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Self-gravitating fundamental strings
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We study the configuration of a typical highly excited string as one slowly increases the string coupling. The
dominant interactions are the long-range dilaton and gravitational attraction. In four spacetime dimensions, the
string slowly contracts from its initiallarge size until it approaches the string scale where it forms a black
hole. In higher dimensions, the string stays large until the coupling reaches a critical value, and then it rapidly
collapses to a black hole. The implications for the recently proposed correspondence principle are discussed.
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[. INTRODUCTION the behavior of the string. One might hope that this would
ultimately lead to a better understanding of the Hagedorn
We have recently formulated @rrespondence principle transition, but it does not apply directly because we consider
which relates black holes and string. Developing ideas only a single isolated string.
in [2], it was proposed that as one adiabatically decreases the Consider a string state at leveN>1, with mass
string couplingg, a black hole makes a transition to a state ofM?=4N/a’. As we increase the string coupling, the effec-
weakly coupled stringgand D-brane$ with the same mass, tive Schwarzschild radius M increases. It becomes of order
charge and angular momentum as the black hole. For mo#fe string scale wheg®N?~1. This defines a critical cou-
black holes in string theory, namely, those without magnetigling when the transition to a black hole can first occur:
Neveu-SchwargNS) charges, the ratio of the horizon size to
the fundamental string lengtlr’'Y? decreases as one de- g~ N~ (1.9
creaseg. The transition occurs when this ratio is of order 1.
Before this point, the black hole is well defined as a solutionNotice thatg.<1 and is independent of the number(nbn-
of the low-energy supergravity theory; beyond this poirt, compact spatial dimensions. Conversely, if one starts with a
corrections become large and the metric near the horizon i@chwarzschild black hole and decreases the coupling, the
no longer well defined. horizon size will be of order the string scale when the cou-
By relating a black hole to a set of weakly coupled statespling is given by Eq(1.1), whereN~Mp,a'. So this is the
the correspondence principle provides a statistical descripsoupling at which the correspondence principle predicts the
tion of black hole entropy. We have verified that the numberransition between black holes and strings.
of such weakly coupled states agrees with the Bekenstein- However, a string at levell will form a black hole when
Hawking entropy in a wide variety of examples involving g9~d. only if it is confined to about the string scale. At zero
Ramond and electric NS charges in various dimensions. Igoupling, the typical size of the string is much larger:
contrast to the precise counting of states for extremal and’=N*a’Y2 This follows from the random walk picture of
near-extremal black hold8,4], this method does not in gen- the excited string6], where it takedN'/? steps each of length
eral determine the numerical coefficient in the entropy sincer’ 2. The key question is what happens to this size as we
that would depend on the precise coupling at which the tranincreaseg. Intuitively, one would expect gravitational and
sition occurs. However, it applies to a much wider class ofdilaton forces to cause the string state to shrink, but it is not
black holes and reproduces the correct functional depersbvious that it will shrink all the way to”~a'Y? by the
dence on the mass and charges. Other aspects of this coritical coupling(1.1). Surprisingly, it turns out that the be-
spondence principle have been investigated recentf§lin  havior of the string as one increasgslepends crucially on
In the present paper we would like to develop this furtherthe numberd of (noncompadt spatial dimensions. We will
by considering the reverse process; we start with weaklgee that interactions remain negligible until the coupling is of
coupled matter and increase the string coupling. We focus oarder
the simplest case of a single highly excited striimgvarious
dimensions The physics of free highly excited strings has go~N@~678, (1.2
been much discussed in connection with the Hagedorn tran-
sition. One of our results is to include string interactions inAs expected, the interactions always become important be-
fore the Schwarzschild radius reaches the original random
walk size, which occurs at a couplirgg~N(@~4"8
*Email address: gary@cosmic.physics.ucsb.edu Four spacetime dimensiongi€3) yields perhaps the
"Email address: joep@itp.ucsb.edu simplest behavior. In this casgy<g. SO as one increases
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the coupling, the interactions first become important andhe interior, at an edge, or at a corner, and so the entropy will

