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Casimir scaling from center vortices: Towards an understanding of the adjoint string tension
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We argue that the approximate “Casimir scaling” of the string tensions of higher-representation Wilson
loops is an effect due to the finite thickness of center vortex configurations. It is shown, in the context of a
simple model of theZ, vortex core, how vortex condensation in Yang-Mills theory can account for both
Casimir scaling in intermediate size loops and color-screening in larger loops. An implication of our model is
that the deviations from exact Casimir scaling, which tend to grow with loop size, become much more
pronounced as the dimensionality of the group representation incr¢866&6-282198)03206-9

PACS numbdps): 12.38.Aw, 11.15.Ha

[. INTRODUCTION by center vortices, unless the core of the vortex happens to
overlap the perimeter of the loop. As a result, large loops
There is increasing numerical evideridg2,3,4 support- have only perimeter falloff, and the force between adjoint
ing the center vortex theory of quark confinemgs®s,7,8,9, quarks vanishes asymptotically. The argument extends to
which was put forward in the late 1970s. Briefly, a centerany color representation which transforms trivially under the
vortex is a topological field configuration which is linelike Zy center of the gauge group. The fact that center vortices
(in D=3 dimensions or surfacelike(in D=4 dimensions  make such a clear distinction between those color charges
having some finite thickness. Creation of a center vortex cawhich shouldbe confined, and those charges which should
be regarded, outside the linelike or surfacelike “core,” as anot, is one of the most attractive features of the theory.
discontinuous gauge transformation of the background, with The fatal weakness aspect was first pointed out in Ref.
a discontinuity associated with the gauge group center. Crg10]. Consider the largé& limit, which has the factorization
ation of a center vortex linked to a Wilson loop, in the fun- property(AB)=(A)(B), whereA andB are any two gauge-
damental representation of SV, has the effect of multi- invariant operators. Then
plying the Wilson loop by an element of the gauge group
center, i.e. (WA(C))=(WE(C)WL(C))=(W(C)* (2

W(C)—e2™NW(C), n=1,2,...N—1. (1) where W, (C) denotes, respectively, Wilson loops in the
adjoint and fundamental representations. An immediate con-
The vortex theory, in essence, states that the area law f&equence is that confinement of fundamental representation
Wilson loops is due to quantum fluctuations in the number ofluarks implies confinement in the adjoint representation,
center vortices linking the loop. with string tensiono,= 20 . This is possible because color
Paradoxically, this emphasis on the center of the gaug&creening by gluons is a7 suppressed process, so at large
group can be viewed both as a vital strength of the theoryN the vacuumcan support an adjoint string. But adjoint
and also as a fatal weakness. Both aspects are apparent wHe@ips are insensitive to center vortices, as noted above. The
we consider the force between static quarks in anNjU( apparent conclusion is that center vortices cannot be the con-
gauge theory, whose color charge lies in the adjoint reprefinement mechanism at larde.
sentation. The QCD vacuum will not tolerate a linear poten- Even more troubling is the fact that the existence of an
tial between adjoint quarks over an infinite range; this isadjoint string tension is not peculiar to large-Many nu-
simply because adjoint color charges can be screened by gliperical experiments in S@) and SU3) lattice gauge theory
ons. Asymptotically, the force between adjoint quarks mushave shown that flux tubes form, and a linear potential is
drop to zero, and this is exactly what happens in the centegstablished, between quarks in the adjdand highey rep-
vortex theory. The adjoint representation transforms triviallyresentations[11]. The string tension is representation-

under the group center; adjoint Wilson loops are unaffectedlependent, and appears to be roughly proportional to the
eigenvalue of the quadratic Casimir operator of the represen-

tation. Thus, for an S(2) gauge theory
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whereg; is the string tension in representatipnThe region  pierces the minimal area of the loop an odd number of times.
where this relation is valid, from the onset of confinement tolf the vortex is not linked to the loop, it either does not pierce
the onset of color screening, we call the “Casimir-scalingthe minimal area at all, or pierces it an even number of times.
regime” [12,13. Of course, the color charge of higher- If, for the moment, we ignore the finite radii of the vortex
representation quarks is eventually screened by gluons, artdbes, then the effect of vortices on a Wilson loop is simple:
the force between quarks then depends only on the transfoFor every instance where the minimal surface is pierced by a
mation properties of the representation with respect to theenter vortex, insert a center element somewhere along
gauge group center; i.e. on the “n-ality” of the representa-the loop, i.e.

tion. Asymptotically, for an S(2) gauge group, W(C)=TrUU.. U]-TrUU...(—1)..U]. 5

iz | = halt-integer (4)  In principle we should place the | at the point of discon-

0 j=integer. tinuity of the gauge transformation which creates the vortex.

