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On-shell-improved lattice QCD with staggered fermions

Yubing Luo
Columbia University, Department of Physics, New York, New York 10027

~Received 23 May 1997; published 3 December 1997!

By using Symanzik’s improvement program, we study on-shell-improved lattice QCD with staggered fer-
mions. We find that there are as many as 15 independent lattice operators of dimension 6~including both gauge
and fermion operators! which must be added to the unimproved action to form anO(a2)-improved action.
Among them, the total number of dimension-6 gauge operators and fermion bilinears is 5. The other ten terms
are four-fermion operators. At the tree level and tadpole-improved tree level, all ten four-fermion operators are
absent.@S0556-2821~98!01201-6#

PACS number~s!: 12.38.Gc, 11.15.Ha, 71.10.Fd
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I. INTRODUCTION

In recent years, there has been a surge in developing
applying improved actions for the numerical simulations
lattice QCD. Up to now, most research has focused on
provement of Wilson fermions in an effort to reduce t
O(a) cutoff effects in the simulations. On the other hand,
absence ofO(a) errors for the staggered fermion action@1,2#
and the complexity of the staggered formalism mean tha
O(a2) improvement has received little attention. Almost t
years ago, Naik proposed adding a third-nearest-neigh
term to the standard staggered fermion action to rem
someO(a2) effects@3#. His study was based on the Dira
Kähler equation, not on the standard staggered formulat
Although these two fermion formulations are the same in
free case, they are quite different when the gauge interact
are included and the difference is of the order ofa2. So the
Naik term may not remove allO(a2) errors from the simu-
lations by using staggered fermions. This statement
demonstrated by the recent numerical simulation from
MILC group @4,5#.

One approach to improvement is to construct a per
action@6#. The classical perfect action for free staggered f
mions was already proposed in Ref.@7#. In this paper, we
will apply Symanzik’s improvement scheme@8# to staggered
fermions and discuss its on-shell improvement1 through
O(a2). We will show that including only the Naik term in
the improved staggered fermion action is not enough to
move all ordera2 errors from on-shell quantities. Mean
while, because both the standard Wilson gauge action
the standard staggered fermion action haveO(a2) errors, we
must improve both of them at the same time. We will sh
that these two improvements are not independent, but c
nected by an isospectral transformation of the gauge fie
The recent calculations of the MILC and Bielefeld@10#
groups can be easily explained by the result of our analy

This paper is organized as follows. In Sec. II, we w
discuss theO(a2) improvement of the staggered fermio
action by finding all linearly independent dimension-6 ope

1The scheme of improved Hamiltonians for lattice QCD is n
considered in this paper and is referred to Ref.@9#.
570556-2821/97/57~1!/265~11!/$10.00
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tors following Symanzik’s scheme. In Sec. III, we will giv
the coefficients in the tree level up to ordera2. In Sec. IV,
we will give the general isospectral transformation of fe
mion fields and gauge fields and give the form of the simp
fied on-shell-improved action. Section V is the conclusio
The computations of the tree-level coefficients are presen
in two appendixes.

II. POSSIBLE COUNTERTERMS

When Symanzik’s improvement scheme is applied to c
struct anO(a2)-improved lattice action, the first step is t
find all dimension-6 operators which are scalars under
lattice symmetry group. These operators, treated as cou
terms, are then added to the action to remove allO(a2)
errors from physical quantities. Before doing that, we w
introduce some notation which will simplify our present
tion. For the transformation properties of staggered ferm
fields, the reader is requested to consult Ref.@2#, which we
will refer to as paper I in the following.

A. Definitions and notation

The whole lattice can be viewed as being composed
elementary hypercubes consisting of 16 lattice sites. We
usex to label the individual lattice sites andy, which has
only even coordinates, to label each hypercube. A site ins
a hypercube is represented by a ‘‘hypercubic vector’’A,
whose components can only take the values of either 0 o
The relationship between these three vectors is given by

x5y1A. ~1!

The hypercubic fields are defined as

xA~y!5 1
4 x~y1A!, ~2a!

x̄A~y!5 1
4 x̄~y1A!. ~2b!

With the notation

x̄M~U!x5 (
y,AB

x̄A~y!M~U!ABxB~y! ~2c!

and
t
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266 57YUBING LUO
~gS^ jF!AB5 1
4 Tr~gA

†gSgBgF
† !, ~2d!

we can write the standard staggered fermion action in a c
pact form as

SF5x̄F(
m

~gm ^ I !Dm1mGx. ~2e!

Furthermore, when discussing the fermion operators, we
use the following notation:

D” 5(
m

~gm ^ I !Dm , ~3a!

D25(
m

~gm ^ I !Dm~gm ^ I !Dm , ~3b!

D35(
m

~gm ^ I !Dm~gm ^ I !Dm~gm ^ I !Dm , ~3c!

DD”D5(
mn

~gm ^ I !Dm~gn ^ I !Dn~gm ^ I !Dm . ~3d!

B. Fermion bilinears

The lattice symmetry group of staggered fermion act
@11,2# includes translation, reflection, rotation, charge con
gate, and a continuous UV(1). When the mass parameterm
is 0, there is a second continuous UA(1) symmetry.

