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Self-gravitating fundamental strings
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We study the configuration of a typical highly excited string as one slowly increases the string coupling. The
dominant interactions are the long-range dilaton and gravitational attraction. In four spacetime dimensions, the
string slowly contracts from its initial~large! size until it approaches the string scale where it forms a black
hole. In higher dimensions, the string stays large until the coupling reaches a critical value, and then it rapidly
collapses to a black hole. The implications for the recently proposed correspondence principle are discussed.
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I. INTRODUCTION

We have recently formulated acorrespondence principle
which relates black holes and strings@1#. Developing ideas
in @2#, it was proposed that as one adiabatically decrease
string couplingg, a black hole makes a transition to a state
weakly coupled strings~andD-branes! with the same mass
charge and angular momentum as the black hole. For m
black holes in string theory, namely, those without magne
Neveu-Schwarz~NS! charges, the ratio of the horizon size
the fundamental string lengtha81/2 decreases as one d
creasesg. The transition occurs when this ratio is of order
Before this point, the black hole is well defined as a solut
of the low-energy supergravity theory; beyond this point,a8
corrections become large and the metric near the horizo
no longer well defined.

By relating a black hole to a set of weakly coupled stat
the correspondence principle provides a statistical desc
tion of black hole entropy. We have verified that the numb
of such weakly coupled states agrees with the Bekenst
Hawking entropy in a wide variety of examples involvin
Ramond and electric NS charges in various dimensions
contrast to the precise counting of states for extremal
near-extremal black holes@3,4#, this method does not in gen
eral determine the numerical coefficient in the entropy si
that would depend on the precise coupling at which the tr
sition occurs. However, it applies to a much wider class
black holes and reproduces the correct functional dep
dence on the mass and charges. Other aspects of this c
spondence principle have been investigated recently in@5#.

In the present paper we would like to develop this furth
by considering the reverse process; we start with wea
coupled matter and increase the string coupling. We focu
the simplest case of a single highly excited string~in various
dimensions!. The physics of free highly excited strings h
been much discussed in connection with the Hagedorn t
sition. One of our results is to include string interactions
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the behavior of the string. One might hope that this wou
ultimately lead to a better understanding of the Haged
transition, but it does not apply directly because we consi
only a single isolated string.

Consider a string state at levelN@1, with mass
M254N/a8. As we increase the string coupling, the effe
tive Schwarzschild radiusGM increases. It becomes of orde
the string scale wheng2N1/2;1. This defines a critical cou
pling when the transition to a black hole can first occur:

gc;N21/4. ~1.1!

Notice thatgc!1 and is independent of the number of~non-
compact! spatial dimensions. Conversely, if one starts with
Schwarzschild black hole and decreases the coupling,
horizon size will be of order the string scale when the co
pling is given by Eq.~1.1!, whereN;Mbh

2 a8. So this is the
coupling at which the correspondence principle predicts
transition between black holes and strings.

However, a string at levelN will form a black hole when
g;gc only if it is confined to about the string scale. At ze
coupling, the typical size of the string is much large
l 5N1/4a81/2. This follows from the random walk picture o
the excited string@6#, where it takesN1/2 steps each of length
a81/2. The key question is what happens to this size as
increaseg. Intuitively, one would expect gravitational an
dilaton forces to cause the string state to shrink, but it is
obvious that it will shrink all the way tol ;a81/2 by the
critical coupling~1.1!. Surprisingly, it turns out that the be
havior of the string as one increasesg depends crucially on
the numberd of ~noncompact! spatial dimensions. We will
see that interactions remain negligible until the coupling is
order

g0;N~d26!/8. ~1.2!

As expected, the interactions always become important
fore the Schwarzschild radius reaches the original rand
walk size, which occurs at a couplingg;N(d24)/8.

