NZ—1)(N2+6) A. We use this mean value of to estimateB; for each of
dapedgaped— 18 , (3.5  the chosen values dfl-, and fit to the polynomial form

(3.3). We hypothesize that the most accurate results for the
) 4 5 coefficientsA;, B3, and C; may be obtained when they
gabedgabed_ (Nc—1)(Nc—6Nc+18) contribute with equal weights to the fit: certainly, one cannot
F "F 96NZ : expect that any coefficient that has a small weight in the
fit will be estimated reliably. For a giverNF®, the
For Nc=3, one obtains overall weights in the fit areAz;, BsNF®¥2, and
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TABLE 1l. Comparison of WAPAP and exact results for the

exact four-loop 8 function in QCD (omitting quartic Casimir
terms, for various values oN.
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8 100} , ° M
5 50f o ‘: M x
g + x
—_ 1.0F
o X
& 05}

»e x
X
0.1 LX . . : : .
0 1 2 3 4 5
NF
X WAPAP + APAP, Ny™*=—4

WAPAP exact % error

Ne=2

A; 4.88x 10° 4866 0.42

B, —1.86x10° —1854 0.48

(o 174 170.5 2.0
Ne=3

As 2.467x 10° 24 633 0.13

B; —6.383x 10° —6375 0.13

Cs 405 398.5 1.6
Ne=4

Ag 7.790x 10* 77 852 0.06

Bs —1.521x 10 —15210 0.03

(o 729 717.2 1.6
NC: 5

As 1.901x 10° 190 068 0.04

B; —2.976x 10 —29 800 -0.12

Cs 1.14x 10° 1127 1.6
NC: 6

Ag 3.943< 10° 394,125 0.03

Bs —5.149< 10 —51,580 -0.17

Csg 1.65x 10° 1,627.5 1.6
Nc=10

As 3.043< 10° 3,041,089 0.05

B; —2.388<10° —239,384 —-0.25

Cs 4.62x< 10° 4,540 1.7

C3NF®(2NF®+1)/6. We then estimat8; as follows. We

take the two values oBj; corresponding to the values of
NF®for which theA; andB; weights are most nearly equal.

Let us call these values &;, BSY, andB?, and the cor-
responding weight8Y' ") andB%(®) . Our prediction forB,

is then

A,BV+A,BY

3=

A+A, '

4.0

whereA, ,=|BY 12— AY(12) We estimateCs in a similar

fashion. Both theB; and C5 calculations yield a result for
A3, obtained as in Eq4.1): we take the mean of these two

values as our prediction fak;.
Table I, in the column labeled WAPAP, shows the resultsthat WAPAP leads to more reliable predictions at five loops.
we obtain using this procedure. We see that the latter arelowever, we feel that the results in Tables | and Il already
significantly more accurate than the ones obtained using thgrovide ample motivation for the QCD WAPAP calculation
APAP’s for 0<Ng=<4. The values oNI'** selected by WA-

PAP are 7 and 8 foB3, and 13 and 14 fo€C5;.
Table 1l compares the WAPAP predictions obtained in

this way with the known exact resulfemitting quartic Ca-
simir contribution$ in QCD for various values oN.. The
agreement is certainly impressive, even compared with thestimate the five-loogB function coefficientsB, in QCD,
APAP results shown in Table I. Since the numerical value ofusing our knowledge of the correspondigg to 8;. The
the coefficientCj is relatively small, correspondin@n the

©  APAP, N;™"=+4 X WAPAP

vs B3(Ny) w. quartic Casimirs

FIG. 1. Predictions fop;, as function ofNg, for Nc=3. The
percentage relative errors are obtained using various APAP-based
estimation schemes: naive APAP’s fitted with positive<4 (dia-
mondsg, naive APAP’s fitted with negativéNg=—4, WAPAP’s
compared to the exact value B including quartic Casimir terms,
and WAPAP’s compared t@; without quartic Casimir terms
(crosses

caseNc=3) to the relatively large valutNF®=14 men-
tioned above, it is perhaps not surprising that the percentage
error in the estimate of this coefficient is larger than for
eitherA; or Bs.