Whenm50, we can identify the following five indepen
dent operators which are scalars under all symmetry tra
formations including UA(1):

O15x̄D 3x, ~4a!

O25x̄ 1
2 ~D 2D” 2D”D 2!x, ~4b!

O35x̄ 1
2 ~D 2D” 1D”D 222D” 3!x, ~4c!

O45x̄~D 2D” 1D”D 222DD”D!x, ~4d!

O55x̄D” 3x. ~4e!

For the case of nonzero fermion mass, the UA(1) symmetry
is violated, and there are two more allowed counterterms

O65mx̄D” 2x, ~5a!

O75mx̄D 2x. ~5b!

C. Four-fermion operators

When consideringO(a2) corrections to the fermion ac
tion, we must examine not only dimension-6 operators bi
ear in the fermion fields, but also four-fermion operators
dimension 6.

Using hypercubic coordinates, we can connect the s
and flavor indices in staggered four-fermion operators
combinations of the form
-

ill

n
-

s-

-
f

in
n

@ x̄M~U!x#25(
y

(
AB

x̄A~y!M~U!ABxB~y!

3(
CD

x̄C~y!M~U!CDxD~y!. ~6!

However, the color indices in such an operator might
combined in four ways:

x̄adaa8„M~U!x…a8x̄bdbb8„M~U!x…b8 , ~7a!

x̄adab8„M~U!x…a8x̄bdba8„M~U!x…b8 , ~7b!

x̄ataa8
i

„M~U!x…a8x̄btba8
i

„M~U!x…b8 , ~7c!

x̄atab8
i

„M~U!x…a8x̄btba8
i

„M~U!x…b8 , ~7d!

with

t i5
l i

2
, ~8!

wherel i are the SU~3! Gell-Mann matrices, and as usual, th
repetition of the indicesa, a8, b, b8, and i means summa-
tion. Because of the completeness relation of the matricesl i ,

(
i 51

8

laa8
i lbb8

i
52dab8dba82

2

3
daa8dbb8 , ~9!

the operators with the form of Eqs.~7a! and ~7b! can be
expressed as linear combinations of operators with the f
of Eqs. ~7c! and ~7d!. Furthermore, the operators with th
form of Eq. ~7d! can be expressed in terms of the operat
with the form of Eq.~7c! by making a Fierz transformation
Hence we need only consider the operators with the form
Eq. ~7c!.2

For convenience, we will not write out the links explicitl
in the remaining part of this section unless there would o
erwise be confusion. After applying the staggered ferm
symmetry transformation including rotation, reflectio
charge conjugate, and the continuous UV(1)3UA(1), we
found there are 18 operators which are invariant:

F15@ x̄ta~ I ^ I !x#22@ x̄ta~g5^ j5!x#2

1(
m

$@x̄ta~gm ^ jm!x#22@ x̄ta~g5m ^ j5m!x#2%,

~10a!

2If additional, explicit flavors of staggered fermions are intr
duced, Fierz symmetry cannot be used a second time, and s
will need to introduce both flavor adjoint and singlet fermion bili
ears, effectively doubling the number of flavor-singlet, four-fermi
operators that must be considered.
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F25@ x̄ta~ I ^ I !x#22@ x̄ta~g5^ j5!x#2

2(
m

$@x̄ta~gm ^ jm!x#22@ x̄ta~g5m ^ j5m!x#2%,

~10b!

F35(
m

@x̄ta~g5m ^ I !x#2, ~10c!

F45(
m

@x̄ta~gm ^ j5!x#2, ~10d!

F55 (
mÞnÞl

@x̄ta~gmn ^ jl!x#2, ~10e!

F65 (
mÞn

@x̄ta~gmn ^ j5n!x#2, ~10f!

F75 (
mÞnÞl

@x̄ta~gm ^ jnl!x#2, ~10g!

F85 (
mÞn

@x̄ta~g5m ^ jmn!x#2, ~10h!

F95(
m

@x̄ta~ I ^ j5m!x#2, ~10i!

F105(
m

@x̄ta~g5^ jm!x#2, ~10j!

F115(
m

@x̄ta~gm ^ I !x#2, ~10k!

F125 (
mÞnÞl

@x̄ta~gmn ^ j5l!x#2, ~10l!

F135(
m

@x̄ta~ I ^ jm!x#2, ~10m!

F145 (
mÞnÞl

@x̄ta~g5m ^ jml!x#2, ~10n!

F155(
m

@x̄ta~g5m ^ j5!x#2, ~10o!

F165 (
mÞn

@x̄ta~gmn ^ jn!x#2, ~10p!

F175(
m

@x̄ta~g5^ j5m!x#2, ~10q!

F185 (
mÞn

@x̄ta~gm ^ jmn!x#2. ~10r!

