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g52 as a gauge condition
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Charged matter spin-1 fields enjoy a nonelectromagnetic gauge symmetry when interacting with vacuum
electromagnetism, provided their gyromagnetic ratio is 2.@S0556-2821~98!03604-2#

PACS number~s!: 14.70.Pw, 13.40.Em
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It is agreed that the natural value for the gyromagne
ratio g of an elementary charged particle coupling to t
electromagnetic fieldFmn is g52 ~in the absence of sma
radiative corrections!, so that the Bargmann-Michel-Telegd
@1# equation of motion for the spin vectorSm takes its sim-
plest form

dSm

dt
5

e

m
FmnSn.

Further reasons for this choice can be given:
~1! Within particle physics theories, Weinberg@2# has

shown that theg52 value must hold in the tree approxim
tion in order that scattering amplitudes possess good h
energy behavior. Furthermore, Ferrara, Porrati, and Tele
@3# have implemented this requirement of good high-ene
behavior in a Lagrangian framework, and regainedg52.

~2! Spin-1/2 charged leptons carryg52, and this con-
firms the view that they are ‘‘elementary’’ particles. Th
only known higher-spin, elementary charged particle—the
boson—possesses a gyromagnetic ratio consistent wig
52. This is of course in agreement with the ‘‘standa
model’’ where electromagnetism is fitted into a non-Abeli
gauge group, which involves nonminimal electromagne
coupling that results ing52 @4#.

In this Brief Report there is offered yet another reason
preferring g52 for charged vector mesons: The kine
term in a manifestly Lorentz-invariant Lagrange density
spin-1 fields possesses a~nonelectromagnetic! gauge invari-
ance that removes redundant field degrees of freedom, w
do not propagate in the vacuum. This gauge invarianc
preserved when the fields couple to external,vacuumelec-
tromagnetism (]mFmn50) providedg52.

This simple observation is easily demonstrated. Cons
the Lagrange density for free complex vector fieldsWm :

L052
1

2
u]mWn2]nWmu2. ~1!

@In the following, we consider massless fields, or alter
tively in the case of massive fields the discussion conce
the kinetic ~derivative! portion of the Lagrange density.#
ClearlyL0 possess the nonelectromagnetic gauge invaria

Wm→Wm1]mj ~2!

wherej is complex.Wm is coupled to electromagnetism b
replacing derivatives with covariant ones,
570556-2821/97/57~4!/2635~2!/$15.00
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]mWn→DmWn[~]m1 ieAm!Wn , ~3!

and allowing a further nonminimal interaction:

L52
1

2
G* mnGmn1 ie~g21!FmnWm* Wn ~4!

Gmn[DmWn2DnWm . ~5!

The nonminimal interaction ensures that charged vector
ticles carry gyromagnetic ratiog. When the electromagneti
field is source-free andg52, one verifies thatL remains
invariant ~up to total derivative terms! against the nonelec
tromagnetic gauge transformation~2!, provided the deriva-
tives are replaced by covariant ones:

Wm→Wm1Dmj. ~6!

As is well known, for massive fields withg52 the transver-
sality conditionDmWm50 follows from the Euler-Lagrange
field equation, while in the massless case that condition
still be imposed thanks to the nonelectromagnetic ga
symmetry~6!.

A similar situation holds for interactions with non
Abelian gauge potentials. When the vector meson fields fo
~in general! a complex multipletWm

i , which transforms un-
der non-Abelian gauge transformations with the unitary r
resentation matricesUi j ,

Wm
i →~U21! i j Wm

j , ~7!

whose anti-Hermitian generators areTa , @Ta ,Tb#5 f abcTc ,
then the gauge covariant derivative is

~DmWn! i5]mWn
i 1Am

i j Wn
j ~8!

where the gauge potential is an element of the Lie algebr
this representation

Am
i j 5Am

a Ta
i j . ~9!