Figure 1 graphically displays our resulting predictions for
B3, as a function ofNg for the most interesting caddc
=3. We plot the percentage relative errors obtained using
various APAP-based estimation schemes: naive APAP’s fit-
ted with positiveNg<4 (diamonds, naive APAP’s fitted
with negative Ng=—4, WAPAP’s compared to the exact
value of B; including quartic Casimir terms, and WAPAP's
compared tg8; without quartic Casimir termé&rossels We
see that the latter are the most accuratedegrin QCD. In
Fig. 2 we show the error in the WAPAP prediction {8 as
a function of N, and forNc=3, 4, 5, 6, 7, and 10, once
again omitting quartic Casimir terms from the exact result.
The accuracy of these predictions is our best evidence for
believing in the utility of the WAPAP method.

To anticipate the obvious question: we have explored
whether this WAPAP procedure gives significantly better re-
sults than the conventional APAP’s for the other perturbative
series considered in this paper, namely, the S@J0nction
and the anomalous dimension of the quark mass. As we dis-
cuss in Secs. VII and VIII, the remarkable success of the
method at four loops is not repeated for other cases, but there
is distinct evidencéprovided by largeNg-expansion resuljs

of B, described in Sec. V.

V. FIVE-LOOP PREDICTIONS IN QCD
We now outline the application of the APAP method to

standard 2,1] Padeleads to the estimate
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FIG. 2. The percentage relative errors in the WAPAP predictiorBfofcompared to the exact result with quartic Casimir terms omjitted
plotted vsNg for Nc=3, 4, 5, 6, 7, and 10.

B3 A A
PAP. — —
=—. 5.1 —=—(1+a+b), —=-(2+a+b), 5.4)
A (5.0 5= b = ) (64
This is then corrected in a similar fashion to Eg.7), from which we obtaifi A anda+b.
We now calculate the WAPAP for the five-loop QGB
PAP : ; ;
apap_ Pa 5.2 function, which we parametrize as
4 1+ 68, '

Ba=As+ByNe+C,NE+D/N2+E,NE. (5.5
where, according to Eq$2.5 and(2.6), &, is given asymp-
totically by Once again we can input the coefficient of the highest power
in Ng, which is given in this case byl0]
A A
TLpg  3+atb’ (53 E,=—4T}[(288(3)+214Ce+ (480L(3) - 290243,

54:

To estimated,, we therefore need to know botd and

a+b. These can be deduced from the lower-order relative

errors 8, and &3, as defined in Eq(2.4), for which we use 3The fitted value of+ b is not necessarily close to the value zero
the asymptotic estimatdg.5): assumed in the estimate gf in QCD.

TABLE lll. WAPAP's for the five-loop QCDp function, calculated both witliwith Q) and without
(without Q) the four-loop quartic Casimir terms ;. The values oNF* used range between 5 and 117 in
the with Q case, and between 4 and 108 in the withQutase, being largest for lardé. and forD,.

N¢ 2 3 4 5 10
A, (with Q) 1.48< 10° 7.59x 10° 2.77x 1P 7.92x10° 2.31x10°
A, (without Q) 6.41x 10 4.88x10° 2.06x 10° 6.28x 1¢° 2.01x 10°
B, (with Q) —5.51x 10 —2.19x10° —6.39x 10° —1.50x10° —2.28x10°
B, (without Q) —3.04x 10* —1.56x10° —4.97X 10° —1.22x10° —1.95x 10
C, (with Q) 6.96x 10° 2.05x 10 4.68< 10" 9.00x 10* 7.07x10°
C, (without Q) 4.69x 10° 1.64x10* 3.93x 10¢ 7.72x10° 6.23x 10°
D, (with Q) -21.8 —49.8 —-89.8 —142 —-575

D, (without Q) —-28.3 —60.5 —105 —-163 —640

E, (input) —1.15 —1.84 —251 —3.17 —6.43
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TABLE IV. WAPAP’s for the five-loop QCDg function, calculated with and without the four-loop
quartic Casimir terms, but without inputting the known exact value ©oflt is encouraging to compare the
output values with the last row in Table Ill. The valuesNff** used range between 5 and 81 in the with
case, and between 4 and 104 in the withQutase.