These operators are not invariant under translation. Howe
the additional terms generated by translations are of dim
r,
n-

sion 7. For any operator listed above, we can combine it w
some higher dimensional operator so that the new operat
invariant under translation. This new operator differs fro
the old one by a dimension-7 term, and both of them ha
the same continuum form. Therefore the translation symm
try does not reduce the number of invariant operators he

After adding some higher dimensional terms, we c
make the 18 four-fermion operators listed above invari
under translation and rewrite them in terms of the fieldsx(x)
and x̄(x). First,

F15(
x,a

x̄~x!tax~x!(
e

x̄~x1e!tax~x1e!, ~11!

where the sum overe is a sum over the 8 possible lattic
displacements of length ‘‘1.’’ Second,

F25(
x,a

x̄~x!tax~x!(
v

x̄~x1v !tax~x1v !, ~12!

where the sum overv is over the 32 possible lattice displac
ments of length ‘‘). ’’ Next,

Fi5(
x,a

(
m
C m

a ~x!
1

256 (
c

w~c!h5~c!Pm
~ i !~c!C m

a ~x1c!,

i 53, . . . ,10. ~13!

This equation contains a number of new elements which
will now define. The sum overc is a sum over the 81 dis
placements with coordinatescm521,0,1. The weight is

w~c!5 )
m51

4

~22ucmu!. ~14!

The fermion bilinear operatorC m
a (x) is given by

C m
a ~x!5x̄~x!ta(

v'm̂
x~x1v !, ~15!

where the sum is over the 8 possible lattice displacement
length ‘‘) ’’ which are perpendicular tom̂ direction. The
phase factorsPm

( i )(c) are defined by

Pm
~3!~c!5hm~c!, Pm

~4!~c!5«~c!hm~c!,

Pm
~5!~c!5«~c!tm~c!hm~c!, Pm

~6!~c!5tm~c!hm~c!,

Pm
~7!~c!5tm~c!zm~c!, Pm

~8!~c!5«~c!tm~c!zm~c!,

Pm
~9!~c!5«~c!zm~c!, Pm

~10!~c!5zm~c!, ~16!

where
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268 57YUBING LUO
tm~c!5
1

3 (
nÞm

~21!cn,

hm~c!5~21!c11•••1cm21,

zm~c!5~21!cm111•••1c4,

«~c!5~21!c11•••1c4,

h5~c!5 )
m51

4

hm~c!. ~17!

The remaining 8 operators can be written as

Fi5(
x,a

(
m
Bm

a ~x!
1

256 (
c

w~c!Pm
~ i !~c!Bm

a ~x1c!,

i 511, . . . ,18, ~18!

with the fermion bilinear operator

Bm
a ~x!5 1

2 @ x̄~x!tax~x1m̂ !1x̄~x!tax~x2m̂ !#, ~19!

and the phase factors are given by

Pm
~11!~c!5hm~c!, Pm

~12!~c!5tm~c!hm~c!,

Pm
~13!~c!5zm~c!, Pm

~14!~c!5tm~c!zm~c!,

Pm
~15!~c!5«~c!hm~c!, Pm

~16!~c!5«~c!tm~c!hm~c!,

Pm
~17!~c!5«~c!zm~c!, Pm

~18!~c!5«~c!tm~c!zm~c!.

We have now discussed all dimension-6 fermion ope
tors which are invariant under the lattice symmetry gro
Therefore, we can write down a suitableO(a2)-improved
staggered fermion action as

SF5x̄~D” 1m!x1a2(
i 51

7

bi~g0
2,ma!Oi

1a2(
i 51

18

bi8~g0
2,ma!Fi . ~20!

The reality of the action requires thatb2 be imaginary and
that all otherb8 andb be real.

D. Gauge fields

The Symanzik improvement of the gauge theory act
was studied more than a decade ago@12,13#. It was found
that there are three independent six-link products which m
be added to the original Wilson action to form a
O(a2)-improved gauge action. The improved gauge act
can be written as

SG@U#5(
i 50

3

ci~g2
0!Li , ~21!
-
.

n

st

n

where the link productsLi are defined as

~22a!

~22b!

~22c!

~22d!

where^ & implies an average over orientations. The fourci ’s
satisfy the normalization condition

c0~g0
2!18c1~g0

2!18c2~g0
2!116c3~g0

2!51. ~23!

For on-shell improved pure gauge theory, it was sho
that we can setc3(g0

2) to zero by a change of field variable i
the path integral. However, we have to be careful when
discuss an improved action which includes the quarks,
cause the change of gauge field variable will also have
impact on the fermion action. We will discuss this issue
the latter part of this paper when we discuss the isospec
transformations.

III. TREE-LEVEL IMPROVEMENT

A natural way to do the tree-level improvement is to e
pand the lattice action to ordera2 and to adjust the coeffi-
cientsbi so that the difference from the continuum Lagran
ian is of order ofa3. This also improves the free propagat
through order ofa2.

Define the gauge-covariant hypercubic fermion fields a

wA~y!5UA~y!xA~y!, ~24a!

w̄A~y!5x̄A~y!UA
†~y!, ~24b!

whereUA(y) is the average of link products along the sho
est paths fromy to y1A. For the classical continuum limi
of the standard staggered fermion action~see Appendix A!,
we find



r
ion
n

he

o

ia
o

ith
m

ion

a
as a
ar

h
e
tan-

he
n
for

in
do

ne
ma-
ent
pe-

the
ac-

lds
n-

lds

uc
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SF5E
y
(
AB

w̄A~y!H(
m

~gm ^ I !ABDm1m~ I ^ I !AB

1a(
m

F ig0(
l

Al~gm ^ I !ABFlm2~g5^ j5m!ABDm
2 G

1
2a2

3 (
m

~gm ^ I !ABDm
3

1
i

2
g0a2F (

mnl
AlAn~gm ^ I !AB@Dn ,Flm#

2(
ml

Al~g5^ j5m!AB~@Dm ,Flm#13FlmDm!G J wB~y!

