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Supersymmetry and the chiral Schwinger model
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We have constructed tHe=3 supersymmetric general Abelian model with asymmetric chiral couplings.
This leads to &N= % supersymmetrization of the Schwinger model. We show that the supersymmetric general
model is plagued with problems of infrared divergence. Only the supersymmetric chiral Schwinger model is
free from such problems and is dynamically equivalent to the chiral Schwinger model because of the peculiar
structure of theN= 1 multiplets.[S0556-282(98)01204-1
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[. INTRODUCTION supersymmetry. In Sec. I, we briefly review various ideas
from N=3 supersymmetry including the structures of the
Two-dimensional soluble models such as the Schwingemultiplets as well as some simple theories. In Sec. Ill, we
model, the chiral Schwinger model, the massless Thirringgonstruct theN=3 supersymmetrization of the general
model, and the gradient coupling model, etc., have beemodel with asymmetric chiral couplings and derive from it
studied extensively in the pakt—12. All of these models the N=3 supersymmetric Schwinger model. We also indi-
can be described as interacting Abelian gauge theories. Moate how theN=1 supersymmetric Schwinger model can be
recently, a general Abelian gauge theory with asymmetriderived within this framework. In Sec. IV, we discuss the
vector and axial vector couplings was propo$&8], which  problem of the infrared divergence and how the supersym-
is also soluble and reduces to various other models in differmetric chiral Schwinger model is singled out to be free from
ent limits [14,15. This general model can, therefore, be such problems. We also point out how the supersymmetric
thought of as the parent theory for all the other soluble modchiral Schwinger model is dynamically equivalent to the chi-
els. ral Schwinger model itself. We present a brief conclusion in
Even though these models have been quite well studiedsec. V.
surprisingly, however, there does not exist a systematic study

of the supersymmetric generalizations of these models. In Il. N=3 SUPERSYMMETRY
fact, the only supersymmetric theory—thNe=1 supersym- _ ) ]
metric Schwinger modd|16,17—that was constructed, al- It is known that in d=2 (mod 8, we can define

ready hinted at problems in the supersymmetric theory noMajorana-Weyl spinor§18]. Consequently, the fundamental
present in the original theorj16]. Namely, although super- generator of supersymmetry in these dimensions can be a
symmetry is known to lead to better ultraviolet behavior inMajorana-Weyl spinor satisfying the algeljred]

theories, because the Schwinger model involves massless
fermions and because supersymmetry introduces scalar part- _ "
ners to fermionic fields, the supersymmetric theory suffers [Qua:Qupli= y'C
from severe infrared divergence problems not present in the ap
original theory. In this paper, we supersymmetrize the gen
eral model and study its properties systematically. In particu

1+ g

P @

whereQ-. represent Majorana-Weyl spindrél =+ ys)/2 de-
fine the right- and the left-handed projectiprasd C is the

. : : . Thatrix for charge conjugation. Theories providing a repre-
fic _chiral COL_’P"F‘QS' it does not allow for a{_\|=1 sentation of this symmetry algebra with only the right-
supersymmetrization. However, the supersymmetric gene”ﬂanded or left-handed charge are knowrNas supersym-
model corresponds to = 3 supersymmetrization which, in ) ) . 2 f

a particular limit, leads to &= 3 supersymmetric Schwinger metric theories and are. .sald to haVéz"FO or (Oji)
model. The supersymmetric general model suffers fronsupersymmetry. By definition, such theories can involve

problems of infrared divergence much like tNe=1 super- chirally asymmetric _interacti_ons Where;as the conveptional

symmetric Schwinger model. Surprisingly, however, theN=1 supersymmetric theories are chirally symmetric and

only model that is free from infrared divergence is the superwould correspond to the reduciblg,0)+ (0,3) supersym-

symmetric chiral Schwinger model which turns out to bemetry.

dynamically equivalent to the chiral Schwinger mof&t9) The multiplet structure oN=3 supersymmetry is quite

itself because of the peculiar multiplet structuresNof3  different from the conventional supersymmetry. Conse-
quently, we describe, in this section, some simgte 3 su-
persymmetric theories before constructing e 3 super-

