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On-shell-improved lattice QCD with staggered fermions
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By using Symanzik's improvement program, we study on-shell-improved lattice QCD with staggered fer-
mions. We find that there are as many as 15 independent lattice operators of dimefsaunding both gauge
and fermion operatoysvhich must be added to the unimproved action to formQy@?)-improved action.
Among them, the total number of dimension-6 gauge operators and fermion bilinears is 5. The other ten terms
are four-fermion operators. At the tree level and tadpole-improved tree level, all ten four-fermion operators are
absent[S0556-282(98)01201-4

PACS numbgs): 12.38.Gc, 11.15.Ha, 71.10.Fd

I. INTRODUCTION tors following Symanzik’s scheme. In Sec. Ill, we will give
the coefficients in the tree level up to ordet. In Sec. IV,

In recent years, there has been a surge in developing arvde will give the general isospectral transformation of fer-
applying improved actions for the numerical simulations ofmion fields and gauge fields and give the form of the simpli-
lattice QCD. Up to now, most research has focused on imfied on-shell-improved action. Section V is the conclusion.
provement of Wilson fermions in an effort to reduce the The computations of the tree-level coefficients are presented
O(a) cutoff effects in the simulations. On the other hand, theln two appendixes.
absence 0D(a) errors for the staggered fermion actidn2]
and the complexity of the staggered formalism mean that its Il. POSSIBLE COUNTERTERMS

O(a?) improvement has received little attention. Almost ten When Symanzik’s improvement scheme is applied to con-
years ago, Naik proposed adding a third-nearest-neighbQliy,ct anO(a?)-improved lattice action, the first step is to
term to the standard staggered fermion action to removgng all dimension-6 operators which are scalars under the
someO(a®) effects[3]. His study was based on the Dirac- |attice symmetry group. These operators, treated as counter-
Kahler equation, not on the standard staggered formulationerms, are then added to the action to removeCy(la?)
Although these two fermion formulations are the same in thesrrors from physical quantities. Before doing that, we will
free case, they are quite different when the gauge interactioniftroduce some notation which will simplify our presenta-
are included and the difference is of the orderdf So the  tion. For the transformation properties of staggered fermion
Naik term may not remove alD(a?) errors from the simu- fields, the reader is requested to consult R&f. which we
lations by using staggered fermions. This statement wawill refer to as paper | in the following.
demonstrated by the recent numerical simulation from the
MILC group [4,5]. A. Definitions and notation

One approach to improvement is to construct a perfect . _ _
action[6]. The classical perfect action for free staggered fer- 1he whole lattice can be viewed as being composed of
mions was already proposed in RET]. In this paper, we elementary hypercgbg; conS|st||jg of.16 lattice S|§es. We will
will apply Symanzik's improvement scherfig] to staggered ~ US€X to label th_e individual lattice sites and wh|ch_ ha_s _
fermions and discuss its on-shell improventettirough only even coordinates, to label each hypercube. A site inside

0(a?). We will show that including only the Naik term in @ Nypercube is represented by a “hypercubic vectér’

the improved staggered fermion action is not enough to rewhose components can only take the values of either O or 1.

move all ordera? errors from on-shell quantities. Mean- The relationship between these three vectors is given by
while, because both the standard Wilson gauge action and X=y+A 1)
the standard staggered fermion action hé@?) errors, we '

must improve both of them at the same time. We will show  The hypercubic fields are defined as

that these two improvements are not independent, but con-

nected by an isospectral transformation of the gauge fields. =1 (v+A 2
The recent calculations of the MILC and BielefeldO] XAY) = ax(y+A), 23
groups can be easily explained by the result of our analysis. ) =x(y+A). (2b)

This paper is organized as follows. In Sec. Il, we will
discuss theO(a?) improvement of the staggered fermion \with the notation
action by finding all linearly independent dimension-6 opera-

X_M<mX=yZABE\<y>M<mABXB<y> (20

The scheme of improved Hamiltonians for lattice QCD is not
considered in this paper and is referred to Ref. and
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o ey 1 t t . _
(7S®§F)AB 4Tr(7A'YS'YB'YF)v (Zd) [XM(U)X]ZZE % XA(y)M(Z/{)ABXB(y)

we can write the standard staggered fermion action in a com-

; _
pact form as x% xc(Y)M(U)cpxo(y)- (6)

SF:f{E (7,®)D,+m|x. (20
® However, the color indices in such an operator might be

. . . .combined in four ways:
Furthermore, when discussing the fermion operators, we WI|F y

use the following notation:

