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Degenerate domain wall solutions in supersymmetric theories
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A family of degenerate domain wall configurations, partially preserving supersymmetry, is discussed in a
generalized Wess-Zumino model with two scalar superfields. We establish some general features inherent to
the models with continuously degenerate domain walls. For instance, for purely real trajectories additional
‘‘integrals of motion’’ exist. The solution for the profile of the scalar fields for any wall belonging to the family
is found in quadratures for an arbitrary ratio of the coupling constants. For a special value of this ratio the
solution family is obtained explicitly in terms of elementary functions. We also discuss the threshold ampli-
tudes for multiparticle production generated by these solutions. Unexpected nullifications of the threshold
amplitudes are found.@S0556-2821~98!00506-2#

PACS number~s!: 11.27.1d, 12.60.Jv
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I. INTRODUCTION

The existence of several degenerate supersymm
vacua is a generic phenomenon in supersymmetric theo
with scalar superfields. Moreover, in many instances
vacuum manifold consists of several isolated points. Th
the possibility arises of domain wall configurations interp
lating between these vacua.

It has been recently shown@1,2# that some of the domain
wall configurations in~311!-dimensional theories posse
distinct supersymmetric properties.

~i! They generate a central extension of theN51 super-
algebra. The wall tension is proportional to the cent
charge. Because of the nonrenormalization theorem for
central charge, this implies that the wall energy density
exactly calculable; it is not renormalized by the loop corre
tions.

~ii ! They preserve two out of four original supercharg
~‘‘ N51/2 supersymmetry’’! corresponding to the minima
supersymmetry in the~211!-dimensional space tangential
the wall.

~iii ! The profile of the fields across these walls satisfi
first order differential equations analogous to t
Bogomol’nyi-Prasad-Sommerfeld~BPS! equations@3# ~the
so-called ‘‘BPS-saturated walls,’’ or ‘‘BPS walls’’!. These
equations were called the creek equations@4# because of a
mechanical interpretation.1

A nonvanishing central charge of theN51 superalgebra
exists for any field configuration interpolating between tw
distinct vacua@4#. Not every such configuration is BPS sat
rated, however. Those domain walls that are BPS satur
possess peculiar features following from point~ii ! above.
The BPS domain walls have interesting properties even
the simplest theories, e.g., in the Wess-Zumino model w

1Previously the creek equations were considered in different c
texts in Refs.@5–8#.
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one chiral superfield. They become even more remarkabl
the theories with two or more chiral superfields interacti
with each other.

In the theories withK scalar superfields, generically, the
are 2K degenerate vacuum states and, correspondingly, t
are at least 2K21 (2K21) domain wall types@9#. In Ref.
@10# it was shown that, quite typically, some of these dom
walls turn out to be continuously degenerate. Collective
ordinates exist correspondingly to a continuous deforma
of the internal structure of the wall. Varying these coord
nates we change the wall structure, leaving the wall ene
density intact.

In this work we investigate this phenomenon, both in ge
eral aspect and in some simple examples. It will be arg
that the continuous degeneracy is related to the existenc
additional ‘‘integrals of motion.’’ We will explicitly find
such an integral in a particular two-field model. Using th
result, it becomes possible to obtain a generic family of
domain wall solutions in this two-field model. For arbitra
values of the coupling constants the solution is given
terms of quadratures. For some specific values a closed-f
solution in terms of elementary functions exists. We ta
advantage of this explicit solution to extract consequen
for the high-order multiparticle amplitudes at threshold.

The supersymmetric vacua are determined by the extr
of the superpotentialW(fk),

]W/]fk50, k51, . . . ,K. ~1!

The general form of the BPS-saturation equations for a st
wall in which the fieldsf i depend only on the coordinatez is

]zfk5
]W†

]fk
† eia, ~2!

wherea is a constant (z independent! complex phase. Let us
assume that two solutions of Eq.~1! are found,$f%1 and

n-
2590 © 1998 The American Physical Society
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57 2591DEGENERATE DOMAIN WALL SOLUTIONS IN . . .
$f%2, where the braces denote a set of all scalar fieldsfk .
Denote the corresponding values of the superpotential b

W1[W~$f%1!, W2[W~$f%2!. ~3!

Without loss of generality one can assume thatW150 and
W2 is real and positive~this can be always achieved by a
propriate transformations of the superpotential!. Then the
phasea in Eq. ~2! can be set equal to zero. If, additionall
the superpotential is real for real values of the superfields
which we limit our investigation, then Eq.~2! takes the form

]zfk5
]W

]fk
. ~4!

