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A family of degenerate domain wall configurations, partially preserving supersymmetry, is discussed in a
generalized Wess-Zumino model with two scalar superfields. We establish some general features inherent to
the models with continuously degenerate domain walls. For instance, for purely real trajectories additional
“integrals of motion” exist. The solution for the profile of the scalar fields for any wall belonging to the family
is found in quadratures for an arbitrary ratio of the coupling constants. For a special value of this ratio the
solution family is obtained explicitly in terms of elementary functions. We also discuss the threshold ampli-
tudes for multiparticle production generated by these solutions. Unexpected nullifications of the threshold
amplitudes are found S0556-282(198)00506-2

PACS numbdps): 11.27+d, 12.60.Jv

[. INTRODUCTION one chiral superfield. They become even more remarkable in
the theories with two or more chiral superfields interacting
The existence of several degenerate supersymmetrigith each other.
vacua is a generic phenomenon in supersymmetric theories In the theories witliK scalar superfields, generically, there
with scalar superfields. Moreover, in many instances thére 2* degenerate vacuum states and, correspondingly, there
vacuum manifold consists of several isolated points. Thusare at least =% (2—~1) domain wall typed9]. In Ref.
the possibility arises of domain wall configurations interpo-[10] it was shown that, quite typically, some of these domain
lating between these vacua. walls turn out to be continuously degenerate. Collective co-
It has been recently showi,2] that some of the domain ordinates exist correspondingly to a continuous deformation
wall configurations in(3+1)-dimensional theories possess Of the internal structure of the wall. Varying these coordi-
distinct supersymmetric properties. nates we change the wall structure, leaving the wall energy
(i) They generate a central extension of te 1 super- density intact.
algebra. The wall tension is proportional to the central In this work we investigate this phenomenon, both in gen-
charge. Because of the nonrenormalization theorem for theral aspect and in some simple examples. It will be argued
central charge, this implies that the wall energy density ighat the continuous degeneracy is related to the existence of
exactly calculable; it is not renormalized by the loop correc-additional “integrals of motion.” We will explicitly find
tions. such an integral in a particular two-field model. Using this
(i) They preserve two out of four original superchargesresult, it becomes possible to obtain a generic family of the
(*N=1/2 supersymmetry)’ corresponding to the minimal domain wall solutions in this two-field model. For arbitrary
supersymmetry in th&+1)-dimensional space tangential to values of the coupling constants the solution is given in
the wall. terms of quadratures. For some specific values a closed-form
(i) The profile of the fields across these walls satisfiessolution in terms of elementary functions exists. We take
first order differential equations analogous to theadvantage of this explicit solution to extract consequences
Bogomol'nyi-Prasad-SommerfelBPS equations[3] (the  for the high-order multiparticle amplitudes at threshold.
so-called “BPS-saturated walls,” or “BPS wall§” These The supersymmetric vacua are determined by the extrema
equations were called the creek equatipisbecause of a of the superpotentialV(¢,),
mechanical interpretatioh.
A nonvanishing central charge of tid=1 superalgebra IWI/dp =0, Kk
exists for any field configuration interpolating between two

distinct vacug4]. Not every such configuration is BPS satu- The general form of the BPS-saturation equations for a static

rated, however. Those domain walls that are BPS saturatgga|| in which the fieldsp; depend only on the coordinates
possess peculiar features following from poiiiy above.

The BPS domain walls have interesting properties even in wi
the simplest theories, e.g., in the Wess-Zumino model with 3Z¢k:_¢Feia, 2
Py

1,... K. (1)