Zaaa’(M(u)X)a’E5bb’(M(U)X)b’ ) (76\)
D=2 (1,@)D,, (%3 Xadar MU Xa Xodoa MUy (TH)
D?=2 (v,81)D,(7,81)D,,, (3b) Xataa (MU X)ar Xotpy MAUXy (7o)
o
Xatow MU X)a Xothy (MU X) (7d)
D=2 (y,8)D,(y,8)D,(y,21)D,, (30
a with
DDPD=2, (v,8)D,(y,21)D,(y,81)D,. (3d) Y
my tl=§! (8)

B. Fermion bilinears : .
where\' are the SB) Gell-Mann matrices, and as usual, the

The lattice symmetry group of staggered fermion aCtio”repetition of the indices, a’, b, b’, andi means summa-

[11,2] includes translation, reflection, rotation, charge conju+jon Because of the completeness relation of the matiites
gate, and a continuous\/J)1). When the mass parameter

is 0, there is a second continuoug(Wl) symmetry.

8
Whenm=0, we can identify the following five indepen- N _ E
dent operators which are scalars under all symmetry trans- Zl NaarNowr =20abr Obar ~ 3 Saar Sob ©
formations including (1):
O,=¥D3 4 the operators with the form of Eq$7a) and (7b) can be
1= X X ( a) . . . .
expressed as linear combinations of operators with the form
T2 2 of Egs. (7¢) and (7d). Furthermore, the operators with the
O2=xz(D"P-DD%)x, 4D form of Eq. (7d) can be expressed in terms of the operators
with the form of Eq.(7¢c) by making a Fierz transformation.
O3=x3(D?*D+DD?-2D3%)y, (400  Hence we need only consider the operators with the form of
Eq. (70).
0,=x(D?D+DD?-2DDD)y, (4d) For convenience, we will not write out the links explicitly
in the remaining part of this section unless there would oth-
=33 erwise be confusion. After applying the staggered fermion
Os=xD>y. (4¢

symmetry transformation including rotation, reflection,

For the case of nonzero fermion mass, thg1) symmetry ~charge conjugate, and the continuoug(L)XU(1), we
is violated, and there are two more allowed counterterms: found there are 18 operators which are invariant:

Og=mx D2y, (53 Fi=xt(I@ ) x1?—[xt¥(ys@ &) x1°

= \v ] 2 T o £ ) (e ®E )
O7=mx Dx. (5D +§ {7, @ €)X~ [ Xt 5,® €5,) 1%

C. Four-fermion operators (109

When consideringd(a?) corrections to the fermion ac-
tion, we must examine not only dimension-6 operators bilin-
ear in the fermion fields, but also four-fermion operators of 2f additional, explicit flavors of staggered fermions are intro-
dimension 6. duced, Fierz symmetry cannot be used a second time, and so we
Using hypercubic coordinates, we can connect the spimill need to introduce both flavor adjoint and singlet fermion bilin-
and flavor indices in staggered four-fermion operators inears, effectively doubling the number of flavor-singlet, four-fermion
combinations of the form operators that must be considered.
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Fo=Ixt(1®1) x>~ [xt*(ys® £5) X1?

—; (X7, ® €)X~ [ Xt v5,® £5,) X124,

f3=§ [Xt%(ys,@ 1) x1%,
f4=§ [Xt3(y,® &) x1%,
f5:ugﬂ X(7,,®E)x 1%
6= X_a F)’,U,V® 5u) X1
F ,;V[ 2(y,,®&,) x12
]:7:”‘2#)\ [Fa( 7#®§V)\)X]21
fszgy [XT2(5,® €,,) X 12,
f9=§ [Xt2(1® €5, x1%,
flo=§ [XT(ys®&,)x1%,
fn=§ [Xt(y,®)x1%
‘7:12:Mg“ [xt?( Yur® Es)x1%
fn:; [Xt(1®£,)x12,
f14=ﬂgﬂ [XT(y5,® €)X 1%,
«7:152%2 [Fa(’)/S,U,®§5)X]21
Fre= ; [XT2(7,,®&,)x1%,

Fir= % [Xt?(ys® §5M)X]2,

Frg= 2 Xy, ®&,,)x1%
mFEV

(10b

(109

(10d

(10e

(10f)

(109

(10h

(10i)

(10))

(10Kk)

(10D

(10m)

(10n)

(100

(10p

(109

(10n

sion 7. For any operator listed above, we can combine it with
some higher dimensional operator so that the new operator is
invariant under translation. This new operator differs from
the old one by a dimension-7 term, and both of them have
the same continuum form. Therefore the translation symme-
try does not reduce the number of invariant operators here.
After adding some higher dimensional terms, we can
make the 18 four-fermion operators listed above invariant
under translation and rewrite them in terms of the figi{s)
and y(x). First,

f1=XEa Fx)ta)((x)g x(x+etiy(x+e), (11

where the sum ovee is a sum over the 8 possible lattice
displacements of length “1.” Second,

f2=XZa Rx)ta)((x)g Yx+0)tPx(x+v), (12

where the sum ovar is over the 32 possible lattice displace-
ments of length ¥3.” Next,