Now, if one interpretsz as ‘‘time,’’ the latter equations have
a simple mechanical interpretation@4#: they describe the flow
of a very viscous fluid, whose inertia can be neglected, in
potential relief2W(fk) from one extremum2W1 of the
relief, along a gradient line, to a lower extremum2W2. ~Ob-
viously, reflection of thez direction is possible, in which
case the flow is described by the ‘‘potential’’W rather than
2W. Instead of the reversal of thez axis, one can view this
as a shift byp of the phasea in Eq. ~2!. For definiteness we
use the mechanical analogy within the conventions of
~4!.! From the fluid flow analogy it is clear that the nece
sary condition for the existence of a solution of Eq.~4! is that
the extremaW1 andW2 be of different height. One can tak
advantage of a rich intuition one has in connection with
mechanical motion of this type. To make this analogy m
graphic we will sometimes denote the derivative overz as

]zf→ḟ

in the cases where there is no menace of confusion. Co
spondingly, the quantities conserved along the given tra
tory will be referred to as integrals of motion. One integral
motion, energy, is well known of course; it is universal a
has nothing to do with the specific trajectories under con
eration. We will be interested in additional integrals of m
tion, specific to the creek equations.

The surface energy density of the BPS wall is given
the difference of the superpotential at the two extrema:

«52~W22W1!. ~5!

Although at least some of the results to be reported be
seem to be generic, we will make no attempt at formulat
them in full generality. Instead, we will focus on a speci
instructive example: a two-field model@9,10# with the scalar
superfieldsF andX and the superpotential

W~F,X!5
m2

l
F2

1

3
lF32aFX2. ~6!

Herem is a mass parameter andl anda are dimensionless
coupling constants. It is assumed that the phases of the fi
andW are adjusted in such a way that all parameters in
superpotential are real and positive. Only occasionally
will digress to more general models. Below the lowest co
ponent ofF andX will be denoted byf andx, respectively.
to
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Clearly, the superpotential~6! is not the most genera
form of the superpotential in the renormalizable~311!-
dimensional models, even given the freedom of redefin
the fields. It contains, however, sufficient features for a d
cussion of the nontrivial properties of the domain walls w
are interested in.2 The model with the superpotential~6! will
be referred to below as a minimal two-field model. In term
of the scalar componentsf and x of the respective super
fieldsF andX, the ‘‘potential relief’’ 2W has its maximum
2W1 at f52m/l, x50 and the minimum2W2 at
f5m/l, x50. It also has two saddle points of equal heig
at f50, x56m/Ala. The BPS-saturated walls exist con
necting the maximum and the minimum, and also connec
either of the saddle points with the maximum or the mi
mum. Moreover, all these BPS-saturated configurations
long to one and the same family of solutions, correspond
to the flow from the maximum to the minimum with differ
ent starting conditions@10#. All trajectories from the family
are real.

This is an ideal setting for establishing the existence
additional integrals of motion. The one relevant to the mo
~6! is obtained in an explicit form. Certainly, given the a
ditional constraint, one can readily reconstruct the full fam
of solutions in quadratures. Further simplifications arise~a!
for arbitrary values ofl, a and the vanishing value of th
integral of motion;~b! for l/a54 and arbitrary value of the
integral of motion. As a matter of fact, the first case w
treated in Ref.@10# where it was found that

f~z!5
m

l
tanhS 2a

l
mzD ,

x~z!56
m

Ala
A12

2a

l
sechS 2a

l
mzD . ~7!

Until now, this was the only nontrivial solution for one sp
cific configuration in the degenerate family that was expl
itly known, apart from the trivial standard wall withx50. In
Sec. III we construct the solutions for all configurations b
longing to this family. For an arbitrary ratio of the couplin
constantsr[l/a, this solution is semi-explicit in the sens
that the trajectory in the field space is found in terms
elementary functions, while the dependence of the fields
z, although expressed in quadratures, is not found ana
cally. An explicit dependence onz can be found in terms o
elementary functions for two special values ofr: r51 and
r54. The case ofr51 is, however, trivial since after ap/4
rotation in the space of the fields (f,x) the model reduces to
two fields not interacting with each other. The remaini
case ofr54 is quite nontrivial and provides a whole famil
of new domain wall solutions.

In four dimensions the requirement of renormalizabil
restricts the form of the superpotential: it must be polynom
in fields of at most third order. If we dimensionally reduc
the theory to two dimensions, the choice becomes infinit

2An equivalent model was also considered in Ref.@11#, and a
similar model of higher order in the fields in Ref.@12#, in connec-
tion with different problems.
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2592 57M. A. SHIFMAN AND M. B. VOLOSHIN
richer. Any analytic function ofF and X can serve as a
superpotential, without spoiling the renormalizability of th
two-dimensional model. We briefly discuss the issue of
continuous degeneracy of the soliton solutions in this set
~Sec. II!.

The domain wall configurations, when viewed as depe
ing on the Euclidean timet rather than on the spatial coo
dinatez, are known@13# to be the generating functions fo
amplitudes of multiple production of bosons at threshold
field operators. For the model discussed here, these are
amplitudes for production of arbitrary numbersnf of the f
bosons andkx of the x bosons at the corresponding thres
olds,

Ank
f [^nfkxuf~0!u0& and Ank

x [^nfkxux~0!u0&.

In Sec. IV we use the relation between the domain w
profile and the threshold production amplitudes in a twof
way: to point out a constraint on the solutions in the deg
erate family stemming from the fact that they generate
same set of amplitudes and to find the multiboson amplitu
at the tree level explicitly in the case ofr54 where the
explicit form of the solutions is available.