1O~a3!, ~25!

whereDm is the continuum covariant derivative andFmn is
the continuum field strength.

Now let us define a new set of fermion field variables

fA5expS 2a(
l

AlD̄lDwA , ~26a!

f̄A5f̄AexpS 2a(
l

AlD̄Q lD , ~26b!

whereD̄ is defined in Eq.~A3a!. This definition is an obvi-
ous extension to higher order ina of the ordera transforma-
tion discussed in paper I chosen to remove extraneous te
of O(a) which appear when the original staggered ferm
action is written in terms of hypercubic variables. The co
tinuum limit of the staggered fermion action in terms of t
f field can be written as

SF5E
y
(
AB

f̄A~y!H(
m

~gm ^ I !ABFDm1
a2

6
Dm

3 G
1m~ I ^ I !ABJ fB~y!1O~a3!. ~27!

From this equation, it is easy to get the tree-level values
the coefficients occurring in Eq.~20!. We obtain

b1~0,ma!52 1
6 , ~28!

and all otherbi are zero.
The coefficients in Eq.~21! were given in Refs.@12# and

@13#. Their values are

c0~0!5 5
3 , c1~0!52 1

12 , c2~0!5c3~0!50. ~29!

Normally, one gets the tree-level coefficients from d
grams with only one vertex, i.e., from a direct expansion
the action in the lattice spacinga. In contrast, the four-
fermion tree-level coefficients come from tree graphs w
two vertices.3 For staggered fermions, the high momentu

3We thank G. P. Lepage for pointing out the existence of s
tree-level contributions.
ms

-

f

-
f

gluon exchange gives rise to flavor-changing four-ferm
terms. At the tree level, we get three nonzero terms~see
Appendix B!, the coefficients of which are

b128 5
g0

2

8
, ~30a!

b138 5
g0

2

24
, ~30b!

b148 5
g0

2

16
, ~30c!

and all otherbi8 are zero. These three terms belong to
restricted class of operators which can be expressed
product of two fermion bilinears, with each such biline
composed of fieldsx̄(x) andx(x8) with a distance between
x andx8 of preciselyonelink. There are a total of eight suc
operators given in Eq.~18!. The coefficients quoted abov
were computed using the naive fields specified by the s
dard staggered fermion action as expressed in Eq.~A1!. As
we will discuss in the next section, all the coefficients of t
eight terms in Eq.~18! can be changed by a transformatio
of the field variables and a choice of fields can be found
which these coefficients are zero. Thus, the eight terms
Eq. ~18!, including the three terms quoted above, actually
not appear in the on-shell-improved action.

IV. ON-SHELL IMPROVEMENT

The on-shell-improved action is not unique. Given o
improved action, we can obtain another one by a transfor
tion of the fields. However, all these actions are equival
because all such actions will give the same value for a s
cific on-shell quantity. Thus, we can choose to minimize
number of operators occurring in the on-shell-improved
tion by an appropriate definition of the field variables.

A. Isospectral transformation on fermion fields

To simplify the improved fermion action, Eq.~20!, we
consider the following transformation:

x→~11a2«1mD” 1a2«2D” 21a2«3D 2!x, ~31a!

x̄→x̄~11a2«18mD”Q 1a2«28D”Q 21a2«38DQ 2!. ~31b!

This is the most general transformation of the fermion fie
x and x̄ which preserves their transformation properties u
der the lattice symmetries. After rescaling the fermion fie
and redefining the fermion mass parameter

m85m@12a2m2~«12«18!#, ~32!

to the first order in the« i ’s and second order ina, we end up
with the change of the action

dSF5a2@~«382«3!O21~«381«3!O31~«281«21«381«3!O5

1~«12«181«21«28!O61~«31«38!O7#1O~a3!. ~33!

The reality of the transformed action requires that
h
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270 57YUBING LUO
«385«3* , ~34a!

«21«285real, ~34b!

and

«12«185real. ~34c!

Thus we can always choose appropriate values of the« i ’s
and« i8’s to make the coefficientsb2 , b3 , b5 , andb6 in Eq.
~20! vanish after it is rewritten by the new field variables. F
example,

«3852 1
2 ~b31b2!, ~35a!

«352 1
2 ~b32b2!, ~35b!

«281«25b32b5 , ~35c!

«12«185b52b32b6 . ~35d!

Notice that this argument is valid to any order ofg0
2. Hence,

to all orders in perturbation theory, we can always choos

b2~g0
2,ma!5b3~g0

2,ma!5b5~g0
2,ma!5b6~g0

2,ma!50.
~36!

B. Isospectral transformation on gauge fields

The general form of the gauge field transformation wh
changes the action atO(a2) can be written as

Um~x!→Um8 ~x!5exp@«Xm~x!#Um~x!. ~37!

