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Casimir scaling from center vortices: Towards an understanding of the adjoint string tension
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We argue that the approximate ‘‘Casimir scaling’’ of the string tensions of higher-representation Wilson
loops is an effect due to the finite thickness of center vortex configurations. It is shown, in the context of a
simple model of theZ2 vortex core, how vortex condensation in Yang-Mills theory can account for both
Casimir scaling in intermediate size loops and color-screening in larger loops. An implication of our model is
that the deviations from exact Casimir scaling, which tend to grow with loop size, become much more
pronounced as the dimensionality of the group representation increases.@S0556-2821~98!03206-8#
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I. INTRODUCTION

There is increasing numerical evidence@1,2,3,4# support-
ing the center vortex theory of quark confinement@5,6,7,8,9#,
which was put forward in the late 1970s. Briefly, a cen
vortex is a topological field configuration which is linelik
~in D53 dimensions! or surfacelike~in D54 dimensions!
having some finite thickness. Creation of a center vortex
be regarded, outside the linelike or surfacelike ‘‘core,’’ as
discontinuous gauge transformation of the background, w
a discontinuity associated with the gauge group center. C
ation of a center vortex linked to a Wilson loop, in the fu
damental representation of SU(N), has the effect of multi-
plying the Wilson loop by an element of the gauge gro
center, i.e.

W~C!→ei2pn/NW~C!, n51,2, . . . ,N21. ~1!

The vortex theory, in essence, states that the area law
Wilson loops is due to quantum fluctuations in the numbe
center vortices linking the loop.

Paradoxically, this emphasis on the center of the ga
group can be viewed both as a vital strength of the theo
and also as a fatal weakness. Both aspects are apparent
we consider the force between static quarks in an SUN)
gauge theory, whose color charge lies in the adjoint rep
sentation. The QCD vacuum will not tolerate a linear pote
tial between adjoint quarks over an infinite range; this
simply because adjoint color charges can be screened by
ons. Asymptotically, the force between adjoint quarks m
drop to zero, and this is exactly what happens in the ce
vortex theory. The adjoint representation transforms trivia
under the group center; adjoint Wilson loops are unaffec

*Electronic address: faber@kph.tuwien.ac.at
†Electronic address: greensite@nbivms.nbi.dk
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by center vortices, unless the core of the vortex happen
overlap the perimeter of the loop. As a result, large loo
have only perimeter falloff, and the force between adjo
quarks vanishes asymptotically. The argument extends
any color representation which transforms trivially under t
ZN center of the gauge group. The fact that center vorti
make such a clear distinction between those color cha
which shouldbe confined, and those charges which sho
not, is one of the most attractive features of the theory.

The fatal weakness aspect was first pointed out in R
@10#. Consider the large-N limit, which has the factorization
property^AB&5^A&^B&, whereA andB are any two gauge-
invariant operators. Then

^WA~C!&5^WF~C!WF
†~C!&5^WF~C!&2 ~2!

where WA,F(C) denotes, respectively, Wilson loops in th
adjoint and fundamental representations. An immediate c
sequence is that confinement of fundamental representa
quarks implies confinement in the adjoint representati
with string tensionsA52sF . This is possible because colo
screening by gluons is a 1/N2 suppressed process, so at lar
N the vacuumcan support an adjoint string. But adjoin
loops are insensitive to center vortices, as noted above.
apparent conclusion is that center vortices cannot be the
finement mechanism at largeN.

Even more troubling is the fact that the existence of
adjoint string tension is not peculiar to large-N. Many nu-
merical experiments in SU~2! and SU~3! lattice gauge theory
have shown that flux tubes form, and a linear potentia
established, between quarks in the adjoint~and higher! rep-
resentations@11#. The string tension is representatio
dependent, and appears to be roughly proportional to
eigenvalue of the quadratic Casimir operator of the repres
tation. Thus, for an SU~2! gauge theory

s j'
4

3
j ~ j 11!s1/2 ~3!
2603 © 1998 The American Physical Society
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2604 57M. FABER, J. GREENSITE, AND Sˇ. OLEJNÍK
wheres j is the string tension in representationj . The region
where this relation is valid, from the onset of confinement
the onset of color screening, we call the ‘‘Casimir-scali
regime’’ @12,13#. Of course, the color charge of highe
representation quarks is eventually screened by gluons,
the force between quarks then depends only on the tran
mation properties of the representation with respect to
gauge group center; i.e. on the ‘‘n-ality’’ of the represen
tion. Asymptotically, for an SU~2! gauge group,

s j5H s1/2 j 5half-integer

0 j 5 integer.
~4!