II. ADDITIONAL INTEGRALS OF MOTION

To begin with, we will discuss the occurrence of an ad
tional integral of motion in the simplest example~6!. In this
model the creek equations have the form

ḟ5
]W

]f
5

m2

l
2lf22ax2,

ẋ5
]W

]x
522afx. ~8!

Let us introduce a ‘‘dual’’ function

W̃~F,X!5X2rS m2

l2
2F22

1

r22
X2D , ~9!

where

r[
l

a
.

The meaning of the word ‘‘dual’’ will become clear shortly
Equation ~9! assumes that the parameterrÞ2. The case
r52 is special and has to be treated separately.

The dual function has the property

]W̃

]f i
5« i j S~f i !

]W

]f j
, ~10!

wheref1,2 stands for$f,x%, « i j is the antisymmetric tenso
of the second rank, andS is some scalar function. In th
model at hand

S~F,X!5
1

a

1

Xr11
. ~11!
e
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Now, if z is interpreted as ‘‘time,’’ the dual functionW̃ is
conserved along the trajectory. Indeed,

Ẇ̃5
]W̃

]f i
ḟ i5

]W̃

]f i

]W†

]f i
†

. ~12!

For real solutions Eq.~10! implies that the right-hand side o
Eq. ~12! vanishes.

Therefore, each particular real trajectory connecting
stationary points 1 and 2 of the superpotential is charac
ized by the value of the dual function on this trajector
More exactly, dual functions conserved along the traject
can be introduced for all solutionsfk(z) with the constant,
i.e., z independent, phases of the fieldsfk . By an appropri-
ate redefinition of the fields, we can obviously return to t
real solutions.

In the general case of nonminimal models, the super
tential ~restricted to real values of the superfields! is charac-
terized by the gradient lines and the level lines. The la
correspond to fixed values ofW. Two nets of lines — gra-
dient and level — are locally orthogonal to each other. T
level lines of the dual function are the gradient lines of t
superpotential, while the gradient lines of the dual functi
are the level lines of the superpotential. From this grap
interpretation it is intuitively clear that a dual functionW̃
must exist for everyW, although, unlike the minimal two-
field model, it is not always possible to find them analy
cally. The points whereW ~restricted to the real values of th
scalar fields! develops maxima or minima are the singul
points ofW̃. The saddle points ofW are the saddle points o
W̃.

A. Solitons in „111…-dimensions

If in four dimensions the choice of the superpotential
severely restricted by the requirement of renormalizab
~only polynomials which are at most cubic are allowed!, in
two dimensions any superpotential leads to a sensible q
tum theory. If one takes a generalized Wess-Zumino mo
in four dimensions, with arbitrary number of fields and
arbitrary superpotential, and dimensionally reduces it to t
dimensions, one arrives atN52 supersymmetry in two di-
mensions. In two dimensions the domain walls become s
tons — localized field configurations with finite energy. A
ter quantization they are to be viewed as particles. TheN52
supersymmetric theories with scalar superfields in two
mensions were extensively studied in Ref.@7#. The case
which is of most interest to us, a continuous family of d
generate solitons, seemingly was not discussed in this w

Since we are not limited now to polynomial superpote
tials we can consider whole families of models. Consider
definiteness two-field models. Let us start from a cert
model with a superpotentialW. One then can consider an
other model with a superpotentialWNEW5 f (W) where f is
an arbitrary function. If in the original model the dual fun
tion is known, it remains the same for the whole fami
Indeed, Eq.~10! implies that

]W̃

]f i
5« i j SNEW

]WNEW

]f j
, SNEW5S~d f /dW!21. ~13!
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57 2593DEGENERATE DOMAIN WALL SOLUTIONS IN . . .
In other words,W̃ remains the integral of motion for rea
trajectories in any model belonging to the given family.

The minimal two-field family, dimensionally reduced t
D52, presents a simplest example where continuously
generate soliton solutions exist. Now one can easily prov
a plethora of other interesting examples. For instance,
can consider superpotentials which are bounded from ab
and from below for real values of the superfields. In su
models typically every soliton will appear as a member o
degenerate family of solitons, the degeneracy being u
lated to any external symmetry. Generalizations of the s
Gordon model fall into this category. Consider, for examp
the superpotential

W52sin F2sin X2a~sin F!~sin X!, ~14!

wherea is a dimensionless parameter, and all dimensio
parameters are set equal to unity. This superpotential is
riodic in F andX; for a50 it describes two decoupled field
~each of them presents a supergeneralization of the s
Gordon model!. If aÞ0, the fieldsF andX start interacting
with each other. Inside the periodicity domain 0<F,X<2p
the relief of the superpotentialW is qualitatively similar to
that of the minimal two-field model:2W has one maximum
at F5X5p/2, one minimum atF5X53p/2, and two
saddle points atF5p/2,X53p/2 andF53p/2,X5p/2 ~at
least for small values ofa). Any real trajectory~out of a
continuous family of trajectories! starting at the maximum
leads to a minimum. The only exceptions are two trajecto
leading to the saddle points~the exceptional, or basic soli
tons!. The masses of two exceptional solitons are 414a and
424a, respectively. Continuously degenerate solitons
bound states of two basic solitons, with mass 8, i.e.,
binding energy exactly vanishes.