Four spacetime dimensions (d53) yields perhaps the
simplest behavior. In this case,g0,gc so as one increase
2557 © 1998 The American Physical Society



n

ain
t

g

s
n

im
ng

n

th
e
-
ac
th
e
er

-

rm
n
le
ip
ly

f
lo

o
n
re
n

ou

is

will
u-

ing
all

lks
py

ng,

ts

es

u-

ly
In

the
en
ion
in-
rgy

ate
e.
ble,
of

e of

the

e
e
ol
ng
nc

e.

the
alks

the

2558 57GARY T. HOROWITZ AND JOSEPH POLCHINSKI
the coupling, the interactions first become important a
causel to decrease. In fact, we find that

l ;
a81/2

g2N1/2
~1.3!

so that asg increases fromg0 to gc , l smoothly contracts
from the random walk size to the string scale. Ford54,
g05gc so as one increases the coupling the string rem
large until g approaches this value, and then it collapses
form a black hole. Ford55, g0.gc . This leads to a form of
hysteresis. If we start with a typical highly excited strin
state and increaseg, it will remain large until g;g0, at
which point it collapses into a black hole. If we now decrea
the coupling, the black hole remains a good description u
g;gc at which point it turns into an excited string state.1 For
d56, typical excited string states remain large untilg;1
when other strong coupling effects are likely to become
portant. The casesd.6 can probably be analyzed by passi
to a weakly coupled dual description.

We will derive the above results in the next two sectio
using a thermal scalar formalism@7#, which has been applied
previously to try to understand the critical behavior near
Hagedorn transition.~See@8# for another approach to includ
string interactions.! However, first we discuss their implica
tions for the correspondence principle. At first sight, the f
that typical string states do not evolve into black holes at
critical coupling gc in d.4 seems to contradict both th
explanation of black hole entropy and the assumed rev
ibility of the adiabatic change ing. However, this is not the
case. The resolution, which was mentioned briefly in@1#, is
that as one decreasesg, a higher-dimensional black hole be
comes a highly excited string but in anatypicalstate. It must
still be long, with a length of orderN1/2a81/2;Mbha8 since
we would expect of order half of its energy to be in the fo
of string tension. But rather than a random walk, it is co
strained to lie in a volume roughly set by the string sca
This is plausible because the correspondence princ
should still hold if the black hole is placed in a box on
slightly larger than its own size, which neargc is the string
length.

Are there enough of these atypical states to account
the black hole entropy? For random-walking strings the
of the number of states should be the number of steps,N1/2

times a numerical constant. This is indeed the entropy
highly excited strings. But this should also hold for the ra
dom walk constrained to lie in a small volume. Compa
random walks on an infinite two-dimensional square grid a
a small grid, say two squares by two. The first walk has f
choices at each step and an entropyN1/2ln4. The second has
4, 3, or 2 at each step, depending on whether the path

1For gc,g,g0, there is a very small probability that the larg
string will undergo a fluctuation to a small volume and becom
black hole. There is also a very small probability that the black h
will Hawking radiate a large string. In addition, both the long stri
and black hole slowly lose mass by radiating light particles. Si
we are ignoring these effects, our adiabatic change ing should not
be so slow that the long string and black hole become unstabl
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the interior, at an edge, or at a corner, and so the entropy
beN1/2lnO(3). The numerical coefficient is outside the acc
racy of the correspondence principle in any event.2 The net
result is that the black hole evolves to a typical excited str
state only in three and four spatial dimensions. But in
dimensions,the reversible adiabatic transition at g;gc is
between black holes and long but compact strings.

The string states associated with large random wa
should also contribute to the Bekenstein-Hawking entro
when they form a black hole at larger values of the coupli
but this is a small correction. For a given levelN, a black
hole which forms atg5g0 has a larger mass in Planck uni
than a black hole which forms at3 g5gc,g0. The dominant
contribution to the entropy of this larger black hole com
from compact strings withN8.N which make the transition
wheng;gc;N821/4. For example, ind55, a string at level
N forms a black hole atg;g0;N21/8 with mass

Mbh;
N1/2g0

1/2

l p
;

N7/16

l p
, ~1.4!

where l p is the Planck length. If we now decrease the co
pling to g;gc , the black hole will form an excited string
with mass

N81/2

a81/2
;

N7/16

~gca8!1/2
~1.5!

which impliesN85N7/6.
In the next section we review the properties of high

excited free strings, using the thermal scalar formalism.
section three we include interactions by first considering
string in a fixed metric and dilaton background, and th
requiring that the background satisfy the equations of mot
with the typical excited string as source. The appendix
cludes some details of the calculation of the stress ene
tensor of the string.