Um8 (x) andUm(x) must have the same transformation pro
erties under lattice symmetry group. The general form
Xm(x) has been given in Ref.@13# for the case in which
Xm(x) depends on only the gauge variables. It is the a
Hermitian traceless part of another fieldYm(x):

Xm~x!5Ym~x!2Ym~x!†2
1

N
Tr@Ym~x!2Ym~x!†#,

~38!

with N53 for SU~3! gauge theory, and

Ym~x!5
1

4 (
n

@Un~x!Um~x1 n̂ !Un
†~x1m̂ !Um

† ~x!

2Um~x!Un
†~x2 n̂1m̂ !Um

† ~x2 n̂ !Un~x2 n̂ !#.

~39!

Under the field transformation, Eq.~37!, the path integral
is invariant:

E @dU#exp~SF@U#1SG@U# !

5E @dU8#exp~SF@U8#1SG@U8# !

5E @dU#~11DJ1e@DSG1DSF# !

3exp~SF@U#1SG@U# !1O~e2!. ~40!
r

-
f

i-

The change of the fermion action in Eq.~20! is

DSF5a2
e

2
O41O~a3!. ~41!

The Jacobian 11DJ and the change of the gauge actionDSG
will not generate new terms, but only change the coefficie
ci in SG@U#. Lüscher and Weisz@13# discussed the change
of these coefficients in detail. Their results showed that
can choose an appropriate value ofe to set

c3~g0
2!50 ~42!

to all orders in perturbation theory. From Eq.~41!, we see
that if we want this to persist, the coefficientb4(g0

2,ma) will
not be zero in general. On the other hand, we can also
b4(g0

2,ma)50; however,c3(g0
2) will then in general be non-

zero.
In order to find out the possible redundant four-fermi

operators, we will generalize the argument given in R
@14#. The lattice action is rewritten in a concise form as

S5(
x

@ x̄hx~U !x1Trf x~U !#. ~43!

Consider the small change of a link variable,

dUm~x!5 i«ab~x1c!Re@ taUm~x1c!#abtaUm~x!,
~44a!

dUm
† ~x!52 i«ab~x1c!Re@ taUm~x1c!#abUm

† ~x!ta,
~44b!

where« is a real small number. The Jacobian differs from
in order «2. To the first order of«, we get the following
identity:

E dUm~x!eS@x, x̄ ,U#

3H x̄taUm~x!
]hx„Um~x!…

]Um~x!
x«ab~x1c!

3Re@ taUm~x1c!#ab1TrF taUm~x!
] f x„Um~x!…

]Um~x! G
3«ab~x1c!Re@ taUm~x1c!#abJ 50. ~45a!

Similarly, we get

E dUm~x!eS@x, x̄ ,U#H x̄taUm~x!
]hx„Um~x!…

]Um~x!

3x«ab~x1c!Im@ taUm~x1c!#ab

1H TrF taUm~x!
] f x„Um~x!…

]Um~x! G«ab~x1c!

3Im@ taUm~x1c!#abJ 50. ~45b!
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Combining the above two equations, we get

Qab
a ~ x̂,x!5E dUm~x!eS@x, x̄ ,U#

3H x̄taUm~x!
]hx„Um~x!…

]Um~x!
x«ab~x1c!

3@ taUm~x1c!#ab

1TrF taUm~x!
] f x„Um~x!…

]Um~x! G«ab~x1c!

3@ taUm~x1c!#abJ
50. ~46!

In the above equation, we replace«ab(x1c) by a3x̄a(x
1c)xb(x1c1m), multiply it by a combined phase factor

(
i 511

18

e i8hm~x!Pm
i ~c!, ~47!

and sum it on the hypercubic vectorc. After substituting
hx(U) and f x(U) by the actual staggered fermion action a
the gauge action, we see that we can add the terms

DS5
a2

2 (
i 511

18

e i8Fi1a2e118 O41O~a3! ~48!

to the action without changing the path integral to the or
of O(a3). Notice that because of the identity

(
c

hm~c!Pm
i ~c!5d i ,11, i 511, . . . ,18, ~49!

there is only one dimension-6 bilinear operator in Eq.~48!.
Therefore, we conclude that the four-fermion operat
F11,...,F18, whose fermion bilinear operators consist of tw
sites separated by one link, are redundant and their coup
constantsb118 ,...,b188 can be set to be zero. Again, the coe
ficient of operatorO4 will get a change accordingly. Is i
possible to get rid of some other four-fermion operato
From the above discussion, we conclude ‘‘no.’’ Because
the original staggered fermion actionx and x̄ are separated
by one link, there is no way to generate an operator l
F1 ,...,F10 when we multiply that link variable by som
Grassmann variables.

C. O„a2
… on-shell-improved action

The O(a2)-improved action for lattice QCD can be wri
ten as

SQCD5SG@U#1SF@x,x̄,U#, ~50!

whereSF is given by Eq.~20! andSG is given by Eq.~21!.
The operatorO4 involves the lattice sites in two neares

neighbor hypercubes. There exists another operatorO48
which only involves lattice sites inside one hypercube an
equivalent toO4 up to an operator of dimension 7. We ca
r

s

ng

?
n

e

is

construct this operator by replacing the link variableUm(x)
in the Dirac operatorD” with a modified link~e.g., the MILC
‘‘fat link’’ ! Wm(x)Um(x) @5#:

O485(
x,m

x̄~x!
hm~x!