cause/ to decrease. In fact, we find that be N¥2AnO(3). The numerical coefficient is outside the accu-
racy of the correspondence principle in any eveihe net

o' 12 result is that the black hole evolves to a typical excited string

[~ —— (1.3)  state only in three and four spatial dimensions. But in all
g>N*2 dimensionsthe reversible adiabatic transition at-gg. is

between black holes and long but compact strings
so that agy increases frong, to g., ~ smoothly contracts The string states associated with large random walks
from the random walk size to the string scale. kb4,  should also contribute to the Bekenstein-Hawking entropy
Jo=0. SO as one increases the coupling the string remainghen they form a black hole at larger values of the coupling,
large untilg approaches this value, and then it collapses tdut this is a small correction. For a given lew¢ a black
form a black hole. Fod=5, g,>g.. This leads to a form of hole which forms ag=g, has a larger mass in Planck units
hysteresis. If we start with a typical highly excited string than a black hole which formsag=g.<g,. The dominant
state and increasg, it will remain large untilg~g,, at  contribution to the entropy of this larger black hole comes
which point it collapses into a black hole. If we now decreasdrom compact strings witiN’>N which make the transition
the coupling, the black hole remains a good description untivheng~g.~N’~Y4 For example, iri=5, a string at level
g~ g, at which point it turns into an excited string statBor N forms a black hole ag~go~N~"® with mass
d=6, typical excited string states remain large uigti 1 1o 12
when other strong coupling effects are likely to become im- Moo N*2gy
portant. The case$>6 can probably be analyzed by passing bh I
to a weakly coupled dual description.

We will derive the above results in the next two sectionswherel, is the Planck length. If we now decrease the cou-
using a thermal scalar formalisf], which has been applied pling to g~g., the black hole will form an excited string
previously to try to understand the critical behavior near thewith mass
Hagedorn transitionSeeg[ 8] for another approach to include
string interactiong.However, first we discuss their implica- N'12 N7/16
tions for the correspondence principle. At first sight, the fact RN
that typical string states do not evolve into black holes at the @ (Gea’)
critical cpupling gc in d>4 seems to contradict both the which impliesN’ =N7/,

_e>$planat|on of_blacl_< hole entr_opy and the as_sgmed FEVEIS™ |n the next section we review the properties of highly
ibility of the adlab_atlc che_mge Ig. However, th|§ IS not _the excited free strings, using the thermal scalar formalism. In
case. The resolution, Wh'(,:h Was'mentl'oned brieflylif) is section three we include interactions by first considering the
that as one decreasgsa higher-dimensional black hole be- gy in 5 fixed metric and dilaton background, and then
comes a highly excited string but in afypicalstate. It must o, jiring that the background satisfy the equations of motion

: ; 121102 ' e _ . . _ ot
still be long, with a length of ordelN™“a"**~Mpa’ SinCe itk the typical excited string as source. The appendix in-
we would expect of order half of its energy to be in the form ¢ ges some details of the calculation of the stress energy
of string tension. But rather than a random walk, it is CON-tansor of the string.

strained to lie in a volume roughly set by the string scale.
This is plausible because the correspondence principle
should still hold if the black hole is placed in a box only
slightly larger than its own size, which negg is the string We are interested in the properties of a typical string state
length. of massM>«’ %2, given by the microcanonical ensemble.
Are there enough of these atypical states to account foHowever, it is easier to calculate in the canonical ensemble,
the black hole entropy? For random-walking strings the logand so we will do this and then solve for the mass in terms of

of the number of states should be the number of std¥$,  the temperature. Consider the one-string expectation value of
times a numerical constant. This is indeed the entropy o§ome quantityX,

highly excited strings. But this should also hold for the ran-

dom walk constrained to lie in a small volume. Compare (Xy=Z"1Tr(Xe A", Z=Tr(e A1). (2.0

random walks on an infinite two-dimensional square grid and

a small grid, say two squares by two. The first walk has fourAs is well known, there is a limitingHagedory temperature

choices at each step and an entrdpi?in4. The second has beyond which the traces diver@]. This divergence is due