) _ o However, since—1 commutes with everything, the place-
Color screening, although it must occur for adjoint quarks ainent is arbitrary; and this is related to the fact that the Dirac
sufficiently large separation, is very difficult to observe ingnheet of a center vortex can be moved about by gauge trans-
numerical simulation.Existing Monte Carlo studies of the formations.

in some finite range of distances, with approximate Casimithrough the center of the vortex tube intersects the plaquette.
scaling of the string tensions, evenNa=2. Casimir scaling  The area law for Wilson loops is then trivially derived from

should become exact, in a region extending from the conthe assumption that these probabilities, for plaquettes in a
finement scale to |nf|n|ty, in th&l— oo limit. Yet aCCOI‘dIng plane' are uncorre'atédn that case, one has

to the center vortex theory, it would appear that string for-
mation between adjoint quarks is impossible, at &hyat
any distance scale. This has always seemed to us a good
reason for discarding the vortex theory.

But suppose—and in our view the numerical evidence =exf —a(C)AKWy(C)) (6)
[1,2,3/4 is b_ec_omlng p_ersua_swe—that center vortices reaIIyWhere the string tension is
are the confining configurations, at least for quarks in the

O'J':

(W)= I {(1=1)+F(=HWo(C))

fundamental representation. Then either there is some other 1

mechanism for inducing a linear potential between adjoint o=—% > In(1-2f)

quarks, or else there must be a loophole in the “fatal weak- XeA

ness” arguments. The first alternative does not seem very =—In(1-2f) (7

economic, and in any case we have no insight, at present, in _ _ _
that direction. We will concentrate instead on the secondnd whergWy(C)) is the expectation value of the loop with

possibility because there is, in fact, one possible loophole. the constraint that no vortices pierce the minimal area. The
quantity(Wy(C)) can be(and has begrcomputed from lat-

tice Monte Carlo, cf. Refd1, 2]. In those computations, it is
found thatW,(C) does not have an area law falloff.

The statement that adjoint loops are unaffected by center By the same argument, the string tension for loops in any
vortices contains one slight caveat: They are unaffeated j=half-integer representation is the same as jferl/2,
lessthe vortex core somewhere overlaps the perimeter of thevhile the string tension fof =integer vanishes. Of course
loop. At first sight this caveat seems irrelevant; for largethe argument is too simple in a number of respects, e.g. there
loops the effect can only contribute to the perimeter falloff.is likely to be some short-range correlation between fthe
But suppose that the vortex thickness is actually quite largeprobabilities of nearby plaquettes. This point, however, is not
on the order of, and perhaps exceeding, the typical diametersucial to the discussion. What is more important is that we
of low-lying hadrons. What would be the effect of vortices have ignored the finite radii of the vortices. Equati@n is
on Wilson loops whose area is smaller than, or comparablenly true if the core of the vortex, where it crosses the plane
to, the vortex cross section? We will study this question inof the loop, is entirely contained in the minimal area of the
the context of a simple model of vortex/perimeter overlapsjoop. If the core overlaps the perimeter of the loop, then Eq.
mainly in SU2) lattice gauge theory. (5) cannot be quite right.

In D=3 dimensions, or on a constant-time hypersurface By “core” we are referring to the region of the center
in D=4 dimensions, a vortex is a closed tube of magnetiovortex which cannot be represented as a discontinuous gauge
flux. For simplicity we consider planar and, in=D} dimen- transformation, and where the local field strength associated
sions, spacelike Wilson loops. If the vortex is linked to awith the vortex is nonzero. This region is a 4-dimensional
Wilson loop, with winding number=1, then the vortex volume, generated, e.g., by the propagation in time of a
closed tube of finite radius. It may also be thought of as a
thickened surface. Consider the creation of a center vortex