1 .
Fi=2 2 CR(X) 5z 2 W(E) n5(0)P,(C)C] (x+0),
X, a u C

i=3,...,10. (13)

This equation contains a number of new elements which we
will now define. The sum ovet is a sum over the 81 dis-
placements with coordinates,=—1,0,1. The weight is

4

w(c)=I (2—Ic,. (14)

pn=1
The fermion bilinear operat(ﬂf;(x) is given by
ci<x>=ﬂx)ta§ X(x+0), (15)
vl

where the sum is over the 8 possible lattice displacements of
length “v3” which are perpendicular tqu direction. The
phase factor®{)(c) are defined by

PP(c)=7,(c), P (c)=2(c)n,(c),
PP(c)=e(c)T,(c)mu(c), PP(c)=r,(c)n,(c),
PP(c)=1,(c)¢,(c), PP(c)=e(c)T,(c)¢,(c),

PP(c)=e(c)f,(c), PU%c)={,(c), (16

These operators are not invariant under translation. However,
the additional terms generated by translations are of dimernwhere
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where the link product%; are defined as

> (—1)%,
vFEW

(.A.)IH

nM(C):(_l)Cl+~~~+C,ufly Lo = '_[_;_Z ReTr<1 — D>, (228)
£(€)=(— 1)1t 7, ’

g(C)=(—1)a" e, = g; ReTr(1— [ ]) (22b)
4
©)=1II #7.(c). (17)
s p=1 u = g-zx: ReTr<1 - >, (229

8
F=2 2 B 2562w C)P} () B(x+c), Li=5% ReTe(l- E)» (229
xX,a u x

The remaining 8 operators can be written as

i=11,...,18, (19

with the fermion bilinear operator

a e A — . where( ) implies an average over orientations. The fops
B,(x)=zIx()tx (x+ w) +x()tx(x=pm)], (19 gatisfy the normalization condition

and the phase factors are given by

2 2 2 2y _
PUY(C)=n,(c), PU2(c)=r7,(c)7,(c), Co(9p) +8¢1(go) +8Ca(dy) +16c3(gp)=1. (23

PLY(e)={u(0), PA(c)=T.(0)¢u(0), For on-shell improved pure gauge theory, it was shown

that we can sat3(g§) to zero by a change of field variable in

Pe)=e(c)n,(c), PLV(c)=e(c)r,(c)n,(c), the path integral. However, we have to be careful when we
discuss an improved action which includes the quarks, be-
P (c)=e(c){,(c), PUP(c)=e(c)T,(c)L,(C). cause the change of gauge field variable will also have an

impact on the fermion action. We will discuss this issue in

We have now discussed all dimension-6 fermion operathe latter part of this paper when we discuss the isospectral
tors which are invariant under the lattice symmetry groupitransformations.

Therefore, we can write down a suitab®a?)-improved
staggered fermion action as

7 Ill. TREE-LEVEL IMPROVEMENT
— 2 2
Se=x(Prmx+a 21 bi(go,ma)O A natural way to do the tree-level improvement is to ex-
18 pand the lattice action to orde? and to adjust the coeffi-
+a22 b{(g%,ma)}‘i . (20) _cien_tsbi so that the diff_erence_from the continuum Lagrang-
i=1 ian is of order ofa®. This also improves the free propagator
through order of?.

The reality of the action requires thiaj be imaginary and Define the gauge-covariant hypercubic fermion fields as
that all otherb’ andb be real.

D. Gauge fields ea(Y) =UA(Y) XalY), (243
The Symanzik improvement of the gauge theory action
was studied more than a decade 448,13. It was found _ _
that there are three independent six-link products which must oa(Y) = Xa(UA(Y), (24D
be added to the original Wilson action to form an
O(a?)-improved gauge action. The improved gauge action
can be written as wherel{,(y) is the average of link products along the short-
est paths frony to y+A. For the classical continuum limit

3
1= of the standard staggered fermion actisee Appendix A
Se[U1=2, ci(g2) i, (n o
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_ - - gluon exchange gives rise to flavor-changing four-fermion
SF:]% AV 2 (7,8 aD,,+M(I®1)pp terms. At the tree level, we get three nonzero teifsee
y ” Appendix B), the coefficients of which are