4, 3, or 2 at each step, depending on whether the path is ito the exponential rise in the density of stargd1)~ e+
where the inverse Hagedorn temperature is of order the

N7/16

~—, (1.4
Ip

p

1.9

II. HIGHLY EXCITED FREE STRINGS

'For g.<g<gj,, there is a very small probability that the large
string will undergo a fluctuation to a small volume and become a 2Note, however, that this coefficient appears in the exponent in the
black hole. There is also a very small probability that the black holenumber of states, so the actual number of constrained random walks
will Hawking radiate a large string. In addition, both the long string is much less than unconstrained walks.
and black hole slowly lose mass by radiating light particles. Since They, of course, have the same mass in string units, but it is the
we are ignoring these effects, our adiabatic changg should not  black hole mass in Planck units which remains constang as
be so slow that the long string and black hole become unstable. varied.
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string scaleBy~a’Y2 The critical behavior ag— By is efnM
governed by strings witM>a’ ~ 2, and so the properties of n(M)=——» 29
these strings can be extracted from the critical behavior.

This critical behavior can be described by an effectivewhere
field theory of a single complex scalar field in one fewer
spacetime dimensidfY]. This can be understood as follows.

The string partition function can be calculated from a path
integral in Euclidean time with perio@. Let us make a
Euclidean rotation so that instead we are considering theéNote that we are usinyl for the string mass anah for the
zero-temperature behavior with a spatial dimension compaghermal scalar mass.

tified. The Hagedorn singularity then appears at a critical \Whend spatial dimensions are larger thar{3) *,
compactification radius. Such a singularity must arise from a

Z(,B):f:dM e AMp(M). (2.9

field becoming massless. In this case it is a scalar of winding g¢
number one which becomes tachyonic B« 8y,* Z(B)~ —Vf 2 )dln[k2+ m*(B)]
aa
2 2
_ d .
m?(B)= b 5 ﬁiz (2.2 %Vf d’k d—Me_BM+BHM_2WZa/2k2M/ﬁH
A 2mdJo M
The critical behavior of the free string partition function is [ M
thus given by the thermal scalar path integral =/, dM e " n(M) (2.10
Z=f [dx] e 5, 2.3 for
a/Z eﬁHM
where n(M):V(4TrZa’)d VEETTE (2.11
SX:BJ ddX[ﬁix* dx+m?(B)x* x1, (2.9 We are ignoring divergences kt— 0, which are ultraviolet

from the point of view of the effective field theory, but
which relate to the uninteresting light strings.

The thermal scalar also makes precise the random walk
. ; N . I picture of the highly excited string: in a first-quantized de-
Equatlon§2.3) is thg full mulpstrmg Bartmon funct|on,.the scription, they path integral is just the sum over random
single-string partition function isZ=InZ. The physical a5 Consider for example the number of string states

meaning of the thermal scalar has been a source of conf 7assing through the origin and a second pointThis is
sion. It has no apparent dynamical significance, but is usef:Eiven by the thermal scalar path integral as
in determining the static properties of highly excited strings.

andd is the number of spatial dimensions. The figichas
winding number one ang* has winding number minus 1.