Il. THICK VORTICES AND THE LOOP PERIMETER

1At least, this is difficult at zero temperature. Color screeriiag
been observed in certain finite-temperature studies, cfleMet al.
in Ref. [11]. 2Some related ideas are found in Rgf4].
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which is linked to a planar loopC parametrized by the core is entirely enclosed by the loop, thep(x) =2,
x*(7),7e[0,1]; the linking implies that the minimal area of conversely, if the core is entirely outside the minimal area of
the loop is pierced an odd number of times. For simplicity,the loop, thenxc(x)=0. In an Abelian theory, this first as-
let us suppose that the minimal area is pierced only oncesumption would be completely correct, wherd Gii would
Then there is some arég in the plane of the loop, which is be the value of the loop for a vortex created on a classical
a 2-dimensional cross section of the vortex coreKlfies  vacuum background. In a non-Abelian theory the assumption
entirely within the minimal area of the loop, théloy defini-  might be quantitatively correct for expectation values.
tion) the effect of the vortex on the gauge fiels(x) along  averaging over group orientatio@sand over small quantum
loop C is simply that of a discontinuous gauge transforma-fluctuationsU,, around the vortex backgroupdhis would

tion be quite sufficient for our purposes.
1 Generalizing a little further, if we create some numtbrer
AuX(7))—g" " (X(7)ALX(7)g(X(7)) of vortices in the loop, centered at positiong X, , . . . Xn,
+ig ™1 (x(7)3,9((7)) g then
with the inhomogeneous term dropped at the point of discon- W(C)—W[C;{x;,S}]

tinuity x*(7), 7=0,1, and where, for SWN),

=Tr{U...UG(X,,S)U...UG(Xp,
g(x(0)=e?*"Ng(x(1)) n=12,...N-1. (9 1 e o

XU...UG(X,,Sy) .. .U] 12
The result is that the value of the fundamental representation

Wilson loopW(C) changes as shown in E@L), despite the \\herea b, ... pis some permutation of 12 . ,m. We now
fact that the field strength of the vortex vanishes outside the, ;e the second assumption of our model:

core(note that if the are& were somehow shrunk to a point,
then the vortex field strength would be singular at that point

On the other hand, if some segment of loGpintersects  anqom group orientations associated v@ttare also uncor-
regionK of the vortex core, then Eg8) is not valid on that  o|ated. and should be averaged.

segment, and the effect of the vortex on a Wilson 100p is  Thege two assumptions define our model. They are, no
more complicated; the effect iotsimply given by insertion  4opt an oversimplification of the effects of vortex thick-
of a center element at the point of gauge discontinuity, agess hut we believe they at least provide a plausible picture
shown n Eq.(5). . . __of those effects.

What is needgd is a fuII—erdg_ed theory of center vortices, According to the second assumption, we are justified in
perhaps something along the lines of the old COpe”hagereraging independently evef§(x,,S,) over orientations

vacuum[7], which would explain how Eq(S) should be j, the group manifold specified This is easily seen to
modified when the vortex cor@r, more precisely, its cross give group P =3 y

sectionK) is not entirely enclosed within the minimal area of

the loop. In lieu of that, we will just consider a simplified

picture in which the center element! in Eq. (5 of the G(“):J dSSexqiaLg]s‘rEgj[a]|2j+l
SU(2) gauge group is replaced by a group elem@ntwhich

interpolates smoothly from-1, if the core is contained en-

Assumption 2The probabilitiesf that plaquettes in the
minimal area are pierced by vortices are uncorrelated. The

tirely with the loop, to+1, if the core is entirely exterior. 1 1 i
Our assumption, for Wilson loops in any group representa- Gj[a]= > 1 Trexdials]= =—— 2 - cog am)
o . j+1 2j+1 =
tion j, is the following:
Assumption 1The effect of creating a center vortex pierc- a
ing the minimal area of a Wilson loop may be represented by sin (2j+1) 5}
the insertion of a unitary matrixs at some point along the =t = (13
loop (2j+ 1)sir{%}
W(C)=Tr[UU...U]—-Tr{UU...G...U] (10
where wherel is thekXx k unit matrix. ThenW[ C,{x; ,S}], aver-

) . aged over allS;, becomes
G(x,S)=exdiac(x)n-L]

_ ; +
=Sexdiac(x)L3]S". (11 W[C;{Xi}]:{l_i[ gj[ac(xi)]]Tr[UU UL (19
The L, are group generators in representatjorﬁ is a unit
3-vector, andS is an SU?2) group element in th¢ represen-
tation.