Previously the creek equations were considered in different conwherea is a constant independentcomplex phase. Let us
texts in Refs[5—8]. assume that two solutions of E{l) are found,{¢#}, and
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{¢},, where the braces denote a set of all scalar fielgs Clearly, the superpotentigl) is not the most general
Denote the corresponding values of the superpotential by form of the superpotential in the renormalizabig+1)-
dimensional models, even given the freedom of redefining
W.=W({o}1), Wo=W({e},). (3)  the fields. It contains, however, sufficient features for a dis-
cussion of the nontrivial properties of the domain walls we
Without loss of generality one can assume t4t=0 and  are interested iA.The model with the superpotentid) will
W, is real and positivéthis can be always achieved by ap- be referred to below as a minimal two-field model. In terms
propriate transformations of the superpotentidlhen the of the scalar componenis and y of the respective super-
phasea in Eq. (2) can be set equal to zero. If, additionally, fields® andX, the “potential relief” —W has its maximum
the superpotential is real for real values of the superfields, to- W, at ¢=—m/\, y=0 and the minimum—W, at
which we limit our investigation, then Eq2) takes the form  ¢=m/\, y=0. It also has two saddle points of equal height
at =0, y=*+m/\Aa. The BPS-saturated walls exist con-
ﬂ 4) necting the maximum and the minimum, and also connecting
Iy either of the saddle points with the maximum or the mini-
mum. Moreover, all these BPS-saturated configurations be-
Now, if one interpretz as “time,” the latter equations have long to one and the same family of solutions, corresponding
a simple mechanical interpretatipfi: they describe the flow to the flow from the maximum to the minimum with differ-
of a very viscous fluid, whose inertia can be neglected, in thent starting condition§10]. All trajectories from the family
potential relief—W(¢,) from one extremum—W, of the are real.
relief, along a gradient line, to a lower extremunW,. (Ob- This is an ideal setting for establishing the existence of
viously, reflection of thez direction is possible, in which additional integrals of motion. The one relevant to the model
case the flow is described by the “potentiaV rather than (6) is obtained in an explicit form. Certainly, given the ad-
—W. Instead of the reversal of theeaxis, one can view this ditional constraint, one can readily reconstruct the full family
as a shift byr of the phaser in Eq. (2). For definiteness we of solutions in quadratures. Further simplifications af@e
use the mechanical analogy within the conventions of Eqfor arbitrary values of\, a and the vanishing value of the
(4).) From the fluid flow analogy it is clear that the neces-integral of motion;(b) for A\/a=4 and arbitrary value of the
sary condition for the existence of a solution of E4).is that  integral of motion. As a matter of fact, the first case was
the extremaV,; andW, be of different height. One can take treated in Ref[10] where it was found that
advantage of a rich intuition one has in connection with the

3=

mechanical motion of this type. To make this analogy more - m
graphic we will sometimes denote the derivative ozers $(2)= - tanh —~—mz|,
I$— 2 m 1 2a y(Za @
Z)=*— — — sech—mz|.
in the cases where there is no menace of confusion. Corre- VAa A A

spondingly, the quantities conserved along the given trajec-

tory will be referred to as integrals of motion. One integral of Until now, this was the only nontrivial solution for one spe-
motion, energy, is well known of course; it is universal andcific configuration in the degenerate family that was explic-
has nothing to do with the specific trajectories under considitly known, apart from the trivial standard wall with=0. In
eration. We will be interested in additional integrals of mo-Sec. Il we construct the solutions for all configurations be-
tion, specific to the creek equations. longing to this family. For an arbitrary ratio of the coupling

The surface energy density of the BPS wall is given byconstantsp=\/«, this solution is semi-explicit in the sense
the difference of the superpotential at the two extrema:  that the trajectory in the field space is found in terms of

elementary functions, while the dependence of the fields on
e=2(W—Wy). (5 z, although expressed in quadratures, is not found analyti-
cally. An explicit dependence ancan be found in terms of

Although at least some of the results to be reported belovglementary functions for two special valuespfp=1 and
seem to be generic, we will make no attempt at formulating, = 4. The case op=1 is, however, trivial since after a/4
them in full generality. Instead, we will focus on a specific rotation in the space of the fieldss(y) the model reduces to
instructive example: a two-field modfd,10] with the scalar  two fields not interacting with each other. The remaining
superfieldsb andX and the superpotential case ofp=4 is quite nontrivial and provides a whole family
of new domain wall solutions.

In four dimensions the requirement of renormalizability
restricts the form of the superpotential: it must be polynomial
in fields of at most third order. If we dimensionally reduce
Herem is a mass parameter aindand « are dimensionless the theory to two dimensions, the choice becomes infinitely
coupling constants. It is assumed that the phases of the fields
andW are adjusted in such a way that all parameters in the
superpotential are real and positive. Only occasionally we ?An equivalent model was also considered in Rdfl], and a
will digress to more general models. Below the lowest com-similar model of higher order in the fields in R¢L.2], in connec-
ponent of® andX will be denoted byp andy, respectively. tion with different problems.

2

m 1 3 )
W(CD,X)=TCI>—§>\<I> —adXe. (6)
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richer. Any analytic function of® and X can serve as a  Now, if z is interpreted as “time,” the dual functiow is
superpotential, without spoiling the renormalizability of the conserved along the trajectory. Indeed,
two-dimensional model. We briefly discuss the issue of the
continuous degeneracy of the soliton solutions in this setting oW . 9w owt
(Sec. I). W= ——di=— —=.
The domain wall configurations, when viewed as depend- g 9P ’wiT
ing on the Euclidean time rather than on the spatial coor-
dinatez, are known[13] to be the generating functions for

amplitudes of multiple production of bosons at threshold b q:r(hlsze\]fgpe'sr;%h articular real traiectory connecting the
field operators. For the model discussed here, these are th ' P J y 9

amplitudes for production of arbitrary numbers of the ¢ s?atlonary points 1 and 2 of the superpotential is character-