As an example, let us review Brandenberger and Vafa's O x(X) x* x(0))~e=2XmB), (2.12
use of the thermal scalar to calculate the density of states
[10]. The log of the path integral is In the random walk picture, a string of enenglyis described

by a Gaussian whose width is proportional\td’2. Averag-

_ ing over the thermal ensemblenly the exponential in the
Z= ; Inha, 25 density of states is relevanthen gives
where the\ , are the eigenvalues ef V2+m?(8). When the focdMe—XZC/Me—(B—BH)MNe—2|X|m 2.13
sizes of the spatial dimensions are small compared to 0 S
m(B) %, the splitting of the\, is large compared to the
lowest eigenvalue Indeed this has the sameand 8 dependence as the path
integral result(2.12, and determine€=B,/27%a’'?. The
A =m?(B) (2.6)  size of the random walk is thet?=M/2C. Since also
I~m(B) %, the mass depends on the temperatureMas
and this eigenvalue dominates the critical behavior em(B) 2= (B—By) L.
The random walk picture also provides a simple explana-
Z(B)=—=In\;=—=In(B—Bp). (2.7 tion for the prefactors in the density of statéa8 and

(2.17). The naive exponential count of the states of a random
This determines the density of state@) for large mass:  walk overcounts by the length of the walk, since it is irrel-
evant where along the loop the walk starts—hence the factor
M1 in the density(2.9). In a large volume there is an ad-
“This tachyon is present even in supersymmetric string theoriesditional overcounting by the volume of the wa(M%?),
because the thermal boundary conditions imply that spinors are apecause only walks where the end coincides with the begin-
tiperiodic, which breaks supersymmetry. ning are allowed.
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lll. HIGHLY EXCITED STRINGS of orderg, but the quartic interaction is less relevant than the
WITH SELF-INTERACTION cubic gravitational interaction and can be neglected. Thus the

We now wish to see how interactions modify the behaviordommam interaction is simply the gravitational attraction of

of a typical highly excited string. Since the string state is® . part of the string on another.
yP gnly ; 9. string : We can make a simple estimate for when this interaction
large compared to the string scale, the most important inter-

actions will be the long-ranged ones due to exchange O‘f_‘"” be important. The critical dimension for a cubic interac-

gravitons and dilatons. The statistical mechanics of randont1'0n is d=6. The coupling is relevant fod<6, so we can

walks with self-interactions is the subject of polymer phys_ant|C|pate that the effect of gravity will be greater in lower

. . ; - dimensions. This is consistent with the fact that the gravita-
ics, and the scaling arguments we will make are similar tq

the methods used in that subjétt]. However, the case of a 1023\:)ip():o(t;r&tl%Infaléség;i;]?rﬁa;aglrﬂg Igf Té%rgéﬁ?gn Sin;l]c;ns.
polymer with a long-range attractive interaction has not Pre ractive dimpensgionless counling i
viously arisen. piing 1S

. Note t_hat we are considering the self-interactiqn of a gm(d=872 — g(g—g,)d=8/4 — gm©E-D4 (33
single string, not the harder problem of the effect of interac-
tions on the full thermal ensemble at the Hagedorn transitiontemporarily omitting factors of’ to make the dependences
In particular, there is no Jeans instability even though gravitylearer. Thus if we holdN~M?a’ large and fixed and in-
will be important. We will study the effect of interactions in creaseg from zero, the interaction becomes important at
a mean field approximation. We first determine the behavior

a highly excited string in a fixed metric and dilaton back- go~N@-678 (3.9
ground, and then require that the background solve the field )

Consider a static dilato® and static string metric ana- Wheng~gc~N"** Ford=3, we havego<g_ so the inter-
lytically continued to imaginary time:ds?=G_dr2  actions modify the free string behavior in the weakly coupled

+G;;dx'dx. The thermal scalar action in this background is'€9ime. Ford=4, go~g. so the interactions become impor-
tant at the same scale where the localized strings become

B B82G —Bﬁ black holes. Ford=5, g.<g, so the interactions become
SX=BJ d%\Ge 2*| Glax* g x+ ———x*x |- important in the regime where the free strings are metastable.
Amta In an attractive potentialz ..<1 with G, —1 at infinity,