2a
@Wm~x!Um~x!x~x1m̂ !

2Um
† ~x2m̂ !Wm

† ~x2m̂ !~x2m̂ !#. ~51!

This new operatorO48 obeys all the staggered fermion lattic
symmetries. The factorWm(x) has the form

Wm~x!5
1

a2 (
nÞm

@Un~x!Um~x1 n̂ !Un
†~x1m̂ !Um

† ~x!

1Un
†~x2 n̂ !Um~x2 n̂ !Un~x1m̂2 n̂ !Um

† ~x!22#,

~52!

and its continuum limit isig0a@Dn ,Fnm#. ThusO48 has the
same continuum limit asO4 . Because it is simpler, we wil
chooseO48 instead ofO4 to make our on-shell-improved ac
tion.

From the above discussion, we can see that one pos
on-shell-improved action for lattice QCD can be construc
as

SQCD
~1! 5(

i 50

2

ci~g0
2!Li1SF

~1! , ~53!

with

SF
~1!5x̄~D” 1m!x1a2b1~g0

2,ma!O11a2b4~g0
2,ma!O48

1a2b7~g0
2,ma!O71a2(

i 51

10

bi8~g0
2,ma!Fi . ~54!

Another possible choice would be

SQCD
~2! 5(

i 50

3

ci~g0
2!Li1SF

~2! , ~55!

with

SF
~2!5x̄~D” 1m!x1a2b1~g0

2,ma!O11a2b7~g0
2,ma!O7

1a2(
i 51

10

bi8~g0
2,ma!Fi . ~56!

In either case, the tree-level-improved action is the sa
because bothb4(0,ma) andc3(0) vanish.
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D. Formulas arranged for lattice computation

For the operators appearing in Eqs.~53! or ~55!, the gauge
part, given by Eq.~21!, is already in a form handy for nu
merical simulation. However, the fermion bilinear operato
in SF

(1) or SF
(2) are represented in terms of the hypercu

fields. In order to do a numerical calculation, it is convenie
to rewrite them in terms of the original field variablesx and
x̄.

Let us first consider the four-fermion operators. These
operators, described in Secs. II and IV, are already writte
terms of the original variablesx and x̄. However, they can
be simulated using known Monte Carlo techniques only
d

s

s

t

n
in

f

auxiliary Yukawa fields are introduced so that these fo
fermion operators can be written in a bilinear form. The
sulting gauge-Yukawa fermion action will be quite comp
cated with Hermiticity properties that depend on the sign
the original four-fermion coefficients. Further, the positiv
definite character of the staggered fermion action may be
unless these new Yukawa terms possess some addit
~staggered fermion! UA(1) symmetry. Since these four
fermion terms are not present in the tree-level~or tadpole-
improved tree-level! approximation, we will not conside
this question further in this paper.

Only considering the fermion bilinear operators, the fe
mion actionSF

(1) in Eq. ~54! can be rewritten as
SF
~1!5a4(

x,m
x̄~x!

hm~x!

2a
@Um~x!x~x1m̂ !2Um

† ~x2m̂ !x~x2m̂ !#1@12a3~g0
2,ma!#ma4(

x
x̄~x!x~x!

1a3~g0
2,ma!ma4(

x,m
x̄~x! 1

2 @U~x,x12m̂ !x~x12m̂ !1U~x,x22m̂ !x~x22m̂ !#

2a1~g0
2,ma!a4(

x,m
x̄~x!

hm~x!

6a
@U~x,x13m̂ !x~x13m̂ !2U~x,x23m̂ !x~x23m̂ !#, ~57!
ay
p-

r-

-
r

is-
r-
all
lat-
with

Um~x!5@11a1~g0
2,ma!2a2~g0

2,ma!#Um~x!

1a2~g0
2,ma!Ũm~x!, ~58a!

Ũm~x!5
1

6 (
n

nÞm

@Un~x!Um~x1 n̂ !Un
†~x1m̂ !

1Un
†~x2 n̂ !Um~x2 n̂ !Un~x2 n̂1m̂ !#,

~58b!

and

U~x,x12m̂ !5Um~x!Um~x1m̂ !, ~59a!

U~x,x22m̂ !5Um
† ~x2m̂ !Um

† ~x22m̂ !, ~59b!

U~x,x13m̂ !5Um~x!Um~x1m̂ !Um~x12m̂ !, ~59c!

U~x,x23m̂ !5Um
† ~x2m̂ !Um

† ~x22m̂ !Um
† ~x23m̂ !.

~59d!

The three parametersa1 , a2 , anda3 are real numbers an
related to the parametersb1 , b4 , andb7 of Eq. ~54! by

a152 3
4 b1 , ~60a!

a25b4 , ~60b!

a35 1
2 b7 . ~60c!

The form ofSF
(2) , when rewritten using the fermion field

x and x̄, is the same as Eq.~57!, but with a2(g0
2,ma)50:
FF
~2!5SF

~1!ua2~g
0
2,ma!50 . ~61!

At the tree level, we have

a1~0,ma!5 1
8 , a2~0,ma!5a3~0,ma!50. ~62!