Unlike the minimal two-field model, all solutions in th
model~14! have finite masses; there are no trajectories le
ing to abysses.

The degeneracy is not lifted due to quantum correctio
This suggests that in every model with continuously deg
erate solitons there should exist a dual description where
exceptional solitons~comprising the degenerate ones! appear
as decoupled~i.e., not interacting with each other! particles
from the very beginning. This issue deserves further inve
gation.

III. SOLUTION FOR THE DEGENERATE WALLS

Now we return to the minimal two-wall models~6!. Our
task is to find the family of the wall trajectories~i.e., f
versusx for every given wall solution and every allowe
value ofW̃). Next we will find the wall solutions themselve
i.e., f(z) andx(z).

A. General case: arbitrary ratio r[l/a

It is convenient to introduce dimensionless field variab
f andh as

f5
m

l
f , x5

m

Ala
h,
e-
e
e

ve
h
a
e-
e-
,

al
e-

e-

s

e
e

d-

s.
-

he

i-

s

and to set the mass parameterm to one~it can be restored, if
needed, from dimension!. The BPS-saturation equation~4!
then take the form

d f

dz
512 f 22h2,

dh

dz
52

2

r
f h. ~15!

By eliminating the variablez from these equations, one find
the equation for the trajectory in the (f ,h) plane,

d f

dh
52

r

2

12 f 22h2

f h
. ~16!

The general solution of this equation can be written as

f 2512
rh2

r22
2Chr, ~17!

whereC is an integration constant. It is connected with t
integral of motion, Eq.~9!, by a simple proportionality rela-
tion,

W̃5S m

l D 22r

r2r/2C.

The full trajectory runs from the point (f ,h)5(21,0) in the
‘‘distant past’’ ~i.e.,z52`) to the point (f ,h)5(1,0) in the
‘‘distant future’’ ~i.e., z5`). The relation~17! determines it
piecewise: from (f ,h)5(21,0) to (f ,h)5(0,hmax) and from
(0,hmax) to (1,0), wherehmax is the maximal amplitude ofh
on the trajectory~see Fig. 1!. For the given value ofC the
valuehmax is obviously determined from the solution of Eq
~17! for h with f being set to zero,

r

r22
hmax

2 1Chmax
r 51. ~18!

Using the symmetry underh↔2h, it is sufficient to discuss
only the trajectories with positiveh.

FIG. 1. Few trajectories in the field space from the family
degenerate solutions~at r54). The numbers represent the values
the constantC for the corresponding trajectory. The heavy do
show the positions of the vacuum states.
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2594 57M. A. SHIFMAN AND M. B. VOLOSHIN
The freedom inC is in fact limited by the condition tha
the fields remain real along the whole trajectory. In this co
nection it should be noted that the BPS-saturation equa
~2! is intrinsically nonanalytic, thus the trajectory found f
the real values of the fields cannot be continued to the c
plex values of the fields. The requirement of the real traj
tories translates into the requirement thathmax is real positive
and varies in the interval@0,1#. An elementary inspection o
Eq. ~18! yields the allowed domain for the constantC,

C* <C<1`, C* 5
2

22r
.

One can readily see that the trajectory withC51` has
h(z)[0 and, thus, reduces to the well-known wall soluti
in the one-field theory,f (z)5tanhz. On the other hand, the
trajectory with C equal to the critical valueC5C* has
hmax51. Thus, it in fact describes two infinitely separat
domain walls: one interpolating between (f ,h)5(21,0) and
(0,1) ~the saddle point ofW) and the other between (0,1
and (1,0). The configurations with the intermediate values
C interpolate between these two extremes; in a sense,
can be viewed as the solutions with the latter two walls a
finite separation~see Fig. 2!. Remarkably, the degeneracy
the energy of theC.C* solutions implies that the latter tw
walls do not interact with each other.

If r.2, the pointC50 belongs to the allowed interva
For C50 ~i.e.,W̃50) the trajectory takes an algebraic form
One can immediately find an explicit domain wall solutio
see Eq.~7!. As a matter of fact, it was obtained previous
@10#.

It should be noted that the valuer52 presents a specia
case because of the singularity in Eq.~17! at r52. This
singularity can easily be resolved, however, either by con
ering the limiting procedure in Eq.~17!, or by solving the
Eq. ~16! separately forr52. The result is that the relatio
~17! at r52 reduces to

f 2511h2~ ln h22C̃!, ~19!

whereC̃ is another integration constant bound by the con
tion 1<C̃<1`.

The relation~17! gives the trajectory of the field configu
ration in the (f ,h) plane ~see Fig. 1!. In order to find the
coordinate dependence of each of the fields, one can su
tute f as found from Eq.~17! into the second of Eqs.~15!
and then obtain the solution in an implicit form, ‘‘in quadr
tures’’

z52
r

2E dh

h f~h!
. ~20!