+a, |igo Ax()’ﬂ@')ABFM_(75®§5#)ABD;2L , 95

2a? S
t3 > (7,81)eD} T

I b13:ﬂ, (3Ob)
+ 1 goa? > AA aglD, . F
Joa AAL(Y,®1)aslD, Fy Ll 2

2 MV ’ gO
-2 A ®&s5,) D,.Fy.]+3F,,D,) )

% (758 Esu)an(lD Pl M }QDB(y and all otherb/ are zero. These three terms belong to a
+0(a%), 25 restricted class of operators which can be expressed as a

product of two fermion bilinears, with each such bilinear
composed of fieldg(x) and y(x’) with a distance between
x andx’ of preciselyonelink. There are a total of eight such
operators given in Eq(18). The coefficients quoted above
were computed using the naive fields specified by the stan-
dard staggered fermion action as expressed in(&fj). As
PAs (263 we will discuss in the next section, all the coefficients of the
eight terms in Eq(18) can be changed by a transformation
L _ of the field variables and a choice of fields can be found for
b= ¢Aex;< —a>, A)\D)\)! (26  which these coefficients are zero. Thus, the eight terms in
A Eq. (18), including the three terms quoted above, actually do
not appear in the on-shell-improved action.

whereD , is the continuum covariant derivative afq,, is
the continuum field strength.
Now let us define a new set of fermion field variables

da= exl{ —a, A}\D_)\
x

whereD is defined in Eq(A3a). This definition is an obvi-
ous extension to higher order énof the ordera transforma-
tion discussed in paper | chosen to remove extraneous terms

of O(a) which appear when the original staggered fermion The on-shell-improved action is not unique. Given one

action is written in terms of hypercubic variables. The con-improved action, we can obtain another one by a transforma-
tinuum limit of the staggered fermion action in terms of thetion of the fields. However, all these actions are equivalent
¢ field can be written as because all such actions will give the same value for a spe-
cific on-shell quantity. Thus, we can choose to minimize the

IV. ON-SHELL IMPROVEMENT

- - a2 . . _ s ]
_ a3 number of operators occurring in the on-shell-improved ac
5= Jy% d’A(y){ % (7.®1)ag| Dyt 6 DL tion by an appropriate definition of the field variables.
+m(181) g ¢B(y)+0(a3) (27) A. Isospectral transformation on fermion fields
To simplify the improved fermion action, Eq20), we

From this equation, it is easy to get the tree-level values OFonS|der the following transformation:

the coefficients occurring in E¢20). We obtain Y—(1+a%e,mD+a%,D2+a%;D?)y, (313
bi(0Oma)=—3, 28 — _ _ -
il ) ° 8) x—x(1+a%s;mD+a%s,D%+a%,D?). (31b

and all otherb; are zero.

The coefficients in Eq(21) were given in Refs[12] and
[13]. Their values are

This is the most general transformation of the fermion fields
x and y which preserves their transformation properties un-
der the lattice symmetries. After rescaling the fermion fields
co(0)=2, c1(0)=—2, c,(0)=c5(0)=0. (29 and redefining the fermion mass parameter

Normally, one gets the tree-level coefficients from dia- m' =m[1-a’m’(s;—&j)], (32
grams with only one vertex, i.e., from a direct expansion of ] ) , )
the action in the lattice spacing. In contrast, the four- O the first order in the;'s and second order ia, we end up
fermion tree-level coefficients come from tree graphs withWith the change of the action
two vertices® For staggered fermions, the high momentum
gg g 6S|::a2[(8:;_83)02+(8&4‘83)03'{‘(8&"' 82+ 8é+83)05

+(81_81+82+8é)06+(83+ 85)07]"'0(&3) (33)
3We thank G. P. Lepage for pointing out the existence of such

tree-level contributions. The reality of the transformed action requires that
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eh=g%, (343  The change of the fermion action in EQO) is
+e5,=real 4 €
AR (340 ASe=a? 5 0,+0(a%). (41)
and
e,—e)=real. (349 The Jacobian + AJ and the change of the gauge actib8g

will not generate new terms, but only change the coefficients
Thus we can always choose appropriate values ofsttee  Cj in Sg[U]. Luscher and Weisf13] discussed the changes
ande/’s to make the coefficients,, b, bs, andbg in Eq.  Of these coefficients in detail. Their results showed that we
(20) vanish after it is rewritten by the new field variables. Forcan choose an appropriate valueedb set
example,

o c3(gg) =0 (42
e3= —3(b3+by), (353
N to all orders in perturbation theory. From Ed.l), we see
e3=—3(bsz—h,), (35b ; ; ; e 2 ;
3 2183 P2 that if we want this to persist, the coefficidm(gg,ma) will
6}+ 8= bs— bg, (350 not be zero in general. On the other hand, we can also set

b4(gg,ma) =0; howeverp3(g(2)) will then in general be non-

— ’:b —Da—Dbe. 35 Zero.
P17 817567 % e (35d In order to find out the possible redundant four-fermion

Notice that this argument is valid to any orderg§f Hence, —operators, we will generalize the argument given in Ref.
to all orders in perturbation theory’ we can a|Ways choose [14] The lattice action is rewritten in a concise form as

b,(g3,ma) =bs(g3,ma) =bs(g3,ma) =bg(g3,ma) =0.