3.9 one expects the following effect. Locally, the effective tem-

peratureG;Tl’z,B‘1 is increased, and the string can access

The explicit factor ofG ., is from the proper length of the more states than at temperatuse . We would therefore
winding string. Therr component of the metric also appears : ) )
9 g 4 P PP expect the random walk to be concentrated in the region of

in 4G since this action can be obtained by dimensional re- . 1
duction from ad+ 1 action. The effective field theory of the Smal_IGStG"’_fmd the_cnncal temperatuy; - to be reduced_
low-energy degrees of freedom also includes the graviton[elat've toB, . This is the case, at least when the potential

dilaton action has a bound state. The operator
) BAG,—1)  B°-Bi
—5 5] dxGe P R+4GIAR®). (32 V2 IV e e 39

Note that we are not interested in the full quantum fieldthezn hazs Iowgstzeigenvaluq less than the flat space value
theory, which would generate the full thermal ensemble(8—Br)/4m“a’*. As B decreases from above, this eigen-
Rather we want the single-string partition function, corre-value then vanishes @c> g, The density of states then
sponding to one random walk and so exactly gnéoop. has the same form as in the small volume case above, but
This can be written as a field theory by adding an indexWith Bc replacingy,,

a=1,...ntoy and taking thex—0 limit, but we will not eBcM
use this formalism. n(M)= (3.6)
For weak fields, the interactions between the dilaton and M

thermal scalar in Eq(3.1) are suppressed by derivatives or
B— By. This is not true for the metric, due to the explicit
factor of G,,.° This cubic interaction is proportional to the
dimensionless string coupling. Other string interactions
such as the exchange of massive string excitations, or
splitting-joining interaction of the long string, require the
random walk to intersect itseffor come within the string /2\=1 (3.7)
length, and so give rise to a quartic interaction of the ther- ’

mal scalar. The exchange is ordgrand the splitting-joining  where/ is the range of the potential andits depth. Taking
the gravitational potential of a long string at its random walk

radius/'=NYa'Y2 one has
5This is the string metric, so in the Einstein metric there are both
gravitational and dilaton forces. /N~GM/A 0~ g2N 6D/, (3.9

The bound state wave function gives the shape of the random
walk.
The bound state picture gives a simple interpretation of
?e couplinggy. The condition that the operat@.5) have a
ound state is roughly
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The bound state criterio(8.7) is theng=gj. x=(g?M)Yd=Dy 3 (x)=(g?M)¥E=2d y(y)

We now wish to require that the background satisfy the (3.19
field equations with sources coming from the excited string.
In the mean field approximation, we average these sourcdsetting aside temporarily the case=4). The eigenvalue

over all excited strings with the same mass: equation(3.13 becomes
R+4V20 -4V, &V D =24%(J) o
p , gl ")
= dyidyip(y) = Yy f dYy’ — 5 =Le(y),
R,,+2V,V,0=x2e®™(T,)+G, ()], (3.9 ye?
(3.19
whereJ is the quantity in parentheses in the scalar action Vh
(3.1). Itis shown in the Appendix that the sources are simply"/"€r€
given by the classical expression evaluated at the bound state 220 (g2M) A=)
wave functiony, times an appropriate normalization. The Bu—Be=¢ 9 _ (3.17
wave function satisfies B
Bi(G,—1) B2-p3 We are interested in the lowest bound state solution to this
—(V,—2® ,)V#+ + x=0. equation. Formally this can be found by minimizing
' 47720112 47726(’2
(3.10 g
l=f d%yadyigp* (y)dyigp(y)

The low-energy field equation8.9) are valid only when
all derivatives are small compared to the string scale. Due to