FIG. 2. The profile of the fieldsf ~solid! and x ~dashed! as a
function of the spatial coordinatez for three values ofC (r54). It
is seen that atC approaching the critical valueC* 521, the profile
separates into two walls.
-
n

-
-

f
ey
a

,

-

i-

sti-

B. Explicit solution for r54

For arbitrary values ofr there is no algebraic expressio
for the integral in Eq.~20! in terms of known functions. The
exceptional cases are

r5
1

2
,
2

3
,6, and 8,

when the integral is expressed in terms of elliptic functio
and

r51 and r54,

when the integral is elementary.
The elliptic cases are rather cumbersome, while the c

of r51 is trivial: at r51 the model considered here d
scribes two fieldsf̃5(f1x)/A2 and x̃5(x2f)/A2 that
do not interact with each other. For these reasons we pu
here the explicit solution only for the exceptional case
r54.

If we choose this specific value,r54, in Eqs.~17! and
~20!, we readily find the explicit expressions for the fieldsf
andh versusz,

f ~z!5
u22C21

~u11!21C
, h2~z!5

2u

~u11!21C
, ~21!

whereu5exp(z2z0) andz0 is an arbitrary shift of the coor-
dinatez. @Clearly, the solution can be centered atz50 so
that f (0)50, if z0 is chosen as 2z052 ln(C11).# For r54
the integration constantC is bounded by the condition

21<C<1`.

For completeness we also present the same solution in te
of the fieldsf(z) and x(z), with the normalization factors
restored~Fig. 2!,

f~z!5
m

l

e2m~z2z0!2C21

~em~z2z0!11!21C
,

x~z!56
m

l

2A2em~z2z0!/2

A~em~z2z0!11!21C
. ~22!

The constantC plays the role of a collective coordinate. Th
occurrence of another collective coordinate,z0, is a trivial
consequence of the fact that the wall solution spontaneo
breaks the translational invariance of the original model
the z direction.

At the same time,C is unrelated to spontaneous breaki
of any symmetry of the model. It reflects the fact that t
symmetry of the particular solutions at hand is higher th
that of the modelper se. As far as we know, Eq.~22! pre-
sents the first explicit example of a soliton family in th
renormalizablef4 theory with a continuous degeneracy d
to continuous deformations of the soliton structure.

One can readily derive from the explicit solution abo
the limiting cases discussed in Sec. II A. At the critical val
C521, the solution in Eq.~21! degenerates into
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f 5
u

u12
, h25

2

u12
~23!

and describes the domain wall connecting the va
( f ,h)5(0,1) and (1,0). In order to get the wall connectin
( f ,h)5(21,0) with (0,1) one can use the symmetry und
f↔2 f and reverse the sign off in the first equation in Eq.
~23!. In order to recover the one-field solution in the lim
C→1`, one has to accordingly adjust the coordinate s
z0 as exp(22z0)5C11. Then in the limitC→1` one gets
h50 and f 5tanhz.

IV. THRESHOLD MULTIPARTICLE AMPLITUDES

In this section we will take advantage of the explicit wa
family solution found above in order to extract certain p
dictions for the high-order behavior of the multiparticle am
plitudes at thresholds. The corresponding analysis for
one-field Wess-Zumino model was carried out in Ref.@4#. In
the one-field model there is little distinction with the nons
persymetric case~for a review see Ref.@14#!. The two-field
model is much more interesting since it reveals a new p
tern.

In what follows we will need to know that in the vacuu
s

th
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e
th
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th
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e
to
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-

e
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with f5m/l andx50 ~in which our wall trajectory ends!
the mass of thef quantum is equal to 2m, while the mass of
the x quantum is equal to 2m/r. In the caser54 to be
analyzed below, the mass of thex quantum is equal tom/2.
The same is valid for the vacuumf52m/l,x50, from
which the trajectories originate.

A. An overview of the formalism

The solutions to the field equations, in particular the d
main wall solutions, are directly related to multiparticle am
plitudes, by virtue of the formalism developed by Brow
@13# ~for a more recent review see Ref.@14#!. Being adapted
to the present problem of two fields the formalism is co
structed as follows. Consider for definiteness the amplitu
^n,kuf(0)u0& describing the production by the field operat
f(x) of a multiparticle state consisting ofn on-shell bosons
of the fieldf with 4-momentapa (a51, . . . ,n) and k on-
shell bosons of the fieldx with 4-momentapb (b51, . . . ,k)
in a vacuumu0& of the theory. According to the standar
reduction formula, this amplitude is expressed through
response of the system to external sourcesrf(x) andrx(x),
coupled to the corresponding fields asrff1rxx in the La-
grangian,
^n,kuf~0!u0&5F )a51

n

lim
pa

2→mf
2
E d4xaeipaxa~mf

2 2pa
2!

d

drf~xa!G
3F )b51

k

lim
pb

2→mx
2
E d4xbeipbxb~mx

22pb
2!

d

drx~xb!G ^0outuf~x!u0in&rf ,rxurf50, rx50 , ~24!
nal
e is

ld

m-
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ure
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it
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ds
wheremf andmx are the masses of the respective boson
the vacuum considered.