II. HIGHLY EXCITED FREE STRINGS

We are interested in the properties of a typical string st
of massM@a821/2, given by the microcanonical ensembl
However, it is easier to calculate in the canonical ensem
and so we will do this and then solve for the mass in terms
the temperature. Consider the one-string expectation valu
some quantityX,

^X&5Z21Tr~Xe2bH!, Z5Tr~e2bH!. ~2.1!

As is well known, there is a limiting~Hagedorn! temperature
beyond which the traces diverge@9#. This divergence is due
to the exponential rise in the density of statesn(M );ebHM

where the inverse Hagedorn temperature is of order

a
e

e

2Note, however, that this coefficient appears in the exponent in
number of states, so the actual number of constrained random w
is much less than unconstrained walks.

3They, of course, have the same mass in string units, but it is
black hole mass in Planck units which remains constant asg is
varied.
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57 2559SELF-GRAVITATING FUNDAMENTAL STRINGS
string scalebH;a81/2. The critical behavior asb→bH is
governed by strings withM@a821/2, and so the properties o
these strings can be extracted from the critical behavior.

This critical behavior can be described by an effect
field theory of a single complex scalar field in one few
spacetime dimension@7#. This can be understood as follow
The string partition function can be calculated from a p
integral in Euclidean time with periodb. Let us make a
Euclidean rotation so that instead we are considering
zero-temperature behavior with a spatial dimension comp
tified. The Hagedorn singularity then appears at a criti
compactification radius. Such a singularity must arise from
field becoming massless. In this case it is a scalar of wind
number one which becomes tachyonic forb,bH ,4

m2~b!5
b22bH

2

4p2a82
. ~2.2!

The critical behavior of the free string partition function
thus given by the thermal scalar path integral

Z5E @dx# e2Sx, ~2.3!

where

Sx5bE ddx@] ix* ] ix1m2~b!x* x#, ~2.4!

and d is the number of spatial dimensions. The fieldx has
winding number one andx* has winding number minus 1
Equation~2.3! is the full multistring partition function; the
single-string partition function isZ5 lnZ. The physical
meaning of the thermal scalar has been a source of co
sion. It has no apparent dynamical significance, but is us
in determining the static properties of highly excited strin

As an example, let us review Brandenberger and Va
use of the thermal scalar to calculate the density of st
@10#. The log of the path integral is

Z52(
a

lnla , ~2.5!

where thela are the eigenvalues of2¹21m2(b). When the
sizes of the spatial dimensions are small compared
m(b)21, the splitting of thela is large compared to the
lowest eigenvalue

l15m2~b! ~2.6!

and this eigenvalue dominates the critical behavior

Zc~b!'2 lnl1'2 ln~b2bH!. ~2.7!

This determines the density of statesn(M ) for large mass:

4This tachyon is present even in supersymmetric string theo
because the thermal boundary conditions imply that spinors are
tiperiodic, which breaks supersymmetry.
r
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n~M !5
ebHM

M
, ~2.8!

where

Z~b!5E
0

`

dM e2bMn~M !. ~2.9!

~Note that we are usingM for the string mass andm for the
thermal scalar mass.!

Whend spatial dimensions are larger thanm(b)21,

Z~b!'2VE ddk

~2p!d
ln@k21m2~b!#

'VE ddk

~2p!dE0

`dM

M
e2bM1bHM22p2a82k2M /bH

5E
0

`

dM e2bMn~M ! ~2.10!

for

n~M !5V
bH

d/2

~4p2a8!d

ebHM

M11d/2
. ~2.11!

We are ignoring divergences atM→0, which are ultraviolet
from the point of view of the effective field theory, bu
which relate to the uninteresting light strings.