Color screening, although it must occur for adjoint quarks
sufficiently large separation, is very difficult to observe
numerical simulations.1 Existing Monte Carlo studies of th
QCD string have mainly probed the Casimir scaling regim

In short, there is a linear potential between adjoint qua
in some finite range of distances, with approximate Casi
scaling of the string tensions, even atN52. Casimir scaling
should become exact, in a region extending from the c
finement scale to infinity, in theN→` limit. Yet according
to the center vortex theory, it would appear that string f
mation between adjoint quarks is impossible, at anyN, at
any distance scale. This has always seemed to us a
reason for discarding the vortex theory.

But suppose—and in our view the numerical eviden
@1,2,3,4# is becoming persuasive—that center vortices rea
are the confining configurations, at least for quarks in t
fundamental representation. Then either there is some o
mechanism for inducing a linear potential between adjo
quarks, or else there must be a loophole in the ‘‘fatal we
ness’’ arguments. The first alternative does not seem v
economic, and in any case we have no insight, at presen
that direction. We will concentrate instead on the seco
possibility because there is, in fact, one possible loophol

II. THICK VORTICES AND THE LOOP PERIMETER

The statement that adjoint loops are unaffected by ce
vortices contains one slight caveat: They are unaffectedun-
lessthe vortex core somewhere overlaps the perimeter of
loop. At first sight this caveat seems irrelevant; for lar
loops the effect can only contribute to the perimeter fallo
But suppose that the vortex thickness is actually quite la
on the order of, and perhaps exceeding, the typical diame
of low-lying hadrons. What would be the effect of vortice
on Wilson loops whose area is smaller than, or compara
to, the vortex cross section? We will study this question
the context of a simple model of vortex/perimeter overla
mainly in SU~2! lattice gauge theory.

In D53 dimensions, or on a constant-time hypersurfa
in D54 dimensions, a vortex is a closed tube of magne
flux. For simplicity we consider planar and, in D54 dimen-
sions, spacelike Wilson loops. If the vortex is linked to
Wilson loop, with winding number51, then the vortex

1At least, this is difficult at zero temperature. Color screeninghas
been observed in certain finite-temperature studies, cf. Mu¨ller et al.
in Ref. @11#.
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pierces the minimal area of the loop an odd number of tim
If the vortex is not linked to the loop, it either does not pier
the minimal area at all, or pierces it an even number of tim
If, for the moment, we ignore the finite radii of the vorte
tubes, then the effect of vortices on a Wilson loop is simp
For every instance where the minimal surface is pierced b
center vortex, insert a center element2I somewhere along
the loop, i.e.

W~C!5Tr@UU . . .U#→Tr@UU...~2I !...U#. ~5!

In principle we should place the2I at the point of discon-
tinuity of the gauge transformation which creates the vort
However, since2I commutes with everything, the place
ment is arbitrary; and this is related to the fact that the Di
sheet of a center vortex can be moved about by gauge tr
formations.

Denote byf the probability that any given plaquette o
the lattice is ‘‘pierced’’ by a vortex; i.e. a line runnin
through the center of the vortex tube intersects the plaque
The area law for Wilson loops is then trivially derived fro
the assumption that these probabilities, for plaquettes i
plane, are uncorrelated.2 In that case, one has

^W~C!&5 )
xPA

$~12 f !1 f ~21!%^W0~C!&

5exp@2s~C!A#^W0~C!& ~6!

where the string tension is

s52
1

A (
xPA

ln~122 f !

52 ln~122 f ! ~7!

and wherê W0(C)& is the expectation value of the loop wit
the constraint that no vortices pierce the minimal area. T
quantity^W0(C)& can be~and has been! computed from lat-
tice Monte Carlo, cf. Refs.@1, 2#. In those computations, it is
found thatW0(C) does not have an area law falloff.

By the same argument, the string tension for loops in a
j 5half-integer representation is the same as forj 51/2,
while the string tension forj 5 integer vanishes. Of cours
the argument is too simple in a number of respects, e.g. th
is likely to be some short-range correlation between thf
probabilities of nearby plaquettes. This point, however, is
crucial to the discussion. What is more important is that
have ignored the finite radii of the vortices. Equation~5! is
only true if the core of the vortex, where it crosses the pla
of the loop, is entirely contained in the minimal area of t
loop. If the core overlaps the perimeter of the loop, then E
~5! cannot be quite right.