The parameter(x) [ 0,27] depends on what fraction
of the vortex core is enclosed by the loop; thus it depends o

both the shape of the lodp and the position? of the center

of the vortex core, relative to the perimeter, in the plane of <W[C;{Xi}]>:{1_[ g'[ac(xi)]]<WO(C)>- (15)
the loop. It does not depend on the group representation. If i

Next, take the expectation value of[TtU .. .U] for con-
figurationsU with the constraint that no vortices pierce the
H)op, denoted Wy(C)). Equation(14) then goes to
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The last step is to sum over the number and position obr just
vortices piercing the plane of the lodp, weighted by the

appropriate probability factors, and we find f

oc=g agi(i+1) (21)

(We)=II {(1=1)+1Glac(0]We(C))

where a2 is an average value

1
=exr{2 In{(1=1)+1G[ac()]} (Wo(C)) ag=x 2 agx). (22
X xeA’
=exd —a(C)AKW(C)) (180 e see thatc, for smallf and small loops, is proportional

to the eigenvalue of the quadratic Casimir operator.
This result can be readily extended to any SIy@roup.
1 In the general case there dxe-1 types of center vortices,
o= R EX: In{(1—f )+ fG[ac(x)]}. (170 corresponding to th&— 1 phase factors of Eq1). To the
nth type, we associate probabilify, to pierce a plaquette,
The product and sum over positiorsun over all plaquettes and a group factor
in the plane of the loop. The reason for not restrictrg lie . -
strictly within the minimal area of the loop is, again, because G[x,S]=Sexdiag(x)-H]S' (23
the vortex core is finite. Denote the radius of the vortex core

by R, . If the center of the core lies outside the loop, but at a¥here thelH;, i=1,...N—1} are the generators spanning the

distance less thaR, from the perimeter, then it can still Cartan subalgebraFollowing the same steps as before:

where

overlap the perimeter. Ongan restrict the sum to run over N—1
xeA’, whereA' includes all plaquettes inside the minimal (W(C)>=H 1— E fn(l—gr[&?:(x)])
area in the plane of the loop, as well as plaquettes in the X n=1

plane outside the perimeter, but within a distaigeof the
loop.

Now o is not exactly a string tension, because it de-
pends, viaxc(X), on the shapéand the areeof the loop. If,
however, there is some region wherg changes only slowly with d, the dimension of representationVortices of typen
with area, then the potential will rise approximately linearly. and typeN —n have phase factors in E(L) which are com-

In particular, consider the limit of very large loops. In that plex conjugates of one another; they may be regarded as the
case, almost every vortex which affects the loop is entirelysame type of vortex but with magnetic flux pointing in op-
enclosed by the loop, and for these vorticeg(x)~2. posite directions, so that

Only those vortices near the perimeter haugx) different R R

from 27, and as the loop becomes very large this is a negli- f,=fn_, and g,[ag(x)]:gf[ag—”(x)] (25)

gible fraction of the total; in particulaA’/A~1. This means

that o is an area-independent constant for large loops, angnd therefore

it can be seen from Eq$13) and (16) that

N—-1
—In(1—2f) j=half-integer (W(C))= 1:[ ’ 1- nzl fo(1-Re gr[&E(X)])]
0 j=integer (18

g,[&]:dirTr exdia-H] (24)

Oc=
L . 1 N-1
which is the_ correc'g representation dependence of the oo=—= E Int 1— 2 fo(1—ReG[a2(x)]] .
asymptotic string tension. A X n=1
Next, let us consider the case whdr&l, which is cer- (26)

tainly true in the lattice theory at weak coupling, and also ) ) ) )
small or medium size loops, whete-(x) is also typically Expanding the logarithm to leading order fip, expanding

small. For smalle, we have, from Eq(13), G,[a] to leading order inx, and using the identity
a? o 1 Cﬁz)
Glal=1——i(i+1). (19 d—rTr(HiHj):m5ij (27)