. ized by the value of the dual function on this trajectory.
bosons and, of the y bosons at the corresponding thresh-M v dual f ) d al h .
olds. ore exactly, dual functions conserved along the trajectory

can be introduced for all solutiong,(z) with the constant,
¢ — X — i.e., z independent, phases of the fieldg. By an appropri-
A= (ngky $(0)[0) - and A= (ngky|x(0)[0). ate redefinpition of thpe fields, we can o%vioﬁsly reF'erneco the
In Sec. IV we use the relation between the domain wallfé@l solutions. .
profile and the threshold production amplitudes in a twofold !N the general case of nonminimal models, the superpo-
way: to point out a constraint on the solutions in the degentential (restricted to real values of the superfigléscharac-
erate family stemming from the fact that they generate thderized by the gradient lines and the level lines. The latter
same set of amplitudes and to find the multiboson amplitude§Orrespond to fixed values &¥. Two nets of lines — gra-
at the tree level explicitly in the case pf=4 where the dient and level — are locally orthogonal to each other. The
explicit form of the solutions is available. level lines of the dual function are the gradient lines of the
superpotential, while the gradient lines of the dual function
are the level lines of the superpotential. From this graphic
interpretation it is intuitively clear that a dual functioif
To begin with, we will discuss the occurrence of an addi-must exist for everyw, although, unlike the minimal two-
tional integral of motion in the simplest examg®. In this  field model, it is not always possible to find them analyti-

(12

For real solutions Eq10) implies that the right-hand side of

II. ADDITIONAL INTEGRALS OF MOTION

model the creek equations have the form cally. The points wher&V (restricted to the real values of the
) scalar fields develops maxima or minima are the singular
¢: ﬁvz m —Np2—ay? points of W. The saddle points dV are the saddle points of
dp A ' W
. OW . . . .
X= ™ =—2ady. (8) A. Solitons in (1+1)-dimensions
X

If in four dimensions the choice of the superpotential is
Let us introduce a “dual” function severely restricted by the requirement of renormalizabilty
(only polynomials which are at most cubic are alloweid
two dimensions any superpotential leads to a sensible quan-
, (99 tum theory. If one takes a generalized Wess-Zumino model
in four dimensions, with arbitrary number of fields and an
arbitrary superpotential, and dimensionally reduces it to two
dimensions, one arrives &=2 supersymmetry in two di-
mensions. In two dimensions the domain walls become soli-
tons — localized field configurations with finite energy. Af-
ter quantization they are to be viewed as particles. NTke2
. . Yy supersymmetric theories with scalar superfields in two di-
The meaning of the word “dual” will become clear shortly. mensions were extensively studied in RET]. The case
Equation (9) assumes that the parameier2. The case \hich js of most interest to us, a continuous family of de-
p=2 is special and has to be treated separately. generate solitons, seemingly was not discussed in this work.
The dual function has the property Since we are not limited now to polynomial superpoten-
~ tials we can consider whole families of models. Consider for
MZS__S((#)& (10) definiteness two-field models. Let us start from a certain
ag; VT T agy! model with a superpotential. One then can consider any
other model with a superpotentidygyw=f (W) wheref is
where ¢, , stands fof ¢, x}, &;; is the antisymmetric tensor an arbitrary function. If in the original model the dual func-
of the second rank, an8 is some scalar function. In the tion is known, it remains the same for the whole family.
model at hand Indeed, Eq(10) implies that

2
M g2 Ly

W, —X—p
W(P,X)=X 2 =2

where

R
p=-.

11 W _ S ey W =s(df/dw)~t. (13
(11 G SiONEW ag; Snew=( w)"h (13

1
S(®,X)=—

a xpt1’
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In other wordsW remains the integral of motion for real
trajectories in any model belonging to the given family.

The minimal two-field family, dimensionally reduced to
D=2, presents a simplest example where continuously de-
generate soliton solutions exist. Now one can easily provide
a plethora of other interesting examples. For instance, one
can consider superpotentials which are bounded from above
and from below for real values of the superfields. In such
models typically every soliton will appear as a member of a
degenerate family of solitons, the degeneracy being unre-
lated to any external symmetry. Generalizations of the sine-
Gordon model fall into this category. Consider, for example,
the superpotential