36 §=2 [Xhu(U)x+Tri(U)]. (43)
B. Isospectral transformation on gauge fields Consider the small change of a link variable,
The general form of the gauge field transformation which . a a
changes the action &(a?) can be written as 8U ,(X) =1eqp(X+ C)RE U ,(X+C) Jopt U (), "
UM(X)—>Ul’t(x):exp:sxﬂ(x)]uﬂ(x). (37

, _ SUT(x)= —ie 5(x+C)RE AU ,(x+¢)],5U T (013,
U,(x) andU ,(x) must have the same transformation prop- K’ a " (44b)

erties under lattice symmetry group. The general form of
X,(x) has been given in Ref13] for the case in which \heres is a real small number. The Jacobian differs from 1
X,.(x) depends on only the gauge variables. It is the antijn order 2. To the first order ofe, we get the following

Hermitian traceless part of another fieXg,(x): identity:
X, (0=Y,(x) =Y, (x)"— % LY, () =Y ,(x)], f dU,(x)eSxxV]
39 o ah(UL0)
with N=3 for SU?3) gauge theory, and X XU (%) UL X€ap(X+C)
1 R -
Y (X)= 2 ZV, [U,(x)U,(x+»)UT(x+ M)UL(X) X RE U ,(X+€)] 5+ Tr| 12U ,(X) %’(Lg))
o
_ Trg S ST (x5 _-
U, (X)U(X= v+ p)U ,(X=v)U (X V)]-(39) XSQB(XJFC)Re[taUM(XJFC)]aﬂ] —0 (453
Under the field transformation, E(37), the path integral  Similarly, we get
is invariant:
—u1l —a dhy(U ,(x))
f [dUJexp(Se[ U]+ Se[U]) J dU#(x)eqX'X’”]{xt U0 5000
:J [du/]quSF[U/]_{_SG[U/]) XXSQB(X'i‘C)Im[taUIu(X'f’C)]aB
+1 Tr| t2U — | €ap(Xt
=f [dUJ(1+AJ+ [ASg+ASe]) r{ w9 U, |° plx+c)

X eXp(Se[U]+ Se[U]) +O(€?). (40) le[taU#(X-i-C)]aﬁ}:O. (45b)
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Combining the above two equations, we get construct this operator by replacing the link variablg(x)
in the Dirac operato® with a modified link(e.g., the MILC

Qiﬁ(;(,x)zj dUM(X)eS[X,;U] “fat link” ) W,(X)U ,(x) [5]:

— h,(U ,(x)) Lo — . 7u(X) )
><[)('EHUM(X) L0 X€qp(X+C) O4=% x(X) ;a [W,(X)U ,(X) x(X+ i)
XU+ ) g —UL(Xx= W= @) (x= ). (51)

af (U ,(x
+Tr| t2U ,(x) M &qp(X+C) , ) )
U ,(x) This new operatof, obeys all the staggered fermion lattice
symmetries. The factorV,(x) has the form

X[t2U ,(x+ c)]aﬂ]

1 ~vt ~vt
=0. 46 W,(x)==3 > [U, (U, (x+ Ul (x+m)Ul(x)

a VE M

In the above equation, we replaegg(x+c) by a¥x*(x toy A A Ao
+¢) xP(x+c+ ), multiply it by a combined phase factor UL (X= U, (x=»)U(x+ p=p)U ,(x) = 2],

18 (52

,El € 1,(x)P(c), (47)

and its continuum limit iggea[D, ,F,,]. ThusO, has the
same continuum limit a&),. Because it is simpler, we will

and sum it on the hypercubic vector After substituting choose?, instead of0, to make our on-shell-improved ac-

h,(U) andf,(U) by the actual staggered fermion action and

the gauge action, we see that we can add the terms tion. . . .
' From the above discussion, we can see that one possible
42 18 on-shell-improved action for lattice QCD can be constructed
AS=— i;n € Fi+a2e}0,+0(a% (48  as
to the action without changing the path integral to the order 1 2 ) 1
of O(a%). Notice that because of the identity Sggéozzo ci(g) Li+ S, (53
EC‘, 7u(CP,(C)=81, i=11,... .18, (49 .

