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g=2 as a gauge condition
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Charged matter spin-1 fields enjoy a nonelectromagnetic gauge symmetry when interacting with vacuum
electromagnetism, provided their gyromagnetic ratio ifSD556-282(98)03604-3

PACS numbds): 14.70.Pw, 13.40.Em

It is agreed that the natural value for the gyromagnetic 9,W,—D, W,=(d,+ieA,)W,, 3
ratio g of an elementary charged particle coupling to the
electromagnetic field=,,, is g=2 (in the absence of small and allowing a further nonminimal interaction:
radiative corrections so that the Bargmann-Michel-Telegdi

[1] equation of motion for the spin vect®, takes its sim- e e EG*’“’GWHe(g— DEWEW, @
plest form 2 Y
dﬁ:EF v G,“,ED#WV—DVWM, (5)
dr m #"°

The nonminimal interaction ensures that charged vector par-
ticles carry gyromagnetic ratig. When the electromagnetic
field is source-free andg=2, one verifies thatl remains
invariant (up to total derivative termsagainst the nonelec-
Hromagnetic gauge transformati@®), provided the deriva-
ives are replaced by covariant ones:

Further reasons for this choice can be given:

(1) Within particle physics theories, Weinbef@] has
shown that they=2 value must hold in the tree approxima-
tion in order that scattering amplitudes possess good hig
energy behavior. Furthermore, Ferrara, Porrati, and Teleg&
[3] have implemented this requirement of good high-energy
behavior in a Lagrangian framework, and regaiged?2. Wy Wit D ©

(2) Spin-1/2 charged leptons cargy=2, and this con-  As is well known, for massive fields with=2 the transver-
firms the view that they are “elementary” particles. The sality conditionD“W,=0 follows from the Euler-Lagrange
only known higher-spin, elementary charged particle—the Wield equation, while in the massless case that condition can
boson—possesses a gyromagnetic ratio consistent gvith still be imposed thanks to the nonelectromagnetic gauge
=2. This is of course in agreement with the “standardsymmetry(6).
model” where electromagnetism is fitted into a non-Abelian A similar situation holds for interactions with non-
gauge group, which involves nonminimal electromagneticAbelian gauge potentials. When the vector meson fields form
coupling that results ig=2 [4]. (in general a complex multipleW,, , which transforms un-

In this Brief Report there is offered yet another reason forder non-Abelian gauge transformations with the unitary rep-
preferringg=2 for charged vector mesons: The kinetic resentation matrices”,
term in a manifestly Lorentz-invariant Lagrange density for . o
spin-1 fields possesseq@onelectromagnetiaqyauge invari- W'M—>(U*1)”WL, (7
ance that removes redundant field degrees of freedom, which
do not propagate in the vacuum. This gauge invariance i¥hose anti-Hermitian generators arg, [Ta, Tp]= fapcTe,
preserved when the fields couple to externalguumelec-  then the gauge covariant derivative is
tromagnetism {*F ,,=0) providedg=2. - ; o

This simple obgervation is easily demonstrated. Consider (Duwv)lzaMWIﬁAlliW]v ®

the Lagrange density for free complex vector fiells : where the gauge potential is an element of the Lie algebra in

1 this representation

£0=__|[?}LWV—&VW/.L|2' (1) i i
2 AL=ATTS. (9)

[In the following, we consider massless fields, or alterna-The Lagrange density for these fields reddpart from a

tively in the case of massive fields the discussion concernpossible mass term

the kinetic (derivative portion of the Lagrange densily.

Clearly £, possess the nonelectromagnetic gauge invariance = E(GZV)'(G”V)'+(9_ 1)(W“*)'F'/JW(WV)J.

W, —W,+3,¢ 2 (10

where¢ is complex.W,, is coupled to electromagnetism by A nonminimal coupling to the gauge field strength is present,
replacing derivatives with covariant ones, and one verifies that the transformation
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W,—W,+D,0 (11) hy—h,,+D,6,+D,0 (16)

s
changesC only by total derivative terms wheg=2 and the
gauge fields are sourcele€3«F ,,=0).

Additionally, let us note that in three-dimensional space- . N N :
time and with vector fields in the adjoint representation, ~ 2uv=18(2=9)(F D0, +F,,D%0,)—ie(1+9)
which is real, there exists another term that is invar{aptrt x(F,,D,0%+F, D, 0% (17)
from a total derivative against(11). The relevant Lagrange pay e
density reads

one finds, with constarf ,, (d,F,,=0),

so that fomo value ofg is invariance regainedNote that for

! a(GrY)a a/\w b the “minimal” value [6] g= 2,
L==7(G,)HGH")+ fapd WH)HW)°FF,

+m8,uaﬁw2|:zﬁ. (12) AMV:ieg(FMa(Daav_Dvaa)+Fva(Dae,u,_D,u,aa))
Please observe that thanks to the Bianchi identity satisfied biie nonvanishing response involves the antisymmetric com-
Fap:D,e"*PF ;=0, the last term possesses the symmetryinationD ,8,—D 46, , while the definition of the transfor-
(11) for arbitrary field strengths, not only sourceless onesmation in (16) makes use of the symmetric combination
The strength parameter carries dimensions of mass and the D 05+ D 46, .] However, one may improve the situation by
term has been posited previously in a gauge- and paritythe following (rather artificia) consideration. Note thatL6)
invariant mass generation mechanism for a gauge theorymplies thath, transforms as
where also the gauge transformatidd) was introduced5].

The spin-2 case does not exhibit exactly the same behav- h,—D26,+ D*D,6, (18)
ior as above, yet something similar, but less direct, does
hold. Without interactions, but with a mass term, the spin-
equation of motion for a symmetric, second-rank tertsgy
can be taken as

2that is, the ordering of the noncommuting covariant deriva-
tives is inherited from previous definitions. But if we view
h, as an independent quantity, we can prescribe an arbitrary

1 ordering in(18), which is equivalent to modifying18) by a

m? h,,+ ngh) =-0%,,+d,h,+3,h,—d,3,h multiple of F,, 6%
h,=o*h,,, h=h* (13 h,—D?0,+D*D,¢,+iecF,,0*=D?9,+(1-c)D*D,0,
+cD,D*6,,. (19

and the right sidémassless parenjoys the nonelectromag-

netic gauge invariance _ o ) )
Then the change in the kinetic part of the equation of motion

h,,—h,,+d,0,+d,0,. (14 (15) becomes

Electromagnetic interactions can be included by promoting

all derivatives to covariant ones, ordered in a specific fash- Auy=1e(2=9)(F,D"0,+F,.D"0,) —ie(1+g—c)

ion, and adding a nhonminimal interaction. Thus one has X(F 44D ,0“+F,,D 0% (20)
2 L 2 ! hat for th i hoicg=2 th I i
m* h,,+ ngh =—-D*h,,+D,h,+ DVhM_E(D//-DV so that for the unique choicg=2 the nonelectromagnetic

gauge invariance is maintained in the presence of constant
+D,D,)h—ieg(F, h+F,h?) fields_, as long as the ord_ering (9 is taken withc=3. It

o pasy e remains an open question whether a more fundamental/
(15) natural reason can be found for tlaid hocordering prescrip-

where nowh,=D*h,,. With the ordering chosen above, tion.

the gyromagnetic ratio ig. Upon calculating the response of  This work is supported in part by funds provided by the
the right side to the gauge covariant version of the substitud.S. Department of EnergyD.O.E) under contract DE-
tion (14), FC02-94ER40818.
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