The thermal scalar also makes precise the random w
picture of the highly excited string: in a first-quantized d
scription, thex path integral is just the sum over rando
walks. Consider for example the number of string sta
passing through the origin and a second pointx. This is
given by the thermal scalar path integral as

^x* x~x!x* x~0!&;e22uxum~b!. ~2.12!

In the random walk picture, a string of energyM is described
by a Gaussian whose width is proportional toM1/2. Averag-
ing over the thermal ensemble~only the exponential in the
density of states is relevant! then gives

E
0

`

dMe2x2C/Me2~b2bH!M;e22uxuAC~b2bH!. ~2.13!

Indeed this has the samex and b dependence as the pa
integral result~2.12!, and determinesC5bH/2p2a82. The
size of the random walk is thenl 25M /2C. Since also
l'm(b)21, the mass depends on the temperature asM
}m(b)22}(b2bH)21.

The random walk picture also provides a simple expla
tion for the prefactors in the density of states~2.8! and
~2.11!. The naive exponential count of the states of a rand
walk overcounts by the length of the walk, since it is irre
evant where along the loop the walk starts—hence the fa
M 21 in the density~2.8!. In a large volume there is an ad
ditional overcounting by the volume of the walkO(Md/2),
because only walks where the end coincides with the be
ning are allowed.

s,
n-
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III. HIGHLY EXCITED STRINGS
WITH SELF-INTERACTION

We now wish to see how interactions modify the behav
of a typical highly excited string. Since the string state
large compared to the string scale, the most important in
actions will be the long-ranged ones due to exchange
gravitons and dilatons. The statistical mechanics of rand
walks with self-interactions is the subject of polymer phy
ics, and the scaling arguments we will make are similar
the methods used in that subject@11#. However, the case of a
polymer with a long-range attractive interaction has not p
viously arisen.

Note that we are considering the self-interaction of
single string, not the harder problem of the effect of inter
tions on the full thermal ensemble at the Hagedorn transit
In particular, there is no Jeans instability even though gra
will be important. We will study the effect of interactions i
a mean field approximation. We first determine the behav
a highly excited string in a fixed metric and dilaton bac
ground, and then require that the background solve the fi
equations with the typical string as source.

Consider a static dilatonF and static string metric ana
lytically continued to imaginary time: ds25Gttdt2

1Gi j dxidxj . The thermal scalar action in this background

Sx5bE ddxAGe22FS Gi j ] ix* ] jx1
b2Gtt2bH

2

4p2a82
x* x D .

~3.1!

The explicit factor ofGtt is from the proper length of the
winding string. Thett component of the metric also appea
in AG since this action can be obtained by dimensional
duction from ad11 action. The effective field theory of th
low-energy degrees of freedom also includes the gravit
dilaton action

2
b

2k2E ddxAGe22F~R14Gi j ] iF] jF!. ~3.2!

Note that we are not interested in the full quantum fie
theory, which would generate the full thermal ensemb
Rather we want the single-string partition function, cor
sponding to one random walk and so exactly onex loop.
This can be written as a field theory by adding an ind
a51, . . . ,n to x and taking then→0 limit, but we will not
use this formalism.

For weak fields, the interactions between the dilaton a
thermal scalar in Eq.~3.1! are suppressed by derivatives
b2bH . This is not true for the metric, due to the explic
factor of Gtt .5 This cubic interaction is proportional to th
dimensionless string couplingg. Other string interactions
such as the exchange of massive string excitations, o
splitting-joining interaction of the long string, require th
random walk to intersect itself~or come within the string
length!, and so give rise to a quartic interaction of the th
mal scalar. The exchange is orderg2 and the splitting-joining

5This is the string metric, so in the Einstein metric there are b
gravitational and dilaton forces.
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of orderg, but the quartic interaction is less relevant than t
cubic gravitational interaction and can be neglected. Thus
dominant interaction is simply the gravitational attraction
one part of the string on another.