there is only one dimension-6 bilinear operator in Ef). 1 — ) 5 ) 5 ,
Therefore, we conclude that the four-fermion operators Sf'=x(P+m)x+a“h;(g5ma)O;+ahs(gp,ma)O,

Fi1,---Fig, Whose fermion bilinear operators consist of two 10
sites separated by one link, are redundant and their coupling +a2b7(g§ ma)(97+a22 b-’(g% ma)F, . (54)
constants;,,...,bjg can be set to be zero. Again, the coef- ’ = '

ficient of operatorO, will get a change accordingly. Is it
possible to get rid of some other four-fermion operators? h ible choi Id b
From the above discussion, we conclude “no.” Because irf NOther possible choice would be

the original staggered fermion actignand y are separated

by one link, there is no way to generate an operator like 3
F1,....F10 when we multiply that link variable by some Sgg:Dzz ci(gd)Li+s?, (55)
Grassmann variables. i=0

2 _ i H .
C. O(a®) on-shell-improved action with

The O(a?)-improved action for lattice QCD can be writ-

ten as x(
_ SP'=x(D+m) x+a%b;(g5,ma) O, +a’h;(g5,ma) O;
Saco=Sel U1+ Selxx. U1, (50 10
1(~2
whereS; is given by Eq.(20) andS; is given by Eq.(21). +a2i§l Pi(Gomai. 0

The operatoiQ, involves the lattice sites in two nearest-
neighbor hypercubes. There exists another oper&®fr
which only involves lattice sites inside one hypercube and idn either case, the tree-level-improved action is the same
equivalent toO, up to an operator of dimension 7. We can because both,(0,ma) andc;(0) vanish.
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D. Formulas arranged for lattice computation auxiliary Yukawa fields are introduced so that these four-

fermion operators can be written in a bilinear form. The re-

: : : _ sulting gauge-Yukawa fermion action will be quite compli-
part, given by I_Eq(21), is already in a _form_handy for nu cated with Hermiticity properties that depend on the sign of
merical simulation. However, the fermion bilinear operators

(1) ) ) the original four-fermion coefficients. Further, the positive-
in S or S are represented in terms of the hypercubicyefinite character of the staggered fermion action may be lost

fields. In order to do a numerical calculation, it is convenientynless these new Yukawa terms possess some additional
to rewrite them in terms of the original field variablgsand (staggered fermion U,(1) symmetry. Since these four-
X- fermion terms are not present in the tree-leal tadpole-

Let us first consider the four-fermion operators. These temmproved tree-levgl approximation, we will not consider
operators, described in Secs. Il and IV, are already written inhis question further in this paper.
terms of the original variableg and y. However, they can Only considering the fermion bilinear operators, the fer-
be simulated using known Monte Carlo techniques only ifmion actionS(Fl) in Eq. (54) can be rewritten as

For the operators appearing in E¢83) or (55), the gauge

m,,( )

X(X) [24, (0 x(X+ ) = UL (X = o) x(x— @) ] +[ 1~ ag(gé,ma)]ma“; X(X) x(x)

(1) _ 44
St a;

+ ag( go,ma>ma2 X0 3 [UXXH22) x(X+2/0) + U (X, X~ 2/2) x(X—21) ]

—  7u(X) . - - .
—en(ggmaja’ 2, x(x) == [UX+3i) x(x+32) ~U(x,X=34) x(X=3M)], (57)
-
|
with FE'=5"ay2ma=o- (61)
Uy (X)=[1+ a1(g5,ma) — az(g5,ma)]U ,(X)
+a2(g§,ma)GM(x), (589 At the tree level, we have
U u(X)= 2 [U,(X)U ,(x+ V)UT(X-i-,u,) a(0ma)=3, a,(0ma)=as(0ma)=0. (62
v#,u
+UN(x= DU, (x= 1)U (x— D+ )], One way to do a better job than tree-level improvement may
(58b) be to use tadpole improvement. Following the work of Lep-
age and Mackenzi¢l5], we can replace all linkdJ ,(x)
and which appear in lattice operators by ¢3)U ,(x) (Of course,
R R the normalization of the coupling constant will be differ-
U(X,X+2u)=U (XU ,(x+w), (593  ent) The constanti, is the mean value of the link matrix
A R I . and is measured in the simulation by the quantity
UXX=2u) =U,(x=w)U (X 2pu), (59D —[Re(2 TrUL)]M. The tadpole-improved tree-level coeffi-
o N - cients are the same as above except that the parameter
Ux+3u)=U,(0)U,(x+ w)U,(X+2p), (599 \yhich appears in Eqg57) and (583 must be replaced by

U(x,x=34)=UT(x—a)UT(x—22)UT(x=34).
(599

The three parametexs;, «,, anda; are real numbers and
related to the parametebs, b,, andb; of Eq. (54) by