W= —sin ® —sin X— a(sin ®)(sin X), (14 ) o ] .
FIG. 1. Few trajectories in the field space from the family of

h . di ionl ¢ d all di . egenerate solutioriat p=4). The numbers represent the values of
wherea IS a dimensioniess parameter, and all diIMmensIonNay,o" ¢onstanic for the corresponding trajectory. The heavy dots

parameters are set equal to unity. This superpotential iS P&now the positions of the vacuum states.
riodic in ® andX; for «=0 it describes two decoupled fields
(each of them presents a supergeneralization of the Singnd to set the mass parameteto one(it can be restored, if

with each other. Inside the periodicity domairc@® ,X<27  then take the form

the relief of the superpotentidV is qualitatively similar to

that of the minimal two-field modek-W has one maximum df A

at ®=X=mx/2, one minimum at®=X=3=/2, and two gz 1-f-h%

saddle points a® = 7/2 X=37/2 and® =3 7/2 X= /2 (at

least for small values of). Any real trajectory(out of a dh 2

continuous family of trajectori@sstarting at the maximum FER ;fh- (19

leads to a minimum. The only exceptions are two trajectories
leading to the saddle pointshe exceptional, or basic soli- By eliminating the variable from these equations, one finds
tons. The masses of two exceptional solitons are/x and  the equation for the trajectory in thé,p) plane,
4—4a, respectively. Continuously degenerate solitons are
bound states of two basic solitons, with mass 8, i.e., the df  p1-f>~h?
binding energy exactly vanishes. dh~ 2 fh

Unlike the minimal two-field model, all solutions in the
model(14) have finite masses; there are no trajectories leadThe general solution of this equation can be written as
ing to abysses. )

The degeneracy is not lifted due to quantum corrections. F2-1— ﬂ_chp (17)
This suggests that in every model with continuously degen- p—2 '
erate solitons there should exist a dual description where the ] ) ) ] )
exceptional solitongcomprising the degenerate oheppear yvhereC is an !ntegratlon consta}nt. It is conngcteq with the
as decoupledi.e., not interacting with each otheparticles ~ integral of motion, Eq(9), by a simple proportionality rela-
from the very beginning. This issue deserves further investitlon,
gation. (

(16)

2=p
T) pf"/ZC.

A
[ll. SOLUTION FOR THE DEGENERATE WALLS

The full trajectory runs from the pointf (h)=(—1,0) in the
“distant past” (i.e.,z= — ) to the point f,h)=(1,0) in the
“distant future” (i.e.,z=). The relation(17) determines it
piecewise: from {,h)=(—1,0) to (f,h)=(0,ha) and from
(0,hjhay to (1,0), whereh,,. is the maximal amplitude df

Now we return to the minimal two-wall mode(§). Our
task is to find the family of the wall trajectorigs.e., ¢
versusy for every given wall solution and every allowed

value ofW). Next we will find the wall solutions themselves,

.e., $(2) andx(2). on the trajectory(see Fig. 1 For the given value of the
valueh,,, is obviously determined from the solution of Eq.
A. General case: arbitrary ratio p=\a (17) for h with f being set to zero,
It is convenient to introduce dimensionless field variables P
f andh as =2 h2 +Che =1 (18)
= ih, Using the symmetry unddr— — h, it is sufficient to discuss

=_—f, =
¢ A X VA« only the trajectories with positivk.
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B. Explicit solution for p=4

For arbitrary values op there is no algebraic expression
z for the integral in Eq(20) in terms of known functions. The
exceptional cases are

FIG. 2. The profile of the fieldg (solid) and y (dasheglas a 1 2
function of the spatial coordinatefor three values of (p=4). It p= 5,5,6, and 8,
is seen that af approaching the critical valugé, = — 1, the profile

separates into two walls. . . . s .
P when the integral is expressed in terms of elliptic functions,

The freedom inC is in fact limited by the condition that and

the fields remain real along the whole trajectory. In this con-
nection it should be noted that the BPS-saturation equation
(2) is intrinsically nonanalytic, thus the trajectory found for hen the int lis el t

the real values of the fields cannot be continued to the com? ¢l the Integral s elementary. .

plex values of the fields. The requirement of the real trajec- Th_e el.“pt'(.: _ca.ses ar_e rather cumbersome, while the case
tories translates into the requirement thaj, is real positive of f’ =1lis trlylal.~at p=1 the model~con5|dered here de-
and varies in the intervd,1]. An elementary inspection of Scribes two fields=(¢+ x)/\2 and x=(x— $)/V2 that

p=1 and p=4,

Eq. (18) yields the allowed domain for the consta®} do not interact with each other. For these reasons we pursue
here the explicit solution only for the exceptional case of
2 p=4.
CisCs+x=, Cy :ﬂ' If we choose this specific valug,=4, in Egs.(17) and