The classical response, i.e., the classical solution of
field equations in the presence of the sources gener
through Eq.~24!, the tree-level amplitudes, which we will b
mainly concerned with here. Moreover, as will be seen,
configurations, of the type of the domain walls, depending
only one variable, are related to multiparticle production e
actly at the threshold, i.e., at the spatial momenta of
produced particles exactly equal to zero. In this situation i
sufficient to consider the response of the system in Eq.~24!
to spatially uniform time-dependent sources,

rf~ t !5rf~vf!eivft, rx~ t !5rx~vx!eivxt,

and take in the very end the on-shell limit in Eq.~24! by
tendingvf to mf andvx→mx . The spatial integrals in Eq
~24! then give the normalization spatial volume, conventio
ally set to one, while the time dependence with the fix
functional form of the sources implies that the propaga
factors and the functional derivatives enter in the combi
tion

~mf
2 2pa

2!
d

drf~xa!
→~mf

2 2vf
2 !

d

drf~ t !
5

d

daf~ t !
,

in

e
es,

e
n
-
e
s

-
d
r
-

~mx
22pb

2!
d

drx~xb!
→~mx

22vx
2!

d

drx~ t !
5

d

dax~ t !
, ~25!

where

af~ t !5
rf~vf!eivft

mf
2 2 i e2vf

2 , ax~ t !5
rx~vx!eivxt

mx
22 i e2vx

2 ~26!

coincide with the response of free fields to the exter
sources. For finite amplitudes of the sources the respons
singular in the on-shell limitvf→mf , vx→mx . Therefore,
following Brown @13#, the amplitudes of the sources shou
be taken to zero in this limit, so that the factorsaf(t) and
ax(t) are finite:

af~ t !→afeimft, ax~ t !→axeimxt.

Thus, for the purpose of calculating the multiparticle a
plitudes at the tree level, one looks for a solution of t
classical field equations with no sources. The only inform
tion about the sources left from the above limiting proced
is that the sources drive only positive frequencies in
fields, thus the condition for the sought solution is that
should contain only the positive frequency part with all ha
monics being multiples ofeimft andeimxt. The latter condi-
tion is equivalent to requiring that the solution for the fiel
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goes to the classical vacuum at infinity in the Euclidean ti
t5Imt→1`. The multiparticle amplitudes are then give
by the derivatives of the solutionf(t),

An,k
f [^n,kuf~0!u0&5S ]

]af~ t ! D
nS ]

]ax~ t ! D
k

f~ t !uaf50,ax50 .

~27!

Since the equations for the fieldsf andx are coupled, one
simultaneously finds the solution for the fieldx and, thus, the
amplitudes for the multiboson production byx,

An,k
x [^n,kux~0!u0&5S ]

]af~ t ! D
nS ]

]ax~ t ! D
k

x~ t !uaf50,ax50 .

~28!

The operational procedure for calculating the amplitud
is therefore as follows. First, one obtains the solution of
Euclidean classical field equations depending only on timt
and approaching, att→1`, the vacuum state (f0 ,x0) in
which the scattering theory is considered. Then, the solu
is expanded in the harmonics ofe2mft ande2mxt,

f~t!5 (
n50,k50

`

Fn,ke
2~nmf1kmx!t,

x~t!5 (
n50,k50

`

Hn,ke
2~nmf1kmx!t, ~29!

whereFn,k andHn,k are the coefficients of the expansion.
Note that

F0,05f0 and H0,05x0 ,

while the coefficients of the appropriate first harmonics
identified as the described above factorsaf andax ,

F1,05af , H0,15ax .

Then, according to Eqs.~27! and ~28!, the amplitudes are
expressed as

An,k
f 5n!k!

Fn,k

F1,0
n H0,1

k
, An,k

x 5n!k!
Hn,k

F1,0
n H0,1

k
. ~30!

Before closing this discussion of the general formalis
we would like to emphasize that the latter equations can
also viewed as a constraint on any solution approachin
vacuum state (f0 ,x0) at t→1`. Namely, if up to the ap-
propriate linear terms the fields behave as

f~t!5f01ae2mft1•••, x~t!5x01be2mxt1•••,

then the subsequent terms in the expansion of the fields
fully determined in terms ofa, b and the fixed set of the
amplitudesAf andAx,

Fn,k5
An,k

f anbk

n!k!
, Hn,k5

An,k
x anbk

n!k!
. ~31!
e

s
e

n

e

,
e
a

re

Furthermore, the absolute normalization of the coe
cientsa andb is rather a matter of convention. Indeed, und
a shift of t,

t→t2t0 ,

these coefficients change as

a→aemft0, b→bemxt0.

Thus, the only parameter that distinguishes between es
tially different solutions approaching the same vacuum s
is the ratio

c5
a

bmf /mx
.

Therefore, in a general two-field theory a family of solutio
approaching a vacuum state att→1` is parametrized by a
single parameterc. This parameter is in one-to-one corr
spondence with the integration constantC, or the value of
the dual functionW̃ on the trajectory. The coefficients of th
expansion~29! are then fixed by the multiparticle ampl
tudes.