By ‘‘core’’ we are referring to the region of the cente
vortex which cannot be represented as a discontinuous g
transformation, and where the local field strength associa
with the vortex is nonzero. This region is a 4-dimension
volume, generated, e.g., by the propagation in time o
closed tube of finite radius. It may also be thought of a
thickened surface. Consider the creation of a center vo

2Some related ideas are found in Ref.@14#.
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57 2605CASIMIR SCALING FROM CENTER VORTICES: . . .
which is linked to a planar loopC parametrized by
xm(t),tP@0,1#; the linking implies that the minimal area o
the loop is pierced an odd number of times. For simplic
let us suppose that the minimal area is pierced only on
Then there is some areaK, in the plane of the loop, which is
a 2-dimensional cross section of the vortex core. IfK lies
entirely within the minimal area of the loop, then~by defini-
tion! the effect of the vortex on the gauge fieldsAm(x) along
loop C is simply that of a discontinuous gauge transform
tion

Am„x~t!…→g21
„x~t!…Am„x~t!…g„x~t!…

1 ig21
„x~t!…]mg„x~t!… ~8!

with the inhomogeneous term dropped at the point of disc
tinuity xm(t), t50,1, and where, for SU(N),

g„x~0!…5ei2pn/Ng„x~1!… n51,2, . . . ,N21. ~9!

The result is that the value of the fundamental representa
Wilson loopW(C) changes as shown in Eq.~1!, despite the
fact that the field strength of the vortex vanishes outside
core~note that if the areaK were somehow shrunk to a poin
then the vortex field strength would be singular at that poi!.
On the other hand, if some segment of loopC intersects
regionK of the vortex core, then Eq.~8! is not valid on that
segment, and the effect of the vortex on a Wilson loop
more complicated; the effect isnot simply given by insertion
of a center element at the point of gauge discontinuity,
shown in Eq.~5!.

What is needed is a full-fledged theory of center vortic
perhaps something along the lines of the old Copenha
vacuum @7#, which would explain how Eq.~5! should be
modified when the vortex core~or, more precisely, its cros
sectionK! is not entirely enclosed within the minimal area
the loop. In lieu of that, we will just consider a simplifie
picture in which the center element2I in Eq. ~5! of the
SU~2! gauge group is replaced by a group elementG, which
interpolates smoothly from2I , if the core is contained en
tirely with the loop, to1I , if the core is entirely exterior
Our assumption, for Wilson loops in any group represen
tion j , is the following:

Assumption 1.The effect of creating a center vortex pier
ing the minimal area of a Wilson loop may be represented
the insertion of a unitary matrixG at some point along the
loop

W~C!5Tr@UU . . .U#→Tr@UU...G...U# ~10!

where

G~x,S!5exp@ iaC~x!nW •LW #

5S exp@ iaC~x!L3#S†. ~11!

The Li are group generators in representationj , nW is a unit
3-vector, andS is an SU~2! group element in thej represen-
tation.

The parameteraC(x)P@0,2p# depends on what fraction
of the vortex core is enclosed by the loop; thus it depends
both the shape of the loopC and the positionxW of the center
of the vortex core, relative to the perimeter, in the plane
the loop. It does not depend on the group representatio
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the core is entirely enclosed by the loop, thenaC(x)52p,
conversely, if the core is entirely outside the minimal area
the loop, thenaC(x)50. In an Abelian theory, this first as
sumption would be completely correct, where Tr@G# would
be the value of the loop for a vortex created on a class
vacuum background. In a non-Abelian theory the assump
might be quantitatively correct for expectation values~i.e.
averaging over group orientationsS and over small quantum
fluctuationsUm around the vortex background!; this would
be quite sufficient for our purposes.

Generalizing a little further, if we create some numberm
of vortices in the loop, centered at positionsx1 ,x2 , . . . ,xm ,
then

W~C!→W@C;$xi ,Si%#

5Tr@U...UG~xa ,Sa!U . . . UG~xb ,Sb!

3U . . . UG~xp ,Sp! . . .U# ~12!

wherea,b, . . . ,p is some permutation of 12. . . ,m. We now
make the second assumption of our model:

Assumption 2.The probabilitiesf that plaquettes in the
minimal area are pierced by vortices are uncorrelated.
random group orientations associated withSi are also uncor-
related, and should be averaged.

These two assumptions define our model. They are,
doubt, an oversimplification of the effects of vortex thic
ness, but we believe they at least provide a plausible pic
of those effects.