*Email address: amorim@if.ufrj.br symmetrization of the general model. Although all of our
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discussion can be carried out in superspace, for simplicity i
and clarity, we would like to describe the theories in compo- L==ZFuF"+ E)\,ﬁ)\, (10
nents. Furthermore, we would only restrict ourselves to theo-

ries with a supersymmetry generated @y . Discussion of s invariant under the supersymmetry transformations
theories with supersymmetry generated@y is completely

parallel. SA,=ie_y,\_,
Let us consider the free theory=£1,2,...,n) g a (13)

i— 1 o 5)\,=—Ee‘“’|:lwe,.
L=y oyl + EaMA'a”A', 2) 2
, The N=3 gauge multiplet is quite analogous to the scalar
wherey/, is a right-handed Majorana-Weyl spinor satisfying myitiplet (' ,F'). In fact, comparing the structure of the
P theory as well as the transformations with those in Eff.
Vs = ® and(7), it is easy to identifyF ~ — 3€**F . It follows now
It is straightforward to show that this theory is invariant un-from our earlier discussion that thd=1 gauge theory

der theN= 3 supersymmetry transformations would correspond to
5Ai :_7 i , B 1 ” i— i— 1
€ (4) £——ZF# FM,,+E)x_ﬁx_+§)\+ﬁ)\++§aﬂl\/|a#|v|,
Sy, =—ibAe_, (12
where the parameter of transformation is a left-handed'N€réM represents a charge neutral scalar. In fact, it is easy
Majorana-Weyl spinor satisfying to check that this theory is invariant under the larger super-

symmetry transformations
Ys€_=—€_. (5) i _
. . 6A,=ie_y,N_+ie vy, N,
It is equally straightforward to check that the theory

1
i1 O\ == S e, e —iiMe,
— | I
L=Sx_ox_+5F'F, (6) (13
. 1

wherex' represents a left-handed Majorana-Weyl spinor is O\, =—1Me_— 5 € F e,
invariant under the supersymmetry transformations

Sx =Fle_, SM=¢€_N,+ e \_.

7

" It is worth noting here that the structure of thNe=1 theory

in two dimensions is different from that, say, in four-
dimensions in that it contains an additional scalar fi®ld
and can, in fact, be thought of as a theory for a scalar mul-
tiplet. [Compare, for example, with E¢8).]

SFi=—ie_by .

This brings out one of the differences from conventional
supersymmetry in thaty_ ,F') whereF' represents an aux-
iliary field form aN=3 multiplet. Let us also note here that

if we combine the two theories in Eq&) and(6), then 1
lll. N=3 SUPERSYMMETRIC GENERAL MODEL

L= '_W oy + I—X—'— o'+ Ea AlGHAl + EFiFi (8) In this section, we present the supersymmetrization of the
27T 2 2°# general Abelian gauge theory with asymmetric chiral cou-
plings [13—-15. We note that because of asymmetry in the
chiral couplings, it is not possible to construdia 1 super-
symmetrization of this model. Consequently, we look for a
N =3 supersymmetrization where the supersymmetry is gen-
erated by a left-handed Majorana-Weyl spinor. The other

is invariant under

SA=e_y\, +e.x ,

Sy, =—ibA'e_+F'e,, 9) case can also be constructed in a completely parallel manner.
i i - Let us consider the theory described by the Lagrangian
ox_=F'e_—ibA'e,, density

SFl=—ie_bx —ie by, 1 i— i— -
l € X— |€+ l//+ LZ_ZF;LVFMV+ §A70A,+§l//!,(m(+)w+)l

corresponding to the largeN=1 [or, equivalently,
(3,0)+(0,3)] supersymmetry.
The structure of the gauge multiplet is also equally inter-

esting. With the help of various two-dimensional identities i A
for the gamma matrices, it is easy to check that —e(1+r)e'A'N ¢, (14)

1 . o 1
() aNi(p(H)epa)i i (—) i i
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where @', z,z/+ X" ,F") with i=1,2 correspond to doublets Lig=L+L'

under an internaBQ(2) symmetry. Furthermore,A( <,/;+
carry a chargee(1+r) while (x' ,F') carry a charge
e(1—r) with r an arbitrary parameter. Correspondingly, the
covariant derivatives are defined to be

1 i—
— _ _Fnr —
4F Fut 2)\,19)\,

1
. y + )\ O\ + 59, ,MI*M
D =615,~e(1xr)eIA,, (15) 27"