(20), we readily find the explicit expressions for the fields
One can readily see that the trajectory with=+«~ has andh versusz,
h(z)=0 and, thus, reduces to the well-known wall solution
in the one-field theoryf(z) =tanhz. On the other hand, the u’-C-1 ) 2u
trajectory with C equal to the critical valueC=C, has f(z):m’ h (Z):m' (21
hma=1. Thus, it in fact describes two infinitely separated
domain walls: one interpolating betweehlf) =(—1,0) and  whereu=exp—2z,) andz, is an arbitrary shift of the coor-
(0,1) (the saddle point ofV) and the other between (0,1) dinatez. [Clearly, the solution can be centeredza0 so
and (1,0). The configurations with the intermediate values ofhat f(0)=0, if z, is chosen as 2= —In(C+1).] For p=4

C interpolate between these two extremes; in a sense, theye integration constar@ is bounded by the condition
can be viewed as the solutions with the latter two walls at a

finite separatiorisee Fig. 2 Remarkably, the degeneracy of —1<C< +o.
the energy of th&€>C_ solutions implies that the latter two
walls do not interact with each other. For completeness we also present the same solution in terms

If p>2, the pointC=0 belongs to the allowed interval. of the fields$(z) and x(z), with the normalization factors
ForC=0 (i.e., W=0) the trajectory takes an algebraic form. restored(Fig. 2),
One can immediately find an explicit domain wall solution,
see Eq.(7). As a matter of fact, it was obtained previously m e™z2)_Cc—1
[10]. ¢(Z):x (em(Z’ZOM— 1)2+C'
It should be noted that the valye=2 presents a special
case because of the singularity in E47) at p=2. This m(z—20)/2
singularity can easily be resolved, however, either by consid- m_ 2 er °

=+
ering the limiting procedure in Eq17), or by solving the x(2) TN (e 1 1)24C (22
Eq. (16) separately fop=2. The result is that the relation
(17) at p=2 reduces to The constan€ plays the role of a collective coordinate. The
5 5 , = occurrence of another collective coordinatg, is a trivial
f*=1+h*(In h*-C), (19 consequence of the fact that the wall solution spontaneously

- breaks the translational invariance of the original model in
whereC is another integration constant bound by the condithe 7 direction.
tion 1<C<+o. At the same timeC is unrelated to spontaneous breaking
The relation(17) gives the trajectory of the field configu- of any symmetry of the model. It reflects the fact that the
ration in the §,h) plane (see Fig. 1 In order to find the symmetry of the particular solutions at hand is higher than
coordinate dependence of each of the fields, one can substhat of the modeper se As far as we know, Eq(22) pre-
tute f as found from Eq(17) into the second of Eqg15) sents the first explicit example of a soliton family in the
and then obtain the solution in an implicit form, “in quadra- renormalizablep* theory with a continuous degeneracy due
tures” to continuous deformations of the soliton structure.
One can readily derive from the explicit solution above
p dh the limiting cases discussed in Sec. Il A. At the critical value

2=732) hiny 20 = 1, the solution in Eq(21) degenerates into
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u , 2 with ¢=m/\ and y=0 (in which our wall trajectory ends
T h “ut2 (23)  the mass of the quantum is equal tor®, while the mass of
the xy quantum is equal to r®/p. In the casep=4 to be
and describes the domain wall connecting the vacu@nalyzed below, the mass of thequantum is equal tan/2.
(f,h)=(0,1) and (1,0). In order to get the wall connecting The same is valid for the vacuum=—m/\,x=0, from
(f,h)=(—1,0) with (0,1) one can use the symmetry underwhich the trajectories originate.
f< —f and reverse the sign dfin the first equation in Eq.

f

(23). In order to recover the one-field solution in the limit A. An overview of the formalism

C— +x, one has to accordingly adjust the coordinate shift ) ! , ) .

2o as expt-22)=C+1. Then in the limitC— + o one gets The solutions to the field equations, in particular the do-
h=0 andf=tantz. main wall solutions, are directly related to multiparticle am-

plitudes, by virtue of the formalism developed by Brown
[13] (for a more recent review see REL4]). Being adapted
to the present problem of two fields the formalism is con-
In this section we will take advantage of the explicit wall structed as follows. Consider for definiteness the amplitude
family solution found above in order to extract certain pre-{n,k|¢(0)|0) describing the production by the field operator
dictions for the high-order behavior of the multiparticle am- ¢(x) of a multiparticle state consisting of on-shell bosons
plitudes at thresholds. The corresponding analysis for thef the field ¢ with 4-momentap, (a=1,...n) andk on-
one-field Wess-Zumino model was carried out in Réf. In  shell bosons of the fielg with 4-momentgp, (b=1, ... k)
the one-field model there is little distinction with the nonsu-in a vacuum|0) of the theory. According to the standard
persymetric caséfor a review see Ref.14]). The two-field reduction formula, this amplitude is expressed through the
model is much more interesting since it reveals a new patresponse of the system to external souieg) andp,(x),
tern. coupled to the corresponding fields @gé+p, x in the La-
In what follows we will need to know that in the vacuum grangian,