N¢ 2 3 4 5 10
A, (with Q) 1.45< 10° 7.51x 10° 2.75x 1¢° 7.87x10° 2.30x 10°
A, (without Q) 6.38x 10* 4.85x< 10° 2.05x 10° 6.24x 10° 2.00x 10°
B, (with Q) —5.53x10* —2.20x10° —6.41x10° —1.51x10° —2.29x10°
B, (without Q) —3.05x10* —1.57x10° —4.99x10° —1.22x10° —1.96x10°
C, (with Q) 6.72x< 10° 1.97x 10 4.50x 10* 8.66x 10* 6.81x 10°
C, (without Q) 4.52x< 10° 1.58<10* 3.79x 104 7.43x 10¢ 5.99x 10°
D, (with Q) —-28.3 —93.8 —226 —389 —1,730
D, (without Q) —72.7 —163 —287 — 446 —1,750
E, (with Q) —0.974 —2.03 —-3.07 —4.06 —-8.73
E, (without Q) -1.61 —2.56 —3.45 —4.33 —8.64
:J”sing which we obtain the five-loop results shown in Table 0=3Nc—NE, (6.1a
Notice that in Table Il we include results corresponding 2
to both the inclusioriwith Q) and the omissiorwithout Q) ,81=6N%— ANg— N_JNF’ (6.1b

of the quartic Casimir contributions to the four-loop coeffi-
cients, obtained from Eq3.4). The former(latten results 5 3
should of course be compared with contributions including _ 3_ 2 _ _ 2 2
(excluding such terms at five loops wheand if) such re- P2=21INc {ZlNC _E o N 4NC}N '
sults become available. Of course, at five-loop order we may (6.10
expect to encounter new higher-order Casimir terms, which
should in any event be omitted in the comparison. We can  B;=A;+B3Ng+C3N2+C3N2+ D3NS,
only hope that such contributions are relatively unimportant, (6.10
which is the case for the quartic terms @3 for small N .
We anticipate that the percentage errors of the withQut whereNc is the number of colors, and
estimates of the nonquartic terms in the coefficients are
likely to be the smallest, whereas the best estimate of the full ~ Ag=(6+36a)Ng,
coefficients may be provided by the wit estimates.

We show in Table IV the results obtained if we choose 3 8 4
not to input the value oE,, but rather predict that as well. By=—36(1+a)Nc+(34+ 12a)Nc+ G-+ 13-
As can be seen, the results 8, B,, andC,, in particular, c ¢
are very stable. Moreover, the prediction fy is encourag-

NF_

ingly close to the true value, considering the extreme small-  c,= 6_‘2+2K+ 8a |NZ— @—4a— 6K_22_O
ness ofE, compared toA,. 3 3 3Ng
It is not possible to state precise errors for the type of
prediction discussed in this paper. In Ré&f] we gave certain 2
estimates of the uncertainties, which turned out to be in the Ds:m- 6.2

right ballpark if quartic Casimir terms are omitted in the
comparison, as reported in Table |. The appearance of sughgre k=63 and « is a constant which has not yet been

new quartic terms is characteristic of the type of theoreticaly|cylated exactly. Notice that there are no quartic Casimir

“systematic error” that cannot be foreseen. In the case of.qntributions in the SQCD cadeThe APAP method was
our B, predictions in QCD, we draw the reader's attention 0, o in an earlier papéé] to obtain the estimater~2.4.
the differences between the wih and withoutQ entries in Proceeding now to five loops, we write

Table Ill, and to the differences between these and the cor-
responding entries in Table 1V, obtained without using the Ba=As+ BN+ C,N2+D, N2+ E,NE. 6.3
known values ofg, as inputs. The most accurate estimates

of the full coefficients are likely to be the witQ entries in  As in the QCD case, we can input the true valueEof

Table Ill, but the uncertainties are unlikely to be smaller thanprovided by a recent largiy calculation[11], and given by
these differences.

VI. FIVE-LOOP PREDICTIONS IN N=1

SUPERSYMMETRIC QCD “Their absence may be understood as a consequence of the fact
o o that the B function vanishes beyond one loop for an arbitr&ty
We begin with the SQCIB function in the DRED regu- =2 supersymmetric theory. We are unable, however, to comment

larization scheme, where the first four coefficients are giveron the possible appearance of quartic and higher-order Casimir
by [8] terms at the five-loop level.
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TABLE V. WAPAP’s for the five-loop SQCDg function, assumingx=2.4. The values oNI'** used
range between 3 and 37.