According to the second assumption, we are justified
averaging independently everyG(xa ,Sa) over orientations
in the group manifold specified bySa . This is easily seen to
give

Ḡ ~a!5E dSSexp@ iaL3#S†[Gj@a#I 2 j 11

Gj@a#5
1

2 j 11
Tr exp@ iaL3#5

1

2 j 11 (
m52 j

j

cos~am!

5

sinF ~2 j 11!
a

2G
~2 j 11!sinFa2G ~13!

whereI k is thek3k unit matrix. ThenW@C,$xi ,Si%#, aver-
aged over allSi , becomes

W@C;$xi%#5H)
i
Gj@aC~xi !#J Tr@UU . . .U#. ~14!

Next, take the expectation value of Tr@UU . . .U# for con-
figurationsU with the constraint that no vortices pierce th
loop, denoted̂ W0(C)&. Equation~14! then goes to

^W@C;$xi%#&5H)
i
Gj@aC~xi !#J ^W0~C!&. ~15!
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The last step is to sum over the number and position
vortices piercing the plane of the loopC, weighted by the
appropriate probability factors, and we find

^W~C!&5)
x

$~12 f !1 fGj@aC~x!#%^W0~C!&

5expF(
x

ln$~12 f !1 fGj@aC~x!#%G^W0~C!&

5exp@2s~C!A#^W0~C!& ~16!

where

sC52
1

A (
x

ln$~12 f !1 fGj@aC~x!#%. ~17!

The product and sum over positionsx run over all plaquettes
in the plane of the loop. The reason for not restrictingx to lie
strictly within the minimal area of the loop is, again, becau
the vortex core is finite. Denote the radius of the vortex c
by Rc . If the center of the core lies outside the loop, but a
distance less thanRc from the perimeter, then it can sti
overlap the perimeter. Onecan restrict the sum to run ove
xPA8, whereA8 includes all plaquettes inside the minim
area in the plane of the loop, as well as plaquettes in
plane outside the perimeter, but within a distanceRc of the
loop.

Now sC is not exactly a string tension, because it d
pends, viaaC(x), on the shape~and the area! of the loop. If,
however, there is some region wheresC changes only slowly
with area, then the potential will rise approximately linear
In particular, consider the limit of very large loops. In th
case, almost every vortex which affects the loop is entir
enclosed by the loop, and for these vorticesaC(x)'2p.
Only those vortices near the perimeter haveaC(x) different
from 2p, and as the loop becomes very large this is a ne
gible fraction of the total; in particular,A8/A'1. This means
that sC is an area-independent constant for large loops,
it can be seen from Eqs.~13! and ~16! that

sC5H 2 ln~122 f ! j 5half-integer

0 j 5 integer
~18!

which is the correct representation dependence of
asymptotic string tension.

Next, let us consider the case wheref !1, which is cer-
tainly true in the lattice theory at weak coupling, and a
small or medium size loops, whereaC(x) is also typically
small. For smalla, we have, from Eq.~13!,

Gj@a#'12
a2

6
j ~ j 11!. ~19!

Then, making an expansion of the logarithm in Eq.~18! and
applying Eq.~19!,

sC5 f
1

A (
xPA8

„12Gj@aC~x!#…

5
1

A H f

6 (
xPA8

aC
2 ~x!J j ~ j 11! ~20!
f

e
e
a

e

-

.

y

i-

d

e

or just

sC5
f

6
ā C

2 j ~ j 11! ~21!

whereaC
2 is an average value

ā C
2 5

1

A (
xPA8

aC
2 ~x!. ~22!

We see thatsC , for small f and small loops, is proportiona
to the eigenvalue of the quadratic Casimir operator.

This result can be readily extended to any SU(N) group.
In the general case there areN21 types of center vortices
corresponding to theN21 phase factors of Eq.~1!. To the
nth type, we associate probabilityf n to pierce a plaquette
and a group factor

G@x,S#5Sexp@ iaW C
n ~x!•HW #S† ~23!

where the$Hi , i 51,...,N21% are the generators spanning th
Cartan subalgebra.3 Following the same steps as before:

^W~C!&5)
x

H 12 (
n51

N21

f n„12Gr@aW C
n ~x!#…J

Gr@aW #5
1

dr
Tr exp@ iaW •HW # ~24!

with dr the dimension of representationr . Vortices of typen
and typeN2n have phase factors in Eq.~1! which are com-
plex conjugates of one another; they may be regarded as
same type of vortex but with magnetic flux pointing in o
posite directions, so that

f n5 f N2n and Gr@aW C
n ~x!#5Gr* @aW C

N2n~x!# ~25!

and therefore

^W~C!&5)
x

H 12 (
n51

N21

f n„12ReGr@aW C
n ~x!#…J

sC52
1

A (
x

lnH 12 (
n51

N21

f n„12ReGr@aW C
n ~x!#…J .