IV. THRESHOLD MULTIPARTICLE AMPLITUDES

n
) o
n,k|(0)|0)= lim fd“x e'PaXa(m?2 — p2
(nklgO]0)=| 11 lim | dhxeePea(my—plz-r
Pa—My
k
x| T tim fd“x eipbxb(mz—pz)L (Oout #(x)[0in) P x| (24)
b=1 p2—m? b x b 5p)((xb) out " P~ 0 Px=0"
b X

wherem, andm, are the masses of the respective bosons in , . O ,

the vacuum considered. (My=Pb)5 x )—>(mX—wX)5 0~ a0’ (25)
The classical response, i.e., the classical solution of the Px\7 Px X

field equations in the presence of the sources generateshere

through Eq(24), the tree-level amplitudes, which we will be gt ot

mainly concerned with here. Moreover, as will be seen, the a,(t)= pa;(“’fﬁ)e Ca(t)= P);(‘”_X)e XZ (26)

configurations, of the type of the domain walls, depending on my—le—wy X m,—le—wj

only one variable, are related to multiparticle production ex_coincide with the response of free fields to the external
actly at the tr_]reshold, i.e., at the spatial momenta of .thesources. For finite amplitudes of the sources the response is
produced particles exactly equal to zero. In this situation it is

- ; . singular in the on-shell limito ,—m,,, ®,—m, . Therefore,
suff|C|e_nt to cqn5|der_ the response of the system in(E4). following Brown [13], the amplitudes of the sources should
to spatially uniform time-dependent sources,

be taken to zero in this limit, so that the factarg(t) and

o4t ot a,(t) are finite:

pe(t)=pylwy)e p()=p(w,)e

N im 4t im t
and take in the very end the on-shell limit in EQ4) by ag()—age™,  a(t)—aemn.

tendingw 4 to m, andw,—m, . The spatial integrals in Eq. Thus, for the purpose of calculating the multiparticle am-
(24) then give the normalization spatial volume, convention-plitudes at the tree level, one looks for a solution of the
ally set to one, while the time dependence with the fixedclassical field equations with no sources. The only informa-
functional form of the sources implies that the propagatoition about the sources left from the above limiting procedure
factors and the functional derivatives enter in the combinais that the sources drive only positive frequencies in the
tion fields, thus the condition for the sought solution is that it

should contain only the positive frequency part with all har-

(MR — w2) s _ ¢ monics being multiples oé'™M+' ande'™. The latter condi-

Op 4(Xa) ¢ ¢ Opy(t)  dayt)’ tion is equivalent to requiring that the solution for the fields

(m3—p2)
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goes to the classical vacuum at infinity in the Euclidean time Furthermore, the absolute normalization of the coeffi-
7=Imt— +o. The multiparticle amplitudes are then given cientsa andb is rather a matter of convention. Indeed, under
by the derivatives of the solutiop(t), a shift of 7,

n T—T— TQ,

day(t)

k
aax(t) ¢(t)|a¢:0’a)(:o .

(27)

Since the equations for the fields and y are coupled, one
simultaneously finds the solution for the figicand, thus, the  Thus, the only parameter that distinguishes between essen-

A\ =(n K ¢(0)|0)=

these coefficients change as

a—aeM™ b—be™,

amplitudes for the multiboson production gy tially different solutions approaching the same vacuum state
is the ratio
n k
X = =| ——— R
A% =(n.k x(0)|0) da,(t)) \ a0 X(Dla,=0a ~0- _ a
(28) c= bm¢/mX'

The operational procedure for calculating the amplitudesrnerefore, in a general two-field theory a family of solutions

is therefore as follows. First, one obtains the solution of th‘%\pproaching a vacuum statesat: + o is parametrized by a
Euclidean classical field equations depending only on ime single parametec. This parameter is in one-to-one corre-

and approaching, at— +, the vacuum statedt, xo) In  gpondence with the integration constaiit or the value of
which the scattering theory is considered. Then, the solutlonh dual f L~ h . h ffici f th
is expanded in the harmonics ef ™" ande™ ™" the ual unctionV on the _trajectory. The coe |c!ents of t e

' expansion(29) are then fixed by the multiparticle ampli-
tudes.