One way to do a better job than tree-level improvement m
be to use tadpole improvement. Following the work of Le
age and Mackenzie@15#, we can replace all linksUm(x)
which appear in lattice operators by (1/u0)Um(x) ~Of course,
the normalization of the coupling constant will be diffe
ent.! The constantu0 is the mean value of the link matrix
and is measured in the simulation by the quantityu0

5@Rê 1
3 TrUh&#1/4. The tadpole-improved tree-level coeffi

cients are the same as above except that the parametea1
which appears in Eqs.~57! and ~58a! must be replaced by
two different parametersa1

a and a1
b . The value of the pa-

rametera1
a appearing in Eq.~57! is a151/8u0

2, while the
parametera1

b in Eq. ~58a! is still 1/8.4

V. CONCLUSION

Using Symanzik’s improvement program, we have d
cussed theO(a2) on-shell improvement of the staggered fe
mion action in a systematic way. Our first step was to find
dimension-6 lattice operators which are scalars under the

4Thanks to Attila Mihaly for pointing this out.
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tice symmetry group. We found that there are 5 linearly
dependent fermion bilinear operators that are invariant un
all lattice symmetry transformations. When the mass par
eter is not zero, the UA(1) symmetry of the staggered fe
mion is violated, and there are 2 more fermion bilinear o
erators that violate only this UA(1) symmetry and are
proportional to the mass of the fermions. For staggered
mions, we observed that there are 18 independent f
fermion operators. Therefore, we have at most 25 ferm
operators which can be added as counterterms to the stan
staggered fermion action to remove allO(a2) errors from all
physical quantities. Including the 3 independent dimensio
gauge operators, we end up with 28 counterterms for
O(a2)-improved lattice QCD with staggered fermions.

For on-shell improvement, we can use the isospec
transformation of the field variables to eliminate all possi
redundant operators. Including such field transformatio
we concluded that we need at most 15 independent la
operators of dimension 6 to construct theO(a2) on-shell-
improved lattice QCD with staggered fermions. Ten of the
are four-fermion operators, which are absent at the tree l
and, hence, of the order ofO(g0

4a2) at most. The other 5 are
fermion bilinear operators and gauge operators and only
of them are nonzero at the tree level. Two possible impro
actions are given by Eqs.~53! and ~55!.

Thus we found that the Naik term is not the only term
the improved staggered fermion action. It is worth empha
ing that to remove theO(a2) errors from lattice computa
tion, we must use both an improved gauge action and
improved fermion action at the same time, not just one
them.

The recent numerical results from the MILC@4,5# and
Bielefeld @10# groups are consistent with our analysis. Fu
thermore, in the free case, our result is the same as Naik’
should be expected given the equivalence of free Dir
Kähler and staggered fermions.
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APPENDIX A: CLASSICAL CONTINUUM LIMIT
OF STAGGERED FERMION ACTION

In this appendix, we will evaluate the continuum limit o
the staggered fermion action,

SF5a4(
x

x̄~x!F(
m

hm~x!
1

2a
@Um~x!x~x1m̂ !

2Um
† ~x2m̂ !x~x2m̂ !#1mx~x!G , ~A1!

through ordera2. As the first step in this derivation, w
rewrite this action using the covariant hypercubic fermi
fields defined in Eq.~24! in whichUA(y), the average of the
link products along the shortest paths from sitey to site y
1A, is defined as

UA~y!5
1

4! (
P~mnrs!

Um~y!AmUn~y1Amm̂!AnUr~y1Amm̂

1Ann̂ !ArUs~y1Amm̂1Ann̂1Arr̂ !As, ~A2!

where the summation is on all permutations of~mnrs!. We
define the hypercubic first- and second-order covariant
rivatives as

D̄mwA~y!5
1

4a
@Um~y!Um~y1m̂ !wA~y12m̂ !

2Um
† ~y2m̂ !Um

† ~y22m̂ !wA~y22m̂ !#,

~A3a!

D̄mwA~y!5
1

4a2 @Um~y!Um~y1m̂ !wA~y12m̂ !

1Um
† ~y2m̂ !Um

† ~y22m̂ !wA~y22m̂ !

22wA~y!#. ~A3b!

Then, with no approximation, we can rewrite Eq.~A1! as
SF5~2a!4(
y

(
AB

(
m

w̄A~y!H ~gm ^ I !AB

1

2
@wm

~1!~y;AB!1wm
~2!~y;AB!#D̄m2~g5^ j5m!AB

1

2
@wm

~1!~y;AB!

2wm
~2!~y;AB!#D̄m1~gm ^ I !AB

a

2
@wm

~1!~y;AB!2wm
~2!~y;AB!#D̄m2~g5^ j5m!AB

a

2
@wm

~1!~y;AB!1wm
~2!~y;AB!#D̄m

1~gm ^ I !AB

1

4a
@wm

~1!~y;AB!1wm
~4!~y;AB!2wm

~2!~y;AB!2wm
~3!~y;AB!#2~g5^ j5m!AB

1

4a
@wm

~1!~y;AB!

1wm
~2!~y;AB!2wm

~3!~y;AB!2wm
~4!~y;AB!#J wB~y!1~2a!4( ( mw̄A~y!wA~y!. ~A4!
y A
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The two hypercubic vectorsA andB satisfy the delta func-
tion d̄(A1B1m̂), and the overbar means modulo 2. T
four closed-loop link products are defined as

wm
~1!~y;AB!5dAm1UA~y!Um~y1A!UB

†~y12m̂ !