N¢ 2 3 4 5 10
A, 1.48<10% 1.13x10° 4.78x10° 1.46x 10° 4.69x 10
B, —1.05x 104 —5.85x10* -1.91x10° —4.72x10° —7.70x10°
C, 3.25x 106° 1.29x 10* 3.21x 10 6.42x< 10 5.29x 10°
D, —109 —307 —583 —936 —3.87x10°
E, (inpu?) —3.96 —6.64 -9.19 -11.7 -23.9
E,=—[2Ncé3— (1+223)/(2No)]. (6.4 Note the overall minus sign, in accordance with our conven-

NSVZ

tions here. Using Eq6.5 and the result fory,

Ref. [8], we obtain
We choose to calculate the WAPAP predictions both with (8]

and without this input. This also enables us to explore the Bo=3Nc—Ng, (6.63

sensitivity of the resulting prediction fdg, to variations in

a. Assuminga=2.4, we obtain the results shown in Table

V, whereas the results with the known valuesgfnot input B1=6N&—

are shown in Table VI. The qualitative agreement between

the predicted values @&, in the last row of Table VI and the 2

exact values in Table V is good. We note that the WAPAP  B,= 12N%—{12Né— N

process is crucial for this agreement, in that the ouEis c

quite sensitive to the value N used, which is fixed by

the WAPAP criterion. We see that the output valueAgf

B4, C4, and D, are quite stable, which is perhaps to be

expected in view of the small numerical valuesif. The  \yhere

differences between the results obtained with and without the

input exact value ok, provide some indication of the un- A= 24N,

certainty in the predictions. We expect, naturally, the case

with input E, to be the more accurate. 3 2 4
The value «=2.4 used above was itself based on an By=—40Nc+30Nc— -+ 3

APAP calculatior{6]. It behoves us, therefore, to explore the ¢ c

sensitivity of our results to the precise valueafin Fig. 3 2,—10

we plot the WAPAP result forE, against «, for Cy=(2k+ 14)N(2:—24— —_—

—3<a<3. We see that for this range there are two values Ne

of « corresponding toE,=E$®®, namely, a~—0.9 and

a~1.4. Given the fact that in general we would expégtto D3=2Ng— —.

be the least-well-determined coefficient, we consider this re- Nc

sult to be reasonably consistent with our previous prediction _ i
that @~2.4. It should be noted that our predictions for IN this case there is no undetermined parametewe know

A,,...,.D, are also sensitive to the precise valuenof [8] v4°** through three loops, and heng§/>"* through four

We turn now to the alternative NSVZ prescription for the 100PS. . _
SQCD g function, given by the following exact formu(d] It is possible to argufl2] on the basis of the nature of the
which relatesg, to the quark anomalous dimensigg coupling-constant redefinition connecting the two schemes

that y;~=° and y5°'* are the same at leading order N .

Hence, if as before we write

given in

2
ANc— N—JNF, (6.6b

NZ,
(6.60

B3=Az+B3Ng+C3NZ+D3N2, (6.60

6

2 2N
N¢ ¢

Ne—

(6.7)

NSVZ
g == 0" |NemSNe—2Nery (6.5 2 3 4
g 1672 | 1—-2Ncg?(1672) 1t |’ ' Ba=As+BNE+CyNE+DyNE+ENg, (6.8

TABLE VI. WAPAP's for the five-loop SQCIB function, again assuming= 2.4, but without the exact
values ofE, as input. The values dfif®™ used range between 4 and 61.

N¢ 2 3 4 5 10
A, 1.46x 104 1.12x10° 4.73<10° 1.45x10° 4.64x 107
B, —1.04x 10 —5.87x10* —1.91x 10° —4.74x10° —7.73x10°
C, 3.16x1C° 1.25x 104 3.11x 10 6.21x 104 5.12< 10°
D, -134 —400 —767 —1.24x10° —5.12x10°

E,4 —2.44 —4.53 —6.33 —8.03 —16.1
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0.0 , . , E,. Analogously to the five-loop QCD case discussed in
Sec. V, we take the differences between the entries in Tables
VIl and VIII as lower limits on the possible uncertainties in
our five-loop NSVZ predictions.