~26!

Expanding the logarithm to leading order inf n , expanding
Gr@aW # to leading order inaW , and using the identity

1

dr
Tr~HiH j !5

Cr
~2!

N221
d i j ~27!

one finds

3It is possible that only vortices with the smallest magnitude
center flux have substantial probability; i.e.f 15 f N21 is finite, all
other f n are negligible. This is a dynamical issue which we cann
resolve here, and so we consider the general case that include
possiblef n .
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sC5
1

A H(
x

(
n51

N21
f n

2~N221!
aW C

n ~x!•aW C
n ~x!J Cr

~2! ~28!

whereCr
(2) is the eigenvalue of the quadratic Casimir ope

tor of the SU(N) group in representationr .
The results~21! and~28! might be termed ‘‘Casimir pro-

portionality,’’ since the nonperturbative part of the inte
quark potential, which is due to vortices, is proportional
the quadratic Casimir of SU(N) for small loops. But this
does not yet imply Casimir scaling of string tensions. T
parametersaW C

n (x) depend on loop size, and there is no p
ticular reason to suppose thatsC is constant in the adjoin
representation or, equivalently, that the adjoint potentia
linear in some range. Even if the adjoint potentialwereap-
proximately linear in some interval, it is not obvious that t
string tension for the fundamental representation, in the s
range of distances, would have reached its asymptotic va
To study this issue, we will return to the SU~2! example.

III. LINEAR POTENTIALS AND aC„x…

It may be possible to measureaC(x) in computer simu-
lations, by the methods introduced in Refs.@1, 2#. In the
meantime, it is worthwhile to ask whether there exists so
reasonable ansatz foraC(x) which would lead to both Ca
simir proportionalityand linear potentials in some region.

To set things up, let us consider a long rectangularR3T
loop in thex2t plane, withT@R, in group representationj .
The time-extensionT is huge but fixed, so we can characte
ize loopsC just by the widthR. Let x denote thex coordi-
nate of the center of a vortex, where it pierces thex2t plane.
From the previous discussion, the interquark potential
duced by vortices is easily seen to be

Vj~R!52 (
n52`

`

ln$~12 f !1 fGj@aR~xn!#%, ~29!

wherexn5n1 1
2 ~the choice ofxn comes from the fact tha

the vortex centers lie in the dual lattice, piercing the mid
of plaquettes!. The problem is to find some reasonable ans
for aR(x).

FIG. 1. Interquark potentialV(R) induced by center vortices
according to the model discussed in the text, for quark charge

the j 5 1
2 ,1,32 representations.
-

e
-

s

e
e.

e

-

e
tz

Suppose the timelike sides of the loop are atx50 and
x5R. Then, to guide the search for an ansatz, there are a
simple conditions thataR(x) must satisfy:

~1! Vortices which pierce the plane far outside the loop
not affect the loop. This means that for fixedR, as x
→6`, we must haveaR(x)→0.

~2! If the vortex core is entirely contained within the loo
then aR(x)52p. This translates as follows: Letx be
inside the loop, andd be the distance fromx to the
nearest of the timelike sides. Then it must also be
case thataR(x)→2p asd→`.

~3! As R→0, the percentage of any vortex core which
contained inside the loop must also go to zero. Th
aR(x)→0 asR→0.

There are an infinite number of functional forms whic
would meet these conditions, but a simple 2-parameter (a,b)
ansatz is the following: First define

y~x!5H x2R for uR2xu<uxu

2x for uR2xu.uxu
~30!

whose magnitude is the distance of the vortex center to
nearest timelike side of the loop, taken negative if the vor
center is inside the loop, and positive outside. Then choo

aR~x!5pF12tanhS ay~x!1
b

RD G ~31!

which fulfills all three requirements.