B. Multiparticle amplitudes in the supersymmetric model

The domain wall solutions discussed in Sec. II can
directly applied to calculating the multiparticle amplitude
To this end one should consider the fields depending on
Euclidean timet rather than on the spatial coordinatez.
Since this amounts to a trivial relabeling of the variable,
retain here the notationz for the variable. We also use th
notationa5F1,0 andb5H0,1. Every BPS-saturated solutio
from the family under consideration approaches atz→1`
the vacuum at (f,x)5(m/l,0). Thus, this is the vacuum
state in which the multiparticle amplitudes are generated
the solutions. Remember that the masses of the particle
this vacuum are expressed in terms of the parameters o
model asmf52m, mx52(a/l)m5mf /r.

In the case of arbitrary ratior one can use Eq.~17! to
obtain a relation between the coefficientsa, b and the con-
stantC. Indeed, atz→1` the fieldx(z) goes to zero as

x~z!5be2mxz1•••,

corresponding in the dimensionless variables to

h~z!5
Alab

m
e22z/r.

The linear ine22z harmonics inf (z) arises from the term in
Eq. ~17! with the constantC, from where one finds the co
efficient a of the linear in e2mfz harmonics in f(z)
@f(z)5m/l1ae2mfz1•••# as

a52
C

2

m

l SAlab

m D r

. ~32!

In connection with the derivation of the latter relation,
should be noted that forr.2 the harmonics with exp(2mfz)
is not the leading one in the fieldf(z) at largez because of
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the presence of the second harmonics with the mass ox:
F0,2exp(22mxz). Thus, the presented derivation, strict
speaking, is justified only atr,2. However, the relation
~32! is also applicable atr.2 since the fields and the coe
ficients of their expansion are analytic functions of the co
plings, and the relation~32! can be analytically continued
from r,2 to the domainr.2.

It can be also noted that the solution in Eq.~7! with C50
hasa50, according to Eq.~32!. Thus, it generates only th
amplitudes of multiple production of the bosons of the fie
x by either the operatorx(0) or f(0). For this reason, it
expands in the harmonics determined only by the mass ox.

Furthermore, for a rational ratior the massesmf andmx

are also in a rational proportion. Thus if only thez depen-
dence of the fields were known, there would be an ambi
ity, at least in some harmonics, in separation between
production of thex bosons and thef bosons. However, this
ambiguity is resolved if the dependence of the solution onC
is known, by using Eq.~32!, which shows that the constantC
serves as a ‘‘tag’’ for af boson. The power ofC in the
given harmonics gives the number of thef bosons in the
amplitude generated by this harmonics.

We illustrate this method for our explicit solution in th
case ofr54 and we also find explicitly the amplitudesAn,k

f

andAn,k
x in this case.

Setting for definitenessz050 in the explicit solution in
Eq. ~22!, we find the coefficientb determining the rate o
approach of the fieldx(z) to its vacuum value~zero!,

b5
2A2m

l
. ~33!

Furthermore, using the relation~32! at r54 we also obtain
the coefficienta,

a522C
m

l
. ~34!

We then expand the expressions for the fields in Eq.~22! in
powers of C and, finally, each term of this expansion
powers ofe2mz. In this way we get

f~z!5 (
n50,k50

`

Fn,kC
ne2~2n1 k/2!mz,

x~z!5 (
n50,k50

`

Hn,kC
ne2~2n1 k/2!mz, ~35!

where the coefficientsFn,k (Hn,k) are nonzero for even~odd!
k, as is expected from the symmetry of the model at ha
The explicit expressions for these coefficients are

Fn,k5
2m

l
~21!n1k/2

~2n1k/2!!

~2n!! ~k/2!!
, ~n1k.0!,

Hn,k5
2A2m

l
~21!n1~k21!/2

G~n11/2!@2n1~k21!/2#!

Apn! ~2n!! @~k21!/2#!
.

~36!
-

-
e

d.

The combinationsFn,kC
n andHn,kC

n are identified as re-
spectively the coefficientsFn,k and Hn,k in the general ex-
pansion of Eq.~29!. The latter coefficients are related to th
multiparticle amplitudes as given by Eq.~31!. Using the ex-
plicit expressions in Eqs.~33! and ~34! for b and a, one
arrives at the relation between the amplitudes and the fo
coefficientsFn,k andHn,k . Namely,

An,k
f 5~21!nn!k! S l

mD n1k Fn,k

2n13k/2

5~21!k/2S l

mD n1k21 n!k! ~2n1k/2!!

2n13k/221~2n!! ~k/2!!
,

An,k
x 5~21!nn!k! S l

mD n1k Hn,k

2n13k/2

5~21!~k21!/2S l

mD n1k21

3
k!G~n11/2!@2n1~k21!/2#!

Ap2n13~k21!/2~2n!! @~k21!/2#!
. ~37!

This concludes our calculation of the threshold amp
tudes in the minimal two-field model.

C. New zeros

A remarkable property of our result is that the amplitud
are finite even though a state of fourx bosons at threshold is
degenerate in energy with onef boson. In other words, any
graph, where four finalx bosons with the four-moment
p1 ,p2 ,p3, andp4 originate from a single line off ~see Fig.
3!, contains the factor

a1,4~p1 ,p2 ,p3 ,p4!