¢( 7_) _ E Fn,ke_(nm‘/)+ ka)T’
n=0k=0 B. Multiparticle amplitudes in the supersymmetric model

o The domain wall solutions discussed in Sec. Il can be
_ H, e ("Mg+km)7 29 dlrect_ly applied to calculatlng the mu!t|part|cle am_plltudes.
x(7) n=%;=o nk ' 29 To this end one should consider the fields depending on the

Euclidean timer rather than on the spatial coordinate
whereF,  andH,, , are the coefficients of the expansion. Since this amounts to a trivial relabeling of the variable, we
Note that retain here the notation for the variable. We also use the
notationa=F, g andb=H,,. Every BPS-saturated solution
Foo=¢o andHgo=xo., from the family under consideration approaches-at+ o
the vacuum at ¢, x)=(m/\,0). Thus, this is the vacuum
while the coefficients of the appropriate first harmonics arestate in which the multiparticle amplitudes are generated by

identified as the described above factagsanda, , the solutions. Remember that the masses of the particles in
this vacuum are expressed in terms of the parameters of the
Fio0=a4, Hogi=a,. model asm,=2m, m, =2(a/\)m=m,/p.

_ _ In the case of arbitrary ratip one can use Eq17) to
Then, according to Eqg27) and (28), the amplitudes are obtain a relation between the coefficiemtsb and the con-
expressed as stantC. Indeed, az— +« the field y(z) goes to zero as
x(z)=be" ™"+,

I:n,k k

X Hin,
PR Anykzn!k!ﬁ. (30)

A2, =nlk!
n 1001 1,0M0,1 corresponding in the dimensionless variables to
Before closing this discussion of the general formalism, V\ab oy
we would like to emphasize that the latter equations can be h(z)= Te P
also viewed as a constraint on any solution approaching a
vacuum state g, xo) at 7— +. Namely, if up to the ap- The linear ine”?? harmonics inf(z) arises from the term in
propriate linear terms the fields behave as Eq. (17) with the constanC, from where one finds the co-
efficient a of the linear in e”™¢* harmonics in ¢(2)
(1) =potae M+ o, x(7)=xo+tbe M+, [p(2)=mIN+ae M#?+---] as

Mb)f’.

m

then the subsequent terms in the expansion of the fields are Cm
fully determined in terms of, b and the fixed set of the a=-— 2N
amplitudesA? and AX,

(32

In connection with the derivation of the latter relation, it
31) should be noted that fgr>2 the harmonics with exp{m,?2)
is not the leading one in the field(z) at largez because of

AL a"bk AX a"bk
nkT Tkt 0 Tk T arkn
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the presence of the second harmonics with the masg:. of
Fo£xp(=2m,2). Thus, the presented derivation, strictly
speaking, is justified only ap<<2. However, the relation
(32) is also applicable gh>2 since the fields and the coef-
ficients of their expansion are analytic functions of the cou-
plings, and the relatiori32) can be analytically continued
from p<2 to the domairp>2.

It can be also noted that the solution in Ed). with C=0
hasa=0, according to Eq(32). Thus, it generates only the
amplitudes of multiple production of the bosons of the field
x by either the operatox(0) or ¢(0). For this reason, it
expands in the harmonics determined only by the mags of

Furthermore, for a rational ratjo the masses, andm,  The combinations?;, ,C" and H,, C" are identified as re-
are also in a rational proportion. Thus if only thedepen-  gpectively the coefficients,, , andH,, , in the general ex-
dence of the fields were known, there would be an ambigupansion of Eq(29). The latter coefficients are related to the
ity, at least in some harmonics, in separation between thg,ytiparticle amplitudes as given by E@1). Using the ex-
production of they bosons and the) bosons. However, this picit expressions in Eqs(33) and (34) for b and a, one

ambiguity is resolved if the dependence of the solutiorCon  gyrives at the relation between the amplitudes and the found
is known, by using Eq(32), which shows that the consta@t  coefficientsF, , andH,, . Namely,

serves as a “tag” for ap boson. The power o€ in the

given harmonics gives the number of tigebosons in the MR

amplitude generated by this harmonics. Al=(—1)"nlk! (E) T
We illustrate this method for our explicit solution in the 2

case ofp=4 and we also find explicitly the amplitudés , o N ntki(2n+ki2)!

andAY, in this case. =(-1) (E) 20 I 20) 1 (Ki2)T *
Setting for definitenesg,=0 in the explicit solution in ' '

FIG. 3. A graph with foury bosons originating from a single
virtual ¢, which is singular at threshold ih,/m, =4 unless the
scattering amplituda (filled circle) vanishes at threshold. Both the
open and the filled circles represent the sum of tree graphs.

Eq. (22), we find the coefficienb determining the rate of LY
approach of the fieldv(z) to its vacuum valuézero, AX =(—1)"n!k! (_) Lk
n.k m on+3K/2
2\/§m k—1
b=——. (33 = (- 1)<k—1>/2<£)n+
m
Furtherm_ore, using the relatiq2) at p=4 we also obtain KIT(n+1/2)[2n+ (k—1)/2]!
the coefficienta, X . (37)
Y23k 2n) 1 (k—1)/2]!
a:—ZCQ. (34) This concludes our calculation of the threshold ampli-

tudes in the minimal two-field model.