3Um
† ~y1m̂ !Um

† ~y!, ~A5a!

wm
~2!~y;AB!5dAm0UA~y!Um

† ~y22m̂1B!UB
†~y22m̂ !

3Um~y22m̂ !Um~y2m!, ~A5b!

wm
~3!~y;AB!5dAm1UA~y!Um

† ~y1B!UB
†~y!, ~A5c!

wm
~4!~y;AB!5dAm0UA~y!Um~y1A!UB

†~y!. ~A5d!

If we representUA(y) by a doubled line which starts at sitey
and ends at sitey1A, andUA

†(y) by a doubled line which
starts at sitey1A and ends at sitey, then some typical loops
can be shown by four figures~Figs. 1–4!.

To expand the links in powers of ‘‘a, ’’ we take advantage
of the parallel transporter fromx to x1m̂ to define the gauge
field Am(x) by the path-ordered exponential

Um~x!5P exp H ig0aE
0

1

dtAm~x1tm̂!J . ~A6!

Whena→0, we have

D̄m5Dm1 2
3 a2Dm

3 1O~a3!, ~A7a!

FIG. 1. A typical graph ofwm
(1)(y;AB). It starts fromy, through

y1A, y12m1B, y12m, y1m, and then comes back toy. The
two hypercubic vectorsA and B satisfy the conditionAm51, Bm

50.

FIG. 2. A typical graph ofwm
(2)(y;AB). It starts fromy, through

y1A, y22m1B, y22m, and then comes back toy. The two
hypercubic vectorsA andB satisfy the conditionAm50, Bm51.
D̄m5Dm
2 1O~a2!, ~A7b!

where Dm5]m1 ig0Am is the continuum covariant deriva
tive. Expanding thew’s in powers of ‘‘a, ’’ we get

1
2 @wm

~1!1wm
~2!#511O~a3!, ~A8a!

1
2 @wm

~1!2wm
~2!#5 3

2 ig0a2(
n

AnFnm1O~a3!, ~A8b!

1

4a
@wm

~1!1wm
~4!2wm

~2!2wm
~3!#

5 ig0a(
n

AnFnm1 1
2 ig0a2(

ln
AlAn@Dn ,Flm#

1O~a3!, ~A8c!

1

4a
@wm

~1!1wm
~2!2wm

~3!2wm
~4!#5 1

2 ig0a2(
n

An@Dm ,Fnm#

1O~a3!. ~A8d!

Finally, we get the classical continuum limit of the stagger
fermion action as Eq.~25!.

APPENDIX B: CALCULATION OF THE TREE-LEVEL
COEFFICIENTS OF FOUR-FERMION OPERATORS

We evaluate the amplitude represented by the gr
shown in Fig. 5 for the case of vanishing external momen
pi

m50. The amplitude is given by

FIG. 3. A typical graph ofwm
(3)(y;AB). It starts fromy, through

y1A, y1B, and then comes back toy. The two hypercubic vec-
tors A andB satisfy the conditionAm51, Bm50.

FIG. 4. A typical graph ofwm
(4)(y;AB). It starts fromy, through

y1A, y1B, and then comes back toy. The two hypercubic vec-
tors A andB satisfy the conditionAm50, Bm51.
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KABCD
abcd 52g0

2tab
i tcd

i (
m

(
M

8
1

p̂M
2

3cos@ 1
2 ~pA1pB!m#d~A1B1M1ĥm!

3cos@ 1
2 ~pC1pD!m#d~C1D1M1ĥm!,

~B1!

wherea, b, c, andd are color indices, andĥm is a hyper-
cubic vector whosen’s component is 1 only ifn,m. Here
pM is the momentum propagated by the gluon and the qu
tity p̂M

2 is defined as

p̂M
2 5

4

a2 (
n

sin2~M np/2!. ~B2!

FIG. 5. The Feynman graph which generates four-fermion
erators at the tree level.
l

tt
,

is
J

M.
in-

.

n-

The primed summation onM is for all hypercubic vectorsM
with Mm50.

After some algebra and using the notation of Ref.@16#, we
get

KABCD
abcd 52g0

2tab
i tcd

i H a2

4 (
mÞnÞl

~gmn ^ j5l!%
AB~gmn ^ j5l!%

CD

1
a2

8 (
mÞnÞl

~g5l ^ jmn!%
AB~g5l ^ jmn!%

CD

1
a2

12 (
m

~ I ^ jm!%
AB~ I ^ jm!%

CDJ , ~B3!

with

~gS^ jF!%
AB5(

CD

1
4 ~21!AC~gS^ jF!CD

1
4 ~21!DB.

~B4!

Then the action differs from the continuum by a fou
fermion term:

DS5
1

2 (
ABCD

(
abcd

KABCD
abcd x̄ a~pA!xb~pB!x̄ c~pC!xd~pD!.

~B5!

Written in terms of the hypercubic fields, we get

DS52
g0

2

2 S a2

4
F121

a2

8
F141

a2

12
F13D . ~B6!

The counterterm is the opposite of the above term. Hence
get the coefficients listed in Eq.~30!.
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