A= — 43_1b1 y (6059
(XZ: b4, (60b)
az= %b7 (600)

The form ofS®), when rewritten using the fermion fields
x andy, is the same as E@57), but with az(gg,ma)zo:

two different parametera? and % . The value of the pa-
rametera? appearing in Eq(57) is a;=1/8u3, while the
parametera® in Eq. (589 is still 1/8%

V. CONCLUSION

Using Symanzik’s improvement program, we have dis-
cussed th@©(a?) on-shell improvement of the staggered fer-
mion action in a systematic way. Our first step was to find all
dimension-6 lattice operators which are scalars under the lat-

“Thanks to Attila Mihaly for pointing this out.
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tice symmetry group. We found that there are 5 linearly in- APPENDIX A: CLASSICAL CONTINUUM LIMIT
dependent fermion bilinear operators that are invariant under OF STAGGERED FERMION ACTION
all lattice symmetry transformations. When the mass param- . . . . .

. In this appendix, we will evaluate the continuum limit of
eter is not zero, the AM{1) symmetry of the staggered fer- the staggered fermion action
mion is violated, and there are 2 more fermion bilinear op- '
erators that violate only this A1) symmetry and are
proportional to the mass of the fermions. For staggered fer- A — 1 .
mions, we observed that there are 18 independent four- SF=a > x| 2 7.(%) %a [U LX) x(X+ )
fermion operators. Therefore, we have at most 25 fermion X K
operators which can be added as counterterms to the standard R R
staggered fermion action to remove @{a?) errors from all — UL (x= ) x(x— )]+ mx(x) |, (A1)
physical quantities. Including the 3 independent dimension-6
gauge operators, we end up with 28 counterterms for th

O(a?)-improved lattice QCD with staggered fermions. ?hrough ordera®. As the first step in this derivation, we

ewrite this action using the covariant hypercubic fermion

For on-shell improvement, we can use the isospectr J . ; h .
transformation of the field variables to eliminate all possiblti‘1!.'e'ds defined in Eq(24) in which,(y), the average .Of the
link products along the shortest paths from gitéo sitey

redundant operators. Including such field transformations, ; .
we concluded that we need at most 15 independent IatticétA' is defined as

operators of dimension 6 to construct ti¢a?) on-shell-

improved lattice QCD with staggered fermions. Ten of these 1 R R
are four-fermion operators, which are absent at the tree level Ua(y) = Tl PE U, (Y)AU (y+A, m) U (Y +A, i

and, hence, of the order ﬁi(géaz) at most. The other 5 are (nrpa)

fermion bilinear operators and gauge operators and only two +/.\V;)ApuU(y+AM[L+AV;+Ap,3)Aa, (A2)
of them are nonzero at the tree level. Two possible improved

actions are given by Eq$53) and(55). where the summation is on all permutations(aipo). We

Thus we found that the Naik term is not the only term in define the hypercubic first- and second-order covariant de-
the improved staggered fermion action. It is worth emphasizriyatives as

ing that to remove th@(a?) errors from lattice computa-
tion, we must use both an improved gauge action and an
improved fermion action at the same time, not just one of

N 1 R R
The recent numerical results from the MIL@&,5] and
Bielefeld [10] groups are consistent with our analysis. Fur- —UT(y—UT(y=20) oaly—2)],
thermore, in the free case, our result is the same as Naik’s, as a a
should be expected given the equivalence of free Dirac- (A3a)
Kahler and staggered fermions.
J— 1 R R
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| would like to thank Professor Norman H. Christ. With- + UL(V—[L)UL()’—Z;'«)QDA(Y_Z,{/«)
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No. DE-FG02-92 ER40699. Then, with no approximation, we can rewrite E&\1) as
—(2a)4 ——1(1). (2)._—1(1).
Se=(22)"2 20 2 eay)| (7,2 1)as 5 (W, (ViAB) + W, (YiAB)ID, ~ (758 £s,)a S[W,. (¥:AB)

(2)._—a(1). (2)._—a(1). (2) (v ARYIA
—w, (yuAB)]D#+(7u®I)AB§[WM (y;AB)—w,; (yaAB)]AM_(75®§5M)AB§[WM (y;AB)+w, (y;AB)]A,

1 (1) (4) (2) (3) 1 (1)
H(vu®Das 77 [Wa (VI AB) + W, (v, AB) — W (Y, AB) — W, (Y;AB) = (75® £s,) a 75 [Wy (Y;AB)

+w$f><y;AB)—w;3><y;AB)—w§:‘><y;AB>]}¢B<y>+<2a>4§ ; MeA(Y) a(Y). (A4)
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y+A y+241+B y+B y+A

y y+24 y

FIG. 3. Atypical graph ofv'?)(y;AB). It starts fromy, through
y+A, y+B, and then comes back to The two hypercubic vec-
tors A andB satisfy the conditioA,=1,B,=0.