We can make a simple estimate for when this interact
will be important. The critical dimension for a cubic intera
tion is d56. The coupling is relevant ford,6, so we can
anticipate that the effect of gravity will be greater in low
dimensions. This is consistent with the fact that the grav
tional potential falls off more rapidly in higher dimension
A cubic coupling constant has units of length(d26)/2 so the
effective dimensionless coupling is

gm~d26!/2 ; g~b2bH!~d26!/4 ; gM~62d!/4, ~3.3!

temporarily omitting factors ofa8 to make the dependence
clearer. Thus if we holdN;M2a8 large and fixed and in-
creaseg from zero, the interaction becomes important at

g0;N~d26!/8 ~3.4!

for d,6. Recall that string scale black holes are form
wheng;gc;N21/4. For d53, we haveg0,gc so the inter-
actions modify the free string behavior in the weakly coup
regime. Ford54, g0;gc so the interactions become impo
tant at the same scale where the localized strings bec
black holes. Ford55, gc,g0 so the interactions becom
important in the regime where the free strings are metasta

In an attractive potential,Gtt,1 with Gtt→1 at infinity,
one expects the following effect. Locally, the effective tem
peratureGtt

21/2b21 is increased, and the string can acce
more states than at temperatureb21. We would therefore
expect the random walk to be concentrated in the region
smallestGtt , and the critical temperaturebC

21 to be reduced
relative tobH

21 . This is the case, at least when the poten
has a bound state. The operator

2~¹m22F ,m!¹m1
b2~Gtt21!

4p2a82
1

b22bH
2

4p2a82
~3.5!

then has lowest eigenvaluel1 less than the flat space valu
(b22bH

2)/4p2a82. As b decreases from above, this eige
value then vanishes atbC.bH . The density of states the
has the same form as in the small volume case above,
with bC replacingbH ,

n~M !5
ebCM

M
. ~3.6!

The bound state wave function gives the shape of the ran
walk.

The bound state picture gives a simple interpretation
the couplingg0. The condition that the operator~3.5! have a
bound state is roughly

l 2V*1, ~3.7!

wherel is the range of the potential andV its depth. Taking
the gravitational potential of a long string at its random wa
radiusl 5N1/4a81/2, one has

l 2V;GMl 42d;g2N~62d!/4. ~3.8!
h
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57 2561SELF-GRAVITATING FUNDAMENTAL STRINGS
The bound state criterion~3.7! is theng*g0.
We now wish to require that the background satisfy

field equations with sources coming from the excited stri
In the mean field approximation, we average these sou
over all excited strings with the same mass:

R14¹2F24¹mF¹mF52k2^J&,

Rmn12¹m¹nF5k2@e2F^Tmn&1Gmn^J&#, ~3.9!

where J is the quantity in parentheses in the scalar act
~3.1!. It is shown in the Appendix that the sources are sim
given by the classical expression evaluated at the bound
wave functionx, times an appropriate normalization. Th
wave function satisfies

H 2~¹m22F ,m!¹m1
bC

2 ~Gtt21!

4p2a82
1

bC
2 2bH

2

4p2a82J x50.

~3.10!

The low-energy field equations~3.9! are valid only when
all derivatives are small compared to the string scale. Du
the explicit factors ofa8 in the eigenvalue equation~3.10!
this requires the further approximation

bC
2 2bH

2 !1,

htt [ Gtt21!1. ~3.11!

Thus we can linearize the equations for the background

the usual Lorentz gauge,Rmn52 1
2 ]2hmn . To leading order,

^J&50, so the dilaton equation becomesR14]2F50 with
solution F5hm

m/8. The Rtt equation reduces to Newton’
law

] i] ihtt52k2Mx* x, ~3.12!

where we have imposed the normalization*ddxx* x51.
Solving this, the eigenvalue equation~3.10! becomes

2] i] ix~x!2
bH

2k2M

2p2~d22!vd21a82
x~x!E ddx8

x* x~x8!

x.
d22

5
bH~bH2bC!

2p2a82
x~x!, ~3.13!

where x. is the greater ofuxu and ux8u and vd21 is the
volume of the unitSd21.