The Lagrange density for these fields reads~apart from a
possible mass term!

L52
1

2
~Gmn* ! i~Gmn! i1~g21!~Wm* ! iFmn

i j ~Wn! j .

~10!

A nonminimal coupling to the gauge field strength is prese
and one verifies that the transformation
2635 © 1997 The American Physical Society
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Wm→Wm1DmQ ~11!

changesL only by total derivative terms wheng52 and the
gauge fields are sourceless (DmFmn50).

Additionally, let us note that in three-dimensional spac
time and with vector fields in the adjoint representatio
which is real, there exists another term that is invariant~apart
from a total derivative! against~11!. The relevant Lagrange
density reads

L52
1

4
~Gmn!a~Gmn!a1 f abc~Wm!a~Wn!bFmn

c

1m«mabWm
a Fab

a . ~12!

Please observe that thanks to the Bianchi identity satisfie
Fab :Dm«mabFab50, the last term possesses the symme
~11! for arbitrary field strengths, not only sourceless on
The strength parameterm carries dimensions of mass and t
term has been posited previously in a gauge- and pa
invariant mass generation mechanism for a gauge the
where also the gauge transformation~11! was introduced@5#.

The spin-2 case does not exhibit exactly the same be
ior as above, yet something similar, but less direct, d
hold. Without interactions, but with a mass term, the spin
equation of motion for a symmetric, second-rank tensorhmn

can be taken as

m2S hmn1
1

2
gmnhD52h2hmn1]mhn1]nhm2]m]nh

hn[]mhmn , h[hm
m ~13!

and the right side~massless part! enjoys the nonelectromag
netic gauge invariance

hmn→hmn1]mun1]num . ~14!

Electromagnetic interactions can be included by promot
all derivatives to covariant ones, ordered in a specific fa
ion, and adding a nonminimal interaction. Thus one has

m2S hmn1
1

2
gmnhD52D2hmn1Dmhn1Dnhm2

1

2
~DmDn

1DnDm!h2 ieg~Fmahn
a1Fnahm

a !

~15!

where nowhn5Dmhmn . With the ordering chosen above
the gyromagnetic ratio isg. Upon calculating the response o
the right side to the gauge covariant version of the subs
tion ~14!,
tt.

n-
.

-
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hmn→hmn1Dmun1Dnum , ~16!

one finds, with constantFmn (]aFmn50),

Dmn5 ie~22g!~FmaDaun1FnaDaum!2 ie~11g!

3~FmaDnua1FnaDmua! ~17!

so that fornovalue ofg is invariance regained.@Note that for

the ‘‘minimal’’ value @6# g5 3
2 ,

Dmn5 ie 3
2 „Fma~Daun2Dnua!1Fna~Daum2Dmua!…

the nonvanishing response involves the antisymmetric c
binationDaub2Dbua , while the definition of the transfor-
mation in ~16! makes use of the symmetric combinatio
Daub1Dbua .] However, one may improve the situation b
the following ~rather artificial! consideration. Note that~16!
implies thathm transforms as

hn→D2un1DmDnum ~18!

that is, the ordering of the noncommuting covariant deriv
tives is inherited from previous definitions. But if we vie
hm as an independent quantity, we can prescribe an arbit
ordering in~18!, which is equivalent to modifying~18! by a
multiple of Fnmum:

hn→D2un1DmDnum1 iecFnmum5D2un1~12c!DmDnum

1cDnDmum . ~19!

Then the change in the kinetic part of the equation of mot
~15! becomes

Dmn5 ie~22g!~FmaDaun1FnaDaum!2 ie~11g2c!

3~FmaDnua1FnaDmua! ~20!

so that for the unique choiceg52 the nonelectromagneti
gauge invariance is maintained in the presence of cons
fields, as long as the ordering in~19! is taken withc53. It
remains an open question whether a more fundamen
natural reason can be found for thisad hocordering prescrip-
tion.
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