251

_5'0 L
VIl. QUARK MASS ANOMALOUS DIMENSION IN QCD

E,

-75) . . .
We now consider the quark mass anomalous dimengion

in QCD, defined as

—-10.0

dinm
—125} ) ) ) { __ a_ _ 2_ 3_ 4_ 54 6
= . s Y qin g2 Y0RT Y& T @ yad 2t 0y,
o (7.1

FIG. 3. The WAPAP result forE, plotted againsta, for ~ wherea=a /. The four-loop coefficienty; was recently
—3<a<3. computed in Refd.13, 14], and the full exact results for the

. o coefficientsy, for n=0, 1, 2, and 3 are given by
we can findg,, as we did in the DRED case, from the large-

N results in Ref[11]. The result is Yo= L[3Ck],
E;=2[1-2{(3)](Nc—1/N¢). (6.9
= #6[3CE+ ¥ CrCa— FCrTeNe], .
We also have, as is evident from E§.5), thatA,=48N2, (7.2
providing an additional check on our calculatb@ur WA- yy= &[22CE - 29C2C,+ HABC CE+ C2TNp(— 46
PAP results are shown in the Tables VII and VIII, for the
cases with and withouE, input. Also shown in the second +48¢3)+ CeCATENR(— 32— 4875) — $2CLTENZ],

row of Table VIII are the exact results fdy,.

We see that the WAPAP'’s are in general in good agree-
ment with the exact result fak, in the NSVZ scheme, at the y3= 55| C(— 1221 — 33673) + C2CA( L5320+ 31675)
10% level. Although encouraging, these results are not quite
as compelling as the ones for the DRED scheme. This is at Lc2 34085 I I 70 055
first sight surprising, given the form of E¢6.5), which ap- CECA(- ~1523+44005) + CrCA(*
pears at first sight to be close to the rational function form of + 18— A4005) + CETENE(— 22+ 55275, — 480L5)
the PA’s. However, as mentioned in Sec. |, perhaps minimal
subtraction schemes are more amenable to Reamiques. +C2ZCATENE 8819+368§3 264( ,+80(s)
The anomalously poor result féy, in Table VIl is caused by _2sse
the fact that the erroé, is close to—1 in this case, for the 73 {3+ 2640,+400s)
NF® values corresponding to the determinatiorDof. The 304 221242
reason the result fdD, is not also anomalously large is that + CETENE( 7~ 16005+ 96L4) + CrCATENE (51
the two values from which the weighted average is taken are 1 1607,—96¢,) + CETENS(— 8824 1287,
both numerically large but with opposite signs. Thus we can-

not rely on either the, or D, prediction forNc=5. With dabedgabed dabedgabed

F
this exceptionA, comes out reasonably close to the exact + dg (—32+24003) + Ne dg (64
result. This means, of course that the predictions for
B,,...,D4 will not change much if we inpuf, as well as

—48003) |,

5We could, of course, inputoth A, and E,, but we choose in- Where forSU(N¢) the quadratic and quartic Casimirs are as
stead to compare the WAPAP results for all the five-loop coeffi-defined in Eqs(3.2) and (3.5, andT= 3 as before. In ad-
cients with the corresponding ones wif input. dition, dg is the dimension of the quark representation, so

TABLE VII. WAPAP's for the five-loop NSVZg function, with the exact values &, used as input. The

values of NI used range between 3 and 26.

N¢ 2 3 4 5 10

A, 1.68< 10° 1.04x 10 4.44x10° 4.99x 10° 4.42x 10°
B, —1.25x10° —7.87x10° —2.63x10* —6.56x 10° —1.08x 10°
C, 750 3.1X10° 7.87x10° 1.58x 10 1.32x 10°
D, -6.0 —-90.1 —-163 —-516 —938

E, (input) —4.21 —7.49 —10.5 —135 —27.8
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TABLE VIII. WAPAP's for the five-loop NSVZ g function, withE, not input. The values dfif® used

range between 4 and 25.