~p11p21p31p4!22mf
2

. ~38!

Here a1,4(p1 ,p2 ,p3 ,p4) is the conventional Feynman sca
tering amplitude for the processf→4x. At threshold the
denominator in Eq.~38! goes to zero, and the graph becom
singular unless the Feynman amplitudea1,4(p1 ,p2 ,p3 ,p4)
also vanishes when all four momenta are at threshold.
latter cancellation indeed takes place in the model conside
here. This can be seen by examining the amplitudeA1,4

f ,
which is exactly the threshold limit of the expression in E
~38!. Indeed, the amplitudesAf andAx considered here are
the matrix elements of the field operators in Eqs.~27! and

FIG. 3. A graph with fourx bosons originating from a single
virtual f, which is singular at threshold ifmf /mx54 unless the
scattering amplitudea ~filled circle! vanishes at threshold. Both th
open and the filled circles represent the sum of tree graphs.
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~28!. These matrix elements have the propagators of the fi
on-shell bosons amputated, but the propagator of the inc
ing virtual field is not amputated and remains included in
corresponding amplitudeA. The conventional Feynman sca
tering amplitude is thus obtained by multiplying the amp
tudeA by the inverse propagator of the incoming line. In t
case of the processf→4x, the inverse propagator of th
incoming f is vanishing at threshold of fourx. Thus, the
Feynman scattering amplitude also vanishes. Clearly,
cancellation can be also verified by an explicit calculation
the tree Feynman graphs.

This cancellation can be extended to a general case o
arbitrary even integer value ofr, with the exception ofr52.
In the latter case the exponential behavior ofx at z→1`
generates a nonexponential dependence off through the
logarithm in Eq.~19!, which implies that in this case a reso
nance between the degenerate states does take place. F
other values ofr the coefficients in the expansion of the typ
as in Eq.~29! can be constructed by iterations and are n
singular. This means that for the values ofr where the reso-
nance could potentially occur, i.e.f→rx for even integerr,
it actually does not take place due to vanishing of the co
sponding Feynman scattering amplitude.

V. CONCLUSIONS

In summary, in a class of supersymmetric models with
continuously degenerate family of BPS domain walls~with
real trajectories! an additional integral of motion is observe
The occurrence of this integral allowed us to find a gene
solution from the family in quadratures, while for a speci
ratio of the coupling constants the whole wall family is o
tained in the closed form in terms of elementary functio
t.
al
-

e

is
f

an

r all

-

-

e

c

.

We then further utilize the result for deriving the multipa
ticle amplitudes at threshold in the minimal two-field Wes
Zumino model. The threshold amplitudes are calculated
closed form forr54. In the course of the calculation w
have found an unexpected cancellation of the tree graphs
the Feynman amplitude of the processf→4x at the thresh-
old, due to which cancellation the multiparticle thresho
amplitudes are finite. We also conclude that the same c
cellation takes place for the processf→rx at arbitrary even
integerr, exceptr52. The relation of this cancellation to
additional integrals of motion is yet to be studied. It can
also noted that the nullification of the amplitudes is som
what reminiscent of the general property of nullificatio
@15,16# for the on-shell processes 2→manyat the threshold
in scalar theories.

Interesting phenomena occur when the models at hand
dimensionally reduced toD52. The two-dimensional theo
ries thus obtained have extended supersymmetry,

N52.

A continuous degeneracy of the soliton family~persisting
with all quantum corrections included! reflecting the possi-
bility of the continuous deformations of the solution profi
can be seemingly interpreted in this case as the existenc
decoupled ‘‘basic solitons.’’ Revealing these decoupled
sic solitons in an explicit form and studying their properti
is an obvious next problem to be dealt with in the giv
range of questions.
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@6# M. Cvetić, F. Quevedo, and S.-J. Rey, Phys. Rev. Lett.67,

1836 ~1991!.
@7# S. Cecotti and C. Vafa, Commun. Math. Phys.158, 569

~1993!.
@8# D. Bazeia, M. J. dos Santos, and R. F. Ribeiro, Phys. Let

208, 84 ~1996!.

A

@9# M. B. Voloshin, Phys. Rev. D57, 1266~1998!.
@10# M. Shifman, Phys. Rev. D57, 1258~1998!.
@11# J. R. Morris, hep-ph/9707519.
@12# J. D. Edelstein, M. L. Torbo, F. A. Brito, and D. Bazeia, L

Plata Report No. DF/UFPB 11/97, 1997@hep-th/9707016#.
@13# L. S. Brown, Phys. Rev. D46, 4125~1992!.
@14# M. B. Voloshin, in Proceedings of the XXVII Internationa

Conference on High Energy Physics,Glasgow, Scotland,
1994, edited by P. J. Bussey and I. G. Knowless~IOP, Bristol,
1995!, Vol. 1, p. 121.

@15# M. B. Voloshin, Phys. Rev. D47, 357 ~1993!.
@16# M. B. Voloshin, Phys. Rev. D47, 2573~1993!.