Figure 1 shows the potentials for thej 5 1
2 ,1,32 representa-

tions, for the choice of parametersf 50.1,a50.05,b54, in
the rangeRP@1,12#.4 Note that the fundamental and adjoi
potentials are roughly linear in a range from 5 or 6 to
lattice spacings. Figure 2 plots the ratiosV1(R)/V1/2(R), and
V3/2(R)/V1/2(R). As expected, these ratios start out at t

4Strictly speaking,R takes on only integer values in the lattic
formulation, but we have plottedVj (R) over the continuous inter-
val.

in
FIG. 2. Ratios ofV3/2(R) ~upper curve! and V1(R) ~lower

curve! to the potentialV1/2(R) of fundamental representation qua
charges.
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ratios of the corresponding Casimirs, 8/3 and 5 respectiv
It can be seen that in this interval the adjoint/fundamen
ratio drops only slowly, from 8/3 to about 2, while in th
same interval the (j 53/2)/fundamental ratio drops more pr
cipitously, from 5 to about 2.5. Figure 3 is again a plot of
three potentials, but this time over the range@1,100#. There
are two things to notice in this last figure. First, we see co
screening set in as expected, aroundR525– 30 lattice spac-
ings. The adjoint potential goes to a constant, while
j 53/2 potential closely parallels the fundamental potent
Secondly—and this was not expected—it can be seen
the the slope of the fundamental potential, in the Casi
scaling region between 6 to 12 lattice spacings, is very cl
to its asymptotic value.

We have therefore found, in this rather simple model
the vortex core, the kind of Casimir scaling which is seen
Monte Carlo simulations. A natural question is to what e
tent this scaling depends on a very special choice of par
eters. The answer is that Casimir scaling, although it is
found for any choice of parameters, is generic in a la
region of the parameter space. For example, the Cas
scaling region of Fig. 3 can be scaled up by any factorF
simply by settinga→a/F,b→bF. It is also quite easy to
think up other functional forms foraR(x) which satisy the
above three conditions@e.g. aR(x)5b(x)2b(x2R), with
b(x)→6p in the limits x→6`#. The possibilities are, o
course, infinite. Some functions work better than others,
the existence of an approximate Casimir scaling region
some finite extent seems to be fairly common. The cru
ingredient is the thickness of the vortices, which would be
the order of 1/a for the choice ofaR(x) in Eq. ~31!. What we
find is that the thickness of the vortices must be quite lar
larger, in fact, than the Casimir region itself, in order to s
approximate Casimir scaling of the adjoint string tension

IV. CONCLUSIONS

We have presented a scenario whereby the Casimir s
ing of higher-representation string tensions is explained
terms of the finite thickness of center vortices. We do
claim to haveproven that vortex thickness is the origin o

FIG. 3. Same as Fig. 1, for the rangeRP@1,100#.
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Casimir scaling, but this explanation now appears to be v
plausible, particularly if center vortices turn out to be the tr
QCD confinement mechanism.

Numerical tests of our scenario are in order. If cen
vortices give rise to an adjoint string tension, and if an a
joint loop is evaluated only in those configurations where
vortex links the loop, then the string tension should vani
This was found to be the case for the fundamental str
tension, in Refs.@1, 2#, and should be testable for the adjoi
string, at least in principle, by the methods explained in th
articles. It may also be possible to calculateaR(x) from
Monte Carlo simulations of fundamental loops, use that
formation in Eq. ~29! to derive the adjoint potential, an
compare the derived adjoint potential with the correspond
Monte Carlo data.

For every set of parameters in which we see Casimir s
ing in our simple model, the deviations from exact Casim
scaling are much greater for thej 53/2 potential as compare
to those of thej 51 potential. It would therefore be ver
interesting to compare Fig. 2 with the actual Monte Ca
data. Calculation of thej 53/2 potential in the scaling region
of SU~2! gauge theory, by lattice Monte Carlo techniques,
a computationally intensive problem, but we believe it
feasible.

Finally, there is the question raised years ago in Ref.@10#:
how can center vortices explain confinement at largeN,
where the Casimir scaling region extends to infinity? W
have seen, in the scenario outlined here, that the size o
Casimir scaling region depends on the thickness of ce
vortices. Already in SU~2! gauge theory, the existence of
Casimir regime implies that the diameter of the vortices s
stantially exceeds the separation length at which the he
quark potential begins to grow linearly~i.e. the ‘‘confine-
ment scale’’!. We therefore expect that asN increases, the
diameter of vortices relative to the confinement scale w
also slowly increase, probably as log(N). At N5` the vortex
core would be infinite in extent, and the discontinuous gau
transformation exterior to the core would be pushed off
infinity. It is not clear that the term ‘‘center vortex’’ remain
a useful description of the relevant configurations in t
limit.

Note added.We have recently learned that a related p
posal, namely, that center vortices might lead to a~break-
able! string potential between massive gluons, was advan
by Cornwall@15#. We thank Mike Cornwall for bringing this
reference to our attention.
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