[— 1 . R .
wherer measures the asymmetry in the couplings. With a + §¢//'+(IZ>¢//+)'+ E(DMA)'(D“A)HL EX'_(DX—)'
little bit of algebra(including the use of the Fierz identity in

two dimensionj it is easy to check that the theory described 1 . o S
by Eq.(14) is invariant under th&d= 1 supersymmetry trans- t3 FIF'+ee!(Mx ¢! + MATFI —AN _y!
formations

o —AN XL, (20)
SA'=€_y, ,
is, in fact, invariant under the larger supersymmetry

SA=e_i +e.x,
ox_=Fle_, Syl = —i(DA) e_+Fle,

SFi=—ie_(D )y ), 19 Sx_=F'e_—i(DA)'e,,
J— I— I__ 3 |
A, =ie Y\, OF'=—ie_(Dy_) —ie (D), 21)
Sh_=— L ehE, ¢ oA, ,=i€e_y,N_+ie vy, N,
_ uv€—
SN_=—3 e"’F,,e_—ibMe,,
This is the most general supersymmetric Lagrangian that one
can construct with the chirally asymmetric couplings which
reduces in the nonsupersymmetric limit to the general model
of Refs.[13—15. (This is most easily seen in the superspace — —
approach which we are not describing here for claritye OM=¢€ N+ e N
could, of course, have included the multiplat,(,M) which
corresponds to the right-handed part of the gauge multlplet
However, they do not lead to any consistent interaction
when the gauge couplings are asymmetric.
However, for symmetric couplings, namely, wher 0,

SN,=—ibMe_— 3 €"’F €1

This corresponds to th&l=1 supersymmetric Schwinger
odel which was constructed earlier. Here, we have con-
structed it from the point of view o= supersymmetry.

IV. SUPERSYMMETRIC CHIRAL SCHWINGER MODEL

D,"M=D\=D]=415,~eelA,, 17 From the structure of th&=2 supersymmetric general
model, it is clear that there is a quartic coupling involving
and Eq.(14) provides theN= 3 supersymmetrization of the the scalar fieldsA' and the gauge field,. This leads to
Schwinger model. Furthermore, in this case, we can showelf-energy graphs for thA&' and theA, fields which are

that the Lagrangian density infrared divergent. In fact, it is easy to see tlste Fig. 1
1 ) , [ d%k
L'= )\ O\, +207'uM07’U‘M e (1+r) ? (22
+eel MLyl +MAFI-AN x) (19 Of course, we can add mass terms in a supersymmetric

manner to cure the problem of infrared divergence. However,

is independently invariant under the supersymmetry transforsuch a modification would correspond to starting theories
mations of Eq(16) as well as which contain massive particles and are not solulleci-
dentally, this is also the infrared divergence that was already

SM=e€_\,,

(19
ON,=—1HMe_. J\/\/@W

The sum of the two Lagrangian densities, hamely, FIG. 1. Self-energy graph for the* andA,, fields.
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noted[16] in the context of the supersymmetric Schwingeris really dynamically equivalent to the chiral Schwinger

model corresponding to=0.)
On the other hand, we see from E(®2) that such
infrared-divergent terms would be absentifer—1. In such

model since both _ andF' are free fields. Consequently, all
the results of the chiral Schwinger model would apply to its
supersymmetric counterpart as well.

a case, only the left-handed fermions will have couplings to

the gauge fields as is clear from E@4) and there would be

no Yukawa coupling. In fact, the Lagrangian dendity),
for r=—1 reduces to

1

L=-3

i i1
FAF ot SN O+ Syl by + 59, A #A

i— y . o1
+E)('_y"(&'Jc?M—Zee”A”)xJ_—FEF'F'. (23

Furthermore, since the multipleA{,##',) is noninteracting,
we can take the dynamical theory to be

1
Locsni= — a FIWFMV+

— i— -
— (S
2)\_5)\_-1—2)(_')/ (69,

. N
—2ee'A )X+ SF'F.

. 24

V. CONCLUSION

We have constructed thd=3 supersymmetric general
Abelian model with asymmetric chiral couplings in two di-
mensions. This leads to M= 3 supersymmetrization of the
Schwinger model. We have shown that the supersymmetric
general model is plagued with problems of infrared diver-
gence. Only the supersymmetric chiral Schwinger model is
free from infrared divergence. Dynamically, the supersym-
metric chiral Schwinger model is equivalent to the chiral
Schwinger model because of the peculde3 multiplet
structure.
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