N¢ 2 3 4 5 10

A, 1.49x 10° 1.05x 10 4.33x 10" 1.42x<10° 4.45x 10°
A, (exac) 1.536x 10° 1.166x 10* 4.915< 10¢ 1.500x 10° 4.800x 10°
B, -1.13x10° —7.80x10° —2.65x 10 —6.64x10* —1.09x10°
C, 612 2.8%10° 7.35x< 1C° 1.48x< 10 1.23x 10°
D, -75.2 —241 — 462 —742 —3060
E, -13.0 -13.3 —-15.8 -27.9 —-50.6

that do=N¢ for SU(Nc), and we have {,={(4)

=1.082382... and {s=¢(5)=1.0369277... . For

Nc=3, we have

vo=1,

71:%[¥_%NFL

y2= sl 1249+ (— 3% — 13905 N — $ENE],

¥3= zt6l Toaer o+ B57%0 3 — 8805 + (— 255 — 252
+880§4+%gs)NF+(%+%ﬂ)§3_lsﬂJ§4)Né
+(— 3B+ 50N, (7.3

which have the numerical values
Yo= 11
v1~4.208 33-0.138 88N,

y,~19.5156-2.284 1N —0.027 006 A2,

¥3~98.9434-19.107M+0.276 16812+ 0.005 793 2R3,
(7.9

Omitting the quartic Casimir contributions, one obtains

¥3=96.4386- 18.829N,+0.276 1632+ 0.005 793 2R3,
(7.5

and we shall now compare Ed3.4) and(7.5) with APAP’s.

It transpires that the WAPAP procedure does not work so
well here. The most accurate results for bBhandC} are
obtained for smalNF®*. This is reasonably consistent with
the WAPAP behavior in th€] case: here, the weight dif-
ference C3"—AJ" never changes sign, but is smallest at
NF®=2 on the edge of the range. However, the WAPAP
criterion for B} leads to values o which start at 9 for
Nc=2 and increase wittN:. Nevertheless, as in the previ-
ous sections, it seems sensible to match at neghkjveand
spectacular results are obtained if we simply takE*=4
(with —NF®™<N<0) throughout, as can be seen from Table
IX, where numerical predictions for the coefficients in the
parametrization,

y3=AY+BINg+CINZ+DINE, (7.6
are given both withoufwithout Q) and with(with Q) quar-
tic Casimir contributions. It should be noted that we have
used as input the exact result og, which is contained in
Eq. (7.2.

TABLE IX. Four-loop quark mass anomalous dimension in QCD: APAP’s for fikgd*=4 are com-
pared with the exact values both without and w@h the quartic Casimir terms.

Nc
2 3 4 5 20
A3
APAP 16.1 97.9 328 822 2.3810°
without Q 15.4 96.4 327 825 2.2310°
with Q 16.0 98.9 334 840 2.2610°
B3I
APAP -5.14 —20.0 —49.3 —98.0 —-6.39x 10°
without Q —4.70 —-18.8 —47.1 —94.2 —6.27X10°
with Q —4.77 -19.1 —48.0 —96.2 —6.43x 10°
C3i
APAP 0.065 0.224 0.478 0.828 17.5
exact 0.111 0.276 0.504 0.796 13.0
D3
input 3.2610°° 5.79x 1073 8.15x10°3 0.0104 0.0433
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TABLE X. APAP’s for the five-loop quark mass anomalous dimension in QCD, calculated with and
without the four-loop quartic Casimir terms.

N¢ 2 3 4 5 20
A, (with Q) 56.0 530 2.4X10° 7.63x 106° 8.37x 1¢°
A, (without Q) 50.5 493 2.2%10° 7.22x10° 7.97x 1¢°
B, (with Q) -233 —143 —483 —1.22x10° —3.33<10°
B, (without Q) -21.7 —135 — 457 —1.15x10° —3.12x10°
C, (with Q) 1.70 6.67 16.8 33.7 2.2010°
C, (without Q) 1.64 6.44 16.0 32.0 2.2410°
D, (with Q) 8.12x10°3 0.037 0.0891 0.165 4.31
D, (without Q) 8.88x107° 0.037 0.0831 0.148 3.48
E, (inpuf) —4.80x10°°5 —-854x10° —12x10*% -154x10* —6.39x10*

It can be seen that in all cases the APAP estimate is quite ¥>~1.0078+0.182 7N —0.081 ONZ, (8.20

accurate over a wide range Nt . In most cases, the APAP
estimate is closer to the exact result without the quartic Ca- .~ —2.1934-1.720N;—0.301 432+ 0.034 76\3.