We then expand the expressions for the fields in &8) in

i i ; ; C.N
powers of C and, finally, each term of this expansion in ew zeros

powers ofe” ™% In this way we get A remarkable property of our result is that the amplitudes
are finite even though a state of fgubosons at threshold is
* degenerate in energy with oreboson. In other words, any
d)(Z):n %; . F,(Che~(2nt Ki2)mz graph, where four finaly bosons with the four-momenta

P1,P2,P3, andp, originate from a single line o (see Fig.
3), contains the factor

)

_ Na—(2n+ k/2)mz
x(2) nzoz,kzo H,Cle ' (39 a1,4(P1,P2,P3,P4)

(P14 P2+ P3+pg)?—m3

(38)

where the coefficient®), , (H, ) are nonzero for evefodd)
k, as is expected from the symmetry of the model at handHere a; 4(p1,p2,P3,P4) is the conventional Feynman scat-

The explicit expressions for these coefficients are tering amplitude for the proces¢—4y. At threshold the
denominator in Eq(38) goes to zero, and the graph becomes
m ek (2n+k/2)! singular unless the Feynman amplitude,(p1,p2,P3,P4)
Fop=— (=1 2mik2)1 (n+k>0), also vanishes when all four momenta are at threshold. The

latter cancellation indeed takes place in the model considered

here. This can be seen by examining the amplitﬂd’g,

which is exactly the threshold limit of the expression in Eq.

\/;n!(Zn)![(k—l)IZ]! ' (38). Indeed, the amplitude&? and AX considered here are
(36) the matrix elements of the field operators in E(&7) and

2\/fm(_ Ly e pp D (NF 12020+ (k= 1)/2)

Hn,k:
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(28). These matrix elements have the propagators of the finalVe then further utilize the result for deriving the multipar-
on-shell bosons amputated, but the propagator of the inconticle amplitudes at threshold in the minimal two-field Wess-
ing virtual field is not amputated and remains included in theZumino model. The threshold amplitudes are calculated in a
corresponding amplitud&. The conventional Feynman scat- closed form forp=4. In the course of the calculation we
tering amplitude is thus obtained by multiplying the ampli- have found an unexpected cancellation of the tree graphs for
tudeA by the inverse propagator of the incoming line. In thethe Feynman amplitude of the process-4y at the thresh-
case of the procesé—4y, the inverse propagator of the old, due to which cancellation the multiparticle threshold
incoming ¢ is vanishing at threshold of fouy. Thus, the amplitudes are finite. We also conclude that the same can-
Feynman scattering amplitude also vanishes. Clearly, thisellation takes place for the procegs- px at arbitrary even
cancellation can be also verified by an explicit calculation ofinteger p, exceptp=2. The relation of this cancellation to
the tree Feynman graphs. additional integrals of motion is yet to be studied. It can be
This cancellation can be extended to a general case of also noted that the nullification of the amplitudes is some-
arbitrary even integer value @f with the exception op=2.  what reminiscent of the general property of nullification
In the latter case the exponential behavioryofit z— + [15,16 for the on-shell processes-2manyat the threshold
generates a nonexponential dependencepahrough the in scalar theories.
logarithm in Eq.(19), which implies that in this case a reso-  Interesting phenomena occur when the models at hand are
nance between the degenerate states does take place. Fordathensionally reduced t® =2. The two-dimensional theo-
other values op the coefficients in the expansion of the type ries thus obtained have extended supersymmetry,
as in Eq.(29) can be constructed by iterations and are non-
singular. This means that for the valuespoivhere the reso- N=2.

nance could potentially occur, i.é.—p for even integep, A continuous degeneracy of the soliton familersisting
it actually does not take place due to vanishing of the correyith all quantum corrections includedeflecting the possi-

sponding Feynman scattering amplitude. bility of the continuous deformations of the solution profile
can be seemingly interpreted in this case as the existence of
V. CONCLUSIONS decoupled “basic solitons.” Revealing these decoupled ba-

esic solitons in an explicit form and studying their properties
IS an obvious next problem to be dealt with in the given
range of questions.

In summary, in a class of supersymmetric models with th
continuously degenerate family of BPS domain wailsth
real trajectoriesan additional integral of motion is observed.
The occurrence of this integral allowed us to find a generic
solution from the family in quadratures, while for a specific
ratio of the coupling constants the whole wall family is ob-  This work was supported in part by the DOE under the
tained in the closed form in terms of elementary functionsgrant number DE-FG02-94ER40823.
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