* * !
the explicit factors ofa’ in the eigenvalue equatiof8.10 - Ef ddyf ddy’w (3.18
this requires the further approximation 2 >
Bi—pBA<1, subject tofd% ¢* y=1. However, we need to be sure that
this functional is bounded from below. If we rescale
h, = G, —1<1. (3.1)  ¥(y)—p¥24(py), the first(positive term scales ag? and

the secondnegative term scales ag® 2. The negative term
Thus we can linearize the equations for the background. libecomes arbitrarily large as— (for d=3). Ford=3 the
the usual Lorentz gaug®,,,= — %(;Zhw_ To leading order, po_siti_ve term grows faster in this limit and so the variational
(J)=0, so the dilaton equation becomBs-452d =0 with  Principle predicts a lowest bound state. b5, | can be

solution ®=h ,#/8. TheR,, equation reduces to Newton's arbitrarily negative and there is no state of_ lowest _ei_gen—
law value. Ford=4 one can perform the scaling in the original

variables(3.13. The two terms both scale @ so the cou-
dah,. =2k*Mx* x, (3.12 pling does not scale out. For small coupling the kinetic term
dominates and is positive. Past a critical coupling the po-
where we have imposed the normalizatifdy* y=1. tential dominates antl can decrease without bound.

Solving this, the eigenvalue equatié®.10 becomes Let us first consider the case=3. Since all constants
have been scaled out of E(.16, we expect the lowest
. 2 Kk’M g X x(X') *x(X") eigenvalue to b&y~O(—1) and the size of the bound state
—d'dix(x)— 272 d—2 L (X)f d®x 2 to be O(1) in they variable. In terms of the original vari-
TH(d=2)wg-y X> ables, this gives
Bu(Br—Bc) 1204012
=——x(X), 3.1 a’"g"M
2w’ X(x) (313 Bc—Bu~ —,3 )
H
where x-. is the greater ofx| and |x’| and wq_; is the /—g ML, (3.19

volume of the unitSy_ ;.

Equation(3.13 is a nonlinear Schutinger equation with \ye can also express this in terms of the excitation level of
attractive Coulomb self-interaction. The essential physmqhe string. Because the redshi@.11) is small, the mass-

can be obtained by a scaling argument. Define a dmensmrreveI relation is approximately as in the free case
less string coupling

fK? M2=—N 3.2
G-y (3.14 a 320
272(d—2)wy_qa'?

and rescaled variabl®s Thus the siz€3.19 of the string state is of order

a,rl/2

i izatidmld * . — (dd Ko 7~ 2811727 (3-21)
5This preserves the normalizatigl®x x* y=fd% * y=1. g°N
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This is one of our main results. It is nonperturbative in the T T S(H—M)}

couplingg, and is valid forgo<g<g,. Sincego~N~*®and (TH")= Tr{a(H—M)}

g.~N~Y4 it shows that the size of a typical excited string in

three spatial dimensions smoothly interpolates from the ran- 2

dom walk size to the string scale as one slowly increases the = JG Tra(H—M)] 3G VTV{ O(M—H)}.
coupling. Forg<g,, the interactions are negligible and the a

string remains at its random walk size. The re8l21) is (A2)

not applicable since there is no bound state. §oig. the
string forms a black hole. If one increases the coupling furEvaluating the traces using the density of st486) gives
ther, the black hole size will be fixed to Bé¢Y* in Planck

units, but grow agNY in string units. 2 582
For d=4 andd=5, once the string coupling reachgs (TH)~ \/——e_Mﬁc 5G (BcleMbo)~ — 3G
the estimatg3.7) indicates that bound states form, but we G wy BeNG M(As)

have seen that the system becomes unstable: there are states
of arbitrarily negative energy. We interpret this as saying
that once the interaction becomes important the long strin
collapses all the way to a black hole. Fib=6 the interac-
tion is marginal and fod>6 it is irrelevant, but this does not M(Gpy.Bc)=0, so

mean that it can be neglected. These terms refer to the scal-

ing if we holdg fixed and increase the length scale—that is, SpB% B ON116G,,

M. However, we are holdin/! fixed and increasing. In 5GW_ - 5)‘1/5/32|B:B . (A4)

this case, one always reaches the coupljpgvhere a bound ¢

state can form. Again, it is unstable and should collapse. For o _ ) .