Equation~3.13! is a nonlinear Schro¨dinger equation with
attractive Coulomb self-interaction. The essential phys
can be obtained by a scaling argument. Define a dimens
less string coupling

g25
bH

2k2

2p2~d22!vd21a82
~3.14!

and rescaled variables6

6This preserves the normalization*ddx x* x5*ddy c* c51.
e
.
es

n
y
ate

to

In

s
n-

x5~g2M !1/~d24!y, x~x!5~g2M !d/~822d!c~y!
~3.15!

~setting aside temporarily the cased54). The eigenvalue
equation~3.13! becomes

2]yi]yic~y!2c~y!E ddy8
c* c~y8!

y.
d22

5zc~y!,

~3.16!

where

bH2bC5z
2p2a82~g2M !2/~42d!

bH
. ~3.17!

We are interested in the lowest bound state solution to
equation. Formally this can be found by minimizing

I 5E ddy]yic* ~y!]yic~y!

2
1

2E ddyE ddy8
c* c~y!c* c~y8!

y.
d22

~3.18!

subject to*ddy c* c51. However, we need to be sure th
this functional is bounded from below. If we resca
c(y)→rd/2c(ry), the first ~positive! term scales asr2 and
the second~negative! term scales asrd22. The negative term
becomes arbitrarily large asr→` ~for d>3). Ford53 the
positive term grows faster in this limit and so the variation
principle predicts a lowest bound state. Ford>5, I can be
arbitrarily negative and there is no state of lowest eig
value. Ford54 one can perform the scaling in the origin
variables~3.13!. The two terms both scale asr2 so the cou-
pling does not scale out. For small coupling the kinetic te
dominates andI is positive. Past a critical coupling the po
tential dominates andI can decrease without bound.

Let us first consider the cased53. Since all constants
have been scaled out of Eq.~3.16!, we expect the lowes
eigenvalue to bez0;O(21) and the size of the bound sta
to be O(1) in the y variable. In terms of the original vari
ables, this gives

bC2bH;
a82g4M2

bH
,

l ;g22M 21. ~3.19!

We can also express this in terms of the excitation leve
the string. Because the redshift~3.11! is small, the mass-
level relation is approximately as in the free case

M25
4

a8
N. ~3.20!

Thus the size~3.19! of the string state is of order

l ;
a81/2

g2N1/2
. ~3.21!
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2562 57GARY T. HOROWITZ AND JOSEPH POLCHINSKI
This is one of our main results. It is nonperturbative in t
couplingg, and is valid forg0,g,gc . Sinceg0;N23/8 and
gc;N21/4, it shows that the size of a typical excited string
three spatial dimensions smoothly interpolates from the r
dom walk size to the string scale as one slowly increases
coupling. Forg,g0, the interactions are negligible and th
string remains at its random walk size. The result~3.21! is
not applicable since there is no bound state. Forg.gc the
string forms a black hole. If one increases the coupling f
ther, the black hole size will be fixed to beN1/4 in Planck
units, but grow asgN1/4 in string units.

For d54 andd55, once the string coupling reachesg0

the estimate~3.7! indicates that bound states form, but w
have seen that the system becomes unstable: there are
of arbitrarily negative energy. We interpret this as say
that once the interaction becomes important the long st
collapses all the way to a black hole. Ford56 the interac-
tion is marginal and ford.6 it is irrelevant, but this does no
mean that it can be neglected. These terms refer to the
ing if we holdg fixed and increase the length scale—that
M . However, we are holdingM fixed and increasingg. In
this case, one always reaches the couplingg0, where a bound
state can form. Again, it is unstable and should collapse.
d.6, g0@1 and the theory is out of the range of validity
the original theory. One can still discuss the evolution of
string by passing to a weakly coupled dual theory. The or
nal fundamental string becomes a solitonic string with t

sion that increases as the dual couplingg̃51/g is decreased
If this state does not decay, one might expect it to form

black hole wheng̃;1/g0. However, the dual theory ha
much lighter degrees of freedom—long dual strings,
example—with much higher entropy at given mass. If t
solitonic string rapidly decays into these dual strings, the
black hole will not form. This would imply that most excite
states of strings in higher dimensions never form a bl
hole for any value of the string coupling. However, the dec
of the solitonic string to the dual strings might be quite slo
because it is locally a Bogomol’nyi-Prasad-Sommerfi
~BPS! state: small loops must break off and contract for it
decay.
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APPENDIX: CALCULATION OF ŠTµn‹

In this appendix, we compute the mean value of the str
energy tensor among all string states with massM . First we
represent this tensor as a functional derivative of the st
Hamiltonian:

Tmn52
2

AG

dH

dGmn
. ~A1!