Then, making an expansion of the logarithm in EfB) and

.
applying Eq.(19), one finds

1
a'czfz > A=Glac(x)])

o 31t is possible that only vortices with the smallest magnitude of

center flux have substantial probability; if.=fy_ is finite, all

1(f . otherf, are negligible. This is a dynamical issue which we cannot
=xi= 2 a2 }i(j+1) (20 : :
Al 6 C Iy} resolve here, and so we consider the general case that includes all
xeA' :
possiblef,, .
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Vortex-Induced Potentials: j=1/2, 1, 3/2 Ratios of Adj/Fund and (3/2)/Fund Potentials
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FIG. 1. Interquark potentia¥/(R) induced by center vortices, FIG. 2. Ratios ofVg,(R) (upper curvg and V,(R) (lower
according to the model discussed in the text, for quark charges ipurve to the potentiaV,,(R) of fundamental representation quark

the j=1,1.2 representations. charges.

N-1 Suppose the timelike sides of the loop arexatO and
x=R. Then, to guide the search for an ansatz, there are a few
simple conditions thatvg(x) must satisfy:

1 n “n ~n
0c=x |2 2, FiPoT) e a0 (G (29

(1) Vortices which pierce the plane far outside the loop do
not affect the loop. This means that for fix& asx

— * oo, we must haverg(x)—0.

If the vortex core is entirely contained within the loop,
then ar(x)=27. This translates as follows: Let be
inside the loop, andl be the distance fronx to the
nearest of the timelike sides. Then it must also be the
case thatvg(X)— 27 asd—oo.

As R—0, the percentage of any vortex core which is
contained inside the loop must also go to zero. Thus
ar(xX)—0 asR—0.

Wherecﬁz) is the eigenvalue of the quadratic Casimir opera
tor of the SUN) group in representation

The resultg21) and (28) might be termed “Casimir pro-
portionality,” since the nonperturbative part of the inter- 2
quark potential, which is due to vortices, is proportional to
the quadratic Casimir of SW) for small loops. But this
does not yet imply Casimir scaling of string tensions. The
parametersig(x) depend on loop size, and there is no par-
ticular reason to suppose that is constant in the adjoint 3
representation or, equivalently, that the adjoint potential is
linear in some range. Even if the adjoint potentiadre ap-
proximately linear in some interval, it is not obvious that the o i )
string tension for the fundamental representation, in the samEhere are an infinite number of functional forms which
range of distances, would have reached its asymptotic valud/ould meet these conditions, but a simple 2-parametg)(

To study this issue, we will return to the &2 example. ansatz is the following: First define
x—R for |[R—x|<|x]

—-x for |R—x|>|x| 30

Ill. LINEAR POTENTIALS AND  ac(x) y(x)={

It may be possible to measutg-(x) in computer simu-
lations, by the methods introduced in Ref4, 2]. In the  whose magnitude is the distance of the vortex center to the

meantime, it is worthwhile to ask whether there exists somenearest timelike side of the loop, taken negative if the vortex
reasonable ansatz ferc(x) which would lead to both Ca- center is inside the loop, and positive outside. Then choose
simir proportionalityand linear potentials in some region.

To set things up, let us consider a long rectang®T _ b
loop in thex—t plane, withT>R, in group representation aR(X) = 1—tan!‘( ay()+ ﬁ) (32)
The time-extensiof is huge but fixed, so we can character-
ize loopsC just by the widthR. Let x denote thex coordi- ~ which fulfills all three requirements.
nate of the center of a vortex, where it piercesxhe plane. Figure 1 shows the potentials for the 3,1,2 representa-
From the previous discussion, the interquark potential intjons, for the choice of parametefs-0.1,a=0.05,b=4, in
duced by vortices is easily seen to be the rangeR e[ 1,12].% Note that the fundamental and adjoint

potentials are roughly linear in a range from 5 or 6 to 12
B lattice spacings. Figure 2 plots the ratdg R)/V,»(R), and
Vi(R)= _nzx In{(1=f)+fGlar(x)]}, (29 V3(R)/V1»(R). As expected, these ratios start out at the