d>6, go>1 and the theory is out of the range of validity of The der|yat|ves of the eigenvalues are given by first-order
the original theory. One can still discuss the evolution of theperturbatlon theory:

string by passing to a weakly coupled dual theory. The origi-

here these expressions are valid in the limit of lahde
he critical temperature B was defined by

nal fundamental string becomes a solitonic string with ten- e?® o\, Béx*x 1(3”3
sion that increases as the dual coupigvg 1/g is decreased. JG G, C4m?a’? * 2 ’
If this state does not decay, one might expect it to form a
black hole wheng~1/g,. However, the dual theory has 20

. : e " 6\ , . -
much lighter degrees of freedom—Ilong dual strings, for — ——=-VU*vily+1G1y,
example—with much higher entropy at given mass. If the VG G
solitonic string rapidly decays into these dual strings, then a
black hole will not form. This would imply that most excited oy Y x
states of strings in higher dimensions never form a black —zzj ddx\/aGTTe*Z‘D?, (A5)
hole for any value of the string coupling. However, the decay oB dmca

of the solitonic string to the dual strings might be quite slow,

because it is locally a Bogomol'nyi-Prasad-Sommerfieldwherey is a solution to Eq(3.10, andJ is the quantity in
(BP9 state: small loops must break off and contract for it toparentheses in the actidd, (3.1) evaluated on the bound
decay. state wave function. The resulting stress energy tensor is
simply the variation ofS, with respect to the metric, evalu-

It is a pleasure to thank J. Cardy and A. Strominger foraia4 on the bound state wave function.

discussions. This work was supported in part by NSF Grant 116 stress energy tens@3) satisfies two important con-
Nos. PHY94-07194, PHY95-07065, and PHY97-22022.  gigtency checks. Since it does not include the stress energy of

the dilaton field, it is not conserved by itself. Instead it sat-
isfies
APPENDIX: CALCULATION OF (Tp,,)
In this appendix, we compute the mean value of the stress V(T =227 (J)V"D. (A6)

energy tensor among all string states with miksFirst we

represent this tensor as a functional derivative of the stringhis is required for the consistency of the field equations and

Hamiltonian: Bianchi identities, and is a necessary check because the ac-
tion S, is not manifestly invariant under time reparametriza-
tions. It is also correctly normalized in the following sense.

2 SH In a static spacetime, the total energy associated with the
T =——=——. (Al)  matter is
JG G,
M =J T,,&*n"ds, (A7)
lts expectation value in a typical state of magsis then mater= s " # ¢
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where ¢* is the timelike Killing vector, and the integral is D-2

over a static surfac® with unit normaln” and proper vol- Maom==—5—2| € **|R,,+2V,V,®
- . ; (D—-3)k“Js
umedZ. Using the above expression f¢f ,,), we find
+—=0G V(V2<I)—2V OVHD) [£4nvdY.
M matter= _J <TTT> \/Eddxz M. (A8) D-2"# 8
(A10)

The total Arnowitt-Deser-MisnefADM) mass of a static Using the equations of motiof8.9) this becomes
spacetime can be expressed similarly in terms of an integral

of the Ricci tensor rather than the stress energy tensor. As- _EJ (T . s
sumingD spacetime dimensions, and using the Einstein met- ADMTD -3 wp_p 8N

ric, one has (A11)

For weak fields, one recoveM oy =M. In general, these

D-2

Mapw=-—=—=—>| R,,&“n"d3. (A9)
AMT(D-3)k% s # about to form, they will differ only by a factor of order unity.

two masses will not be equal, but even when a black hole is

In terms of the correspondence principle, if one starts at

This differs from M .4, Since it also includes the gravita- zero coupling with dcompact string state of mash, it will
tional binding energy. Rewriting this expression in terms ofform a black hole at larger coupling with maldis,py, . Since

the string metric yields these two masses differ only by a numerical factor, the black

hole entropy is reproducddp to a similar factoreven if the

black hole mass is equated with the string mass at zero cou-

"Recall that\/G includes therr component of the metric. pling.
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