Its expectation value in a typical state of massM is then
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^Tmn&5
Tr$Tmnd~H2M !%

Tr$d~H2M !%

5
2

AG Tr$d~H2M !%

d

dGmn
Tr$u~M2H !%.

~A2!

Evaluating the traces using the density of states~3.6! gives

^Tmn&'
2

AG
e2MbC

d

dGmn
~bC

21eMbC!'
M

bC
2AG

dbC
2

dGmn
,

~A3!

where these expressions are valid in the limit of largeM .
The critical temperature bC was defined by
l1(Gmn ,bC)50, so

dbC
2

dGmn
52

dl1 /dGmn

dl1 /db2ub5bC

. ~A4!

The derivatives of the eigenvalues are given by first-or
perturbation theory:

e2F

AG

dl1

dGtt
5

bC
2 x* x

4p2a82
1

1

2
GttJ,

e2F

AG

dl1

dGi j
52¹~ ix* ¹ j } x1 1

2 Gi j J,

dl1

db2
5E ddxAGGtte

22F
x* x

4p2a82
, ~A5!

wherex is a solution to Eq.~3.10!, andJ is the quantity in
parentheses in the actionSx ~3.1! evaluated on the bound
state wave function. The resulting stress energy tenso
simply the variation ofSx with respect to the metric, evalu
ated on the bound state wave function.

The stress energy tensor~A3! satisfies two important con
sistency checks. Since it does not include the stress energ
the dilaton field, it is not conserved by itself. Instead it s
isfies

¹m^Tmn&52e22F^J&¹nF. ~A6!

This is required for the consistency of the field equations a
Bianchi identities, and is a necessary check because the
tion Sx is not manifestly invariant under time reparametriz
tions. It is also correctly normalized in the following sens
In a static spacetime, the total energy associated with
matter is

Mmatter5E
S
TmnjmnndS, ~A7!



s

gr
A
e

-
o

e is
.
at

ack

cou-

57 2563SELF-GRAVITATING FUNDAMENTAL STRINGS
wherejm is the timelike Killing vector, and the integral i
over a static surfaceS with unit normalnn and proper vol-
umedS. Using the above expression for^Tmn&, we find7

Mmatter52E ^Tt
t&AGddx5M . ~A8!

The total Arnowitt-Deser-Misner~ADM ! mass of a static
spacetime can be expressed similarly in terms of an inte
of the Ricci tensor rather than the stress energy tensor.
sumingD spacetime dimensions, and using the Einstein m
ric, one has

MADM5
D22

~D23!k2E
S

R̃mnjm ñndS. ~A9!

This differs fromMmatter since it also includes the gravita
tional binding energy. Rewriting this expression in terms
the string metric yields

7Recall thatAG includes thett component of the metric.
n
z,

u

al
s-
t-

f

MADM5
D22

~D23!k2E
S
e22FFRmn12¹m¹nF

1
2

D22
Gmn~¹2F22¹mF¹mF!GjmnndS.

~A10!

Using the equations of motion~3.9! this becomes

MADM5
D22

D23E F ^Tmn&2Gmn

^Ta
a&

D22 GjmnndS.

~A11!

For weak fields, one recoversMADM5M . In general, these
two masses will not be equal, but even when a black hol
about to form, they will differ only by a factor of order unity

In terms of the correspondence principle, if one starts
zero coupling with a~compact! string state of massM , it will
form a black hole at larger coupling with massMADM . Since
these two masses differ only by a numerical factor, the bl
hole entropy is reproduced~up to a similar factor! even if the
black hole mass is equated with the string mass at zero
pling.
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