simir contribution(without Q), but in any case the quartic (8.20
Casimir contribution toy is smaller than in the case of the
QCD g function. Omitting the quartic Casimir term, we would instead have

We now go on to discuss the five-loop APAP estimate of ) 3
v. We parametrize the five-loop quark mass anomalous di- s~ —2.1934+0.283Ng—0.301 4Ni+0.034 76:.

mensiony, in the form (8.3
ya=AJ+BINg+CIN2+ DIN2+EIN? (7.7  We can see at once that the miraculous success of the previ-
M GRS TR e ous APAP prediction foty; will not be reproduced here. For
where the value oE} can be derived froni15] Ne=0, the quenched case, tisggn of y; differs from the

sign of y4/y,. Moreover,y, has a zero, and hencg"™"
EJ=CrT#(—65/5184-5{(3)/324+ 7*/3240. (7.8)  has a pole, foNg~0.45. Hence, we cannot hope to repro-

_ _ _ _ _ . ducey; for small values ofNg|. For large|Ng| the sign of

We use the fully; as input, including the quartic Casimir , s still wrong, so the method fails in this region also.
contribution. As we argued in the case of the Q@BBunc- One easily verifies that this pessimism is confirmed by the

tion, we expect our five-loop estimate to include the effect§ggits, and things do not improve at five loops. Then, as
of contributions involving such quartic Casimir terms, but,, asE] as given in Eq(7.9), it is possible to derive from
not the effect of new Casimir terms making a first appearTlG] the result forD,,:

ance. Once again we chooBg'®*=4 to derive the results
shown in Table X. o7 11 1 Tt 4483 0.0804. (8.4
i=ggtst g b5 oggt ararp 00804 (B4
VIII. ABELIAN GAUGE THEORIES
: PAP
All of the previous sections have dealt with APAP predic- \r:Ve notllce n?vr\kl hf"v_e;’eg' thzztzilgs éeros, and Tlemgé

tions for non-Abeliantheories. It is natural to ask whether &> PO€S, TOMg==2.6 and 4.6. Lonsequently, we may
similarly accurate results can be obtained for the Abelia expe'ct that the rgsults W!” bg rathgr sensmv'e.to the range of
case. We address this question in this section, choosing , it we ”?atCh in a region including the origin. Of course,
our example the fermion mass anomalous dimension with" the Abelian theory we cannot expect smooth behavior as
Ng charged fermions, where good results were found in thdV/€ Pass througmpzo_—pe_rhaps the occurrence of po_les
non-Abelian case, as we saw in Sec. VII. A supplementar)'/qear toNg= 0 on both sides is simply a conflrmat|02n of this?
reason for choosing this example is that trext-to-leading- ©" the other hand, for largeNe we have y3/y,~

N result is available, as well as the leading one. —0.014N¢, whereasE}~—0.001, so we also cannot expect
The results fory; ,...,ys in the Abelian case follow from 900d results at increasirj§ig|. . _
Eq. (7.2 by setting We leave it to the reader to convince tfem)self that we
cannot expect to extract reliable predictions fyr,...,C,.
daPedggbed dabedgaped We also record that the QED and SQED gayjiunctions
Ce=Te=1, Ca=0, dg =0, d =1, yield similarly unattractive results. Evidently, Abelian theo-

(8.1) ries are less amenable to the APAP approach, for some un-
known reason.
so that
IX. CONCLUSIONS
v0=0.75, (8.2a
We have presented results obtained from our APAP
v1~0.093 75-0.208N, (8.2b method for the four-loop and five-loop QCBfunction co-
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efficients, for the five-loop SQCIB-function coefficients, term in Ng which is least well determined by the APAP
and for the four- and five-loop quark mass anomalous dimenapproach, which is related to the poor results obtained in the
sions in QCD. Particularly in the case of the Q@Diunc-  Abelian case. It would be very interesting if the lafge-
tion, and to some extent also for SQCD, particularly in themethods could be extended to next-to-leading terms in this
DRED scheme, a modified procedure for extracting the preexpansion for the non-Abelian case, in which case more

dictions for the various coefficients of powers Mg (WA-  comparisons and cross-checks could be made.
PAP) gave improved results. In general, the four-loop results
agree very well with the known results, giving us confidence
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