©

wherex,=n+ 3 (the choice ofx,, comes from the fact that

the vortex centers lie in the dual lattice, piercing the middle “Strictly speaking,R takes on only integer values in the lattice
of plaguettes The problem is to find some reasonable ansatzormulation, but we have plotted;(R) over the continuous inter-
for agr(x). val.
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o5 Vortex-Induced Potentials: j=1/2, 1, 3/2 Casimir scaling, but this explanation now appears to be very
oo T Tt plausible, particularly if center vortices turn out to be the true
QCD confinement mechanism.
20 ¢ Numerical tests of our scenario are in order. If center
vortices give rise to an adjoint string tension, and if an ad-
15 t joint loop is evaluated only in those configurations where no
g vortex links the loop, then the string tension should vanish.
10 | This was found to be the case for the fundamental string
tension, in Refs[1, 2], and should be testable for the adjoint
s | string, at least in principle, by the methods explained in those
articles. It may also be possible to calculatg(x) from
0 Monte Carlo simulations of fundamental loops, use that in-

0 20 %0 40 50 60 70 8 9 10  formation in Eq.(29) to derive the adjoint potential, and
R compare the derived adjoint potential with the corresponding
Monte Carlo data.
For every set of parameters in which we see Casimir scal-

ratios of the corresponding Casimirs, 8/3 and 5 respectivel)).ng In our simple model, the QeV|at|ons frc_)m exact Casimir
caling are much greater for the 3/2 potential as compared

It can be seen that in this interval the adjoint/fundamenta:I[S th f thei=1 potential. It d therefore b
ratio drops only slowly, from 8/3 to about 2, while in the to those of they =~ potential. 1t Wou eretore be very

same interval thej 3/2)/fundamental ratio drops more pre- Interesting to compare Fig. 2 W"h_th? actual Monte Qarlo
cipitously, from 5 to about 2.5. Figure 3 is again a plot of all data. Calculation of thg=3/2 potential in the scaling region

three potentials, but this time over the rarigel00. There of SU(2) gauge theory, by lattice Monte Carlo techniques, is

are two things to notice in this last figure. First, we see color%'jl cqg;putatlonally intensive problem, but we believe it is
screening set in as expected, arolityd 25— 30 lattice spac- ealgilnaeljl- there is the question raised years ago in RE:

ings. The adjoint potential goes to a constant, while thqﬁow car):, center vortiges explain con%inemegt at Iarg.e
j=3/2 potential closely parallels the fundamental potential. here the Casimir scalin rg ion extends 1o infinity? We
Secondly—and this was not expected—it can be seen thel, "o G e scenaritg)J ougined here, that the sizyé of the
the the slope of the fundamental potential, in the Casimi ’ ’

scaling region between 6 to 12 lattice spacings, is very closg:r?'g;'g S:ﬁggg rerglgrizt)jer;endestr?goihe t;rgcgnzfesng; ((:)?r;[er
to its asymptotic value. vortices. Y gaug Y, XI

We have therefore found, in this rather simple model ofCasimir regime implies that the diameter of the vortices sub-
the vortex core, the kind of éasimir scaling which is seen inStam""IIIy exceeds the separation length at which the heavy

Monte Carlo simulations. A natural question is to what ex_quark potential begins to grow linearty.e. the “confine-

tent this scaling depends on a very special choice of pararrp-1ent scale). We therefore expect that aé increases, the

eters. The answer is that Casimir scaling, although it is nc)giameter of vortices relative to the confinement scale will
found for any choice of parameters, is generic in a IargeaISO slowly increase, probably as 169( At N=c the vortex

region of the parameter space. For example, the CasimtﬁOre ¥VOUIdt.be 'nf'?'t? mtex;tﬁnt, and the cliésgontmur?us g?fu?e
scaling region of Fig. 3 can be scaled up by any faétor ranstormation exterior to the core wou € pushed off to

simply by settinga—a/F,b—bF. It is also quite easy to infinity. It is not clear that the term “center vortex” remains

think up other functional forms forg(x) which satisy the ? t_JsefuI description of the relevant configurations in this
e _ v : imit.
ey o Note e e recentylsmd tt a relted pr

course, infinite. Some functions work better than others, buPosal’ namely, that center vortices might lead tcbeeak-

the existence of an approximate Casimir scaling region OFbI?:osrt:vr\]/gIIFEcl)gns\%?ﬁgﬁiel\r/:ilig aéf)l;/n?/v%llllj ?gfi)\r’ivr?si:d\tﬁgced
some finite extent seems to be fairly common. The crucia y ) ging

ingredient is the thickness of the vortices, which would be onreference to our attention.

the order of 14 for the choice ofugr(x) in Eq.(31). What we

FIG. 3. Same as Fig. 1, for the ranBe=[1,10Q.
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