FIG. 1. A typical graph ofv{")(y;AB). It starts fromy, through
y+A, y+2u+B, y+2u, y+u, and then comes back o The
two hypercubic vectoré\ and B satisfy the conditiom,=1, B,
=0. —

A,=D2+0(a?), (A7b)
The two hypercubic vector8 andB satisfy the delta func-

tion S(A+B+ ), and the overbar means modulo 2. The
four closed-loop link products are defined as

whereD,=d,+igoA, is the continuum covariant deriva-
tive. Expanding thev’s in powers of “a,” we get

. HwP+wP1=1+0(ad), A84
W(YAB) = 85 sUn(Y)U (Y + ALy + 272 WL W= 10D (A8

xUL(y+mUl(y), (A53) Sw-w?]= 3igea®> A,F,,+0(a), (Asb)

W2 (Vi AB)=Sx oUa(Y)U (Y — 20+ B)U(Y—242) L
— rwD (4) _\w(2) _ w3
[w, +w, —w,”—w "]

XU (y=2m)U, (Y= ), (ASb)  4a
(3)(y- — t t
WP (yiAB) = 8 1Ua(Y)U(y+ B)U(Y),  (ASC) —igoaS) AF o+ HigowS AALD, Fy]
v Av
Wi (i AB) = 3p dUa(Y)U,(y+AUL(Y).  (ASd) Lo@@d), (ABO

If we represent{,(y) by a doubled line which starts at sife 1
and ends at sitg+A, andi/i(y) by a doubled line which 1a (Wi +w? —w®—w= 3igea?> A,[D, F,,]
starts at sitgy + A and ends at sitg, then some typical loops !
can be shown by four figurg&igs. 1-4. +0(ad%). (A8d)

To expand the links in powers ofd;” we take advantage
of the parallel transporter fromto x+ u to define the gauge Finally, we get the classical continuum limit of the staggered
field A, (x) by the path-ordered exponential fermion action as Eq.25).

APPENDIX B: CALCULATION OF THE TREE-LEVEL

' (A6) COEFFICIENTS OF FOUR-FERMION OPERATORS

1
U,(x)=P exp{igoaf drA,(X+7/)
0

Whena—0. we have We evaluate the amplitude represented by the graph
- shown in Fig. 5 for the case of vanishing external momenta,

p#=0. The amplitude is given by

D,=D,+3a’D>+0(a%, (A7a)
y-24+B y+A y+A y+B
y-24 y y
FIG. 2. A typical graph ofv?(y;AB). It starts fromy, through FIG. 4. Atypical graph ofv{)(y;AB). It starts fromy, through

y+A, y—2u+B, y—2u, and then comes back tp. The two  y+A, y+B, and then comes back to The two hypercubic vec-
hypercubic vector#\ andB satisfy the conditioA,=0, B, =1. tors A andB satisfy the conditio’A,=0,B,=1.
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b The primed summation ol is for all hypercubic vectors
with M ,=0.
After some algebra and using the notation of R&6], we
get

2
- [a
bed 2
KiBCCD:_gOti’albtlcd{z > (7,®&50) AB(Yur® &s)) D
MFEVFEN

a2
"‘g > (v5x® &) aB( Y5 ® v
MFEVFEN

a? -
. t152 (198l ®f#>c0], (B3)

FIG. 5. The Feynman graph which generates four-fermion op-WIth

erators at the tree level.

(Ys® €p)pp= CED (=DA% ys® &r)cpz(—1)PE.

o , 1
Kigch: —gét;bt'ch > Tz (B4)
M M
g Then the action differs from the continuum by a four-
X co§ 3 (ma+ mg),]6(A+B+M+17,) fermion term:
X cod (me+ S(C+D+M+7,), 1 — —
cod2(met 7o), ] ) AS=5 3 S KIS x (melx (o)X (o).
(Bl) ABCD abcd
(B5)
Wherea’ b, ¢, and d, are color |nd|_ces, and;H is a hyper- Written in terms of the hypercubic fields, we get
cubic vector whose’s component is 1 only ifv<<u. Here
Ty is the momentum propagated by the gluon and the quan- 92 (a2 a2 a2
tity 72, is defined as AS=— 2| 7 Faot g Faat T3 F3)- (B6)
%f,,=i2 > si(M,ml2). (82)  The counterterm is the opposite of the above term. Hence we
a5 get the coefficients listed in E¢30).
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